Equations for a Projected-Search Path-Following Method for Nonlinear Optimization

Philip E. Gill* Minxin Zhang*

UCSD Center for Computational Mathematics
Technical Report CCoM-22-2
June 2022

Abstract

In [2], Gill and Zhang propose a primal-dual path-following method for general nonlinearly constrained optimization that combines a shifted primal-dual path-following method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. This note concerns the formulation of approximate Newton equations for a nonlinear optimization problem in general form. These equations may be used in conjunction with a projected-search method to force convergence from an arbitrary starting point. It is shown that under certain conditions, the approximate Newton equations are equivalent to a regularized form of the conventional primal-dual path-following equations.

Key words. Nonlinearly constrained optimization, path-following methods, primal-dual methods, shifted penalty and barrier methods, projected-search methods, Armijo line search, augmented Lagrangian methods, regularized methods.

AMS subject classifications. 49J20, 49J15, 49M37, 49D37, 65F05, 65K05, 90C30

[^0]
1. Introduction

This note concerns that derivation of the primal-dual equations for a shifted primal-dual penalty-barrier merit method for constrained optimization. These methods are intended for the minimization of a twice-continuously differentiable function subject to both equality and inequality constraints that may include a set of twice-continuously differentiable constraint functions. A description of the projected-search method for a problem with nonlinear inequality constraints is given by Gill and Zhang [2]. The equations are formulated for problems written in the general form:

$$
\underset{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{m}}{\operatorname{minimize}} f(x) \quad \text { subject to } \quad\left\{\begin{array}{rl}
c(x)-s=0, & L_{X} s=h_{X}, \tag{NLP}
\end{array} \quad \ell^{S} \leq L_{L} s, \quad L_{U} s \leq u^{S}, ~\left(A x-b=0, \quad E_{X} x=b_{X}, \quad \ell^{X} \leq E_{L} x, \quad E_{U} x \leq u^{x}, ~ \$\right.\right.
$$

where A denotes a constant $m_{A} \times n$ matrix, and $b, h_{X}, b_{X}, \ell^{S}, u^{S}, \ell^{X}$ and u^{X} are fixed vectors of dimension $m_{A}, m_{X}, n_{X}, m_{L}$, m_{U}, n_{L} and n_{U}, respectively. Similarly, L_{X}, L_{L} and L_{U} denote fixed matrices of dimension $m_{X} \times m, m_{L} \times m$ and $m_{U} \times m$, respectively, and E_{X}, E_{L} and E_{U} are fixed matrices of dimension $n_{X} \times n, n_{L} \times n$ and $n_{U} \times n$, respectively. Throughout the discussion, the functions $c: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ and $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ are assumed to be twice-continuously differentiable. The components of s may be interpreted as slack variables associated with the nonlinear constraints.

The quantity E_{X} denotes an $n_{X} \times n$ matrix formed from n_{X} independent rows of I_{n}, the identity matrix of order n. This implies that the equality constraints $E_{X} x=b_{X}$ fix n_{X} components of x at the corresponding values of b_{X}. Similarly, E_{L} and E_{U} denote $n_{L} \times n$ and $n_{U} \times n$ matrices formed from subsets of rows of I_{n} such that $E_{X}^{\mathrm{T}} E_{L}=0, E_{X}^{\mathrm{T}} E_{U}=0$, i.e., a variable is either fixed or free to move, possibly bounded by an upper or lower bound. Note that an x_{j} may be an unrestricted variable in the sense that it is neither fixed nor subject to an upper or lower bound, in which case e_{j}^{T} is not a row of E_{X}, E_{L} or E_{U}. Analogous definitions hold for L_{X}, L_{L} and L_{U} as subsets of rows of I_{m}. However, we impose the restriction that a given s_{j} must be either fixed or restricted by an upper or lower bound, i.e., there are no unrestricted slacks ${ }^{1}$. Let E_{F} denote the matrix of rows of I_{n} that are not rows of E_{X}, and let L_{F} denote the matrix of rows of I_{m} that are not rows of L_{X}. If $n_{F}=n-n_{X}$ and $m_{F}=m-m_{X}$, then E_{F} and L_{F} are $n_{F} \times n$ and $m_{F} \times m$ respectively. Note that $n_{L}+n_{U}$ may be less than n_{F}, but m_{F} must equal $m_{L}+m_{U}$. The matrices $\left(\begin{array}{ll}E_{X}^{\mathrm{T}} & E_{F}^{\mathrm{T}}\end{array}\right)$ and $\left(\begin{array}{ll}L_{X}^{\mathrm{T}} & L_{F}^{\mathrm{T}}\end{array}\right)$ are column permutations of I_{n} and I_{m}. Moreover, there are $n \times n$ and $m \times m$ permutation matrices P_{x} and P_{s} such that

$$
P_{x}=\binom{E_{F}}{E_{X}} \quad \text { and } \quad P_{s}=\binom{L_{F}}{L_{X}}
$$

with $E_{F} E_{F}^{\mathrm{T}}=I_{F}^{x}, E_{X} E_{X}^{\mathrm{T}}=I_{X}^{x}$, and $E_{F} E_{X}^{\mathrm{T}}=0$, and $L_{F} L_{F}^{\mathrm{T}}=I_{F}^{s}, L_{X} L_{X}^{\mathrm{T}}=I_{X}^{s}$, and $L_{F} L_{X}^{\mathrm{T}}=0$.
All general inequality constraints are imposed indirectly using a shifted primal-dual barrier function. The general equality constraints $c(x)-s=0$ and $A x=b$ are enforced using an primal-dual augmented Lagrangian algorithm, which implies that the equalities are satisfied in the limit. The exception to this is when the constraints $E_{X} x=b_{X}$, and $L_{X} s=h_{X}$ are used to fix a subset of the variables and slacks. These bounds are enforced at every iterate.

[^1]An equality constraint $c_{i}(x)=0$ may be handled by introducing the slack variable s_{i} and writing the constraint as the two constraints $c_{i}(x)-s_{i}=0$ and $s_{i}=0$. In this case the i th coordinate vector e_{i} can be included as a row of L_{X}. Linear inequality constraints must be included as part of c. A linear equality constraint can be either included with the nonlinear equality constraints or the matrix A. The constraints involving A may be used to temporarily fix a subset of the variables at their bounds without altering the underlying structure of the approximate Newton equations. In this case, the associated rows of A are rows of the identity matrix.

The optimality conditions for problem (NLP) are given in Section 2. The shifted path-following equations are formulated in Section 3. The shifted primal-dual penalty-barrier function associated with problem is discussed in Section 4. This function serves as a merit function for the projected-search method. The equations are formulated in Sections 5 and 6, and summarized in Section 7. The analogous equations for the trust-region method are derived in Section 8 and summarized in Section 9.

Notation. Given vectors x and y, the vector consisting of x augmented by y is denoted by (x, y). The subscript i is appended to vectors to denote the i th component of that vector, whereas the subscript k is appended to a vector to denote its value during the k th iteration of an algorithm, e.g., x_{k} represents the value for x during the k th iteration, whereas $\left[x_{k}\right]_{i}$ denotes the i th component of the vector x_{k}. Given vectors a and b with the same dimension, the vector with i th component $a_{i} b_{i}$ is denoted by $a \cdot b$. Similarly, $\min (a, b)$ is a vector with components $\min \left(a_{i}, b_{i}\right)$. The vector e denotes the column vector of ones, and I denotes the identity matrix. The dimensions of e and I are defined by the context. The vector two-norm or its induced matrix norm are denoted by $\|\cdot\|$. For brevity, in some equations the vector $g(x)$ is used to denote $\nabla f(x)$, the gradient of $f(x)$. The matrix $J(x)$ denotes the $m \times n$ constraint Jacobian, which has i th row $\nabla c_{i}(x)^{\mathrm{T}}$. Given a Lagrangian function $L(x, y)=f(x)-c(x)^{\mathrm{T}} y$ with y a m-vector of dual variables, the Hessian of the Lagrangian with respect to x is denoted by $H(x, y)=\nabla^{2} f(x)-\sum_{i=1}^{m} y_{i} \nabla^{2} c_{i}(x)$. The equations utilize the Moore-Penrose pseudoinverse of a diagonal matrix. In particular, if $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, then the pseudoinverse D^{\dagger} is diagonal with $D_{i i}^{\dagger}=0$ for $d_{i}=0$ and $D_{i i}^{\dagger}=1 / d_{i}$ for $d_{i} \neq 0$.

2. Optimality conditions

The first-order KKT conditions for problem (NLP) are

$$
\begin{array}{rlrl}
\nabla f\left(x^{*}\right)-J\left(x^{*}\right)^{\mathrm{T}} y^{*}-A^{\mathrm{T}} v^{*}-E_{X}^{\mathrm{T}} z_{X}^{*}-E_{L}^{\mathrm{T}} z_{1}^{*}+E_{U}^{\mathrm{T}} z_{2}^{*} & =0, & z_{1}^{*} \geq 0, & z_{2}^{*} \geq 0, \\
y^{*}-L_{X}^{\mathrm{T}} w_{X}^{*}-L_{L}^{\mathrm{T}} w_{1}^{*}+L_{U}^{\mathrm{T}} w_{2}^{*} & =0, & w_{1}^{*} \geq 0, & w_{2}^{*} \geq 0, \\
c\left(x^{*}\right)-s^{*}=0, & & L_{X} s^{*}-h_{X}=0, \\
E_{L} x^{*}-\ell^{X} & \geq 0, & A^{*}-b=0, & E_{X} x^{*}-b_{X}=0, \\
L_{L} s^{*}-\ell^{S} & \geq 0, & u^{X}-E_{U} x^{*} \geq 0, & \\
z_{1}^{*} \cdot\left(E_{L} x^{*}-\ell^{X}\right)=0, & z_{2}^{*} \cdot\left(u^{X}-E_{U} x^{*}\right)=0, & \\
w_{1}^{*} \cdot\left(L_{L} s^{*}-\ell^{S}\right)=0, & w_{2}^{*} \cdot\left(u^{S}-L_{U} s^{*}\right)=0, &
\end{array}
$$

where y^{*}, w_{X}^{*}, and z_{X}^{*} are the multipliers for the equality constraints $c(x)-s=0, L_{X} s^{*}=h_{X}$ and $E_{X} x^{*}=b_{X}$, and z_{1}^{*}, z_{2}^{*}, w_{1}^{*} and w_{2}^{*} may be interpreted as the Lagrange multipliers for the inequality constraints $E_{L} x-\ell^{X} \geq 0, u^{X}-E_{U} x \geq 0, L_{L} s-\ell^{S} \geq 0$ and $u^{S}-L_{U} s \geq 0$, respectively. The components of v^{*} are the multipliers for the linear equality constraints $A x=b$

The discussion that follows makes extensive use of the auxiliary quantities

$$
\begin{equation*}
x_{1}=E_{L} x-\ell^{X}, \quad x_{2}=u^{X}-E_{U} x, \quad s_{1}=L_{L} s-\ell^{S}, \quad \text { and } \quad s_{2}=u^{S}-L_{U} s . \tag{2.2}
\end{equation*}
$$

In some cases x_{1}, x_{2}, s_{1} and s_{2} are used to simplify the expressions appearing in certain equations, in others they are regarded as independent variables associated with the problem

$$
\left.\begin{array}{rrrrrr}
\underset{x, x_{1}, x_{2}, s, s_{1}, s_{2}}{\operatorname{minimize}} & f(x) & & & \tag{NP}\\
\text { subject to } & c(x)-s=0, & A x-b=0, & & & \\
& E_{L} x-x_{1} & =\ell^{X}, & L_{L} s-s_{1}=\ell^{S}, & & x_{1} \geq 0, \\
& E_{1} \geq 0, \\
E_{U} x+x_{2} & =u^{X}, & L_{U} s+s_{2}=u^{S}, & & x_{2} \geq 0, & \\
s_{2} \geq 0,
\end{array}\right\}
$$

which is equivalent to problem (NLP). In this case, the dual variables $z_{1}^{*}, z_{2}^{*}, w_{1}^{*}$, and w_{2}^{*} associated with the optimality conditions (2.1) are the Lagrange multipliers for the inequality constraints $x_{1} \geq 0, x_{2} \geq 0, s_{1} \geq 0$, and $s_{2} \geq 0$, respectively.

In the derivations that follow, the vectors z and w are defined as

$$
\begin{equation*}
z=E_{X}^{\mathrm{T}} z_{X}+E_{L}^{\mathrm{T}} z_{1}-E_{U}^{\mathrm{T}} z_{2}, \quad \text { and } \quad w=L_{X}^{\mathrm{T}} w_{X}+L_{L}^{\mathrm{T}} w_{1}-L_{U}^{\mathrm{T}} w_{2} . \tag{2.3}
\end{equation*}
$$

3. The path-following equations

Penalty and barrier methods are closely related to path-following methods. These methods approximate a continuous path that passes through a solution of (NLP). In the simplest case, the path is parameterized by a positive scalar parameter that may be interpreted as a perturbation for the optimality conditions for the problem (NLP).

