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Abstract

Quasi-Newton methods form the basis of many effective methods for uncon-
strained and constrained optimization. As the iterations proceed, a quasi-
Newton method incorporates new curvature information by performing a low-
rank update to a matrix that serves as an approximation to a Hessian matrix
of second derivatives. In the years following the publication of the Davidon-
Fletcher-Powell (DFP) method in 1963 the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update emerged as the best update formula for use in unconstrained
minimization. More recently, a number of quasi-Newton methods have been
proposed that are intended to improve on the efficiency and reliability of the
BFGS method. Unfortunately, there is no known analytical means of determin-
ing the relative performance of these methods on a general nonlinear function,
and there is a real need for extensive experimental testing to justify the theo-
retical basis of each approach. The goal of this report is to implement and test
these methods in a uniform, systematic, and consistent way. In the first part
of the report, we review several quasi-Newton methods, discuss their relative
benefits, and discuss their implementation. In the second part, we investigate
more recent variations, explain their motivation and theory, and investigate
their performance.
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1. Introduction

This report concerns the formulation and evaluation of quasi-Newton methods for
finding a local solution of the unconstrained optimization problem

minimize
x∈Rn

f(x), (UC)

where f is a twice-continuously differentiable scalar-valued function. All the meth-
ods to be considered are line-search methods, which generate a sequence {xk} with
xk+1 = xk + αkpk, where αk is a positive scalar and pk is a descent direction for f
at xk. The principal feature of a quasi-Newton method is that pk is the minimizer
of the quadratic model

qk(p) = f(xk) + pT∇f(xk) + 1
2p

THkp, (1.1)

with Hk an approximation of the Hessian matrix ∇2f(xk). The approximate Hessian
represents (in some sense) curvature information that has been accumulated at
iterates preceding xk. The first quasi-Newton method for finding a solution of
problem UC was proposed in 1959 by Davidon [5]. This method was modified and
clarified by Fletcher and Powell [7], and forms the basis for the Davidon-Fletcher-
Powell (DFP) method.

The move from xk to xk+1 provides further information about the curvature
that may be incorporated in a new Hessian approximation Hk+1. If dk = xk+1− xk
and yk = ∇f(xk+1) − ∇f(xk), then yTk dk is a first-order estimate of the curvature
dTk∇2f(xk)dk and is known as the approximate curvature. The matrix Hk+1 is
chosen to satisfy the so-called quasi-Newton condition:

Hk+1dk = yk. (1.2)

This condition forces the new quadratic model qk+1 to have curvature yTk dk along
dk; i.e.,

dTk Hk+1dk = yTk dk. (1.3)

We say that the quasi-Newton condition installs the approximate curvature yTk dk
as the exact curvature of the new quadratic model qk+1(p). After the move from xk
to xk+1, a quasi-Newton method computes Hk+1 = Hk+Uk, where Uk is a low-rank
update matrix that is designed to retain some important properties of Hk such as
symmetry or positive definiteness. An update formula Hk+1 = Hk + Uk is said to
have the property of hereditary symmetry if symmetry of Hk implies symmetry of
Hk+1, and hereditary positive-definiteness if the positive-definiteness of Hk+1 follows
from that of Hk.

IfHk is positive definite, the minimizer of the quadratic model (1.1) is the unique
solution of the equations Hkpk = −∇f(xk). The next iterate xk+1 = xk + αkpk
is chosen to give a decrease in f that is at least as good as a fixed fraction ηA

(0 < ηA < 1) of the decrease in the local affine model f(xk)+∇f(xk)T(x−xk). The
sufficient-decrease condition may be written as

f(xk + αkpk) ≤ f(xk) + αkηA∇f(xk)Tpk,
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(see, e.g., Armijo [2], Ortega and Rheinboldt [22]). Every method considered in this
report satisfies the Armijo condition in conjunction with the strong Wolfe condition

|∇f(xk + αkpk)
Tpk| ≤ ηW |∇f(xk)Tpk|, (1.4)

where ηW is a preassigned scalar such that ηW ∈ (ηA, 1). (See, e.g., Wolfe [27], Moré
and Thuente [15], and Gill et al. [9]).

The quasi-Newton condition (1.2) and identity (1.3) imply that yTk dk > 0 is a
necessary condition for the approximate Hessian Hk+1 to be positive definite. This
condition is satisfied for any xk+1 such that αk satisfies the Wolfe condition (1.4).
In particular, for any step satisfying (1.4) it holds that

yTk pk = ∇f(xk+1)
Tpk −∇f(xk)Tpk

≥ ηW∇f(xk)Tpk −∇f(xk)Tpk ≥ (1− ηW )pTk Hkpk.

This implies that any αk satisfying the Wolfe condition (1.4) will give an xk+1 such
that yTk dk ≥ (1− ηW )αkp

T
k Hkpk > 0.

Among the many quasi-Newton updates developed in the ten years following
the publication of the DFP method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update emerged as the best update formula for use in unconstrained minimization.
The BFGS update has the form

Hk+1 = Hk −
1

dTk Hkdk
Hkdkd

T
k Hk +

1

yTk dk
yky

T
k , (1.5)

which represents a symmetric, rank-two modification to Hk. The BFGS update has
the property of hereditary positive definiteness if yTk dk > 0. A line-search method
with the BFGS update (1.5) is referred to as Algorithm bfgsH.

An alternative to solving the equationsHkpk = −∇f(xk) at each step is to update
the inverse approximate Hessian Mk and form the product pk = −Mk∇f(xk). Every
update to Hk is associated with an equivalent update to H−1

k , which may be derived
using the Sherman-Morrison-Woodbury formula (see Sherman and Morrison [26],
and Woodbury [28]). If Hk is updated by the BFGS formula (1.5), the associated
update to the inverse is given by

Mk+1 = Mk −
1

yTk dk
(Mkykd

T
k + dky

T
k Mk) +

yTk dk + yTk Mkyk(
yTk dk

)
2

yky
T
k . (1.6)

The BFGS update to the inverse may be written in a number of different ways. If
the cross-product term of (1.6) is symmetrized, we obtain the update

Mk+1 = Mk −
1

yTk Mkyk
Mkyky

T
k Mk +

1

yTk dk
dkd

T
k

+
(
yTk Mkyk

)( 1

yTk dk
dk −

1

yTk Mkyk
Mkyk

)( 1

yTk dk
dk −

1

yTk Mkyk
Mkyk

)
T. (1.7)

A line-search method with the BFGS update (1.6) or (1.7) is referred to as Algo-
rithm bfgsM.
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If xk is not close to a minimizer, the approximate curvature yTk dk may not be
positive and Hk+1 may be indefinite or undefined. In unconstrained optimization,
most implementations skip the update if yTk dk is negative, in which case no new
information about the curvature is used at that iteration. An alternative strategy
is discussed in Section 4.

1.1. Overview

While the BFGS update is widely perceived as the basis for the best methods pro-
posed in the ten years following the formulation of the first quasi-Newton method,
the reason for this practical superiority is not fully understood. Over the past 60
years there have been a number of variants of the BFGS method that are intended
to enhance those theoretical aspects of the method that are perceived to be the
main contributing factors to its practical effectiveness. These modifications are mo-
tivated by various assumptions. For example, the use of more accurate curvature
information will yield better search directions; or reducing the condition number of
the approximate Hessian will provide better numerical stability.

The methods considered in this report are all variations of the BFGS algorithm,
and are based on either the standard update (1.5) or the inverse update (1.6) for-
mulas. These variants fall under three broad categories: methods that modify the
condition number of the approximate Hessian; methods that focus on improving the
numerical accuracy of the update; and methods that use a modified value of yk in
the quasi-Newton condition intended to improve the accuracy of the approximate
Hessian.

The difficulty of judging the impact of the many theoretical developments of
quasi-Newton methods emphasizes the importance of practical testing to support
claims of improved reliability or convergence. Today there are curated collections of
test problems that were not available when many of these algorithms were proposed.
In this report, we use the Constrained and Unconstrained Testing Environment with
safe threads (CUTEst) to compare the performance of these algorithms (see Gould,
Orban & Toint [11]).

