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Abstract

Projected-search methods for bound-constrained optimization are based on per-
forming a search along a piecewise-linear continuous path obtained by pro-
jecting a search direction onto the feasible region. A potential benefit of a
projected-search method is that many changes to the active set can be made
at the cost of computing a single search direction.

As the objective function is not differentiable along the search path, it is
not possible to use a projected-search method with a step that satisfies the
Wolfe conditions, which require the directional derivative of the objective func-
tion at a point on the path. For this reason, methods based in full or in part
on a simple backtracking procedure must be used to give a step that satisfies
an “Armijo-like” sufficient decrease condition. As a consequence, conventional
projected-search methods are unable to exploit sophisticated safeguarded poly-
nomial interpolation techniques that have been shown to be effective for the
unconstrained case.

This paper describes a new framework for the development of a general
class of projected-search methods for bound-constrained optimization. At each
iteration, a descent direction is computed with respect to a certain extended
active set. This direction is used to specify a search direction that is used in
conjunction with a step length computed by a quasi-Wolfe search. The quasi-
Wolfe search is designed specifically for use with a piecewise-linear search path
and is similar to a conventional Wolfe line search, except that a step is accepted
under a wider range of conditions. These conditions take into consideration
steps at which the restriction of the objective function on the search path
is not differentiable. Standard existence and convergence results associated
with a conventional Wolfe line search are extended to the quasi-Wolfe case. In
addition, it is shown that under a standard nondegeneracy assumption, any
method within the framework will identify the optimal active set in a finite
number of iterations.

Computational results are given for a specific projected-search method that
uses a limited-memory quasi-Newton approximation of the Hessian. The results
show that, in this context, a quasi-Wolfe search is substantially more efficient
and reliable than an Armijo-like search based on simple backtracking. Compar-
isons with a state-of-the-art bound-constrained optimization package are also
presented.
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1. Introduction

This paper concerns the formulation and analysis of a new primal-dual interior-point
method for the solution of the nonlinear optimization problem

minimize
x∈Rn

f(x) subject to

(
ℓX

ℓS

)
≤

(
x
c(x)

)
≤

(
uX

uS

)
, (NIP)

where c : Rn 7→ Rm, f : Rn 7→ R, and (ℓX , ℓS) and (uX , uS) are constant vectors of
lower and upper bounds. Problem (NIP) may be reformulated as

minimize
x∈Rn, s∈Rm

f(x) subject to c(x)− s = 0,

(
ℓX

ℓS

)
≤

(
x
s

)
≤

(
uX

uS

)
, (NPs)

where x and the “slack variables” s are treated as independent variables. For sim-
plicity, in our discussion of the theoretical aspects of the method we consider the
problem

minimize
x∈Rn, s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0, (NIPs)

which is equivalent to minimizing f(x) subject to the inequality constraints c(x) ≥ 0.
The methods designed to solve (NIPs) may be easily applied to solve the more
general problem (NPs) by treating the bound constraints on x in the same way as
treating the bounds on s.

The proposed method is based on combining a new primal-dual interior-point
method with a projected-search method for bound-constrained optimization that
uses a flexible non-monotone quasi-Armijo line search. Unlike conventional interior-
point methods, which impose an upper bound on the step size to prevent the vari-
ables from becoming infeasible, the proposed projected-search interior-point method
projects the underlying search direction onto a superset of the feasible region de-
fined by perturbing the constraint bounds. With this approach the direction of the
search path may change multiple times along the boundary of the perturbed feasible
region at the cost of computing a single direction. Projected-search interior-point
methods have the potential of requiring fewer iterations than a conventional interior-
point method, thereby reducing the number of times that a search direction must
be computed. The direction for the projected search is an approximate Newton
direction associated with minimizing a shifted primal-dual penalty-barrier function.
This function involves a primal-dual shifted penalty term for the equality constraints
c(x) − s = 0 and an analogous primal-dual shifted barrier term for enforcing the
nonnegativity constraints on the variables s and their associated multipliers. For
problems with a mixture of upper and lower bounds on x and s, the method may
be regarded as shifting both the primal and dual variables, see Gill and Zhang [19].
This extends the shifted primal-dual penalty-barrier function of Gill, Kungurtsev
and Robinson [15], which only involves shifts on the primal variables. It is shown
that a specific approximate Newton method for the unconstrained minimization of
the penalty-barrier function generates directions that are identical to those associ-
ated with a variant of the conventional path-following method. In this context the
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penalty-barrier function is used as a merit function for assessing points generated
by Newton’s method for a zero of the path-following equations.