Let z_{1}^{E} and z_{2}^{E}, w_{1}^{E} and w_{2}^{E} denote nonnegative estimates of z_{1}^{*} and z_{2}^{*}, w_{1}^{*} and w_{2}^{*}. Similarly, let v^{E}, x^{E} and s^{E} denote estimates of v^{*}, x^{*} and s^{*}. Given small positive scalars μ^{P}, μ^{A} and μ^{B}, consider the perturbed optimality conditions

$$
\begin{array}{rlrl}
\nabla f(x)-J(x)^{\mathrm{T}} y-A^{\mathrm{T}} v-E_{X}^{\mathrm{T}} z_{X}-E_{L}^{\mathrm{T}} z_{1}+E_{U}^{\mathrm{T}} z_{2} & =0, & z_{1} \geq 0, & z_{2} \geq 0, \\
y-L_{X}^{\mathrm{T}} w_{X}-L_{L}^{\mathrm{T}} w_{1}+L_{U}^{\mathrm{T}} w_{2} & =0, & w_{1} \geq 0, & w_{2} \geq 0, \\
c(x)-s & =\mu^{P}\left(y^{E}-y\right), & E_{X} x-b_{X}=0, & L_{X} s-h_{X}=0, \\
A x-b & =\mu^{A}\left(v^{E}-v\right), & & \\
E_{L} x-\ell^{X} & \geq 0, & u^{X}-E_{U} x \geq 0, \\
L_{L} s-\ell^{S} & \geq 0, & u^{S}-L_{U} s \geq 0, \\
z_{1} \cdot\left(E_{L} x-\ell^{X}\right) & =\mu^{B}\left(z_{1}^{E}-z_{1}\right)+\mu^{B}\left(E_{L} x^{E}-E_{L} x\right), & \tag{3.1}\\
z_{2} \cdot\left(u^{X}-E_{U} x\right) & =\mu^{B}\left(z_{2}^{E}-z_{2}\right)+\mu^{B}\left(E_{U} x-E_{U} x^{E}\right), & \\
w_{1} \cdot\left(L_{L} s-\ell^{S}\right) & =\mu^{B}\left(w_{1}^{E}-w_{1}\right)+\mu^{B}\left(L_{L} s^{E}-L_{L} s\right), & \\
w_{2} \cdot\left(u^{S}-L_{U} s\right) & =\mu^{B}\left(w_{2}^{E}-w_{2}\right)+\mu^{B}\left(L_{U} s-L_{U} s^{E}\right) . &
\end{array}
$$

Let v_{P} denote the vector of variables $v_{P}=\left(x, s, y, v, w_{X}, z_{X}, z_{1}, z_{2}, w_{1}, w_{2}\right)$. The primal-dual path-following equations are given by $F\left(v_{P}\right)=0$, with

$$
F\left(v_{P}\right)=\left(\begin{array}{c}
\nabla f(x)-J(x)^{\mathrm{T}} y-A^{\mathrm{T}} v-E_{X}^{\mathrm{T}} z_{X}-E_{L}^{\mathrm{T}} z_{1}+E_{U}^{\mathrm{T}} z_{2} \tag{3.2}\\
y-L_{X}^{\mathrm{T}} w_{X}-L_{L}^{\mathrm{T}} w_{1}+L_{U}^{\mathrm{T}} w_{2} \\
c(x)-s+\mu^{P}\left(y-y^{E}\right) \\
A x-b+\mu^{A}\left(v-v^{E}\right) \\
E_{X} x-b_{X} \\
L_{X} s-h_{X} \\
z_{1} \cdot\left(E_{L} x-\ell^{X}\right)+\mu^{B}\left(z_{1}-z_{1}^{E}\right)+\mu^{B}\left(E_{L} x-E_{L} x^{E}\right) \\
z_{2} \cdot\left(u^{X}-E_{U} x\right)+\mu^{B}\left(z_{2}-z_{2}^{E}\right)+\mu^{B}\left(E_{U} x^{E}-E_{U} x\right) \\
w_{1} \cdot\left(L_{L} s-\ell^{S}\right)+\mu^{B}\left(w_{1}-w_{1}^{E}\right)+\mu^{B}\left(L_{L} s-L_{L} s^{E}\right) \\
w_{2} \cdot\left(u^{S}-L_{U} s\right)+\mu^{B}\left(w_{2}-w_{2}^{E}\right)+\mu^{B}\left(L_{U} s^{E}-L_{U} s\right)
\end{array}\right)=\left(\begin{array}{c}
\nabla f(x)-J(x)^{\mathrm{T}} y-A^{\mathrm{T}} v-z \\
\left.y-w^{(}\right) \\
c(x)-s+\mu^{P}\left(y-y^{E}\right) \\
A x-b+\mu^{A}\left(v-v^{E}\right) \\
E_{X} x-b_{X} \\
L_{X} s-h_{X} \\
z_{1} \cdot\left(E_{L} x-\ell^{X}\right)+\mu^{B}\left(z_{1}-z_{1}^{E}\right)+\mu^{B}\left(E_{L} x-E_{L} x^{E}\right) \\
z_{2} \cdot\left(u^{X}-E_{U} x\right)+\mu^{B}\left(z_{2}-z_{2}^{E}\right)+\mu^{B}\left(E_{U} x^{E}-E_{U} x\right) \\
w_{1} \cdot\left(L_{L} s-\ell^{S}\right)+\mu^{B}\left(w_{1}-w_{1}^{E}\right)+\mu^{B}\left(L_{L} s-L_{L} s^{E}\right) \\
w_{2} \cdot\left(u^{S}-L_{U} s\right)+\mu^{B}\left(w_{2}-w_{2}^{E}\right)+\mu^{B}\left(L_{U} s^{E}-L_{U} s\right)
\end{array}\right),
$$

where the first $n+m$ equations are written in terms of z and w such that $z=E_{X}^{\mathrm{T}} z_{X}+E_{L}^{\mathrm{T}} z_{1}-E_{U}^{\mathrm{T}} z_{2}$ and $w=L_{X}^{\mathrm{T}} w_{x}+L_{L}^{\mathrm{T}} w_{1}-L_{U}^{\mathrm{T}} w_{2}$. (To simplify the notation, the dependence of F on the parameters $\mu^{A}, \mu^{P}, \mu^{B}, x^{E}, s^{E}, y^{E}, v^{E}, z_{1}^{E}, z_{2}^{E}, w_{1}^{E}, w_{2}^{E}$ is omitted.) Any
zero $\left(x, s, y, v, w_{X}, z_{X}, z_{1}, z_{2}, w_{1}, w_{2}\right)$ of F such that $\ell^{X}<E_{L}, E_{U} x<u^{x}, \ell^{s}<L_{L} s, L_{U}<u^{S}, z_{1}>0, z_{2}>0$, $w_{1}>0$, and $w_{2}>0$ approximates a point satisfying the optimality conditions (2.1), with the approximation becoming increasingly accurate as the terms $\mu^{P}\left(y-y^{E}\right), \mu^{A}\left(v-v^{E}\right), \mu^{B}\left(E_{L} x^{E}-E_{L} x\right), \mu^{B}\left(E_{U} x^{E}-E_{U} x\right), \mu^{B}\left(L_{L} s^{E}-L_{L} s\right), \mu^{B}\left(L_{U} s-L_{L}^{2}\right), \mu^{B}\left(z_{1}-z_{1}^{E}\right), \mu^{B}\left(z_{2}-z_{2}^{E}\right)$, $\mu^{B}\left(w_{1}-w_{1}^{E}\right)$ and $\mu^{B}\left(w_{2}-w_{2}^{E}\right)$ approach zero. For any sequence of $x^{E}, s^{E}, z_{1}^{E}, z_{2}^{E}, w_{1}^{E}, w_{2}^{E}, v^{E}$ and y^{E} such that $x^{E} \rightarrow x^{*}, s^{E} \rightarrow s^{*}$, $z_{1}^{E} \rightarrow z_{1}^{*}, z_{2}^{E} \rightarrow z_{2}^{*}, w_{1}^{E} \rightarrow w_{1}^{*}, w_{2}^{E} \rightarrow w_{2}^{*}, v^{E} \rightarrow v^{*}$ and $y^{E} \rightarrow y^{*}$, it must hold that solutions $\left(x, s, y, v, z_{1}, z_{2}, w_{1}, w_{2}\right)$ of (3.1) must satisfy $z_{1} \cdot\left(x-\ell^{X}\right) \rightarrow 0, z_{2} \cdot\left(u^{X}-x\right) \rightarrow 0, w_{1} \cdot\left(s-\ell^{S}\right) \rightarrow 0$, and $w_{2} \cdot\left(u^{s}-s\right) \rightarrow 0$, This implies that any solution $(x, s$, $y, v, w_{X}, z_{X}, z_{1}, z_{2}, w_{1}, w_{2}$) of (3.1) will approximate a solution of (2.1) independently of the values of μ^{P}, μ^{A} and μ^{B} (i.e., it is not necessary that $\mu^{P} \rightarrow 0, \mu^{A} \rightarrow 0$ and $\left.\mu^{B} \rightarrow 0\right)$.

If $v_{P}=\left(x, s, y, v, w_{X}, z_{X}, z_{1}, z_{2}, w_{1}, w_{2}\right)$ is a given approximate zero of $F\left(v_{P}\right)$ such that $\ell^{X}-\mu^{B}<E_{L} x, E_{U} x<u^{X}+\mu^{B}$, $\ell^{S}-\mu^{B}<L_{L} s, L_{U} s<u^{S}+\mu^{B}, z_{1}>0, z_{2}>0, w_{1}>0$, and $w_{2}>0$, the Newton equations for the change in variables $\Delta v_{P}=(\Delta x$, $\left.\Delta s, \Delta y, \Delta v, \Delta w_{X}, \Delta z_{X}, \Delta z_{1}, \Delta z_{2}, \Delta w_{1}, \Delta w_{2}\right)$ are given by $F^{\prime}\left(v_{P}\right) \Delta v_{P}=-F\left(v_{P}\right)$, with

$$
F^{\prime}\left(v_{P}\right)=\left(\begin{array}{cccccccccc}
H(x, y) & 0 & -J^{\mathrm{T}} & -A^{\mathrm{T}} & 0 & -E_{X}^{\mathrm{T}} & -E_{L}^{\mathrm{T}} & E_{U}^{\mathrm{T}} & 0 & 0 \tag{3.3}\\
0 & 0 & I_{m} & 0 & -L_{X}^{\mathrm{T}} & 0 & 0 & 0 & -L_{L}^{\mathrm{T}} & L_{U}^{\mathrm{T}} \\
J & -I_{m} & D_{Y} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
A & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 & 0 & 0 \\
E_{X} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & L_{X} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Z_{1}^{\mu} E_{L} & 0 & 0 & 0 & 0 & 0 & X_{1}^{\mu} & 0 & 0 & 0 \\
-Z_{2}^{\mu} E_{U} & 0 & 0 & 0 & 0 & 0 & 0 & X_{2}^{\mu} & 0 & 0 \\
0 & W_{1}^{\mu} L_{L} & 0 & 0 & 0 & 0 & 0 & 0 & S_{1}^{\mu} & 0 \\
0 & -W_{2}^{\mu} L_{U} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & S_{2}^{\mu}
\end{array}\right),
$$

where
with x_{1}, x_{2}, s_{1} and s_{2} given by (2.2). Any s may be written as $s=L_{F}^{\mathrm{T}} s_{F}+L_{X}^{\mathrm{T}} s_{X}$, where L_{F} are the rows of I_{m} orthogonal to the rows of L_{X}, i.e., $L_{F}^{\mathrm{T}} L_{X}=0$. The vectors s_{F} and s_{X} are the components of s corresponding to the "free" and "fixed" components of s, respectively. The variables $L_{L} s$ and $L_{U} s$ form a subset of s_{F}. Throughout, we assume that satisfies $L_{X} s-h_{X}=0$, in which case $\Delta s_{X}=0$ and Δs satisfies

$$
\Delta s=L_{F}^{\mathrm{T}} \Delta s_{F}+L_{X}^{\mathrm{T}} \Delta s_{X}=L_{F}^{\mathrm{T}} \Delta s_{F}
$$

Similarly, any x may be written as $x=E_{F}^{\mathrm{T}} x_{F}+E_{X}^{\mathrm{T}} x_{X}$, where x_{F} and x_{X} denote the components of x corresponding to the "free" and "fixed variables", respectively. The variables $E_{L} x$ and $E_{U} x$ form a subset of x_{F}. Throughout, we assume that x_{X} satisfies
$E_{X} x-b_{X}=0$, in which case $\Delta x_{X}=0$ and Δx satisfies

$$
\Delta x=E_{F}^{\mathrm{T}} \Delta x_{F}+E_{X}^{\mathrm{T}} \Delta x_{X}=E_{F}^{\mathrm{T}} \Delta x_{F}
$$

After premultiplying the first and fifth blocks of equations of (3.3) by E_{F} and L_{F} respectively, and substituting $\Delta x=E_{F}^{\mathrm{T}} \Delta x_{F}$ and $\Delta s=L_{F}^{\mathrm{T}} \Delta s_{F}$, the equations (3.3) can be written in the reduced form $\widehat{F}^{\prime}\left(v_{F}\right) \Delta v_{F}=-\widehat{F}\left(v_{F}\right)$, where $\Delta v_{F}=\left(\Delta x_{F}, \Delta s_{F}, \Delta y\right.$, $\left.\Delta v, \Delta z_{1}, \Delta z_{2}, \Delta w_{1}, \Delta w_{2}\right)$,

$$
\left(\begin{array}{cccccccc}
H_{F} & 0 & -J_{F}^{\mathrm{T}} & -A_{F}^{\mathrm{T}} & -E_{L F}^{\mathrm{T}} & E_{U F}^{\mathrm{T}} & 0 & 0 \\
0 & 0 & L_{F} & 0 & 0 & 0 & -L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
Z_{1}^{\mu} E_{L F} & 0 & 0 & 0 & X_{1}^{\mu} & 0 & 0 & 0 \\
-Z_{2}^{\mu} E_{U F} & 0 & 0 & 0 & 0 & X_{2}^{\mu} & 0 & 0 \\
0 & W_{1}^{\mu} L_{L F} & 0 & 0 & 0 & 0 & S_{1}^{\mu} & 0 \\
0 & -W_{2}^{\mu} L_{U F} & 0 & 0 & 0 & 0 & 0 & S_{2}^{\mu}
\end{array}\right)\left(\begin{array}{c}
\Delta x_{F} \\
\Delta s_{F} \\
\Delta y \\
\Delta v \\
\Delta z_{1} \\
\Delta z_{2} \\
\Delta w_{1} \\
\Delta w_{2}
\end{array}\right)=-\left(\begin{array}{c}
g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T}} v-E_{L F}^{\mathrm{T}} z_{1}+E_{U F}^{\mathrm{T}} z_{2} \\
y_{F}-L_{L F}^{\mathrm{T}} w_{1}+L_{U F}^{\mathrm{T}} w_{2} \\
c(x)-s+\mu^{P}\left(y-y^{E}\right) \\
A x-b+\mu^{A}\left(v-v^{E}\right) \\
z_{1} \cdot\left(E_{L} x-\ell^{X}\right)+\mu^{B}\left(z_{1}-z_{1}^{E}\right)+\mu^{B}\left(E_{L} x-E_{L} x^{E}\right) \\
z_{2} \cdot\left(u^{X}-E_{U} x\right)+\mu^{B}\left(z_{2}-z_{2}^{E}\right)+\mu^{B}\left(E_{U} x^{E}-E_{U} x\right) \\
w_{1} \cdot\left(L_{L} s-\ell^{S}\right)+\mu^{B}\left(w_{1}-w_{1}^{E}\right)+\mu^{B}\left(L_{L} s-L_{L} s^{E}\right) \\
w_{2} \cdot\left(u^{S}-L_{U} s\right)+\mu^{B}\left(w_{2}-w_{2}^{E}\right)+\mu^{B}\left(L_{U} s^{E}-L_{U} s\right)
\end{array}\right)
$$

where $H_{F}=E_{F} H E_{F}^{\mathrm{T}}, J_{F}=J(x) E_{F}^{\mathrm{T}}, A_{F}=A E_{F}^{\mathrm{T}}, g_{F}=E_{F} \nabla f(x), E_{L F}=E_{L} E_{F}^{\mathrm{T}}, E_{U F}=E_{U} E_{F}^{\mathrm{T}}, y_{F}=L_{F} y, L_{L F}=L_{L} L_{F}^{\mathrm{T}}$ and $L_{U F}=L_{U} L_{F}^{\mathrm{T}}$. The matrices $J_{F}, A_{F}, E_{L F}$ and $E_{U F}$ are the columns of $J(x), A, E_{L}$ and E_{U} associated with the "free" components of x. The matrices $L_{L F}$ and $L_{U F}$ are the columns of L_{L} and L_{U} associated with the "free" components of s. Then scaling the last four blocks of equations by (respectively) $\left(Z_{1}^{\mu}\right)^{-1},\left(Z_{2}^{\mu}\right)^{-1},\left(W_{1}^{\mu}\right)^{-1}$ and $\left(W_{2}^{\mu}\right)^{-1}$ gives