1.2. Notation

Given vectors x and y, the vector consisting of x augmented by y is denoted by (x, y).
The subscript i is appended to vectors to denote the ith component of that vector,
whereas the subscript k is appended to a vector to denote its value during the kth
iteration of an algorithm, e.g., xk represents the value for x during the kth iteration,
whereas [xk ]i denotes the ith component of the vector xk. The vector e denotes the
column vector of ones, and I denotes the identity matrix. The dimensions of e and
I are defined by the context. The vector two-norm or its induced matrix norm are
denoted by ∥·∥. The vector pk is used the search direction, αk the scalar step length
dk = αkpk = xk+1−xk the step (change in variables) yk = ∇f(xk+1)−∇f(xk) is the
change in gradient Hk is the approximate Hessian Mk is the approximate inverse
Hessian.
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2. Self-Scaled Updates

An important factor in the numerical performance of quasi-Newton methods is the
conditioning of each approximate Hessian Hk (i.e., the magnitude of the matrix
condition number of Hk). This conditioning is influenced by a number of factors,
including the step length αk, the initial approximate Hessian H0 and the condition
of the exact Hessian at a solution. Self-scaled quasi-Newton methods are designed
to limit the bad effects of the choice of the initial approximate Hessian H0 on the
efficiency of a method. Self-scaled updates were first proposed by Oren and Luen-
berger [20]. Additional references include Oren [17–19], and Oren and Spedicato [21],

2.1. Scaling the BFGS Hessian: quadratic case.

The influence of H0 may be seen by considering the BFGS method applied to
the strictly convex quadratic f(x) = cTx + 1

2x
THx. If an exact line search is

used, then the conjugate-direction property of the approximate Hessian implies that
Hkdj = Hdj , for 0 ≤ j < k. As H is nonsingular, it follows that H−1Hkdj = dj ,
which implies that H−1Hk has k unit eigenvalues corresponding to the k eigenvec-
tors

{
dj
}
, 0 ≤ j < k. This property means that the BFGS method moves the

eigenvalues of H−1H0 to unity, one at a time as the iterations proceed.
If H0 is chosen so that the eigenvalues of H−1H0 are all large relative to unity,

then the first update will make H−1H1 ill-conditioned. It follows that any quasi-
Newton method is affected by the spread of the spectrum of each H−1Hk, which is
the length of the interval with end-points given by the smallest and largest eigenvalue
of H−1Hk. The idea is to scale each Hk before applying the quasi-Newton update.
This scaling is chosen to make the spread of the spectrum of H−1Hk+1 no worse
than that of H−1Hk.

The next result considers the properties of the eigenvalues ofH−1Hk andH−1Hk+1.
As H is positive definite, we can write

H−1Hj = H−1/2
(
H−1/2HjH

−1/2
)
H1/2, (2.1)

which implies that the eigenvalues of H−1Hj are real and positive for all 0 ≤ j ≤ k.

Result 2.1. Consider the application of the BFGS method to a quadratic with
positive-definite Hessian H. Let λ1, λ2, . . . , λn denote the eigenvalues of H−1Hk

ordered so that
0 < λn ≤ λn−1 ≤ · · · ≤ λ1.

Then, if 1 ∈ [λn, λ1], the eigenvalues of H−1Hk+1 are all contained in [λn, λ1].

Proof. Let Qk denote the matrix Qk = H−1/2HkH
−1/2, which has positive eigen-

values from Sylvester’s law of inertia. The identity (2.1) implies that Qk and H−1Hk

have the same eigenvalues. For a quadratic f , the gradient difference satisfies
yk = Hdk, and the updated BFGS matrix (1.5) may be written as an update to the
matrix Qk, i.e.,

Qk+1 = Qk −
1

qTk Qkqk
Qkqkq

T
k Qk +

1

qTk qk
qkq

T
k = Pk +

1

qTk qk
qkq

T
k ,
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where

Qk+1 = H−1/2Hk+1H
−1/2, qk = H1/2dk and Pk = Qk −

1

qTk Qkqk
Qkqkq

T
k Qk.

Direct multiplication gives Pkqk = 0 and qk is an eigenvector of Pk with zero eigen-
value. If the eigenvalues of Pk are denoted by µ1, µ2, . . . , µn, then

0 = µn ≤ µn−1 ≤ · · · ≤ µ1,

and the eigenvalue interlacing theorem gives

0 = µn ≤ λn ≤ µn−1 ≤ · · · ≤ µ1 ≤ λ1.

From the definition of Qk+1, it holds that Qk+1qk = qk, so that Qk+1 has one
eigenvector qk, and n − 1 eigenvectors that are orthogonal to qk. It follows that
the spectrum of Qk+1 consists of a unit eigenvalue and the n− 1 eigenvalues of Pk.
This implies that the eigenvalues of Qk+1 are 1, and µn−1, . . . , µ1. But 1 ∈ [λn, λ1],
and λn ≤ µn−1 ≤ · · · ≤ µ1 ≤ λ1, which implies that 1, µn−1, . . . , µ1 ∈ [λn, λ1], as
required.

As H−1Hk and H−1Hk+1 have k and k + 1 unit eigenvalues, respectively, the as-
sumptions for this result hold for all k > 0. A simple inductive argument shows
that the bound on the eigenvalue ratio of H−1Hk is determined by the eigenvalues
λ1, λ2, . . . , λn of H−1H0. If H0 is chosen so that this eigenvalue ratio is small; and
1 ∈ [λn, λ1], then the ratios for H−1Hk will be small for all subsequent steps.

An appropriate choice of H0 may be achieved as follows. First, an update pair
(d1, y1) is computed using a given initial H0. However, before H0 is updated it
is rescaled as H0 ← S0H0, where S0 is a positive-definite scaling matrix chosen so
that the eigenvalues λ1, λ2, . . . , λn of H−1(S0H0) satisfy 1 ∈ [λn, λ1] and λ1/λn is
“small”. The optimal choice of S0 is obviously S0 = H, which is unknown. However,
practical rescaling techniques are based on a simple diagonal scaling of the form
S0 = γI for some γ > 0. If the eigenvalues of H−1H0 are 0 < λn ≤ λn−1 ≤ · · · ≤ λ1

and γ is any value such that 1/λ1 ≤ γ ≤ 1/λn, then the eigenvalues of H−1(γH0)
are 0 < γλn ≤ γλn−1 ≤ · · · ≤ γλ1, with

0 < γλn ≤ 1 ≤ γλ1 and 1 ∈ [γλn, γλ1].

These results are based on f being quadratic. In the next section we consider
rescaling techniques for the general nonlinear case.

2.2. The self-scaled explicit BFGS method (bfgsHS).

For a general nonlinear f , scaling the initial approximate Hessian is not sufficient
to provide a favorable eigenvalue distribution in all the subsequent matrices Hk.
Instead, it is necessary to rescale every Hk so that Hk+1 has a favorable approximate
eigenvalue ratio. The idea is to scale Hk by a scalar γk so that 1 ∈ [λn, λ1], i.e., the
spread of the spectrum of ∇2f(xk)

−1(γkHk) includes 1 to first order.
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If Hk is replaced by γkHk in the BFGS update (1.5) we obtain

Hk+1 = γk

(
Hk −

1

dTk Hkdk
Hkdkd

T
k Hk

)
+

1

yTk dk
yky

T
k . (2.2)

A suitable value of γk may be derived from the choice of scaling for Hk in the
quadratic case. In this case, if the eigenvalues of H−1Hk are 0 < λn ≤ λn−1 ≤ · · · ≤
λ1, then any γk such that 1/λ1 ≤ γ ≤ 1/λn will give

0 < γkλn ≤ 1 ≤ γkλ1 and 1 ∈ [γkλn, γkλ1]. (2.3)

Recall that, for a quadratic, we can define

Qk = H−1/2HkH
−1/2, qk = H1/2dk,

in which case dTk Hkdk = dTk H
1/2QkH

1/2dk = qTk Qkqk and yTk dk = dTk Hdk = qTk qk.
This implies that dTk Hkdk/y

T
k dk = qTk Qkqk/q

T
k qk, giving the bounded Rayleigh quo-

tient

λn ≤
dTk Hkdk
yTk dk

≤ λ1 or, equivalently,
1

λ1
≤ yTk dk

dTk Hkdk
≤ 1

λn
.

It follows that in the nonlinear case, if we choose γk = yTk dk/d
T
k Hkdk in (2.2) then

(2.3) will hold to first order. Note that dTk (γkHk)dk = yTk dk, which implies that the
scaling installs the approximate curvature yTk dk before the update.

The equivalent update for the inverse is

Mk+1 = γk

(
Mk −

1

yTk Mkyk
Mkyky

T
k Mk

)
+

1

yTk dk
dkd

T
k

+ γk
(
yTk Mkyk

)( 1

yTk dk
dk −

1

yTk Mkyk
Mkyk

)( 1

yTk dk
dk −

1

yTk Mkyk
Mkyk

)
T. (2.4)

with γk chosen as γk = yTk dk/y
T
k Mkyk.

Line-search methods based on the scaled BFGS update (2.2) and its inverse (2.4)
will be referred to as Algorithms bfgsHS and bfgsMS, respectively.