The projected-search method is specifically designed for the all-shifted penalty-
barrier function and generates a sequence of feasible iterates {vk}∞k=0 such that
vk+1 = projΩk

(vk + αk∆vk), where projΩk
(v) is the projection of the vector v of

primal-dual variables onto a set Ωk that is a perturbation of the feasible region.
The perturbation is chosen to ensure that every optimal solution of (NIPs) lies in
Ωk (see equation (4.1)). Under mild assumptions, it is shown that there exists a
limit point of the computed iterates that is either an infeasible stationary point, or a
complementary approximate Karush-Kuhn-Tucker (CAKKT) point, i.e., it satisfies
reasonable stopping criteria and is a Karush-Kuhn-Tucker (KKT) point under a
complementary approximate KKT regularity condition (see Andreani, Mart́ınez and
Svaiter [2]).

Constraint shifts provide a number of important benefits. First, analogous to
the definition of the original shifted penalty method of Powell [25] (equivalent to the
augmented Lagrangian method) the penalty-barrier terms need not go to infinity
(see, e.g., Powell [25], Hestenes [22]). In addition, if the optimal dual variables are
known, then the problem may be solved in a single unconstrained minimization.
Second, it is not necessary for the initial values of the variables to lie in the strict
interior of the feasible region, i.e., the initial point can lie on the boundary. Simi-
larly, dual shifts allow a dual variable to be initialized with any non-negative value.
This implies that if the method is started at a primal-dual solution, the method will
terminate immediately with the optimal point. Finally, shifts introduce a regular-
ization term in the linear equations that are solved at each iteration. This mitigates
the ill-conditioning of the associated linear equations that may occur when strict
complementarity does not hold or the active constraints are not linearly independent
at a solution (see Section 3, equation (3.11)).

The focus of this paper is on the formulation and analysis of an interior-point
method for the solution of problems with a nonlinear objective function and non-
linear constraints. However, a significant benefit of the proposed method is that it
can be used as part of an efficient second-derivative sequential quadratic program-
ming (SQP) method. In general, interior-point methods and sequential quadratic
programming methods are two alternative approaches to handling inequality con-
straints. Both interior methods and SQP methods have an inner/outer iteration
structure, with the work for an inner iteration being dominated by the cost of solv-
ing a large sparse system of symmetric indefinite linear equations. In the case of
SQP methods, these equations involve a subset of the variables and constraints and
are related to the equations that were solved in the preceding iteration. This implies
that matrix factorization methods can be used to update the QP solution as the in-
ner iterations proceed. In the case of interior-point methods, the equations involve
all the constraints and variables, and the equations must be solved from scratch at
each inner iteration. Broadly speaking, the advantages and disadvantages of SQP

methods and interior methods complement each other. Interior-point methods are
most efficient when implemented with exact second derivatives (see Gill, Saunders
and Wong [18]). Moreover, they can converge in few inner iterations—even for very
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large problems. As the dimension and zero/nonzero structure of the Newton equa-
tions remains fixed, these Newton equations may be solved efficiently using either
iterative or direct methods available in the form of advanced “off-the-shelf” linear
algebra software. On the negative side, although interior methods are very effec-
tive for solving “one-off” problems, they are more difficult to adapt to solving a
sequence of related problems. In contrast, SQP methods have the potential of being
able to capitalize on a good initial starting point, but are difficult to implement
when exact second derivatives are available, and require customized matrix updat-
ing techniques. Over the years, algorithm developers have avoided the difficulty of
using second derivatives by solving a QP subproblem defined with a positive semidef-
inite quasi-Newton approximate Hessian (see, e.g., Gill, Murray and Saunders [17]).
Many of the difficulties associated with using second derivatives in an SQP method
would be resolved if an interior-point method could be used to solve the QP subprob-
lem. However, QP solvers based on conventional interior methods have had limited
success within SQP methods because they are difficult to “warm start” from a near-
optimal point. This makes it difficult to capitalize on the property that, as the outer
iterates converge, the solution of one QP subproblem is a very good estimate of the
solution of the next. In addition, the need to solve many QP subproblems using a
method that must solve equations involving all of the constraints from scratch can
be prohibitively expensive.

The interior-point method proposed in this paper is particularly well-suited to
solving the quadratic programming subproblem in an SQP method. The shifts on
the primal and dual variables allow the method to be safely “warm started” from a
good approximate solution. In addition, the numerical results of Section 6 show that
the method requires significantly fewer iterations than an unprojected interior-point
method when applied to large set of quadratic programming problems.