$$
\left(\begin{array}{cccccccc}
H_{F} & 0 & -J_{F}^{\mathrm{T}} & -A_{F}^{\mathrm{T}} & -E_{L F}^{\mathrm{T}} & E_{U F}^{\mathrm{T}} & 0 & 0 \tag{3.5}\\
0 & 0 & L_{F} & 0 & 0 & 0 & -L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
E_{L F} & 0 & 0 & 0 & D_{1}^{Z} & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & D_{2}^{Z} & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & D_{2}^{W}
\end{array}\right)\left(\begin{array}{c}
\Delta x_{F} \\
\Delta s_{F} \\
\Delta y \\
\Delta v \\
\Delta z_{1} \\
\Delta z_{2} \\
\Delta w_{1} \\
\Delta w_{2}
\end{array}\right)=-\left(\begin{array}{c}
g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T}} v-E_{L F}^{\mathrm{T}} z_{1}+E_{U F}^{\mathrm{T}} z_{2} \\
y_{F}-L_{L F}^{\mathrm{T}} w_{1}+L_{U F}^{\mathrm{T}} w_{2} \\
c(x)-s+\mu^{P}\left(y-y^{E}\right) \\
A x-b+\mu^{A}\left(v-v^{E}\right) \\
D_{1}^{Z}\left(z_{1}-\pi_{1}^{Z}\right) \\
D_{2}^{Z}\left(z_{2}-\pi_{2}^{Z}\right) \\
D_{1}^{W}\left(w_{1}-\pi_{1}^{W}\right) \\
D_{2}^{W}\left(w_{2}-\pi_{2}^{W}\right)
\end{array}\right),
$$

where $A_{F}=A E_{F}^{\mathrm{T}}$ are the columns of A associated with the "free" components of x, and

$$
\begin{array}{llll}
D_{Y}=\mu^{P} I_{m}, & \pi^{Y}=y^{E}-\frac{1}{\mu^{P}}(c-s), & D_{A}=\mu^{A} I_{A}, & \pi^{V}=v^{E}-\frac{1}{\mu^{A}}(A x-b), \\
D_{1}^{W}=S_{1}^{\mu}\left(W_{1}^{\mu}\right)^{-1}, & \pi_{1}^{W}=\mu^{B}\left(S_{1}^{\mu}\right)^{-1}\left(w_{1}^{E}-s_{1}+s_{1}^{E}\right), & D_{1}^{Z}=X_{1}^{\mu}\left(Z_{1}^{\mu}\right)^{-1}, & \pi_{1}^{Z}=\mu^{B}\left(X_{1}^{\mu}\right)^{-1}\left(z_{1}^{E}-x_{1}+x_{1}^{E}\right), \\
D_{2}^{W}=S_{2}^{\mu}\left(W_{2}^{\mu}\right)^{-1}, & \pi_{2}^{W}=\mu^{B}\left(S_{2}^{\mu}\right)^{-1}\left(w_{2}^{E}-s_{2}+s_{2}^{E}\right), & D_{2}^{Z}=X_{2}^{\mu}\left(Z_{2}^{\mu}\right)^{-1}, & \pi_{2}^{Z}=\mu^{B}\left(X_{2}^{\mu}\right)^{-1}\left(z_{2}^{E}-x_{2}+x_{2}^{E}\right),
\end{array}
$$

with auxiliary quantities

$$
x_{1}^{E}=E_{L} x^{E}-\ell^{X}, \quad x_{2}^{E}=u^{X}-E_{U} x^{E}, \quad s_{1}^{E}=L_{L} s^{E}-\ell^{S}, \quad \text { and } \quad s_{2}^{E}=u^{S}-L_{U} s^{E}
$$

Given the definitions (2.3), the vectors Δs and Δw_{X} are recovered as $\Delta s=L_{F}^{\mathrm{T}} \Delta s_{F}$ and $\Delta w_{X}=[y+\Delta y-w]_{X}$. Similarly, Δx and Δz_{X} are recovered as $\Delta x=L_{F}^{\mathrm{T}} \Delta x_{F}$ and $\Delta z_{X}=\left[g+H \Delta x-J^{\mathrm{T}}(y+\Delta y)-z\right]_{X}$.

4. A shifted primal-dual penalty-barrier function

Consider the shifted primal-dual penalty-barrier problem applied to (NP):

$$
\begin{array}{rlllll}
\underset{\substack{x, x_{1}, x_{1}, s_{s}, s_{1}, s_{2}, y, v, z_{1}, z_{2}, w_{1}, w_{2}}}{\operatorname{minimiz}} & M\left(x, x_{1}, x_{2}, s, s_{1}, s_{2}, y, v, w_{1}, w_{2} ; \mu^{P}, \mu^{B}, y^{E}, v^{E}, w_{1}^{E}, w_{2}^{E}\right) \\
\text { subject to } & E_{L} x-x_{1}=\ell^{X}, & L_{L} s-s_{1}=\ell^{S}, & x_{1}+\mu^{B} e>0, & z_{1}+\mu^{B} e>0, & s_{1}+\mu^{B} e>0, \\
& E_{U} x+x_{2}=u^{X}, & L_{U} s+s_{2}=u^{S}, & x_{2}+\mu^{B} e>0, & z_{2}+\mu^{B} e>0, & s_{1}+\mu^{B} e>0, \\
& E_{X} x-b_{X}=0, & L_{X} s-h_{X}=0, & & &
\end{array}
$$

where $M\left(x, x_{1}, x_{2}, s, s_{1}, s_{2}, y, v, z_{1}, z_{2}, w_{1}, w_{2} ; \mu^{P}, \mu^{B}, y^{E}, v^{E}, z_{1}^{E}, z_{2}^{E}, w_{1}^{E}, w_{2}^{E}\right)$ is the shifted primal-dual penalty-barrier function

$$
\begin{align*}
& f(x)-(c(x)-s)^{\mathrm{T}} y^{E}+\frac{1}{2 \mu^{P}}\|c(x)-s\|^{2}+\frac{1}{2 \mu^{P}}\left\|c(x)-s+\mu^{P}\left(y-y^{E}\right)\right\|^{2} \\
& \quad-(A x-b)^{\mathrm{T}} v^{E}+\frac{1}{2 \mu^{A}}\|A x-b\|^{2}+\frac{1}{2 \mu^{A}}\left\|A x-b+\mu^{A}\left(v-v^{E}\right)\right\|^{2} \\
& -\sum_{j=1}^{n_{L}}\left\{\mu^{B}\left(\left[z_{1}^{E}\right]_{j}+\left[x_{1}^{E}\right]_{j}+\mu^{B}\right) \ln \left(\left[z_{1}+\mu^{B} e\right]_{j}\left[x_{1}+\mu^{B} e\right]_{j}^{2}\right)-\left[z_{1} \cdot\left(x_{1}+\mu^{B} e\right)\right]_{j}-2 \mu^{B}\left[x_{1}\right]_{j}\right\} \\
& -\sum_{j=1}^{n_{U}}\left\{\mu^{B}\left(\left[z_{2}^{E}\right]_{j}+\left[x_{2}^{E}\right]_{j}+\mu^{B}\right) \ln \left(\left[z_{2}+\mu^{B} e\right]_{j}\left[x_{2}+\mu^{B} e\right]_{j}^{2}\right)-\left[z_{2} \cdot\left(x_{2}+\mu^{B} e\right)\right]_{j}-2 \mu^{B}\left[x_{2}\right]_{j}\right\} \\
& -\sum_{i=1}^{m_{L}}\left\{\mu^{B}\left(\left[w_{1}^{E}\right]_{i}+\left[s_{1}^{E}\right]_{i}+\mu^{B}\right) \ln \left(\left[w_{1}+\mu^{B}\right]_{i}\left[s_{1}+\mu^{B} e\right]_{i}^{2}\right)-\left[w_{1} \cdot\left(s_{1}+\mu^{B} e\right)\right]_{i}-2 \mu^{B}\left[s_{1}\right]_{i}\right\} \\
& \quad-\sum_{i=1}^{m_{U}}\left\{\mu^{B}\left(\left[w_{2}^{E}\right]_{i}+\left[s_{2}^{E}\right]+\mu^{B}\right) \ln \left(\left[w_{2}+\mu^{B}\right]_{i}\left[s_{2}+\mu^{B} e\right]_{i}^{2}\right)-\left[w_{2} \cdot\left(s_{2}+\mu^{B} e\right)\right]_{i}-2 \mu^{B}\left[s_{2}\right]_{i}\right\} . \tag{4.1}
\end{align*}
$$

The gradient may be written as

where $X_{1}^{\mu}, X_{2}^{\mu}, S_{1}^{\mu}, S_{2}^{\mu}, Z_{1}^{\mu}, Z_{2}^{\mu}, W_{1}^{\mu}$ and W_{2}^{μ} are defined in (3.4). Equivalently,

$$
\nabla M=\left(\begin{array}{c}
\nabla f(x)-A^{\mathrm{T}}\left(\pi^{V}+\left(\pi^{V}-v\right)\right)-J(x)^{\mathrm{T}}\left(\pi^{Y}+\left(\pi^{Y}-y\right)\right) \\
z_{1}-2 \pi_{1}^{Z} \\
z_{2}-2 \pi_{2}^{Z} \\
\pi^{Y}+\left(\pi^{Y}-y\right) \\
w_{1}-2 \pi_{1}^{W} \\
w_{2}-2 \pi_{2}^{W} \\
-D_{Y}\left(\pi^{Y}-y\right) \\
-D_{A}\left(\pi^{V}-v\right) \\
-D_{1}^{Z}\left(\pi_{1}^{Z}-z_{1}\right) \\
-D_{2}^{Z}\left(\pi_{2}^{Z}-z_{2}\right) \\
-D_{1}^{W}\left(\pi_{1}^{W}-w_{1}\right) \\
-D_{2}^{W}\left(\pi_{2}^{W}-w_{2}\right)
\end{array}\right) .
$$

The Hessian $\nabla^{2} M\left(x, x_{1}, x_{2}, s, s_{1}, s_{2}, y, v, z_{1}, z_{2}, w_{1}, w_{2}\right)$ is given by

$$
\left(\begin{array}{cccccccccccc}
H_{1} & 0 & 0 & -2 J^{\mathrm{T}} D_{Y}^{-1} & 0 & 0 & J^{\mathrm{T}} & A^{\mathrm{T}} & 0 & 0 & 0 & 0 \\
0 & 2 G_{1}^{X} & 0 & 0 & 0 & 0 & -I_{m} & 0 & I_{L}^{x} & 0 & 0 & 0 \\
0 & 0 & 2 G_{2}^{X} & 0 & 0 & 0 & 0 & 0 & 0 & I_{U}^{x} & 0 & 0 \\
-2 D_{Y}^{-1} J & 0 & 0 & 2 D_{Y}^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 G_{1}^{S} & 0 & 0 & 0 & 0 & 0 & I_{L}^{s} & 0 \\
0 & 0 & 0 & 0 & 0 & 2 G_{2}^{S} & 0 & 0 & 0 & 0 & 0 & I_{U}^{s} \\
J & 0 & 0 & -I_{m} & 0 & 0 & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A & 0 & 0 & 0 & 0 & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
0 & I_{L}^{x} & 0 & 0 & 0 & 0 & 0 & 0 & G_{1}^{Z} & 0 & 0 & 0 \\
0 & 0 & I_{U}^{x} & 0 & 0 & 0 & 0 & 0 & 0 & G_{2}^{Z} & 0 & 0 \\
0 & 0 & 0 & 0 & I_{L}^{s} & 0 & 0 & 0 & 0 & 0 & G_{1}^{W} & 0 \\
0 & 0 & 0 & 0 & 0 & I_{U}^{s} & 0 & 0 & 0 & 0 & 0 & G_{2}^{W}
\end{array}\right),
$$

where $H_{1}=H\left(x, 2 \pi^{Y}-y\right)+\frac{2}{\mu^{A}} A^{\mathrm{T}} A+\frac{2}{\mu^{P}} J(x)^{\mathrm{T}} J(x)$, and $I_{L}^{x}, I_{L}^{x}, I_{L}^{s}, I_{U}^{s}$ are identity matrices of size $n_{L}, n_{U}, m_{L}, m_{U}$ respectively. In addition

$$
\begin{array}{rlrl}
G_{1}^{X} & =\left(X_{1}^{\mu}\right)^{-1}\left(\Pi_{1}^{Z}+\mu^{B} I\right), & & G_{2}^{X}=\left(X_{2}^{\mu}\right)^{-1}\left(\Pi_{2}^{Z}+\mu^{B} I\right), \\
G_{1}^{S} & =\left(S_{1}^{\mu}\right)^{-1}\left(\Pi_{1}^{W}+\mu^{B} I\right), & G_{2}^{S}=\left(S_{2}^{\mu}\right)^{-1}\left(\Pi_{1}^{W}+\mu^{B} I\right), \\
G_{1}^{Z} & =\left(Z_{1}^{\mu}\right)^{-1}\left(\Pi_{1}^{X}+\mu^{B} I\right), & G_{2}^{Z}=\left(Z_{2}^{\mu}\right)^{-1}\left(\Pi_{2}^{X}+\mu^{B} I\right), \\
G_{1}^{W} & =\left(W_{1}^{\mu}\right)^{-1}\left(\Pi_{1}^{S}+\mu^{B} I\right), & G_{2}^{W}=\left(W_{2}^{\mu}\right)^{-1}\left(\Pi_{2}^{S}+\mu^{B} I\right),
\end{array}
$$

with $\Pi_{1}^{Z}=\operatorname{diag}\left(\pi_{1}^{Z}\right), \Pi_{2}^{Z}=\operatorname{diag}\left(\pi_{2}^{Z}\right), \Pi_{1}^{W}=\operatorname{diag}\left(\pi_{1}^{W}\right), \Pi_{2}^{W}=\operatorname{diag}\left(\pi_{2}^{W}\right), X_{1}^{E}=\operatorname{diag}\left(x_{1}^{E}\right), X_{2}^{E}=\operatorname{diag}\left(x_{2}^{E}\right), S_{1}^{E}=\operatorname{diag}\left(s_{1}^{E}\right)$, $W_{1}^{E}=\operatorname{diag}\left(w_{1}^{E}\right), W_{2}^{E}=\operatorname{diag}\left(w_{2}^{E}\right), Z_{1}^{E}=\operatorname{diag}\left(z_{1}^{E}\right)$ and $Z_{2}^{E}=\operatorname{diag}\left(z_{2}^{E}\right)$.