3. Factored BFGS Methods

3.1. The factored Hessian BFGS method (bfgsR)

In this section we derive a variant of the BFGS method that maintains a Cholesky
factorization of the approximate Hessian Hk = RT

k Rk, where Rk is upper triangular
with positive diagonals. The numerical results of Section 5 indicate that updat-
ing the Cholesky factor is substantially more reliable than maintaining the inverse
approximation Mk ≈ ∇2f(xk)

−1. Though it is generally regarded as more computa-
tionally expensive, a technique is described at the end of this section that increases
efficiency, making the operation-complexity comparable to that of using the inverse
approximation without sacrificing any of the reliability.



3. Factored BFGS Methods 8

A significant drawback to the explicit and inverse BFGS methods is the inability
to efficiently monitor the conditioning or positive definiteness of their respective ap-
proximations. The theoretical property of hereditary positive definiteness does not
always hold in finite-precision arithmetic and the approximations may become in-
definite, in which case the search directions obtained from forming pk = −Mk∇f(xk)
or solving Hkpk = −∇f(xk) may not even be descent directions, ultimately leading
to line search failure.

If the approximations become ill-conditioned or indefinite they can be reset. Un-
fortunately, it is difficult to determine when this happens. In general it is too expen-
sive to compute the singular values of Hk or Mk. However, if a method based upon
updating a factorization is being used, only the factor Rk is stored and updated,
which implies that RT

k Rk can never be indefinite. Moreover, a lower bound on the
condition number of Hk is readily available from the identity cond(Hk) = cond(Rk)

2

and the bound cond(Rk) ≥ max |rjj |/min |rjj |. It follows that one possible strategy
is to reset the (implicit) approximate Hessian Hk if cond(Rk)

2 becomes large.
Although the details of updating matrix factorizations can be tedious, the pro-

cedures themselves are central in the formulation of modern numerically stable op-
timization methods. Given the Cholesky factorization Hk = RT

k Rk, the equations
Hkpk = −∇f(xk) may be written as

RT
k Rkpk = −∇f(xk).

To obtain the solution pk, first solve the lower-triangular system RT
k qk = −∇f(xk)

followed by the upper-triangular system Rkpk = qk.

Updating the Cholesky factorization. Suppose that the Cholesky factor Rk

of the current matrix Hk is available, so that Hk = RT
k Rk, where Rk is a nonsingular

upper triangle. Given that

Hk+1 = Hk −
1

dTk Hkdk
Hkdkd

T
k Hk +

1

yTk dk
yky

T
k ,

we seek an upper-triangular matrix Rk+1 such that Hk+1 = RT
k+1Rk+1. This matrix

may be found by utilizing an alternative form for the BFGS update (1.5). Brodlie,
Gourlay and Greenstadt [3] show that

Hk+1 = (I + vkd
T
k )Hk(I + dkv

T
k ), with

vk = ± 1

(yTk dk)
1/2(dTk Hkdk)

1/2
yk −

1

dTk Hkdk
Hkdk. (3.1)

If the factorization Hk = RT
k Rk is known at the kth iteration then

Hk+1 = (I − vkd
T
k )R

T
k Rk(I − dkv

T
k ) = R̂T

k R̂k,

with R̂k = Rk(I − dkv
T
k ). Substituting the expression for vk and expanding gives

R̂k = Rk +
1

(dTk Hkdk)
1/2

Rkdk

(
± 1

(yTk dk)
1/2

yk −
1

(dTk Hkdk)
1/2

Hkdk

)T

.
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Notice that dTk Hkdk = dTk R
T
k Rkdk = (Rkdk)

T(Rkdk) = ∥Rkdk∥2. The expression

for R̂k then becomes

R̂k = Rk +
1

∥Rkdk∥
Rkdk

(
± 1

(yTk dk)
1/2

yk −
1

∥Rkdk∥
Hkdk

)T

,

or simply R̂k = Rk + ukv
T
k with uk = qk/∥qk∥ and vk = ±yk/(yTk dk)1/2 − RT

k uk.
The choice of sign indicates that both

v+

k =
1

(yTk dk)
1/2

yk −RT
k uk and v−

k = − 1

(yTk dk)
1/2

yk −RT
k uk

are appropriate values for vk in the rank-one update. The magnitudes of intermedi-
ate quantities will be minimized if the sign is chosen to make the norm of the update
as small as possible. Using that fact that uk is a unit vector, as well as the basic
properties of the two-norm, we have ∥ukvTk ∥2 = ∥uk∥2∥vk∥2 = ∥vk∥2. As

vTk vk =
1

yTk dk
yTk yk ∓

2

(yTk dk)
1/2(dTk Hkdk)

1/2
yTk Hkdk +

1

dTk Hkdk
∥Hkdk∥22,

it follows that the value of vk with the least norm is v+

k if yTk Hkdk < 0 (i.e.,
yTk ∇f(xk) < 0), and v−

k otherwise.

The matrix R̂k = Rk + ukv
T
k has the desired property that R̂T

k R̂k = Hk+1, how-
ever it is not upper triangular and therefore not a Cholesky factor of Hk+1. Hence
the principal effort associated with the update procedure is devoted to obtaining a
triangular Rk+1 from R̂k. If Qk is an orthogonal matrix with QT

k Qk = I, we have

Hk+1 = R̂T
k R̂k = R̂T

k Q
T
k QkR̂k.

It remains to choose the orthogonal matrix Qk so that Rk+1 = QkR̂k is upper
triangular. The desired effect is achieved with two products, or sweeps, of plane
rotations. To simplify the notation the suffix k is omitted and the symbol + is used
to denote quantities associated with the (k + 1)th iteration.

Let en denote the nth coordinate vector. The first sweep S1 has two properties.
First, S1 should reduce the vector u to a multiple of en. In particular, we must
have S1u = ∥w∥2en = en, because orthogonal transformations preserve Euclidean
length, and u is a unit vector. The result of applying S1 to the rank-one matrix
uvT is then a specially structured rank-one matrix env

T, whose first n− 1 rows are
all zero and whose last row is simply vT. The second property of S1 is to leave the
upper-triangular structure of R as intact as possible. This is achieved by choosing
the order of the rotations in S1 so that they leave the upper-triangular structure
of R unaltered except for creating a “horizontal spike” of nonzeros in the last row.
These properties are achieved by constructing S1 from rotations in the (n, n − 1),
(n, n− 2), . . . , (n, 1) planes that give S1u = en.

As S1uv
T contains nonzeros only in its last row, the combined matrix

R̃ = S1R̂ = S1(R+ uvT)
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has the same structure as S1R, i.e., is upper-triangular except for a nonzero spike in
the last row. To achieve the desired upper-triangular form for S2R̃, S2 is taken as a
sweep of rotations in the planes (1, n), (2, n), . . . , (n− 1, n), designed to annihilate
the last element of each column of R̃.

The required updated Cholesky factor R+ is given by R+ = S2S1R̄. The total
work required for this procedure, including finding the solution of two triangular
systems is, 7n2 + n+ 32 floating point operations.

Recurrence relations with improved efficiency. If we wish to derive a method
for determining Q and applying it to R̂ that is both numerically stable and com-
putationally efficient, we need to understand and utilize the special structure of the
matrices representing plane rotations and their products. Given any z ∈ Rn and for
any 1 ≤ i < j ≤ n, it is always possible to find an orthogonal plane rotation P i

j so

that (P i
j z)j = 0 and (P i

j u)i = ±τ , where τ = ∥(zi, zj)
T∥2. This matrix is formed

by embedding the two-by-two matrix(
c s
−s c

)
such that c =

zi
ρ

and s =
zj
ρ

in the ith and jth rows and columns of the identity matrix In (see [8] for details).
It follows that the product P = P 1

2P
2
3 · · ·Pn−1

n satisfies Pz = ±ρe1 with ρ = ∥z∥.
Gill et al. [8] show that this product is upper-Hessenberg and has the form

P =


β̄1z1 β̄1z2 β̄1z3 · · · β̄1zn
−s1 β̄2z2 β̄2z3 · · · β̄2zn

−s2 β̄3z3 · · · β̄3zn
. . .

. . .
...

−sn−1 β̄nzn

 .

Knowing this special structure means that in order to determine and work with P
we need only compute s and β̄, which can be computed efficiently using the following
recurrence relation.

Algorithm Recurrence Relation 1: Compute P = P 1
2P

2
3 · · ·Pn−1

n .