5. Derivation of the primal-dual line-search direction

The primal-dual penalty-barrier problem may be written in the form

$$
\underset{p \in \mathcal{I}}{\operatorname{minimize}} M(p) \quad \text { subject to } C p=b_{C}
$$

where

$$
\mathcal{I}=\left\{p: p=\left(x, x_{1}, x_{2}, s, s_{1}, s_{2}, y, v, z_{1}, z_{2}, w_{1}, w_{2}\right), \text { with } x_{i}+\mu^{B} e>0, s_{i}+\mu^{B} e>0, z_{i}+\mu^{B} e>0, w_{i}+\mu^{B} e>0 \text { for } i=1,2\right\}
$$

and

$$
C=\left(\begin{array}{rrrccrcccccc}
E_{X} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{5.1}\\
E_{L} & -I_{L}^{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
E_{U} & 0 & I_{U}^{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & L_{X} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & L_{L} & -I_{L}^{s} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & L_{U} & 0 & I_{U}^{s} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \text { and } \quad b_{C}=\left(\begin{array}{c}
b_{X} \\
\ell^{X} \\
u^{X} \\
h_{X} \\
\ell^{S} \\
u^{S}
\end{array}\right) .
$$

Let p be any vector in \mathcal{I} such that $C p=b_{C}$. The Newton direction Δp is given by the solution of the subproblem

$$
\begin{equation*}
\underset{\Delta p}{\operatorname{minimize}} \nabla M(p)^{\mathrm{T}} \Delta p+\frac{1}{2} \Delta p^{\mathrm{T}} \nabla^{2} M(p) \Delta p \quad \text { subject to } C \Delta p=b_{C}-C p=0 \tag{5.2}
\end{equation*}
$$

Let N denote a matrix whose columns form a basis for null (C), i.e., the columns of N are linearly independent and $C N=$ 0 . Every feasible direction Δp may be written in the form $\Delta p=N d$. This implies that d satisfies the reduced equations $N^{\mathrm{T}} \nabla^{2} M(p) N d=-N^{\mathrm{T}} \nabla M(p)$. However, instead of solving (5.2), we formulate a linearly constrained approximate Newton method by approximating the Hessian $\nabla^{2} M(p)$ by a matrix $B(p)$ such that $N^{\mathrm{T}} B(p) N$ is positive definite with $N^{\mathrm{T}} B(p) N \approx$ $N^{\mathrm{T}} \nabla^{2} M(p) N$. Consider the matrix B obtained by replacing π^{Y} by y, π_{1}^{Z} by z_{1}, π_{2}^{Z} by z_{2}, π_{1}^{W} by w_{1}, π_{2}^{W} by w_{2}, x_{1}^{E} by x_{1}, x_{2}^{E} by x_{2}, s_{1}^{E} by s_{1}, s_{2}^{E} by s_{2}, z_{1}^{E} by z_{1}, z_{2}^{E} by z_{2}, w_{1}^{E} by w_{1} and w_{2}^{E} by w_{2} in $\nabla^{2} M\left(x, x_{1}, x_{2}, s, s_{1}, s_{2}, y, v, z_{1}, z_{2}, w_{1}, w_{2}\right)$. This gives an approximate Hessian $B\left(x, x_{1}, x_{2}, s, s_{1}, s_{2}, y, v, z_{1}, z_{2}, w_{1}, w_{2}\right)$ of the form
$\left(\begin{array}{ccccccccccc}H^{B}+\frac{2}{\mu^{A}} A^{\mathrm{T}} A+\frac{2}{\mu^{P}} J^{\mathrm{T}} J & 0 & 0 & -2 J^{\mathrm{T}} D_{Y}^{-1} & 0 & 0 & J^{\mathrm{T}} & A^{\mathrm{T}} & 0 & 0 & 0 \\ 0 & 2\left(D_{1}^{Z}\right)^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & I_{L}^{x} & 0 & 0 \\ 0 & 0 & -2\left(D_{2}^{Z}\right)^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & I_{U}^{x} & 0 \\ -2 D_{Y}^{-1} J & 0 & 0 & 2 D_{Y}^{-1} & 0 & 0 & -I_{m} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2\left(D_{1}^{W}\right)^{-1} & 0 & 0 & 0 & 0 & 0 & I_{L}^{s} \\ 0 & 0 & 0 & 0 & 0 & 2\left(D_{2}^{W}\right)^{-1} & 0 & 0 & 0 & 0 & 0 \\ J & 0 & 0 & -I_{m} & 0 & 0 & D_{Y} & 0 & 0 & 0 & 0 \\ I_{U}^{s} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & D_{A} & 0 & 0 & 0 \\ 0 & I_{L}^{x} & 0 & 0 & 0 & 0 & 0 & 0 & D_{1}^{Z} & 0 & 0 \\ 0 & 0 & I_{U}^{x} & 0 & 0 & 0 & 0 & 0 & 0 & D_{2}^{Z} & 0 \\ 0 & 0 & 0 & I_{L}^{s} & 0 & 0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\ 0 & 0 & 0 & 0 & 0 & I_{U}^{s} & 0 & 0 & 0 & 0 & 0\end{array}\right.$
where $H^{B} \approx H(x, y)$ is chosen so that the approximate reduced Hessian $N^{\mathrm{T}} B(p) N$ is positive definite (see Section 7). Given $B(p)$, an approximate Newton direction is given by the solution of the QP subproblem

$$
\underset{\Delta p}{\operatorname{minimize}} \nabla M(p)^{\mathrm{T}} \Delta p+\frac{1}{2} \Delta p^{\mathrm{T}} B(p) \Delta p \quad \text { subject to } C \Delta p=0
$$

Let N denote a matrix whose columns form a basis for null (C), i.e., the columns of N are linearly independent and $C N=0$. Every feasible Δp may be written in the form $\Delta p=N d$. This implies that d satisfies the reduced equations $N^{\mathrm{T}} B(p) N d=-N^{\mathrm{T}} \nabla M(p)$. Consider the null-space basis defined from the columns of

$$
N=\left(\begin{array}{cccccccc}
E_{F}^{\mathrm{T}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{5.3}\\
E_{L F} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & L_{F}^{\mathrm{T}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I_{m} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I_{A} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{L}^{x} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & I_{U}^{x} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I_{L}^{s} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & I_{U}^{s}
\end{array}\right),
$$

where $E_{L F}=E_{L} E_{F}^{\mathrm{T}}, E_{U F}=E_{U} E_{F}^{\mathrm{T}}, L_{L F}=L_{L} L_{F}^{\mathrm{T}}$ and $L_{U F}=L_{U} L_{F}^{\mathrm{T}}$. The definition of N of (5.3) gives the reduced Hessian $N^{\mathrm{T}} B(p) N$ such that

$$
\left(\begin{array}{cccccccc}
\hat{H}_{F} & -2 J_{F}^{\mathrm{T}} D_{Y}^{-1} L_{F}^{\mathrm{T}} & J_{F}^{\mathrm{T}} & A_{F}^{\mathrm{T}} & E_{L F}^{\mathrm{T}} & -E_{U F}^{\mathrm{T}} & 0 & 0 \\
-2 L_{F} D_{Y}^{-1} J_{F} & 2 L_{F}\left(D_{Y}^{-1}+D_{W}^{\dagger}\right) L_{F}^{\mathrm{T}} & -L_{F} & 0 & 0 & 0 & L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
E_{L F} & 0 & 0 & 0 & D_{1}^{Z} & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & D_{2}^{Z} & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & D_{2}^{W}
\end{array}\right),
$$

where $J_{F}=J(x) E_{F}^{\mathrm{T}}, A_{F}=A E_{F}^{\mathrm{T}}, \widehat{H}_{F}=E_{F} H^{B} E_{F}^{\mathrm{T}}+\frac{2}{\mu^{A}} A_{F}^{\mathrm{T}} A_{F}+\frac{2}{\mu^{P}} J_{F}^{\mathrm{T}} J_{F}+2\left(E_{L F}^{\mathrm{T}}\left(D_{1}^{Z}\right)^{-1} E_{L F}+E_{U F}^{\mathrm{T}}\left(D_{2}^{Z}\right)^{-1} E_{U F}\right)$ and $D_{W}=$ $\left(\left(L_{L}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} L_{L}+L_{U}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} L_{U}\right)\right)^{\dagger}$. Similarly, the reduced gradient $N^{\mathrm{T}} \nabla M(p)$ is given by

$$
\left(\begin{array}{c}
g_{F}-A_{F}^{\mathrm{T}}\left(2 \pi^{V}-v\right)-J_{F}^{\mathrm{T}}\left(2 \pi^{Y}-y\right)-E_{L F}\left(2 \pi_{1}^{Z}-z_{1}\right)+E_{U F}\left(2 \pi_{2}^{Z}-z_{2}\right) \\
2 \pi_{F}^{Y}-y_{F}-L_{L F}\left(2 \pi_{1}^{W}-w_{1}\right)+L_{U F}\left(2 \pi_{2}^{W}-w_{2}\right) \\
-D_{Y}\left(\pi^{Y}-y\right) \\
-D_{A}\left(\pi^{V}-v\right) \\
-D_{1}^{Z}\left(\pi_{1}^{Z}-z_{1}\right) \\
-D_{2}^{Z}\left(\pi_{2}^{Z}-z_{2}\right) \\
-D_{1}^{W}\left(\pi_{1}^{W}-w_{1}\right) \\
-D_{2}^{W}\left(\pi_{2}^{W}-w_{2}\right)
\end{array}\right)
$$

where $g_{F}=E_{F} \nabla f(x), \pi_{F}^{Y}=L_{F} \pi^{Y}$ and $y_{F}=L_{F} y$. The reduced approximate Newton equations $N^{\mathrm{T}} B(p) N d=-N^{\mathrm{T}} \nabla M(p)$ are then

$$
\begin{align*}
& \left(\begin{array}{cccccccc}
\widehat{H}_{F} & -2 J_{F}^{\mathrm{T}} D_{Y}^{-1} L_{F}^{\mathrm{T}} & J_{F}^{\mathrm{T}} & A_{F}^{\mathrm{T}} & E_{L F}^{\mathrm{T}} & -E_{U F}^{\mathrm{T}} & 0 & 0 \\
-2 L_{F} D_{Y}^{-1} J_{F} & 2 L_{F}\left(D_{Y}^{-1}+D_{W}^{\dagger}\right) L_{F}^{\mathrm{T}} & -L_{F} & 0 & 0 & 0 & L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
E_{L F} & 0 & 0 & 0 & D_{1}^{Z} & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & D_{2}^{Z} & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & D_{2}^{W}
\end{array}\right)\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4} \\
d_{5} \\
d_{6} \\
d_{7} \\
d_{8}
\end{array}\right) \\
& =-\left(\begin{array}{c}
g_{F}-A_{F}^{\mathrm{T}}\left(2 \pi^{V}-v\right)-J_{F}^{\mathrm{T}}\left(2 \pi^{Y}-y\right)-E_{L F}\left(2 \pi_{1}^{Z}-z_{1}\right)+E_{U F}\left(2 \pi_{2}^{Z}-z_{2}\right) \\
2 \pi_{F}^{Y}-y_{F}-L_{L F}\left(2 \pi_{1}^{W}-w_{1}\right)+L_{U F}\left(2 \pi_{2}^{W}-w_{2}\right) \\
-D_{Y}\left(\pi^{Y}-y\right) \\
-D_{A}\left(\pi^{V}-v\right) \\
-D_{1}^{Z}\left(\pi_{1}^{Z}-z_{1}\right) \\
-D_{2}^{Z}\left(\pi_{2}^{Z}-z_{2}\right) \\
-D_{1}^{W}\left(\pi_{1}^{W}-w_{1}\right) \\
-D_{2}^{W}\left(\pi_{2}^{W}-w_{2}\right)
\end{array}\right) \tag{5.4}
\end{align*}
$$

Given any nonsingular matrix R, the direction d satisfies $R N^{\mathrm{T}} B(p) N d=-R N^{\mathrm{T}} \nabla M(p)$. In particular, consider the block upper-triangular matrix R such that

$$
R=\left(\begin{array}{cccccccc}
I_{F}^{x} & 0 & -2 J_{F}^{\mathrm{T}} D_{Y}^{-1} & -2 A_{F}^{\mathrm{T}} D_{A}^{-1} & -2 E_{L F}^{\mathrm{T}}\left(D_{1}^{Z}\right)^{-1} & 2 E_{U F}^{\mathrm{T}}\left(D_{2}^{Z}\right)^{-1} & 0 & 0 \\
& I_{F}^{s} & 2 L_{F} D_{Y}^{-1} & 0 & 0 & 0 & -2 L_{L F}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} & 2 L_{U F}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} \\
& I_{m} & 0 & 0 & 0 & 0 & 0 \\
& & & I_{A} & 0 & 0 & 0 & 0 \\
& & & & I_{L}^{x} & 0 & 0 & 0 \\
& & & & I_{U}^{x} & 0 & 0 \\
& & & & & I_{L}^{s} & 0 \\
& & & & & & I_{U}^{s}
\end{array}\right)
$$

where again, $I_{L}^{x}, I_{U}^{x}, I_{L}^{s}, I_{U}^{s}$ are identity matrices of size n_{L}, n_{U}, m_{L}, and m_{U} respectively. Then R is nonsingular with

$$
R N^{\mathrm{T}} B(p) N=\left(\begin{array}{cccccccc}
E_{F} H^{B} E_{F}^{\mathrm{T}} & 0 & -J_{F}^{\mathrm{T}} & -A_{F}^{\mathrm{T}} & -E_{L F}^{\mathrm{T}} & E_{U F}^{\mathrm{T}} & 0 & 0 \\
0 & 0 & L_{F} & 0 & 0 & 0 & -L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
E_{L F} & 0 & 0 & 0 & D_{1}^{Z} & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & D_{2}^{Z} & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & D_{2}^{W}
\end{array}\right)
$$

Also,

$$
R N^{\mathrm{T}} \nabla M(p)=\left(\begin{array}{c}
g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T}} v-z_{1}+z_{2} \\
y_{F}-w_{1}+w_{2} \\
-D_{Y}\left(\pi^{Y}-y\right) \\
-D_{A}\left(\pi^{V}-v\right) \\
-D_{1}^{Z}\left(\pi_{1}^{Z}-z_{1}\right) \\
-D_{2}^{Z}\left(\pi_{2}^{Z}-z_{2}\right) \\
-D_{1}^{W}\left(\pi_{1}^{W}-w_{1}\right) \\
-D_{2}^{W}\left(\pi_{2}^{W}-w_{2}\right)
\end{array}\right) .
$$

This gives the following (unsymmetric) reduced approximate Newton equations for d :

$$
\left(\begin{array}{cccccccc}
E_{F} H^{B} E_{F}^{\mathrm{T}} & 0 & -J_{F}^{\mathrm{T}} & -A_{F}^{\mathrm{T}} & -E_{L F}^{\mathrm{T}} & E_{U F}^{\mathrm{T}} & 0 & 0 \tag{5.5}\\
0 & 0 & L_{F} & 0 & 0 & 0 & -L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
E_{L F} & 0 & 0 & 0 & D_{1}^{Z} & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & D_{2}^{Z} & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & D_{2}^{W}
\end{array}\right)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4} \\
d_{5} \\
d_{6} \\
d_{7} \\
d_{8}
\end{array}\right)=-\left(\begin{array}{c}
g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T}} v-E_{L F}^{\mathrm{T}} z_{1}+E_{U F}^{\mathrm{T}} z_{2} \\
y_{F}-L_{L F}^{\mathrm{T}} w_{1}+L_{U F}^{\mathrm{T}} w_{2} \\
-D_{Y}\left(\pi^{Y}-y\right) \\
-D_{A}\left(\pi^{V}-v\right) \\
-D_{1}^{Z}\left(\pi_{1}^{Z}-z_{1}\right) \\
-D_{2}^{Z}\left(\pi_{2}^{Z}-z_{2}\right) \\
-D_{1}^{W}\left(\pi_{1}^{W}-w_{1}\right) \\
-D_{2}^{W}\left(\pi_{2}^{W}-w_{2}\right)
\end{array}\right) .
$$

Then, the identity $\Delta p=N d$ implies that

$$
\Delta p=\left(\begin{array}{l}
\Delta x \\
\Delta x_{1} \\
\Delta x_{2} \\
\Delta s \\
\Delta s_{1} \\
\Delta s_{2} \\
\Delta y \\
\Delta v \\
\Delta z_{1} \\
\Delta z_{2} \\
\Delta w_{1} \\
\Delta w_{2}
\end{array}\right)=N d=\left(\begin{array}{c}
E_{F}^{\mathrm{T}} d_{1} \\
d_{1} \\
-d_{1} \\
L_{F}^{\mathrm{T}} d_{2} \\
d_{2} \\
-d_{2} \\
d_{3} \\
d_{4} \\
d_{5} \\
d_{6} \\
d_{7} \\
d_{8}
\end{array}\right)
$$

These identities allow us to write equations (5.5) in the form

$$
\left(\begin{array}{cccccccc}
E_{F} H^{B} E_{F}^{\mathrm{T}} & 0 & -J_{F}^{\mathrm{T}} & -A_{F}^{\mathrm{T}} & -E_{L F}^{\mathrm{T}} & E_{U F}^{\mathrm{T}} & 0 & 0 \tag{5.7}\\
0 & 0 & L_{F} & 0 & 0 & 0 & -L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
E_{L F} & 0 & 0 & 0 & D_{1}^{Z} & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & D_{2}^{Z} & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & D_{2}^{W}
\end{array}\right)\left(\begin{array}{c}
\Delta x_{F} \\
\Delta s_{F} \\
\Delta y \\
\Delta v \\
\Delta z_{1} \\
\Delta z_{2} \\
\Delta w_{1} \\
\Delta w_{2}
\end{array}\right)=-\left(\begin{array}{c}
g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T}} v-E_{L F}^{\mathrm{T}} z_{1}+E_{U F}^{\mathrm{T}} z_{2} \\
y_{F}-L_{L F}^{\mathrm{T}} w_{1}+L_{U F}^{\mathrm{T}} w_{2} \\
-D_{Y}\left(\pi^{Y}-y\right) \\
-D_{A}\left(\pi^{V}-v\right) \\
-D_{1}^{Z}\left(\pi_{1}^{Z}-z_{1}\right) \\
-D_{2}^{Z}\left(\pi_{2}^{Z}-z_{2}\right) \\
-D_{1}^{W}\left(\pi_{1}^{W}-w_{1}\right) \\
-D_{2}^{W}\left(\pi_{2}^{W}-w_{2}\right)
\end{array}\right)
$$

with $\Delta x=E_{F}^{\mathrm{T}} \Delta x_{F}, \Delta s=L_{F}^{\mathrm{T}} \Delta s_{F}, \Delta x_{1}=\Delta x_{F}-\left(\ell^{X}-E_{L} x+x_{1}\right), \Delta x_{2}=-\Delta x_{F}+\left(u^{X}-E_{U} x-x_{2}\right), \Delta s_{1}=\Delta s_{F}-\left(\ell^{s}-L_{L} s+s_{1}\right)$ and $\Delta s_{2}=-\Delta s_{F}+\left(u^{S}-L_{U} s-s_{2}\right)$.

The shifted penalty-barrier equations (5.7) are the same as the path-following equations (3.5) except for the $(1,1)$ block, where H_{F} is replaced by $E_{F} H^{B} E_{F}^{\mathrm{T}}$.

6. The shifted primal-dual penalty-barrier direction

In this section we consider the solution of the shifted primal-dual penalty-barrier equations (5.7). Collecting terms and reordering the equations and unknowns, we obtain

$$
\left(\begin{array}{cccccccc}
D_{A} & 0 & 0 & 0 & 0 & 0 & A_{F} & 0 \tag{6.1}\\
0 & D_{1}^{Z} & 0 & 0 & 0 & 0 & E_{L F} & 0 \\
0 & 0 & D_{2}^{Z} & 0 & 0 & 0 & -E_{U F} & 0 \\
0 & 0 & 0 & D_{1}^{W} & 0 & L_{L F} & 0 & 0 \\
0 & 0 & 0 & 0 & D_{2}^{W} & -L_{U F} & 0 & 0 \\
0 & 0 & 0 & -L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} & 0 & 0 & L_{F} \\
-A_{F}^{\mathrm{T}} & -E_{L F}^{\mathrm{T}} & E_{U F}^{\mathrm{T}} & 0 & 0 & 0 & E_{F} H^{B} E_{F}^{\mathrm{T}} & -J_{F}^{\mathrm{T}} \\
0 & 0 & 0 & 0 & 0 & -L_{F}^{\mathrm{T}} & J_{F} & D_{Y}
\end{array}\right)\left(\begin{array}{c}
\Delta v \\
\Delta z_{1} \\
\Delta z_{2} \\
\Delta w_{1} \\
\Delta w_{2} \\
\Delta s_{F} \\
\Delta x_{F} \\
\Delta y
\end{array}\right)=-\left(\begin{array}{c}
D_{A}\left(v-\pi^{V}\right) \\
D_{1}^{Z}\left(z_{1}-\pi_{1}^{Z}\right) \\
D_{2}^{Z}\left(z_{2}-\pi_{2}^{Z}\right) \\
D_{1}^{W}\left(w_{1}-\pi_{1}^{W}\right) \\
D_{2}^{W}\left(w_{2}-\pi_{2}^{W}\right) \\
y_{F}-L_{L F}^{\mathrm{T}} w_{1}+L_{U F}^{\mathrm{T}} w_{2} \\
g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T} v-E_{L F}^{\mathrm{T}} z_{1}+E_{U F}^{\mathrm{T}} z_{2}} \\
D_{Y}\left(y-\pi^{Y}\right)
\end{array}\right)
$$

Consider the diagonal matrices

$$
D_{W}=\left(L_{L}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} L_{L}+L_{U}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} L_{U}\right)^{\dagger} \quad \text { and } \quad D_{z}=\left(E_{L}^{\mathrm{T}}\left(D_{1}^{Z}\right)^{-1} E_{L}+E_{U}^{\mathrm{T}}\left(D_{2}^{Z}\right)^{-1} E_{U}\right)^{\dagger}
$$

where $(\cdot)^{\dagger}$ denotes the Moore-Penrose pseudoinverse of a matrix. The identity $I_{m}=L_{X}^{\mathrm{T}} L_{X}+L_{F}^{\mathrm{T}} L_{F}$ implies that the $m \times m$ matrix D_{W} satisfies the identities

$$
L_{F}^{\mathrm{T}} L_{F} D_{W}=D_{W}=D_{W} L_{F}^{\mathrm{T}} L_{F}, \quad \text { and } \quad L_{X}^{\mathrm{T}} L_{X} D_{W}=0
$$

If equations (6.1) are premultiplied by the matrix

$$
\left(\begin{array}{cccccccc}
I_{A} & & & & & & & \\
0 & I_{L}^{x} & & & & & \\
0 & 0 & I_{U}^{x} & & & & \\
0 & 0 & 0 & I_{L}^{s} & & & & \\
0 & 0 & 0 & 0 & I_{U}^{s} & & \\
0 & 0 & 0 & L_{L F}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} & -L_{U F}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} & I_{F}^{s} & \\
A_{F}^{\mathrm{T}} D_{A}^{-1} & E_{L F}^{\mathrm{T}}\left(D_{1}^{Z}\right)^{-1} & -E_{U F}^{\mathrm{T}}\left(D_{2}^{Z}\right)^{-1} & 0 & 0 & 0 & I_{F}^{x} & \\
0 & 0 & 0 & D_{W} L_{L}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} & -D_{W} L_{U}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} & L_{F}^{\mathrm{T}} D_{W} & 0 & I_{m}
\end{array}\right)
$$

gives the block upper-triangular system

$$
\left(\begin{array}{cccccccc}
D_{A} & 0 & 0 & 0 & 0 & 0 & A_{F} & 0 \\
0 & D_{1}^{Z} & 0 & 0 & 0 & 0 & E_{L F} & 0 \\
0 & 0 & D_{2}^{Z} & 0 & 0 & 0 & -E_{U F} & 0 \\
0 & 0 & 0 & D_{1}^{W} & 0 & L_{L F} & 0 & 0 \\
0 & 0 & 0 & 0 & D_{2}^{W} & -L_{U F} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & L_{F} D_{W}^{\dagger} L_{F}^{T} & 0 & L_{F} \\
0 & 0 & 0 & 0 & 0 & 0 & \widetilde{H}_{F} & -J_{F}^{\mathrm{T}} \\
0 & 0 & 0 & 0 & 0 & 0 & J_{F} & D_{Y}+D_{W}
\end{array}\right)\left(\begin{array}{c}
\Delta v \\
\Delta z_{1} \\
\Delta z_{2} \\
\Delta w_{1} \\
\Delta w_{2} \\
\Delta s_{F} \\
\Delta x_{F} \\
\Delta y
\end{array}\right)=-\left(\begin{array}{c}
D_{A}\left(v-\pi^{V}\right) \\
D_{1}^{Z}\left(z_{1}-\pi_{1}^{Z}\right) \\
D_{2}^{Z}\left(z_{2}-\pi_{2}^{Z}\right) \\
D_{1}^{W}\left(w_{1}-\pi_{1}^{W}\right) \\
D_{2}^{W}\left(w_{2}-\pi_{2}^{W}\right) \\
y_{F}-\pi_{F}^{W} \\
g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T}} \pi^{V}-\pi_{F}^{Z} \\
D_{W}\left(y_{F}-\pi_{F}^{W}\right)+D_{Y}\left(y-\pi^{Y}\right)
\end{array}\right)
$$

where $\widetilde{H}_{F}=E_{F} H^{B} E_{F}^{\mathrm{T}}+A_{F}^{\mathrm{T}} D_{A}^{-1} A_{F}+E_{F} D_{Z}^{\dagger} E_{F}^{\mathrm{T}}, \pi_{F}^{W}=L_{L F}^{\mathrm{T}} \pi_{1}^{W}-L_{U F}^{\mathrm{T}} \pi_{2}^{W}$ and $\pi_{F}^{Z}=E_{L F}^{\mathrm{T}} \pi_{1}^{Z}-E_{U F}^{\mathrm{T}} \pi_{2}^{Z}$. Using block back-substitution, Δx_{F} and Δy can be computed by solving the equations

$$
\left(\begin{array}{cc}
\widetilde{H}_{F} & -J_{F}^{\mathrm{T}} \\
J_{F} & D_{Y}+D_{W}
\end{array}\right)\binom{\Delta x_{F}}{\Delta y}=-\binom{g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T}} \pi^{V}-\pi_{F}^{Z}}{D_{W}\left(y-\pi^{W}\right)+D_{Y}\left(y-\pi^{Y}\right)} .
$$

Once Δx_{F} and Δy are known, the full vector Δx is computed as $\Delta x=E_{F}^{\mathrm{T}} \Delta x_{F}$. Using the identity $\Delta s=L_{F}^{\mathrm{T}} \Delta s_{F}$ in the sixth block of equations gives

$$
\Delta s=-D_{W}\left(y+\Delta y-\pi^{W}\right)
$$

There are several ways of computing Δw_{1} and Δw_{2}. Instead of using the block upper-triangular system above, we use the last two blocks of equations of (3.5) to give

$$
\Delta w_{1}=-\left(S_{1}^{\mu}\right)^{-1}\left(w_{1} \cdot\left(L_{L}(s+\Delta s)-\ell^{S}+\mu^{B} e\right)-\mu^{B} w_{1}^{E}+\mu^{B} L_{L}\left(s-s^{E}+\Delta s\right)\right)
$$

and

$$
\Delta w_{2}=-\left(S_{2}^{\mu}\right)^{-1}\left(w_{2} \cdot\left(u^{S}-L_{U}(s+\Delta s)+\mu^{B} e\right)-\mu^{B} w_{2}^{E}+\mu^{B} L_{U}\left(s^{E}-s-\Delta s\right)\right)
$$

Similarly, using (3.5) to solve for Δz_{1} and Δz_{2} yields

$$
\Delta z_{1}=-\left(X_{1}^{\mu}\right)^{-1}\left(z_{1} \cdot\left(E_{L}(x+\Delta x)-\ell^{X}+\mu^{B} e\right)-\mu^{B} z_{1}^{E}+\mu^{B} E_{L}\left(x-x^{E}+\Delta x\right)\right)
$$

and

$$
\Delta z_{2}=-\left(X_{2}^{\mu}\right)^{-1}\left(z_{2} \cdot\left(u^{X}-E_{U}(x+\Delta x)+\mu^{B} e\right)-\mu^{B} z_{2}^{E}+\mu^{B} E_{U}\left(x^{E}-x-\Delta x\right)\right)
$$

Similarly, using the first block of equations (6.1) to solve for Δv gives $\Delta v=-\left(v-\widehat{\pi}^{V}\right)$, with $\widehat{\pi}^{V}=v^{E}-\frac{1}{\mu^{A}}(A(x+\Delta x)-b)$. Finally, the vectors Δw_{X} and Δz_{X} are recovered as $\Delta w_{X}=[y+\Delta y-w]_{X}$ and $\Delta z_{X}=\left[g+H \Delta x-J^{\mathrm{T}}(y+\Delta y)-z\right]_{X}$, where $w=L_{X}^{\mathrm{T}} w_{X}+L_{L}^{\mathrm{T}} w_{1}-L_{U}^{\mathrm{T}} w_{2}$ and $z=E_{X}^{\mathrm{T}} z_{X}+E_{L}^{\mathrm{T}} z_{1}-E_{U}^{\mathrm{T}} z_{2}$.