Input z;
Set β̄n = 1/zn;
for j = n− 1, n− 2, . . . , 1 do

ρj = β̄j+1zj ;

sj = 1/(ρ2j + 1)1/2; cj = ρjsj ;

β̄j = sj β̄j+1; β̄j+1 = cj β̄j+1;
end for
return β̄, s;

Returning to our rank-one update R̂ = R + uvT, we let v̂ be the solution of
RTv̂ = v so that we can write R̂ = (I +uv̂T)R. We can use recurrence relation 1 to
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compute an orthogonal product of plane rotations Q1, chosen so that Q1u = ±e1.
Then premultiplying gives

Q1R̂ = (Q1 + σ̄1e1v̂
T)R = HuR,

where σ̄1 = 1
β̄1
. The matrix e1v̂

T is just the zero matrix with v̂T installed in the

first row. This means that Hu is Q1 with σ̄1v̂
T added to the first row. It follows

that Hu is an upper-Hessenberg matrix of the form

Hu =


β̄1u1 + σ̄1v̂1 β̄1u2 + σ̄1v̂2 β̄1u3 + σ̄1v̂3 · · · β̄1un + σ̄1v̂n
−s1 β̄2u2 β̄2u3 . . . β̄2un

−s2 β̄3u3 . . . β̄3un
. . .

. . .
...

−sn−1 β̄nun

 . (3.2)

Next we need another orthogonal matrix Q2 that is composed of a sequence of
plane rotations chosen to annihilate the sub-diagonal elements of Hu. The resulting
matrix R̃ = Q2Hu will then be upper triangular and of the form

R̃ =


λ1 β1u2 + σ1v̂2 β1u3 + σ1v̂3 · · · β1un + σ1v̂n

λ2 β2u3 + σ2v̂3 · · · β2un + σ2v̂n
λ3 · · · β3un + σ3v̂n

. . .
...
λn

 .

Due to the structure of R̃ we can also compute λ, β, and σ using recurrences. Let
λ̄j = β̄juj + σ̄j v̂j , and consider the 2× 2 product(

c̄j −s̄j
s̄j c̄j

)(
λ̄j β̄juj+1 + σ̄j v̂j+1

−sj β̄j+1uj+1

)
=

(
c̄j λ̄j + s̄jsj (c̄j β̄j − s̄j β̄j+1)uj+1 + c̄j σ̄j v̂j+1

s̄j λ̄j − c̄jsj (s̄j β̄j + c̄j β̄j+1)uj+1 + s̄j σ̄j v̂j+1

)
. (3.3)

To delete the sub-diagonal of (3.2), we require s̄j λ̄j− c̄jsj = 0. It is also apparent
from (3.3) that we need λj = c̄j λ̄j + s̄jsj = (λ̄2

j + s2j )
1/2, which is accomplished by

putting c̄j = λ̄j/λj and s̄j = sj/λj . The values of βj , σj are the coefficients of uj+1

and v̂j+1 in the first row of the right side of (3.3), namely βj = c̄j β̄j − s̄j β̄j+1 and
σj = c̄j σ̄j . The intermediate values of β̄, σ̄, and λ̄ are also read off of product (3.3)

in a similar way. The entire procedure for computing Q2 and forming R̃ = Q2Hu is
accomplished by the following recurrence relation.
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Algorithm Recurrence Relation 2: Compute R̃ = Q2Hu.

Input β̄, s, u, and v̂;
Set σ̄1 = 1/β̄1; λ̄1 = β̄1u1 + σ̄1v̂1;
for j = 1, 2, . . . , n− 1 do

λj = (λ̄2
j + s2j )

1/2;

c̄j =
λ̄j

λj
; s̄j =

sj
λj

;

βj = c̄j β̄j − s̄j β̄j+1; σj = c̄j σ̄j ;

β̄j+1 = s̄j β̄j + c̄j β̄j+1; σ̄j+1 = s̄j σ̄j ; λ̄j+1 = β̄j+1uj+1 + σ̄j+1v̂j+1;
end for
return λ, β, and σ;

We can now form the product R+ = R̃R efficiently. The following recurrence
relation is analogous to the column update proposed by Goldfarb [10], and can also
be viewed as a modification of the backward recurrence of Lemma V given in Gill
et al. [8].

Algorithm Recurrence Relation 3: Compute R+ = R̃R.

Input R, β, u, σ, v̂, and λ.
for i = n, n− 1, . . . , 1 do

ũ = uirii; ṽ = v̂irii;
for j = i+ 1, i+ 2, . . . , n do

r+

ij = λirij + βiũj + σiṽj ;
ũj = ũj + ujrij ; ṽj = ṽj + v̂jrij ;

end for
end for
return R+;

We now have the upper triangular factor R+ = R̃R and the orthogonal matrix
Q = Q2Q1. It follows that

R+TR+ = (R̃R)TR̃R = RTHT
u QT

2 Q2HuR = R̂TQT
1 Q

T
2 Q2Q1R̂ = R̂TR̂ = H+,

which implies that R+ is the required Cholesky factor for the next iteration. Note
that this method for updating Hk = RT

k Rk is equivalent to the method for updating
Hk = LkDkL

T
k proposed by Goldfarb [10], the only difference being transposition

and that Dk is updated separately.
Although this technique requires solving the additional triangular systemRT

k v̂k =
vk, the overall efficiency is improved. The total work required is 6n2 + 30n − 20
floating-point operations, thus the improvement gained from using recurences is
O(n2).
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Algorithm bfgsR: BFGS with factored Hessian approximation.

Choose x0 ∈ Rn; k ← 0;
while ∥∇f(xk)∥ > ε and k ≤ N do

Solve RT
k qk = −∇f(xk); Solve Rkpk = qk;

αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = xk + αkpk; xk+1 = xk + dk; yk = ∇f(xk+1)−∇f(xk);
if yTk dk > 0 then

uk =
1

∥qk∥
qk; vk = ± 1

(yTk dk)
1/2

yk −RT
k uk;

Solve RT
k v̂k = vk;

(β̄k, sk) = recurrence1(uk);
(λk, βk, σk) = recurrence2(β̄k, sk, uk, v̂k);
Rk+1 = recurrence3(Rk, βk, uk, σk, v̂k, λk);

else
Rk+1 = Rk;

end if
k = k + 1;

end while

3.2. The self-scaled factored BFGS method (bfgsRS).

All that is needed to apply the scaling described in Section 2 is to use the square
root of the scaling factor. As Hk = RT

k Rk, then Hk may be scaled implicitly as

Rk ← γ
1/2
k Rk just before the triangular factor is updated. This scaling requires

1
2n(n+1) multiplications, which does not increase the operation count significantly.

3.3. Conjugate factored inverse BFGS (bfgsZ)

In contrast to the preceding method, this variant of BFGS is based on maintaining
a factorization of the inverse Hessian approximation. If Zk is a nonsingular matrix
such that

Mk = ZkZ
T
k , (3.4)

then Zk is said to be a conjugate factor of Mk. Note that Zk is not unique because
if Zk is a conjugate factor, then so is ZkΩ for any orthogonal matrix Ω. The term
conjugate factorization is used because the columns of Zk satisfy the conjugacy
condition with respect to Hk, i.e., z

T
i Hkzj = 0 if i ̸= j, and zTj Hkzj = 1, where zi

denotes the ith column of Zk. This condition implies that (3.4) may be written as
ZT
k HkZk = I.

Result 3.1. The BFGS update for Mk may be written in the form

Mk+1 =
(
I + dkw

T
k

)
Mk

(
I + wkd

T
k

)
,

with wk = ± 1

(yTk dk)
1/2(dTk Hkdk)

1/2
Hkdk −

1

yTk dk
yk.
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Proof. From (3.1) the BFGS update for Mk (= H−1
k ) may be written as

Mk+1 = (I + dkv
T
k )

−1Mk(I + vkd
T
k )

−1,

with vk = ± 1

(yTk dk)
1/2(dTk Hkdk)

1/2
yk −

1

dTk Hkdk
Hkdk.

The Sherman-Morrison-Woodbury formula implies that

(I + vkd
T
k )

−1 = I + βkvkd
T
k , with βk = − 1

1 + dTk vk
,

so that

Mk+1 = (I + βkdkv
T
k )Mk(I + βkvkd

T
k ),

with vk = ± 1

(yTk dk)
1/2(dTk Hkdk)

1/2
yk −

1

dTk Hkdk
Hkdk.

Then

1 + dTk vk = 1 + dTk

(
± 1

(yTk dk)
1/2(dTk Hkdk)

1/2
yk −

1

dTk Hkdk
Hkdk

)

= 1± (dTk yk)
1/2

(dTk Hkdk)
1/2
− 1 = ± (dTk yk)

1/2

(dTk Hkdk)
1/2

.

It follows that

βk = − 1

1 + dTk vk
= ∓(dTk Hkdk)

1/2

(yTk dk)
1/2

.