7. Summary: equations for the primal-dual line-search direction

The results of the preceding section imply that the solution of the path-following equations $F^{\prime}\left(v_{P}\right) \Delta v_{P}=-F\left(v_{P}\right)$ with F and F^{\prime} given by (3.2) and (3.3) may be computed as follows. Let x and s be given primal variables and slack variables such that $E_{X} x=b_{X}, L_{X} s=h_{X}$ with $\ell^{X}-\mu^{B}<E_{L} x, E_{U} x<u^{X}+\mu^{B}, \ell^{S}-\mu^{B}<L_{L} s, L_{U} s<u^{S}+\mu^{B}$. Similarly, let $z_{1}, z_{2}, w_{1}, w_{2}$ and y denote dual variables such that $w_{1}>0, w_{2}>0, z_{1}>0$, and $z_{2}>0$. Consider the diagonal matrices $X_{1}^{\mu}=\operatorname{diag}\left(E_{L} x-\ell^{X}+\mu^{B} e\right)$, $X_{2}^{\mu}=\operatorname{diag}\left(u^{X}-E_{U} x+\mu^{B} e\right), Z_{1}=\operatorname{diag}\left(z_{1}\right), Z_{2}=\operatorname{diag}\left(z_{2}\right), W_{1}=\operatorname{diag}\left(w_{1}\right), W_{2}=\operatorname{diag}\left(w_{2}\right), S_{1}^{\mu}=\operatorname{diag}\left(L_{L} s-\ell^{S}+\mu^{B} e\right)$ and
$S_{2}^{\mu}=\operatorname{diag}\left(u^{S}-L_{U} S+\mu^{B} e\right)$. Consider the quantities

$$
\begin{aligned}
D_{Y} & =\mu^{P} I_{m}, & \pi^{Y} & =y^{E}-\frac{1}{\mu^{P}}(c-s), \\
D_{A} & =\mu^{A} I_{A}, & \pi^{V} & =v^{E}-\frac{1}{\mu^{A}}(A x-b), \\
\left(D_{1}^{Z}\right)^{-1} & =\left(X_{1}^{\mu}\right)^{-1} Z_{1}^{\mu}, & \left(D_{1}^{W}\right)^{-1} & =\left(S_{1}^{\mu}\right)^{-1} W_{1}^{\mu}, \\
\left(D_{2}^{Z}\right)^{-1} & =\left(X_{2}^{\mu}\right)^{-1} Z_{2}^{\mu}, & \left(D_{2}^{W}\right)^{-1} & =\left(S_{2}^{\mu}\right)^{-1} W_{2}^{\mu}, \\
D_{Z} & =\left(E_{L}^{\mathrm{T}}\left(D_{1}^{Z}\right)^{-1} E_{L}+E_{U}^{\mathrm{T}}\left(D_{2}^{Z}\right)^{-1} E_{U}\right)^{\dagger}, & D_{W} & =\left(L_{L}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} L_{L}+L_{U}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} L_{U}\right)^{\dagger}, \\
\pi_{1}^{Z} & =\mu^{B}\left(X_{1}^{\mu}\right)^{-1}\left(z_{1}^{E}-x_{1}+x_{1}^{E}\right), & \pi_{1}^{W} & =\mu^{B}\left(S_{1}^{\mu}\right)^{-1}\left(w_{1}^{E}-s_{1}+s_{1}^{E}\right), \\
\pi_{2}^{Z} & =\mu^{B}\left(X_{2}^{\mu}\right)^{-1}\left(z_{2}^{E}-x_{2}+x_{2}^{E}\right), & \pi_{2}^{W} & =\mu^{B}\left(S_{2}^{\mu}\right)^{-1}\left(w_{2}^{E}-s_{2}+s_{2}^{E}\right), \\
\pi^{z} & =E_{L}^{\mathrm{T}} \pi_{1}^{Z}-E_{U}^{\mathrm{T}} \pi_{2}^{Z}, & \pi^{W} & =L_{L}^{\mathrm{T}} \pi_{1}^{W}-L_{U}^{\mathrm{T}} \pi_{2}^{W} .
\end{aligned}
$$

Choose H_{F}^{B} so that H_{F}^{B} approximates $E_{F} H(x, y) E_{F}^{\mathrm{T}}$ and the KKT matrix

$$
\left(\begin{array}{cc}
H_{F}^{B}+A_{F}^{\mathrm{T}} D_{A}^{-1} A_{F}+E_{F} D_{Z}^{\dagger} E_{F}^{\mathrm{T}} & J_{F}^{\mathrm{T}} \\
J_{F} & -\left(D_{Y}+D_{W}\right)
\end{array}\right)
$$

is nonsingular with m negative eigenvalues. (A common choice of H_{F}^{B} is the matrix $E_{F}\left(H(x, y)+\sigma I_{n}\right) E_{F}^{\mathrm{T}}$ for some nonnegative scalar σ.) Solve the KKT system

$$
\left(\begin{array}{cc}
H_{F}^{B}+A_{F}^{\mathrm{T}} D_{A}^{-1} A_{F}+E_{F} D_{Z}^{\dagger} E_{F}^{\mathrm{T}} & -J_{F}^{\mathrm{T}} \\
J_{F} & D_{Y}+D_{W}
\end{array}\right)\binom{\Delta x_{F}}{\Delta y}=-\binom{g_{F}-J_{F}^{\mathrm{T}} y-A_{F}^{\mathrm{T}} \pi^{V}-\pi_{F}^{Z}}{\left.D_{W}^{\left(y_{F}-\pi_{F}^{W}\right)+D_{Y}\left(y-\pi^{Y}\right)}\right)},
$$

and set

$$
\begin{array}{rlrl}
\Delta x=E_{F}^{\mathrm{T}} \Delta x_{F}, & \widehat{x}=x+\Delta x, & \Delta z_{1} & =-\left(X_{1}^{\mu}\right)^{-1}\left(z_{1} \cdot\left(E_{L} \widehat{x}-\ell^{X}+\mu^{B} e\right)-\mu^{B} z_{1}^{E}+\mu^{B}\right. \\
\Delta z_{2} & =-\left(X_{2}^{\mu}\right)^{-1}\left(z_{2} \cdot\left(u^{X}-E_{U} \widehat{x}+\mu^{B} e\right)-\mu^{B} z_{2}^{E}+\mu^{L}\right. \\
\widehat{y}=y+\Delta y, & \Delta s & =-D_{W}\left(\widehat{y}-\pi^{W}\right), \\
\widehat{s}=s+\Delta s, & \Delta w_{1} & =-\left(S_{1}^{\mu}\right)^{-1}\left(w_{1} \cdot\left(L_{L} \widehat{s}-\ell^{S}+\mu^{B} e\right)-\mu^{B} w_{1}^{E}+\mu^{B}\right. \\
& \Delta w_{2} & =-\left(S_{2}^{\mu}\right)^{-1}\left(w_{2} \cdot\left(u^{S}-L_{U} \widehat{s}+\mu^{B} e\right)-\mu^{B} w_{2}^{E}+\mu^{E}\right. \\
\widehat{\pi}^{V} & =v^{E}-\frac{1}{\mu^{A}}(A \widehat{x}-b), & \Delta v & =\widehat{\pi}^{V}-v, \\
w & =L_{X}^{\mathrm{T}} w_{X}+L_{L}^{\mathrm{T}} w_{1}-L_{U}^{\mathrm{T}} w_{2}, & z & =E_{X}^{\mathrm{T}} z_{X}+E_{L}^{\mathrm{T}} z_{1}-E_{U}^{\mathrm{T}} z_{2}, \\
\widehat{v} & =v+\Delta v, & \Delta w_{X} & =[\widehat{y}-w]_{X}, \\
& \Delta z_{X} & =\left[\nabla f(x)+H(x) \Delta x-J(x)^{\mathrm{T}} \widehat{y}-A^{\mathrm{T}} \widehat{v}-z\right]_{X} .
\end{array}
$$

The associated merit function (4.1) can be written as

$$
\begin{aligned}
& f(x)-(c(x)-s)^{\mathrm{T}} y^{E}+\frac{1}{2 \mu^{P}}\|c(x)-s\|^{2}+\frac{1}{2 \mu^{P}}\left\|c(x)-s+\mu^{P}\left(y-y^{E}\right)\right\|^{2} \\
& \quad-(A x-b)^{\mathrm{T}} v^{E}+\frac{1}{2 \mu^{A}}\|A x-b\|^{2}+\frac{1}{2 \mu^{A}}\left\|A x-b+\mu^{A}\left(v-v^{E}\right)\right\|^{2} \\
& -\sum_{j=1}^{n_{L}}\left\{\mu^{B}\left(\left[z_{1}^{E}\right]_{j}+\left[E_{L} x^{E}-\ell^{X}\right]_{j}+\mu^{B}\right) \ln \left(\left[z_{1}+\mu^{B} e\right]_{j}\left[E_{L} x-\ell^{X}+\mu^{B} e\right]_{j}^{2}\right)-\left[z_{1} \cdot\left(E_{L} x-\ell^{X}+\mu^{B} e\right)\right]_{j}-2 \mu^{B}\left[E_{L} x-\ell^{X}\right]_{j}\right\} \\
& -\sum_{j=1}^{n_{U}}\left\{\mu^{B}\left(\left[z_{2}^{E}\right]_{j}+\left[u^{X}-E_{U} x^{E}\right]_{j}+\mu^{B}\right) \ln \left(\left[z_{2}+\mu^{B} e\right]_{j}\left[u^{X}-E_{U} x+\mu^{B} e\right]_{j}^{2}\right)-\left[z_{2} \cdot\left(u^{X}-E_{U} x+\mu^{B} e\right)\right]_{j}-2 \mu^{B}\left[u^{X}-E_{U} x\right]_{j}\right\} \\
& \quad-\sum_{i=1}^{m_{L}}\left\{\mu^{B}\left(\left[w_{1}^{E}\right]_{i}+\left[L_{L} s^{E}-\ell^{S}\right]_{i}+\mu^{B}\right) \ln \left(\left[w_{1}+\mu^{B}\right]_{i}\left[L_{L} s-\ell^{S}+\mu^{B} e\right]_{i}^{2}\right)-\left[w_{1} \cdot\left(L_{L} s-\ell^{S}+\mu^{B} e\right)\right]_{i}-2 \mu^{B}\left[L_{L} s-\ell^{S}\right]_{i}\right\} \\
& \quad-\sum_{i=1}^{m_{U}}\left\{\mu^{B}\left(\left[w_{2}^{E}\right]_{i}+\left[u^{S}-L_{U} s^{E}\right]+\mu^{B}\right) \ln \left(\left[w_{2}+\mu^{B}\right]_{i}\left[u^{S}-L_{U} s+\mu^{B} e\right]_{i}^{2}\right)-\left[w_{2} \cdot\left(u^{S}-L_{U} s+\mu^{B} e\right)\right]_{i}-2 \mu^{B}\left[u^{S}-L_{U} s\right]_{i}\right\} .
\end{aligned}
$$

8. The primal-dual trust-region direction

Given a vector of primal-dual variables $p=\left(x, x_{1}, x_{2}, s, s_{1}, s_{2}, y, v, z_{1}, z_{2}, w_{1}, w_{2}\right)$, each iteration of a trust-region method for solving (NLP) involves finding a vector Δp of the form $\Delta p=N d$, where N is a basis for the null-space of the matrix C of (5.1), and d is an approximate solution of the subproblem

$$
\begin{equation*}
\underset{d}{\operatorname{minimize}} g_{N}^{\mathrm{T}} d+\frac{1}{2} d^{\mathrm{T}} B_{N}(p) d \quad \text { subject to } \quad\|d\|_{T} \leq \delta \tag{8.1}
\end{equation*}
$$

where g_{N} and B_{N} are the reduced gradient and reduced Hessian $g_{N}=\nabla M$ and $B_{N}(p)=N^{\mathrm{T}} B(p) N,\|d\|_{T}=\left(d^{\mathrm{T}} T d\right)^{1 / 2}$, δ is the trust-region radius, and T is positive-definite. The subproblem (8.1) may be written as

$$
\begin{equation*}
\underset{\Delta v_{M}}{\operatorname{minimize}} g_{N}^{\mathrm{T}} T^{-1 / 2} \Delta v_{M}+\frac{1}{2} \Delta v_{M}^{\mathrm{T}} T^{-1 / 2} B_{N}(p) T^{-1 / 2} \Delta v_{M} \quad \text { subject to } \quad\left\|\Delta v_{M}\right\|_{2} \leq \delta, \tag{8.2}
\end{equation*}
$$

where $\Delta v_{M}=T^{1 / 2} d$. The application of the method of Moré and Sorensen [3] to solve the subproblem (8.2) requires the solution of the so-called secular equations, which have the form

$$
\begin{equation*}
\left(\bar{B}_{N}+\sigma I\right) \Delta v_{M}=-\bar{g}_{N}, \tag{8.3}
\end{equation*}
$$

with σ a nonnegative scalar, $\bar{B}_{N}=T^{-1 / 2} B_{N}(p) T^{-1 / 2}$, and $\bar{g}_{N}=T^{-1 / 2} g_{N}$. In this note we consider the solution of the related equations

$$
\begin{equation*}
\left(B_{N}+\sigma T\right) d=-g_{N} \tag{8.4}
\end{equation*}
$$

and recover the solution of the secular equations (8.3) from the computed vector d.
The identity (5.6) allows the solution of the approximate Newton equations $B_{N}(p) d=-g_{N}(5.4)$ to be written in terms of
the change in the variables $\left(x, x_{1}, x_{2}, s, s_{1}, s_{2}, y, v, z_{1}, z_{2}, w_{1}, w_{2}\right)$. In particular, we have

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
\widehat{H}_{F} & -2 J_{F}^{\mathrm{T}} D_{Y}^{-1} L_{F}^{\mathrm{T}} & J_{F}^{\mathrm{T}} & A_{F}^{\mathrm{T}} & E_{L F}^{\mathrm{T}} & -E_{U F}^{\mathrm{T}} & 0 & 0 \\
-2 L_{F} D_{Y}^{-1} J_{F} & 2 L_{F}\left(D_{Y}^{-1}+D_{W}^{\dagger}\right) L_{F}^{\mathrm{T}} & -L_{F} & 0 & 0 & 0 & L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & D_{A} & 0 & 0 & 0 & 0 \\
E_{L F} & 0 & 0 & 0 & D_{1}^{Z} & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & D_{2}^{Z} & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & D_{2}^{W}
\end{array}\right)\left(\begin{array}{c}
\Delta x_{F} \\
\Delta s_{F} \\
\Delta y \\
\Delta v \\
\Delta z_{1} \\
\Delta z_{2} \\
\Delta w_{1} \\
\Delta w_{2}
\end{array}\right) \\
& =-\left(\begin{array}{c}
g_{F}-A_{F}^{\mathrm{T}}\left(2 \pi^{V}-v\right)-J_{F}^{\mathrm{T}}\left(2 \pi^{Y}-y\right)-E_{L F}\left(2 \pi_{1}^{Z}-z_{1}\right)+E_{U F}\left(2 \pi_{2}^{Z}-z_{2}\right) \\
2 \pi_{F}^{Y}-y_{F}-L_{L F}\left(2 \pi_{1}^{W}-w_{1}\right)+L_{U F}\left(2 \pi_{2}^{W}-w_{2}\right) \\
-D_{Y}\left(\pi^{Y}-y\right) \\
-D_{A}\left(\pi^{V}-v\right) \\
-D_{1}^{Z}\left(\pi_{1}^{Z}-z_{1}\right) \\
-D_{2}^{Z}\left(\pi_{2}^{Z}-z_{2}\right) \\
-D_{1}^{W}\left(\pi_{1}^{W}-w_{1}\right) \\
-D_{2}^{W}\left(\pi_{2}^{W}-w_{2}\right)
\end{array}\right),
\end{aligned}
$$

where

$$
\widehat{H}_{F}=E_{F} H(x, y) E_{F}^{\mathrm{T}}+\frac{2}{\mu^{A}} A_{F}^{\mathrm{T}} A_{F}+\frac{2}{\mu^{P}} J_{F}^{\mathrm{T}} J_{F}+2\left(E_{L F}^{\mathrm{T}}\left(D_{1}^{Z}\right)^{-1} E_{L F}+E_{U F}^{\mathrm{T}}\left(D_{2}^{Z}\right)^{-1} E_{U F}\right)
$$

with $H(x, y)$ the Hessian of the Lagrangian function, and

$$
\begin{array}{llll}
D_{Y}=\mu^{P} I_{m}, & \pi^{Y}=y^{E}-\frac{1}{\mu^{P}}(c-s), & D_{A}=\mu^{A} I_{A}, & \pi^{V}=v^{E}-\frac{1}{\mu^{A}}(A x-b), \\
D_{1}^{W}=S_{1}^{\mu}\left(W_{1}^{\mu}\right)^{-1}, & \pi_{1}^{W}=\mu^{B}\left(S_{1}^{\mu}\right)^{-1}\left(w_{1}^{E}-s_{1}+s_{1}^{E}\right), & D_{1}^{Z}=X_{1}^{\mu}\left(Z_{1}^{\mu}\right)^{-1}, & \pi_{1}^{Z}=\mu^{B}\left(X_{1}^{\mu}\right)^{-1}\left(z_{1}^{E}-x_{1}+x_{1}^{E}\right), \\
D_{2}^{W}=S_{2}^{\mu}\left(W_{2}^{\mu}\right)^{-1}, & \pi_{2}^{W}=\mu^{B}\left(S_{2}^{\mu}\right)^{-1}\left(w_{2}^{E}-s_{2}+s_{2}^{E}\right), & D_{2}^{Z}=X_{2}^{\mu}\left(Z_{2}^{\mu}\right)^{-1}, & \pi_{2}^{Z}=\mu^{B}\left(X_{2}^{\mu}\right)^{-1}\left(z_{2}^{E}-x_{2}+x_{2}^{E}\right) .
\end{array}
$$