If we write wk = βkvk, then

Mk+1 = (I + dkw
T
k )Mk(I + wkd

T
k ),

with

wk = βkvk = ∓(dTk Hkdk)
1/2

(dTk yk)
1/2

(
± 1

(yTk dk)
1/2(dTk Hkdk)

1/2
yk −

1

dTk Hkdk
Hkdk

)
= − 1

yTk dk
yk ±

1

(yTk dk)
1/2(dTk Hkdk)

1/2
Hkdk,

as required.

If Mk is written in the form Mk = ZkZ
T
k , the inverse update may be written in the

product form

Mk+1 = (I + dkw
T
k )ZkZ

T
k (I + wkd

T
k ) =

(
(I + dkw

T
k )Zk

)(
(I + dkw

T
k )Zk

)
T,
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or, equivalently, Mk+1 = Zk+1Z
T
k+1, with Zk+1 = (I + dkw

T
k )Zk.

For the moment we will assume all variables are associated with iteration k so
that the suffix may be omitted. Powell [25] first replaces the factor Z with Ẑ = ZΩ,
where Ω is orthogonal. The matrix Ω is chosen so that the first column of Ẑ is a
multiple d. Note that

d = −αM∇f(x) = −αZZT∇f(x) = Zs, where s = −αZT∇f(x).

Let Ω be the product of plane rotations ΩT = P 1
2P

2
3 · · ·Pn−1

n , where P i
i+1 is

a rotation in the (i, i + 1) plane such the (i + 1)th component of the product
P i
i+1P

i+1
i+2 · · ·Pn−1

n s is zero. This choice of Ω gives

ΩTs = P 1
2P

2
3 · · ·Pn−1

n s = ∥s∥e1,

in which case

d = Zs = ZΩΩTs = ẐΩTs = Ẑ(∥s∥e1) = ∥s∥ẑ1,

and ẑ1 is a multiple of d.
The next step is to compute the product Z̄ = (I + dwT)Ẑ. The first column of

Z̄ is z̄1 = (I + dwT)Ẑe1 = (I + dwT)ẑ1 = ẑ1 + dwTẑ1. If we substitute the value of
w from Result 3.1 we obtain

ẑ1 + dwTẑ1 =
1

∥s∥d+ d

(
1

(yTd)1/2(dTHd)1/2
dTH − 1

yTd
yT
)

1

∥s∥d

=

(
1

∥s∥d−
1

∥s∥d
)
+

(dTHd)1/2

(yTd)1/2∥s∥d =
1

(yTd)1/2
d,

because dTHd = sT(ZTHZ)s = ∥s∥2. For columns j = 2, 3, . . . , n we have

z̄j = Z̄ej = ẑj + dwTẑj = ẑj −
(
yTẑj
yTd

)
d.

This follows from the conjugacy property ẐTHẐ = I and the fact that d is a
multiple of ẑ1, i.e., d

THẑj = 0 for j = 2, 3, . . . , n. We now have a practical formula

for computing the conjugate factor Z̄ = (I + dwT)Ẑ, i.e.,

z̄j =


1

(yTd)1/2
d if j = 1;

ẑj −
(
yTẑj
yTd

)
d if j = 2, 3, . . . , n.

The algorithm for this conjugate factored variant of the BFGS method is given in
Algorithm bfgsZ.
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Algorithm bfgsZ: Conjugate factored inverse BFGS.

Choose x0 ∈ Rn; k ← 0;
while ∥∇f(xk)∥ > ε and k ≤ N do

qk = ZT
k ∇f(xk); pk = −Zkqk;

αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk; yk = ∇f(xk+1)−∇f(xk);
if yTk dk > 0 then

Compute Ωk; Ẑ = ZkΩk;

z̄j =


1

(yTk dk)
1/2

dk if j = 1

ẑj −
(
yTk ẑj

yTk dk

)
dk if j = 2, 3, . . . , n

;

Zk+1 = Z̄;
else

Zk+1 = Zk;
end if
k ← k + 1;

end while

Powell provides an efficient method for computing ZkΩk without the need to
form Ωk explicitly. The method is summarized in Algorithm modZ.

Algorithm modZ: Compute Ẑ = ZΩ.

Set j = max
{
1 ≤ i ≤ n : si ̸= 0

}
;

Set σ = sjzj ; Set τ = s2j ;
for i = j : −1 : 2 do

ẑi =
( τ

s2i−1 + τ

)
1/2
(
− zi−1 +

si−1

τ
σ
)
;

σ ← σ + si−1zi−1; τ ← τ + s2i−1;
end for

Note that in the above routine sj is the jth component of s, while zj is the jth
column of Z.

Automatic rescaling The conjugacy property satisfied by the columns of Zk can
introduce numerical difficulies when Z0 is nearly singular. For example, suppose
rank(Z0) = n − 1 and the method is applied to a quadratic objective function
in infinite precision. The first n − 1 columns of Zn will be mutually orthogonal,
and therefore span the n − 1 dimensional column space of Z0. The last column of
Zn must simultaneously be in the range of, and orthogonal to, z1, . . . , zn−1, and
therefore identically zero. If Z0. If the objective function is well-approximated by
a quadratic near the kth iterate, as is usually the case, and Zk is nearly singular
from an accumulation of errors, then the same line of reasoning suggests the method
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would produce a final column of Zk+n that is disproportionately small. Powell [25]
recommends a technique to automatically rescale the columns of Zk to prevent this
issue, that extends well to general nonlinear objective functions.

Keep a running record of the minimum norm of the first column observed up
to and including the kth iteration. Then scale each of the remaining columns,
if necessary, so their norm is no less than the running record. This technique is
summarized in the following algorithm.

Algorithm autoscale: Automatic Rescaling of Zk

if k = 0 then
σk = +∞;

else
σk = min{σk−1, ∥z1∥}

end if
for j = 2 : n do

β = ∥zj∥;
if β < σk then

zj =
σ
β zj ;

end if
end for

It should be noted that the automatic scaling procedure technically separates
bfgsZfrom the other solvers because once auto-scaling occurs, the resulting Hessian
approximation need not satisfy the quasi-Newton condition 1.2.

4. Modified BFGS Methods

In the next section we derive and analyze several modifications of the BFGS method.
These take the form of either changing the update formula while still satisfying the
conventional quasi-Newton condition, or by changing the quasi-Newton condition
itself and then finding a suitable update that satisfies the modified condition. These
modifications are motivated by various assumptions. For example, incorporating
more accurate curvature information will yield better search directions; or reducing
the condition number of the approximate Hessian will provide better numerical
stability.

The first modified BFGS method was proposed by Powell [24] in the context of
constrained optimization. In this method, yk is replaced by a vector ỹk in the update
(1.5) when yTk dk is not sufficiently positive. This requires the definition of a “least
acceptable curvature”. A popular strategy is to regard yTk dk as being sufficiently
positive if

yTk dk ≥ (1− µ)dTk Hkdk, (4.1)

where µ is a constant parameter such 0 ≤ µ ≤ 1. Nocedal and Wright [16, p. 540]
propose the value µ = 0.8.
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Powell proposed that ỹk be computed as a convex combination of yk and Hkyk,
i.e.,

ỹk = θkyk + (1− θk)Hkdk,

where

θk =


1 if yTk dk ≥ (1− µ)dTk Hkdk;

µdTk Hkdk
dTk Hkdk − yTk dk

if yTk dk < (1− µ)dTk Hkdk.

The Powell modification is always well defined, which implies that it is always
applied—even when it might be unwarranted because f has negative curvature.

Cautious updates The positivity and magnitude of the approximate curvature
plays an important role in theoretical convergence analysis. Showing that the BFGS
method is globally convergent for general well-posed minimization problems has
proved very difficult and has not yet been accomplished. However, it is widely
believed to be true and there is ample practical support for this claim. Making
certain assumptions about, or imposing restrictions on, the approximate curvature
has allowed several authors to make headway on proving global convergence.

The inequality
∥yk∥2
yTk dk

≤M, (4.2)

where M > 0 is constant, is not difficult to verify when f is convex. Of course,
this inequality need not hold in general. However, if 4.2 is assumed to hold for all
iterations k, then global convergence can be shown. See Powell [23] for the details
of the proof. This result is extended to the convex Broyden class of updates with
parameter ϕ ∈ [0, 1) by Byrd et al. [4].

An alternative approach that is well-suited to practical application is proposed
by Li and Fukushima [14]. They suggest the update rule

Hk+1 =

Hk −
1

dTk Hkdk
Hkdkd

T
k Hk +

1

yTk dk
yky

T
k

yTk dk
∥dk∥2

≥ ϵ∥gk∥α

Hk otherwise,

where ϵ and α are positive parameters that can be chosen. The authors were able to
prove global convergence when this update rule is used, and suggest ϵ = 1.00e-06

and either α = 1 or α = 0.01 when ∥gk∥ ≥ 1 and α = 3 otherwise.
Our numerical experiments show that imposing these update restrictions hinders

the performance of the BFGS method and the overall best performance is achieved
by only requiring yTk dk > 0. This seems to support the belief that the BFGS
method is in fact globally convergent, and these assumptions and restrictions on
the approximate curvature are helpful for showing theoretical properties but are not
necessary or helpful in practice. See the numerical results in Section 5 for more
details.
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4.1. Function interpolation (bfgsY)

The search direction obtained by solving Hkpk = −∇f(xk) is the solution of the
quadratic subproblem minp∈Rn qk(p). where qk(p) is the quadratic model (1.1). For
small values of ∥p∥, qk(p) approximates f(xk + p), in particular, qk(p) satisfies the
interpolation conditions.

qk(0) = f(xk), ∇qk(0) = ∇f(xk), and ∇2qk(0) = Hk. (4.3)

Yuan [30] gives a modified BFGS method in which the modified gradient difference
ỹk is obtained by imposing an additional interpolation condition on the quadratic
model qk(p) of (1.1). If the quasi-Newton condition Hk+1dk = yk holds at xk−1 then
the interpolation conditions (4.3) imply

∇qk(xk−1 − xk) = ∇f(xk) +Hk(xk−1 − xk)

= ∇f(xk)−
(
∇f(xk)−∇f(xk−1)

)
= ∇f(xk−1).

These properties imply that qk(x− xk) is a quadratic interpolant of f(x) at xk and
xk−1.

We want to introduce an extra parameter γk and update the Hessian approxi-
mation using the scaled update

Hk+1 = Hk −
1

dTk Hkdk
Hkdkd

T
k Hk + γk

1

yTk dk
yky

T
k . (4.4)

In order to determine γk we need to impose an extra condition. The quasi-Newton
variant derived by Yuan [30] is based on the condition

qk(xk−1 − xk) = f(xk−1). (4.5)

Notice that this requires the quadratic model qk(x − xk) to interpolate f(x) at
x = xk−1. It is similar to the relation ∇qk(xk−1 − xk) = ∇f(xk−1) that followed
naturally from the interpolation conditions (4.3) in that the same x values are
considered, but the interpolation condition is imposed on qk rather than its gradient.

To derive a usable method from this condition, observe that if k is increased by
one in (4.5) the condition becomes qk+1(xk−xk+1) = f(xk). Rewriting the quadratic
model with k also increased by one yields qk+1(p) = f(xk+1) + pT∇f(xk+1) +
1
2p

THk+1p. Substituting p = xk − xk+1 into the model and setting the result equal
to f(xk), i.e., applying (4.5), gives

qk+1(−dk) = f(xk+1)− dTk∇f(xk+1) +
1
2d

T
k Hk+1dk = f(xk).

This can be solved for dTk Hk+1dk to get the relation

dTk Hk+1dk = 2
(
f(xk)− f(xk+1) +∇f(xk+1)

Tdk
)
. (4.6)

We want to update the approximate Hessian Hk using

Hk+1 = Hk −
1

dTk Hkdk
Hkdkd

T
k Hk + γk

1

yTk dk
yky

T
k ,
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Algorithm bfgsY: BFGS with function interpolation.

Choose x0 ∈ Rn; k ← 0;
while ∥∇f(xk)∥ > ε and k ≤ N do

Solve Hkpk = −∇f(xk);
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk; yk = ∇f(xk+1)−∇f(xk);
if yTk dk > 0 then

γk =
2

yTk dk

(
f(xk)− f(xk+1) +∇f(xk+1)

Tdk
)
; ỹk = γkyk;

Hk+1 = Hk −
1

dTk Hkdk
Hkdkd

T
k Hk +

1

ỹTk dk
ỹkỹ

T
k ;

else
Hk+1 = Hk;

end if
k = k + 1;

end while

so that the expression for dTk Hk+1dk (4.6) is true. To determine what value of γk
will accomplish this, left- and right-multiply the scaled BFGS update (4.4) by dk to
get

dTk Hk+1dk = dTk Hkdk −
1

dTk Hkdk
dTk Hkdkd

T
k Hkdk + γk

1

yTk dk
dTk yky

T
k dk

= dTk Hkdk −
1

dTk Hkdk
(dTk Hkdk)

2 + γk
1

yTk dk
(yTk dk)

2 = γky
T
k dk.

Solving for γk and substituting (4.6) into the result gives the scaling factor

γk =
1

yTk dk
dTk Hkdk =

2

yTk dk

(
f(xk)− f(xk+1) +∇f(xk+1)

Tdk
)
.

Algorithm bfgsY is based on using this value of γk in the scaled update (4.4).

4.2. Adaptive scaling (bfgsN)

The method proposed by Andrei [1] is derived as a combination of the conjugate-
gradient method and the scaled BFGS method. It aims to scale the gradient differ-
ence yk by a scaling factor that corrects large eigenvalues of the approximate inverse
Hessian Mk and satisfies certain conjugacy conditions.

The conjugate-direction property for the BFGS method applied to a quadratic
function f(x) = cTx+ 1

2x
THx gives

dTi Hdj = 0, i ̸= j, (4.7)

with H symmetric and positive definite. This condition can be extended to general
nonlinear twice continuously differentiable functions. By the mean value theorem
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there exists some ξ ∈ (0, 1) for which

∇f(xk + dk)−∇f(xk) = ∇2f(xk + ξdk)dk.

Noting that the left-hand side is yk and taking the inner product with dk+1 gives

dTk+1yk = dTk+1∇2f(xk + ξdk)dk.

If this is to satisfy the conjugacy condition (4.7) then it may be reasonable to seek
to achieve dTk+1yk = 0. As αk+1 ̸= 0, it follows that

pTk+1yk = 0. (4.8)

The quasi-Newton condition dk = Mk+1yk for the inverse approximate Hessian
update can be combined with (4.8) to write

pTk+1yk =
(
−Mk+1∇f(xk+1)

)
Tyk = −∇f(xk+1)

T(Mk+1yk) = −∇f(xk+1)
Tdk.

The idea is to find a scaling factor γk so that if yk is scaled as γkyk, the magnitude
of −γk∇f(xk+1)

Tdk is minimized.
An important consideration in the performance of inverse quasi-Newton methods

is the conditioning of the inverse Hessian ∇2f(xk)
−1 and its approximation Mk. If

Mk is ill-conditioned then the search direction obtained from pk = −Mk∇f(xk) may
be a poor choice or possibly not even a descent direction resulting in a line-search
failure. To prevent this we hope to find γk so that the diagonal matrix γkI, which
is always well-conditioned, is such that γkI ≈ ∇2f(xk+1). In this case it would
want ∥Mk+1yk − γkIyk∥ as small as possible, i.e., γk is an eigenvalue of Mk+1 with
eigenvector yk. Therefore another objective is to find γk for which ∥dk − γkyk∥2 is
minimized and γk ≤ 1.

As these two objectives cannot be satisfied simultaneously in general, the factor
γk is chosen as

γk = argmin
γ≤1

∥dk − γyk∥2 + γ2|dTk∇f(xk+1)|,

which yields

γk = min

(
yTk dk

∥y∥2 + |dTk∇f(xk+1)|
, 1

)
.

Once γk has been computed, the adaptive-scaled update to the Hessian approxima-
tion is

Hk+1 = Hk −
1

dTk Hkdk
Hkdkd

T
k Hk + γk

1

yTk dk
yky

T
k . (4.9)

An important property of the BFGS update is that if Hk is positive definite and
yTk dk is positive, then so is Hk+1. In the next result shows that the proposed scaling
preserves hereditary positive definiteness

Result 4.1. (bfgsN: Hereditary Positive Definiteness) If the step length αk is
determined by the Wolfe line search, Hk is positive definite, and γk > 0, then Hk+1

as given by the scaled inverse update (4.9) is also positive definite.
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Proof. If v ̸= 0 then by the Cauchy-Schwarz inequality implies that

(dTk Hkv)
2 ≤ (dTk Hkdk)(v

THkv).

Conjugating the scaled inverse update (4.9) with v gives

vTHk+1v = vTHkv −
1

dTk Hkdk
vTHkdkd

T
k Hkv + γk

1

yTk dk
vTyky

T
k v

= vTHkv −
1

dTk Hkdk
(vTHkdk)

2 + γk
1

yTk dk
(vTyk)

2

≥ vTHkv −
1

dTk Hkdk
(dTk Hkdk)(v

THkv) + γk
1

yTk dk
(vTyk)

2

= γk
1

yTk dk
(vTyk)

2 > 0.

It follows that vTHk+1v > 0 for all v ̸= 0, in which case Hk+1 is positive definite.