Note that in the trust-region case we make no assumption that B_{N} is positive definite.
The first step in the formulation of the trust-region equations (8.4) and their solution is to write the reduced gradient and Hessian of the merit function in terms of the vectors \vec{x} and \vec{y} that combine the primal variables (x, s) and dual variables
$\left(y, v, z_{1}, z_{2}, w_{1}, w_{2}\right)$. Let $\vec{g}, \vec{H}, \vec{J}$ and \vec{D} denote the quantities

$$
\vec{g}=\binom{g_{F}}{0}, \quad \vec{H}=\left(\begin{array}{cc}
H_{F} & 0 \\
0 & 0
\end{array}\right), \quad \vec{J}=\left(\begin{array}{cc}
J_{F} & -L_{F}^{T} \\
A_{F} & 0 \\
E_{L F} & 0 \\
-E_{U F} & 0 \\
0 & L_{L F} \\
0 & -L_{U F}
\end{array}\right) \quad \text { and } \quad \vec{D}=\left(\begin{array}{cccccc}
D_{Y} & 0 & 0 & 0 & 0 & 0 \\
0 & D_{A} & 0 & 0 & 0 & 0 \\
0 & 0 & D_{1}^{Z} & 0 & 0 & 0 \\
0 & 0 & 0 & D_{2}^{Z} & 0 & 0 \\
0 & 0 & 0 & 0 & D_{1}^{W} & 0 \\
0 & 0 & 0 & 0 & 0 & D_{2}^{W}
\end{array}\right) .
$$

Similarly, let $\vec{T}_{x}=\operatorname{diag}\left(T^{x}, T^{s}\right)$ and $\vec{T}_{y}=\operatorname{diag}\left(T^{y}, T^{v}, T_{1}^{z}, T_{2}^{z}, T_{1}^{w}, T_{2}^{w}\right)$. The equations $\left(B_{N}+\sigma T\right) \Delta p=-g_{N}$ may be written in the form

$$
\left(\begin{array}{cc}
\vec{H}+2 \vec{J}^{\mathrm{T}} \vec{D}^{-1} \vec{J}+\sigma \vec{T}_{x} & \vec{J}^{\mathrm{T}} \tag{8.5}\\
\vec{J} & \vec{D}+\sigma \vec{T}_{y}
\end{array}\right)\binom{\Delta \vec{x}}{\Delta \vec{y}}=-\binom{\vec{g}-\vec{J}^{\mathrm{T}} \vec{\pi}-\vec{J}^{\mathrm{T}}(\vec{\pi}-\vec{y})}{-\vec{D}(\vec{\pi}-\vec{y})},
$$

where

$$
\vec{y}=\left(\begin{array}{l}
y \\
v \\
z_{1} \\
z_{2} \\
w_{1} \\
w_{2}
\end{array}\right), \quad \vec{\pi}=\left(\begin{array}{l}
\pi^{Y} \\
\pi^{V} \\
\pi_{1}^{Z} \\
\pi_{2}^{Z} \\
\pi_{1}^{W} \\
\pi_{2}^{W}
\end{array}\right), \quad \Delta \vec{x}=\binom{\Delta x_{F}}{\Delta s_{F}}, \quad \text { and } \quad \Delta \vec{y}=\left(\begin{array}{c}
\Delta y \\
\Delta v \\
\Delta z_{1} \\
\Delta z_{2} \\
\Delta w_{1} \\
\Delta w_{2}
\end{array}\right) .
$$

Applying the nonsingular matrix $\left(\begin{array}{cc}I & -2 \vec{J}^{\mathrm{T}} \vec{D}^{-1} \\ I\end{array}\right)$ to both sides of (8.5) gives the equivalent system

$$
\left(\begin{array}{cc}
\vec{H}+\sigma \vec{T}_{x} & -\vec{J}^{\mathrm{T}}\left(I+2 \sigma \vec{D}^{-1} \vec{T}_{y}\right) \\
\vec{J} & \vec{D}+\sigma \vec{T}_{y}
\end{array}\right)\binom{\Delta \vec{x}}{\Delta \vec{y}}=-\binom{\vec{g}-\vec{J}^{\mathrm{T}} \vec{y}}{\vec{D}(\vec{y}-\vec{\pi})} .
$$

As in Gertz and Gill [1], we set $\vec{T}_{x}=I$ and $\vec{T}_{y}=\vec{D}$. With this choice, the associated vectors $\Delta \vec{x}$ and $\Delta \vec{y}$ satisfy the equations

$$
\left(\begin{array}{cc}
\vec{H}+\sigma I & -\vec{J}^{\mathrm{T}} \tag{8.6}\\
\vec{J} & \bar{\sigma} \vec{D}
\end{array}\right)\binom{\Delta \vec{x}}{(1+2 \sigma) \Delta \vec{y}}=-\binom{\vec{g}-\vec{J}^{\mathrm{T}} \vec{y}}{\vec{D}(\vec{y}-\vec{\pi})},
$$

where $\bar{\sigma}=(1+\sigma) /(1+2 \sigma)$. In terms of the original variables, the unsymmetric equations (8.6) are

$$
\begin{align*}
\left(\begin{array}{ccrrcccc}
H_{F}+\sigma I_{F}^{x} & 0 & -J_{F}^{\mathrm{T}} & -A_{F}^{\mathrm{T}} & -E_{L F}^{\mathrm{T}} & E_{U F}^{\mathrm{T}} & 0 & 0 \\
0 & \sigma I_{F}^{s} & L_{F} & 0 & 0 & 0 & -L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} \\
J_{F} & -L_{F}^{\mathrm{T}} & \bar{\sigma} D_{Y} & 0 & 0 & 0 & 0 & 0 \\
A_{F} & 0 & 0 & \bar{\sigma} D_{A} & 0 & 0 & 0 & 0 \\
E_{L F} & 0 & 0 & 0 & \bar{\sigma} D_{1}^{Z} & 0 & 0 & 0 \\
-E_{U F} & 0 & 0 & 0 & 0 & \bar{\sigma} D_{2}^{Z} & 0 & 0 \\
0 & L_{L F} & 0 & 0 & 0 & 0 & \bar{\sigma} D_{1}^{W} & 0 \\
0 & -L_{U F} & 0 & 0 & 0 & 0 & 0 & \bar{\sigma} D_{2}^{W}
\end{array}\right)\left(\begin{array}{c}
\Delta x_{F} \\
\Delta s_{F} \\
(1+2 \sigma) \Delta y \\
(1+2 \sigma) \Delta v \\
(1+2 \sigma) \Delta z_{1} \\
(1+2 \sigma) \Delta z_{2} \\
(1+2 \sigma) \Delta w_{1} \\
(1+2 \sigma) \Delta w_{2}
\end{array}\right) \\
 \tag{8.7}\\
\end{align*}
$$

where $\bar{\sigma}=(1+\sigma) /(1+2 \sigma)$. Collecting terms and reordering the equations and unknowns, we obtain

$$
\left(\begin{array}{cccccccc}
\bar{\sigma} D_{A} & 0 & 0 & 0 & 0 & 0 & A_{F} & 0 \tag{8.8}\\
0 & \bar{\sigma} D_{1}^{Z} & 0 & 0 & 0 & 0 & E_{L F} & 0 \\
0 & 0 & \bar{\sigma} D_{2}^{Z} & 0 & 0 & 0 & -E_{U F} & 0 \\
0 & 0 & 0 & \bar{\sigma} D_{1}^{W} & 0 & L_{L F} & 0 & 0 \\
0 & 0 & 0 & 0 & \bar{\sigma} D_{2}^{W} & -L_{U F} & 0 & 0 \\
0 & 0 & 0 & -L_{L F}^{\mathrm{T}} & L_{U F}^{\mathrm{T}} & \sigma I_{F}^{s} & 0 & L_{F} \\
-A_{F}^{\mathrm{T}} & -E_{L F}^{\mathrm{T}} & E_{U F}^{\mathrm{T}} & 0 & 0 & 0 & H_{F}+\sigma I_{F}^{x} & -J_{F}^{\mathrm{T}} \\
0 & 0 & 0 & 0 & 0 & -L_{F}^{\mathrm{T}} & J_{F} & \bar{\sigma} D_{Y}
\end{array}\right)\left(\begin{array}{c}
\Delta \widetilde{v} \\
\Delta \widetilde{z}_{1} \\
\Delta \widetilde{z}_{2} \\
\Delta \widetilde{w}_{1} \\
\Delta \widetilde{w}_{2} \\
\Delta s_{F} \\
\Delta x_{F} \\
\Delta \widetilde{y}
\end{array}\right)=-\left(\begin{array}{c}
D_{A}\left(v-\pi^{V}\right) \\
D_{1}^{Z}\left(z_{1}-\pi_{1}^{Z}\right) \\
D_{2}^{Z}\left(z_{2}-\pi_{2}^{Z}\right) \\
D_{1}^{W}\left(w_{1}-\pi_{1}^{W}\right) \\
D_{2}^{W}\left(w_{2}-\pi_{2}^{W}\right) \\
L_{F}(y-w) \\
E_{F}\left(g-J^{\mathrm{T}} y-A^{\mathrm{T}} v-z\right) \\
D_{Y}\left(y-\pi^{Y}\right)
\end{array}\right),
$$

where $\bar{D}_{A}=\bar{\sigma} D_{A}, \bar{D}_{1}^{W}=\bar{\sigma} D_{1}^{W}, \bar{D}_{2}^{W}=\bar{\sigma} D_{2}^{W}, \bar{D}_{1}^{Z}=\bar{\sigma} D_{1}^{Z}, \bar{D}_{2}^{Z}=\bar{\sigma} D_{2}^{Z}, \bar{D}_{Y}=\bar{\sigma} D_{Y}, \Delta \widetilde{y}=(1+2 \sigma) \Delta y, \Delta \widetilde{v}=(1+2 \sigma) \Delta v$, $\Delta \widetilde{z}_{1}=(1+2 \sigma) \Delta z_{1}, \Delta \widetilde{z}_{2}=(1+2 \sigma) \Delta z_{2}, \Delta \widetilde{w}_{1}=(1+2 \sigma) \Delta w_{1}$, and $\Delta \widetilde{w}_{2}=(1+2 \sigma) \Delta w_{2}$. We define

$$
\bar{D}_{W}=\left(L_{L}^{\mathrm{T}}\left(\bar{D}_{1}^{W}\right)^{-1} L_{L}+L_{U}^{\mathrm{T}}\left(\bar{D}_{2}^{W}\right)^{-1} L_{U}\right)^{\dagger}=\bar{\sigma}\left(L_{L}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} L_{L}+L_{U}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} L_{U}\right)^{\dagger}=\bar{\sigma} D_{W}
$$

with $D_{W}=\left(L_{L F}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} L_{L F}+L_{U F}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} L_{U F}\right)^{\dagger}$. Similarly, define

$$
\breve{D}_{W}=\left(D_{W}^{\dagger}+\sigma \bar{\sigma} L_{F}^{\mathrm{T}} L_{F}\right)^{\dagger}
$$

Premultiplying the equations (8.8) by the block lower-triangular matrix

$$
\left(\begin{array}{ccccccc}
I_{A} & & & & & \\
0 & I_{L F}^{x} & I_{U F}^{x} & & & & \\
0 & 0 & 0 & I_{L F}^{s} & & \\
0 & 0 & 0 & 0 & I_{U F}^{s} & & \\
0 & 0 & 0 & \frac{1}{\bar{\sigma}} L_{L F}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} & -\frac{1}{\bar{\sigma}} L_{U F}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} & I_{F}^{s} & \\
0 & 0 & 0 & 0 & 0 & I_{F}^{x} \\
\frac{1}{\bar{\sigma}} A_{F}^{\mathrm{T}} D_{A}^{-1} & \frac{1}{\bar{\sigma}} E_{L F}^{\mathrm{T}}\left(D_{1}^{Z}\right)^{-1} & -\frac{1}{\bar{\sigma}} E_{U F}^{\mathrm{T}}\left(D_{2}^{Z}\right)^{-1} & \breve{D}_{W} L_{L}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} & -\breve{D}_{W} L_{U}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} & \bar{\sigma} \breve{D}_{W} L_{F}^{\mathrm{T}} & 0
\end{array}\right.
$$

gives the block upper-triangular system

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
\bar{\sigma} D_{A} & 0 & 0 & 0 & 0 & 0 & A_{F} & 0 \\
0 & \bar{\sigma} D_{1}^{Z} & 0 & 0 & 0 & 0 & E_{L F} & 0 \\
0 & 0 & \bar{\sigma} D_{2}^{Z} & 0 & 0 & 0 & -E_{U F} & 0 \\
0 & 0 & 0 & \bar{\sigma} D_{1}^{W} & 0 & L_{L F} & 0 & 0 \\
0 & 0 & 0 & 0 & \bar{\sigma} D_{2}^{W} & -L_{U F} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\bar{\sigma}} L_{F} \breve{D}_{W}^{\dagger} L_{F}^{\mathrm{T}} & 0 & L_{F} \\
0 & 0 & 0 & 0 & 0 & 0 & \widetilde{H}_{F}+\sigma I_{F}^{x} & -J_{F}^{\mathrm{T}} \\
0 & 0 & 0 & 0 & 0 & 0 & J_{F} & \bar{\sigma}\left(D_{Y}+\breve{D}_{W}\right)
\end{array}\right)\left(\begin{array}{c}
\Delta \widetilde{v} \\
\Delta \widetilde{z}_{1} \\
\Delta \widetilde{z}_{2} \\
\Delta \widetilde{w}_{1} \\
\Delta \widetilde{w}_{2} \\
\Delta s_{F} \\
\Delta x_{F} \\
\Delta \widetilde{y}
\end{array}\right) \\
& =-\left(\begin{array}{c}
D_{A}\left(v-\pi^{V}\right) \\
D_{1}^{Z}\left(z_{1}-\pi_{1}^{Z}\right) \\
D_{2}^{Z}\left(z_{2}-\pi_{2}^{Z}\right) \\
D_{1}^{W}\left(w_{1}-\pi_{1}^{W}\right) \\
D_{2}^{W}\left(w_{2}-\pi_{2}^{W}\right) \\
L_{F}\left(y-w+\frac{1}{\bar{\sigma}}\left[w-\pi^{W}\right]\right) \\
E_{F}\left(g-J^{\mathrm{T}} y-A^{\mathrm{T}} v-z+\frac{1}{\bar{\sigma}}\left[A^{\mathrm{T}}\left(v-\pi^{V}\right)+z-\pi^{Z}\right]\right) \\
D_{Y}\left(y-\pi^{Y}\right)+\breve{D}_{W}\left(\bar{\sigma}(y-w)+w-\pi^{W}\right)
\end{array}\right),
\end{aligned}
$$

where

$$
\widetilde{H}_{F}=E_{F}\left(H(x, y)+\frac{1}{\bar{\sigma}} A^{\mathrm{T}} D_{A}^{-1} A+\frac{1}{\bar{\sigma}} D_{Z}^{\dagger}\right) E_{F}^{\mathrm{T}},
$$