The Sherman-Morrison-Woodbury formula gives the corresponding rank-two up-
date to the approximate inverse Hessian as

Mk+1 = Mk −
1

ỹTk Mkỹk
Mkỹkỹ

T
k Mk +

1

ỹTk dk
dkd

T
k + (ỹTk Mkỹk)wkw

T
k ,

with ỹk = γkyk.

Algorithm bfgsN: Adaptive, scaled BFGS.

Choose x0 ∈ Rn; k ← 0;
while ∥∇f(xk)∥ > ε and k ≤ N do

pk = −Mk∇f(xk);
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk; yk = ∇f(xk+1)−∇f(xk);
if yTk dk > 0 then

γk = min

(
yTk dk

∥y∥2 + |dTk∇f(xk+1)|
, 1

)
;

ỹk = γkyk; wk =
1

ỹTk dk
dk −

1

ỹTk Mkỹk
Mkỹk;

Mk+1 = Mk −
1

ỹTk Mkỹk
Mkỹkỹ

T
k Mk +

1

ỹTk dk
dkd

T
k + (ỹTk Mkỹk)wkw

T
k ;

else
Mk+1 = Mk;

end if
k = k + 1;

end while
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4.3. Multistep quasi-Newton equations (bfgsI)

The next method to be considered is the result of deriving modified quasi-Newton
equations, rather than a new method designed to satisfy the quasi-Newton condition
Hk+1dk = yk. At each iteration, the data

f(xk), f(xk+1), ∇f(xk), and ∇f(xk+1), (4.10)

are all available, but are not fully utilized by other methods. The approach devel-
oped by Zhang, Deng and Xu [31] is designed to provide a better approximation to
∇2f(xk)dk by using the data (4.10) to scale yk to some ỹk, so that the quasi-Newton
condition Hk+1dk = ỹk gives a more accurate Hessian approximation.

The path from xk to xk+1 may be parameterized in terms of the parameter t by
defining

x(t) = xk + t

(
1

∥dk∥
dk

)
.

To understand how the gradient of f is changing at xk+1, take the derivative with
respect to t and evaluate at t = ∥dk∥. This gives us

d

dt
∇f
(
x(t)

)∣∣∣
t=∥dk∥

= ∇2f
(
x(t)

) d
dt
x(t)

∣∣∣
t=∥dk∥

=
1

∥dk∥
∇2f

(
x(t)

)
dk

∣∣∣
t=∥dk∥

=
1

∥dk∥
∇2f(xk+1)dk.

This implies that ∇2f(xk+1)dk = ∥dk∥
d

dt
∇f
(
x(t)

)
. It seems reasonable to approxi-

mate ∇f
(
x(t)

)
with a quadratic polynomial

h(t) = at2 + bt+ c,

for some a, b, c ∈ Rn. For h to interpolate ∇f
(
x(t)

)
at t = 0 and t = ∥dk∥ it is

required that h(0) = ∇f
(
x(0)

)
= ∇f(xk) and h(∥dk∥) = ∇f

(
x(∥dk∥)

)
= ∇f(xk+1).

As h is meant to approximate ∇f
(
x(t)

)
, it should satisfy the identity∫ ∥dk∥

0
∇f
(
x(t)

)
Tx′(t) dt =

∫ ∥dk∥

0
∇f
(
x(t)

)
T dx(t) = f(xk+1)− f(xk),

which gives the third condition∫ ∥dk∥

0
h(t)Tx′(t) dt = f(xk+1)− f(xk).

Putting these together gives the following conditions that h is required to satisfy

h(0) = ∇f(xk),
h(∥dk∥) = ∇f(xk+1),∫ ∥dk∥

0
h(t)Tx′(t) dt = f(xk+1)− f(xk).

 (4.11)
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Requirements (4.11) have several implications. The first is that c = ∇f(xk), which
follows from evaluating h at t = 0. The second is that ∥dk∥2a + ∥dk∥b = yk and
comes from evaluating h at t = ∥dk∥. Lastly we have that

∥dk∥2aTdk = 3
(
∇f(xk) +∇f(xk+1)

)
Tdk − 6

(
f(xk+1 − f(xk)

)
,

which follows from∫ ∥dk∥

0
h(t)Tx′(t) dt =

∫ ∥dk∥

0

1

∥dk∥
(at2 + bt+ c)Tdk dt

=
1

∥dk∥
(
1
3at

3 + 1
2bt

2 + ct
)T

dk

∣∣∣∣∥dk∥
0

= 1
6

(
3yk − a∥dk∥2 + 6c

)T
dk.

Now define

γk = 3(∇f(xk) +∇f(xk+1))
Tdk − 6(f(xk+1)− f(xk)).

The simplest choice for a that satisfies ∥dk∥2aTdk = γk is a = γdk/∥dk∥4. Now we
can finally give an approximation for ∇2f(xk+1)dk in terms of the data available at
any given iteration:

∇2f(xk+1)dk = ∥dk∥
d

dt
∇f(x(t))

∣∣∣
t=∥dk∥

≈ ∥dk∥
d

dt
h(t)

∣∣∣
t=∥dk∥

= ∥dk∥(2at+ b)
∣∣∣
t=∥dk∥

= 2∥dk∥2a+ ∥dk∥b
= y + ∥dk∥2a
= y +

γk
∥dk∥2

dk.

This leads to a modified quasi-Newton condition Hk+1dk = ỹk with

ỹk = yk +
γk
∥dk∥2

dk,

γk = 3
(
∇f(xk) +∇f(xk+1)

)
Tdk − 6

(
f(xk+1)− f(xk)

)
.

 (4.12)

Observe that all four data items (4.10) are incorporated by the method if the mod-
ified quasi-Newton condition Hk+1dk = ỹk is enforced with ỹk given by (4.12).

One important consideration is preserving the property yTk dk > 0. If yk is scaled
by the new condition (4.12) then

ỹTk dk =

(
yk +

γk
∥dk∥2

dk

)T

dk = yTk dk + γk.

For numerical stability, if yTk dk+γk < ε̃∥dk∥2 then γk is set to zero and the unscaled
yk is used for the remainder of the iteration. The value ε̃ = 10−18 proposed by
Zhang, Deng and Xu [31] was used in our implementation (see Algorithm bfgsI).
For additional information, see Zhang and Xu [32] and Xu and Zhang [29].
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Algorithm bfgsI: Multistep, scaled BFGS.

Choose x0 ∈ Rn; k ← 0;
while ∥∇f(xk)∥ > ε and k ≤ N do

pk = −Mk∇f(xk);
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk; yk = ∇f(xk+1)−∇f(xk);
if yTk dk > 0 then

γk = 3(∇f(xk+1) +∇f(xk))T − 6(f(xk+1) + f(xk));
if yTk dk + γk < ε̃∥dk∥2 then

γk = 0;
end if

ỹk = yk + γk
1

∥dk∥2
dk; wk =

1

ỹTk dk
dk −

1

ỹTk Mkỹk
Mkỹk;

Mk+1 = Mk −
1

ỹTk Mkỹk
Mkỹkỹ

T
k Mk +

1

ỹTk dk
dkd

T
k + (ỹTk Mkỹk)wkw

T
k ;

else
Mk+1 = Mk;

end if
k = k + 1;

end while

5. Numerical Methods

We consider a set S of nS solvers run on a problem set P of nP problems. In this
project nS = 9 and nP = 275. In the interest of complete objectivity, every single
unconstrained test problem of dimension n ∈ [2, 5000] available in the CUTEst
environment at the time of writing was included and run by each solver. Data of
interest is collected for each solver s ∈ S as it is run on P. We recorded the number
of iterations, the number of function evaluations, the CPU time, and the outcome.
The outcome is categorical, defined by specific tolerances (see Section 5.2), and
classifies the result as optimal, near optimal but badly scaled, line search failure, or
too many iterations. Once the body of data is generated, a systematic method of
comparison is needed.

5.1. Performance profiles

One approach is to use the average or cumulative total metric value over the entire
problem set. However, the most difficult problems can potentially dominate the re-
sults and eliminate the ability to make fine comparisons. Averaging also necessitates
discarding problems that were not solved. In this case the failed problem can be
removed for all solvers or only for those that failed, both of which bias the results
against more robust solvers. Another tactic is to rank the solvers, i.e., recording the
number of times a solver came in kth place for k = 1, 2, . . . , nS . This avoids the
pitfalls described above, but fails to measure the magnitude of the improvement. In
this report we use performance profiles, described in [6].
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For each p ∈ P and s ∈ S, define tp,s to be the metric value recorded for solver
s on problem p. This could be the number of iterations, function evaluations, CPU
time, or any other measure of performance. To establish a baseline for comparison,
define the performance ratio

rp,s =
tp,s

min{tp,s
∣∣ s ∈ S} ,

that is, the ratio of the particular solver’s metric value against the best value of any
solver on this particular problem. This means that rp,s ≥ 1 and the best possible
value is 1. To deal with solve failures, we define

rM = 2max{rp,s
∣∣ p ∈ P, s ∈ S},

and set rp,s = rM if solver s fails to solve problem p.
In order to measure how each solver does on the entire problem set relative to

the other solvers, define

ρs(τ) =

∣∣{p ∈ P ∣∣ rp,s ≤ τ}
∣∣

nP

to be the performance profile for solver s. The function ρs :R→ [0, 1] can be inter-
preted as follows. For a given value of τ ∈ [1, rM ], ρs(τ) is the number of problems
for which the solver’s performance ratio is within a factor of τ of the best possible
value (relative to solver set S), out of the total number of problems nP . With this
in mind, ρs(τ) behaves like a cumulative distribution function for the solver’s per-
formance ratio. The two extremes ρs(1) and ρs(rM ) give the proportion of problems
on which solver s had the best possible value and the proportion of problems solver
s was able to solve respectively.

5.2. Hardware and software

The code for each solver was written in MATLAB version R2019b. Each of the
solvers makes use of a number of constants and tolerances that determine termi-
nation, optimality, unboundedness, line-search failure, etc.. These values are de-
scribed in Table 1. The data collection, analysis, and plotting software was written

Parameter Value Parameter Value

Stationary tolerance ε 1.00e-04 Iteration limit N 3000

Gradient tolerance ηW 9.00e-01 Maximum ∆x 100

Function tolerance ηA 1.00e-04 Line-search function limit 20

Condition number limit 1.00e+16

Unbounded objective -1.00e+09

Table 1: Constants and tolerances used across all problems and solvers.

in Python using Numpy, Pandas, Matplotlib and Seaborn. All computations were
carried out on a 2017 MacBook Pro with a 2.3 GHz Intel Core i5 processor and 8GB
2133 MHz LPDDR3 memory.
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5.3. Discussion and results

There is a trade off between the use of iterations and function evaluations, and which
one is minimized depends on their relative cost. If iterations are computationally
expensive in comparison to function evaluations, then the goal is to use as many
function evaluations as needed to get the most out of each iteration. What this
means in practice is the tolerances used in the line search are adjusted to demand
a greater reduction in the objective value. Conversely, if function evaluations are
expensive we accept a smaller decrease in the objective in the interest of limiting the
number of evaluations used per iteration. Except for some specific circumstances,
the assumption that functions are more expensive than iterations is reasonable. In
this project we assume this to be the case and so the function evaluation profiles
are the primary tool for comparison. Iteration profiles are also provided to provide
additonal context. We use the BFGS method that updates the inverse Hessian ap-
proximation (bfgsM) as a benchmark with which to compare other methods, because
it is commonly regarded as the “gold standard” in optimization literature.

The comparison of bfgsM with the factored variation bfgsR highlights the im-
portance of numerical stability in the update formula. The fact that the relation
Mk

−1 = RT
k Rk is an equality means that in infinite precision arithmetic bfgsM and

bfgsR should perform identically. In practice they do not, and the difference in
their performance seen in Figure 1 is owed entirely to the management of numeri-
cal factors like conditioning and indefiniteness, made possible by the use of matrix
factorization.
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Figure 1: Performance profiles comparing function evaluations and iterations for
bfgsM and bfgsR.
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Figure 2: Performance profiles comparing function evaluations and iterations for
bfgsM and bfgsZ.

The self-scaled updates, whose purpose is to limit the negative effects of ill-
conditioning, provide another example of the benefits of taking stability into con-
sideration. Whether the inverse, factored inverse, or factored explicit Hessian ap-
proximation is used as the base method, self-scaling improves overall performance
across the board (see Figures 3, 4, and 5).
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Figure 3: Performance profiles comparing function evaluations and iterations for
bfgsM and bfgsMS.
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Figure 4: Performance profiles comparing function evaluations and iterations for
bfgsR and bfgsRS.
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Figure 5: Performance profiles comparing function evaluations and iterations for
bfgsZ and bfgsZS.

It is also worth noting that the improvement seen in factored methods is pre-
served when self-scaling is applied in bfgsMS, bfgsRS, and bfgsZS (see Figures 6
and 7).
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Figure 6: Performance profiles comparing function evaluations and iterations for
bfgsMS and bfgsRS.
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Figure 7: Performance profiles comparing function evaluations and iterations for
bfgsMS and bfgsZS.

Out of all the variants considered in this report, the factored methods bfgsR,
bfgsRS, bfgsZ, and bfgsZS exhibit the best results, with the overall highest per-
forming method being bfgsRS (see Figures 2, 1, and 8). Maintaining a factoriza-
tion allows us to sidestep the issue of error accumulation resulting in the failure of
hereditary positive definiteness. This is immediately apparent because xTRTRx =
∥Rx∥2 > 0 for nonzero x and nonsingular R. As bfgsRS makes use of both self-
scaling to manage conditioning, and resetting if Rk is nearly singular, this supports
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the idea that numerical stability makes a real difference.
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Figure 8: Performance profiles comparing function evaluations and iterations for
all solvers.

Methods based on scaling or shifting yk rather than the Hessian do not appear
to be as effective as those based on scaling the Hessian. The more recent variations
bfgsY, bfgsN, and bfgsI are all implemented by scaling or shifting yk. Looking
at 9, it seems imposing an extra interpolation condition that is met by scaling yk
seems to have little measurable effect.
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Figure 9: Performance profiles comparing function evaluations and iterations for
bfgsM and bfgsY.
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Using the modified quasi-Newton condition and corresponding update also seems
to reduce the number of function evaluations and iterations used, but only slightly
(see Figure 10).
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Figure 10: Performance profiles comparing function evaluations and iterations for
bfgsM and bfgsI.

It is important to emphasize the need for uniform analysis and systemic numeri-
cal testing in order to draw meaningful conclusions about these algorithms’ relative
performance. Without this kind of rigorous comparison, results have the potential
to be misleading. To illustrate, looking at the references in [1], our problem sets have
38 problems in common. If we restrict our test set to the common problems and
consider only the CPU time metric (as in [1]), then bfgsN appears to be superior.
However, if the test set is expanded to the full 275 problems and the more relevant
metrics are measured then it is clear from Figure 11 that the suggested method is
actually harmful to the methods performance.



5. Numerical Methods 33

0 1 2 3 4 5 6

τ

0.0

0.2

0.4

0.6

0.8

1.0
P

(r
p
,s
≤
τ
)

Function Evaluations

0 1 2 3 4 5

τ

Iterations

bfgsI

bfgsM

bfgsMS

bfgsN

bfgsR

bfgsRS

bfgsY

bfgsZ

bfgsZS

Figure 11: Performance profiles comparing function evaluations and iterations for
bfgsM and bfgsN.
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Figure 12: Performance profiles comparing caution levels for bfgsI.
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Figure 13: Performance profiles comparing caution levels for bfgsM.

0 1 2 3 4 5 6

τ

0.0

0.2

0.4

0.6

0.8

1.0

P
(r
p
,s
≤
τ
)

Function Evaluations

0 1 2 3 4 5

τ

Iterations

INC

LF1

LF2

POW

Figure 14: Performance profiles comparing caution levels for bfgsMS.
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Figure 15: Performance profiles comparing caution levels for bfgsN.
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Figure 16: Performance profiles comparing caution levels for bfgsR.
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Figure 17: Performance profiles comparing caution levels for bfgsRS.
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Figure 18: Performance profiles comparing caution levels for bfgsY.
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Figure 19: Performance profiles comparing caution levels for bfgsZ.
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Figure 20: Performance profiles comparing caution levels for bfgsZS.

6. Conclusion

In this report we developed the theory, derived the algorithms, and analyzed the
performance of variations of quasi-Newton methods for unconstrained optimization.

A systematic and rigorous comparison has revealed that some newer modifica-
tions show little or no improvement, while a novel combination of self-scaling and a
factored Hessian shows significant and consistent improvement. (Surprisingly, most
authors in the optimization community have dismissed factored Hessian methods;
see, e.g., Grandinetti [12, 13] Nocedal and Wright [16, p. 201].)
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Variations of quasi-Newton methods that focus on managing the condition num-
ber and preserving positive definiteness result in a marked improvement in function
evaluations and iterations. In contrast, those based on imposing additional condi-
tions and then scaling the update to satisfy them seem to have little or no measurable
effect. These results server as a reminder that numerical stability must be taken
into account in numerical optimization. A method may have wonderful theoretical
properties, but if it fails to deal with numerical issues these properties simply cannot
be realized.
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