$w=L_{X}^{\mathrm{T}} w_{X}+L_{L}^{\mathrm{T}} w_{1}-L_{U}^{\mathrm{T}} w_{2}, z=E_{X}^{\mathrm{T}} z_{X}+E_{L}^{\mathrm{T}} z_{1}-E_{U}^{\mathrm{T}} z_{2}, \pi^{w}=L_{L}^{\mathrm{T}} \pi_{1}^{w}-L_{U}^{\mathrm{T}} \pi_{2}^{W}$ and $\pi^{z}=E_{L}^{\mathrm{T}} \pi_{1}^{z}-E_{U}^{\mathrm{T}} \pi_{2}^{z}$. Using block backsubstitution, Δx_{F} and Δy may be computed by solving the equations

$$
\left(\begin{array}{cc}
\widetilde{H}_{F}+\sigma I_{F}^{x} & -J_{F}^{\mathrm{T}} \\
J_{F} & \bar{\sigma}\left(D_{Y}+\breve{D}_{W}\right)
\end{array}\right)\binom{\Delta x_{F}}{\Delta \widetilde{y}}=-\left(\begin{array}{c}
E_{F}\binom{g-J^{\mathrm{T}} y-A^{\mathrm{T}} v-z+\frac{1}{\bar{\sigma}}\left[A^{\mathrm{T}}\left(v-\pi^{v}\right)+z-\pi^{z}\right]}{D_{Y}\left(y-\pi^{Y}\right)+\breve{D}_{W}\left(\bar{\sigma}(y-w)+w-\pi^{w}\right)}
\end{array}\right.
$$

Once Δx_{F} and $\Delta \widetilde{y}$ are known, the full vector Δx is computed as $\Delta x=E_{F}^{\mathrm{T}} \Delta x_{F}$. Using the identity $\Delta s=L_{F}^{\mathrm{T}} \Delta s_{F}$ in the sixth block of equations gives

$$
\Delta s=-\bar{\sigma} \breve{D}_{W}\left(y+(1+2 \sigma) \Delta y-w+\frac{1}{\bar{\sigma}}\left[w-\pi^{w}\right]\right) .
$$

There are several ways of computing Δw_{1} and Δw_{2}. Instead of using the block upper-triangular system above, we use the last two blocks of equations of (8.7) to give

$$
\begin{aligned}
& \Delta w_{1}=-\frac{1}{1+\sigma}\left(S_{1}^{\mu}\right)^{-1}\left(w_{1} \cdot\left(L_{L}(s+\Delta s)-\ell^{S}+\mu^{B} e\right)-\mu^{B} w_{1}^{E}+\mu^{B} L_{L}\left(s-s^{E}+\Delta s\right)\right) \text { and } \\
& \Delta w_{2}=-\frac{1}{1+\sigma}\left(S_{2}^{\mu}\right)^{-1}\left(w_{2} \cdot\left(u^{S}-L_{U}(s+\Delta s)+\mu^{B} e\right)-\mu^{B} w_{2}^{E}+\mu^{B} L_{U}\left(s^{E}-s-\Delta s\right)\right) .
\end{aligned}
$$

Similarly, using (8.7) to solve for Δz_{1} and Δz_{2} yields

$$
\begin{aligned}
& \Delta z_{1}=-\frac{1}{1+\sigma}\left(X_{1}^{\mu}\right)^{-1}\left(z_{1} \cdot\left(E_{L}(x+\Delta x)-\ell^{X}+\mu^{B} e\right)-\mu^{B} z_{1}^{E}+\mu^{B} E_{L}\left(x-x^{E}+\Delta x\right)\right) \text { and } \\
& \Delta z_{2}=-\frac{1}{1+\sigma}\left(X_{2}^{\mu}\right)^{-1}\left(z_{2} \cdot\left(u^{X}-E_{U}(x+\Delta x)+\mu^{B} e\right)-\mu^{B} z_{2}^{E}+\mu^{B} E_{U}\left(x^{E}-x-\Delta x\right)\right) .
\end{aligned}
$$

Similarly, using the first block of equations (8.8) to solve for Δv gives $\Delta v=-\left(v-\widehat{\pi}^{V}\right) /(1+\sigma)$, with $\widehat{\pi}^{V}=v^{E}-\frac{1}{\mu^{A}}(A(x+\Delta x)-b)$. Finally, the vectors Δw_{x} and Δz_{x} are recovered as $\Delta w_{x}=[y+\Delta y-w]_{x}$ and $\Delta z_{x}=\left[g+H \Delta x-J^{\mathrm{T}}(y+\Delta y)-z\right]_{x}$.

9. Summary: equations for the trust-region direction

The results of the preceding section implies that the solution of the secular equations $\left(\bar{B}_{N}+\sigma I\right) \Delta v_{M}=-\bar{g}_{N}$, with σ a nonnegative scalar, $\bar{B}_{N}=T^{-1 / 2} B_{N}(p) T^{-1 / 2}$, and $\bar{g}_{N}=T^{-1 / 2} g_{N}$ may be computed as follows. Let x and s be given primal variables and slack variables such that $E_{X} x=b_{X}, L_{X} s=h_{X}$ with $\ell^{X}-\mu^{B}<E_{L} x, E_{U} x<u^{X}+\mu^{B}, \ell^{S}-\mu^{B}<L_{L} s, L_{U} s<u^{S}+\mu^{B}$. Similarly,
let $z_{1}, z_{2}, w_{1}, w_{2}$ and y denotes dual variables such that $w_{1}>0, w_{2}>0, z_{1}>0$, and $z_{2}>0$. Consider the diagonal matrices $X_{1}^{\mu}=\operatorname{diag}\left(E_{L} x-\ell^{X}+\mu^{B} e\right), X_{2}^{\mu}=\operatorname{diag}\left(u^{X}-E_{U} x+\mu^{B} e\right), Z_{1}=\operatorname{diag}\left(z_{1}\right), Z_{2}=\operatorname{diag}\left(z_{2}\right), W_{1}=\operatorname{diag}\left(w_{1}\right), W_{2}=\operatorname{diag}\left(w_{2}\right)$, $S_{1}^{\mu}=\operatorname{diag}\left(L_{L} s-\ell^{S}+\mu^{B} e\right)$ and $S_{2}^{\mu}=\operatorname{diag}\left(u^{S}-L_{U} s+\mu^{B} e\right)$. Given the quantities

$$
\begin{array}{rlrl}
D_{Y} & =\mu^{P} I_{m}, & \pi^{Y} & =y^{E}-\frac{1}{\mu^{P}}(c-s), \\
D_{A} & =\mu^{A} I_{A}, & \pi^{V} & =v^{E}-\frac{1}{\mu^{A}}(A x-b), \\
\left(D_{1}^{Z}\right)^{-1} & =\left(X_{1}^{\mu}\right)^{-1} Z_{1}^{\mu}, & \left(D_{1}^{W}\right)^{-1} & =\left(S_{1}^{\mu}\right)^{-1} W_{1}^{\mu}, \\
\left(D_{2}^{Z}\right)^{-1} & =\left(X_{2}^{\mu}\right)^{-1} Z_{2}^{\mu}, & \left(D_{2}^{W}\right)^{-1} & =\left(S_{2}^{\mu}\right)^{-1} W_{2}^{\mu}, \\
D_{z} & =\left(E_{L}^{\mathrm{T}}\left(D_{1}^{Z}\right)^{-1} E_{L}+E_{U}^{\mathrm{T}}\left(D_{2}^{Z}\right)^{-1} E_{U}\right)^{\dagger}, & D_{W} & =\left(L_{L}^{\mathrm{T}}\left(D_{1}^{W}\right)^{-1} L_{L}+L_{U}^{\mathrm{T}}\left(D_{2}^{W}\right)^{-1} L_{U}\right)^{\dagger}, \\
& \breve{D}_{W} & =\left(D_{W}^{\dagger}+\sigma L_{F}^{\mathrm{T}} L_{F}\right)^{\dagger}, \\
\pi_{1}^{Z} & =\mu^{B}\left(X_{1}^{\mu}\right)^{-1}\left(z_{1}^{E}-x_{1}+x_{1}^{E}\right), & \pi_{1}^{W} & =\mu^{B}\left(S_{1}^{\mu}\right)^{-1}\left(w_{1}^{E}-s_{1}+s_{1}^{E}\right), \\
\pi_{2}^{Z} & =\mu^{B}\left(X_{2}^{\mu}\right)^{-1}\left(z_{2}^{E}-x_{2}+x_{2}^{E}\right), & \pi_{2}^{W} & =\mu^{B}\left(S_{2}^{\mu}\right)^{-1}\left(w_{2}^{E}-s_{2}+s_{2}^{E}\right), \\
\pi^{Z} & =E_{L}^{\mathrm{T}} \pi_{1}^{Z}-E_{U}^{\mathrm{T}} \pi_{2}^{Z}, & \pi^{W} & =L_{L}^{\mathrm{T}} \pi_{1}^{W}-L_{U}^{\mathrm{T}} \pi_{2}^{W},
\end{array}
$$

solve the KKT system

$$
\begin{aligned}
&\left(\begin{array}{lc}
E_{F}\left(H(x, y)+\sigma I_{n}+\frac{1}{\bar{\sigma}} A^{\mathrm{T}} D_{A}^{-1} A+\frac{1}{\bar{\sigma}} D_{Z}^{\dagger}\right) E_{F}^{\mathrm{T}} & -J_{F}^{\mathrm{T}} \\
J_{F} & \bar{\sigma}\left(D_{Y}+\breve{D}_{W}\right)
\end{array}\right)\binom{\Delta x_{F}}{\Delta \widetilde{y}} \\
&=-\binom{E_{F}\left(\nabla f(x)-J(x)^{\mathrm{T}} y-A^{\mathrm{T}} v-z+\frac{1}{\bar{\sigma}}\left[A^{\mathrm{T}}\left(v-\pi^{V}\right)+z-\pi^{z}\right]\right)}{D_{Y}\left(y-\pi^{Y}\right)+\breve{D}_{W}\left(\bar{\sigma}(y-w)+w-\pi^{W}\right)}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \Delta x=E_{F}^{\mathrm{T}} \Delta x_{F}, \quad \widehat{x}=x+\Delta x, \\
& \Delta z_{1}=-\frac{1}{1+\sigma}\left(X_{1}^{\mu}\right)^{-1}\left(z_{1} \cdot\left(E_{L} \widehat{x}-\ell^{X}+\mu^{B} e\right)-\mu^{B} z_{1}^{E}+\mu^{B} L_{L}\left(s-s^{E}+\Delta s\right)\right), \\
& \Delta z_{2}=-\frac{1}{1+\sigma}\left(X_{2}^{\mu}\right)^{-1}\left(z_{2} \cdot\left(u^{X}-E_{U} \widehat{x}+\mu^{B} e\right)-\mu^{B} z_{2}^{E}+\mu^{B} L_{U}\left(s^{E}-s-\Delta s\right)\right), \\
& \Delta y=\Delta \widetilde{y} /(1+2 \sigma), \quad \widehat{y}=y+\Delta y, \\
& \widehat{s}=s+\Delta s, \\
& \Delta s=-\bar{\sigma} \breve{D}_{W}\left(y+(1+2 \sigma) \Delta y-w+\frac{1}{\bar{\sigma}}\left[w-\pi^{W}\right]\right), \\
& \Delta w_{1}=-\frac{1}{1+\sigma}\left(S_{1}^{\mu}\right)^{-1}\left(w_{1} \cdot\left(L_{L} \widehat{s}-\ell^{S}+\mu^{B} e\right)-\mu^{B} w_{1}^{E}+\mu^{B} L_{L}\left(s-s^{E}+\Delta s\right)\right), \\
& \Delta w_{2}=-\frac{1}{1+\sigma}\left(S_{2}^{\mu}\right)^{-1}\left(w_{2} \cdot\left(u^{S}-L_{U} \widehat{s}+\mu^{B} e\right)-\mu^{B} w_{2}^{E}+\mu^{B} L_{U}\left(s^{E}-s-\Delta s\right)\right), \\
& \widehat{\pi}^{V}=v^{E}-\frac{1}{\mu^{A}}(A \widehat{x}-b), \\
& \Delta v=-\frac{1}{1+\sigma}\left(v-\widehat{\pi}^{V}\right) \text {, } \\
& w=L_{X}^{\mathrm{T}} w_{X}+L_{L}^{\mathrm{T}} w_{1}-L_{U}^{\mathrm{T}} w_{2} \\
& z=E_{X}^{\mathrm{T}} z_{X}+E_{L}^{\mathrm{T}} z_{1}-E_{U}^{\mathrm{T}} z_{2}, \\
& \widehat{v}=v+\Delta v, \\
& \Delta w_{X}=[\hat{y}-w]_{X} \text {, } \\
& \Delta z_{X}=\left[g+H \Delta x-J^{\mathrm{T}} \widehat{y}-z\right]_{X} .
\end{aligned}
$$

References

[1] E. M. Gertz and P. E. Gill. A primal-dual trust-region algorithm for nonlinear programming. Math. Program., Ser. B, 100:49-94, 2004. 23
[2] P. E. Gill and M. Zhang. A projected-search path-following method for nonlinear optimization. Center for Computational Mathematics Report CCoM 22-01, Center for Computational Mathematics, University of California, San Diego, La Jolla, CA, 2022. 1, 2
[3] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci. and Statist. Comput., 4:553-572, 1983. 21

[^0]: *Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112 (pgill@ucsd.edu). Research supported in part by National Science Foundation grants DMS-1318480 and DMS-1361421. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

[^1]: ${ }^{1}$ This is not a significant restriction because a "free" slack is equivalent to a unrestricted nonlinear constraint, which may be discarded from the problem. The shifted primal-dual penalty-barrier equations can be derived without this restriction, but the derivation is beyond the scope of this note.