The paper is organized in six sections. In Section 2 we review the method of
Gill, Kungurtsev and Robinson. Section 3 concerns the extension of this method
to include shifts on the dual variables as well as the variables s. In Section 4 a
projected-search algorithm is proposed for minimizing the all-shifted primal-dual
penalty-barrier function for fixed penalty and barrier parameters. The convergence
of this algorithm is established under certain assumptions. Section 5 presents an
algorithm for solving problem (NIPs) that builds upon the work from Section 4.
Global convergence results are also established. Some numerical results are pre-
sented in Section 6.
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1.1. Notation and terminology

Given vectors x and y, the vector consisting of x augmented by y is denoted by
(x, y). The subscript i is appended to vectors to denote the ith component of that
vector, whereas the subscript k is appended to a vector to denote its value during
the kth iteration of an algorithm, e.g., xk represents the value for x during the kth
iteration, whereas [xk ]i denotes the ith component of the vector xk. Given vectors
a and b with the same dimension, the vector with ith component aibi is denoted
by a · b. Similarly, min(a, b) denotes a vector with components min(ai, bi). The
vector e denotes the column vector of ones, and I denotes the identity matrix. The
dimensions of e and I are defined by the context. The vector two-norm or its induced
matrix norm are denoted by ∥·∥. The inertia of a real symmetric matrix A, denoted
by In(A), is the integer triple (a+, a−, a0) giving the number of positive, negative
and zero eigenvalues of A. The n-vector ∇f(x) denotes gradient of f(x), and the
m × n matrix J(x) denotes the constraint Jacobian, which has ith row ∇ci(x)T.
The Hessian with respect to x of the Lagrangian function associated with problem
(NIPs) is denoted by H(x, y) = ∇2f(x) −

∑m
i=1 yi∇2ci(x), where y is the m-vector

of dual variables associated with the constraints c(x)− s = 0.

2. Background

Given an appropriate constraint qualification, the first-order optimality conditions
for problem (NIPs) are given by

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = 0, s ≥ 0,

s · w = 0, w ≥ 0,

 (2.1)

where the vectors y and w constitute the Lagrange multipliers for the equality
constraints c(x)− s = 0 and nonnegativity constraints s ≥ 0 respectively. Following
standard practice, any point satisfying the conditions (2.1) will be referred to as a
first-order KKT point.

Primal-dual path-following methods generate a sequence of iterates that approxi-
mate a continuous primal-dual path that passes through a solution of (NIPs). Points
on this path satisfy a system of nonlinear equations that represent the deviations
from a perturbation of the first-order optimality conditions (2.1). In a conventional
path-following approach, the perturbed optimality conditions correspond to replac-
ing the equality constraints and complementarity conditions of (2.1) by c(x)−s = µy
and s · w = µe, where µ is a small positive parameter such that µ→ 0. This method
is closely related to penalty-barrier methods for solving (NIPs). Penalty and barrier
methods involve the minimization of a sequence of unconstrained functions param-
eterized by a sequence of penalty-barrier parameters

{
µk

}
such that µk → 0 (see,

e.g., Fiacco and McCormick [10], Frisch [13] and Fiacco [9]). Under certain condi-
tions on f and c the continuous trajectory of penalty-barrier minimizers associated
with a continuous penalty-barrier parameter µ coincides with the primal-dual path.

In the neighborhood of a first-order KKT point, computing the search direc-
tion as the solution of the Newton equations for a zero of the perturbed optimality
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conditions provides the favorable local convergence rate associated with Newton’s
method. Given the close connection with penalty-barrier methods, solving for a
zero of the perturbed optimality conditions provides an alternative to solving the
ill-conditioned equations associated with a conventional barrier method. In this
context, the penalty-barrier function may be regarded as a merit function for forc-
ing convergence of the sequence of Newton iterates of the path-following method.
For examples of this approach, see Byrd, Hribar and Nocedal [4], Wächter and
Biegler [26], Forsgren and Gill [11], and Gertz and Gill [14].

In a conventional path-following interior-point method, it is necessary to force
µ → 0 to ensure that points near the path eventually satisfy the optimality condi-
tions (2.1). However, if an augmented Lagrangian method defined with multiplier
estimate yE and penalty parameter µP is used to minimize f(x) subject to c(x) = 0,
then perturbed conditions of the form c(x) = µP(yE − y) hold at a minimizer. It
follows that µP need not go to zero if yE is chosen to converge to the optimal multi-
pliers. Based on this observation, the method of Gill, Kungurtsev and Robinson [15]
is based on the perturbed optimality conditions

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP(yE − y), s ≥ 0,

s · w = µB(wE − w), w ≥ 0,

 (2.2)

where µP and µB are positive scalars and yE and wE denote estimates of the Lagrange
multipliers for the constraints c(x)− s = 0 and s ≥ 0, respectively. The perturbed
complementarity condition in (2.2) may be written in the form (s+µBe) · w = µBwE ,
which implies that if wE > 0 then s + µBe > 0 and w > 0. Gill, Kungurtsev
and Robinson show that an appropriate merit function for a path-following interior-
point method based on the conditions (2.2) is the shifted primal-dual penalty-barrier
function

M(x, s, y, w ; yE , wE , µP , µB) = f(x)− (c(x)− s)TyE

+
1

2µP
∥c(x)− s∥2 + 1

2µP
∥c(x)− s+ µP(y − yE)∥2

−
m∑
i=1

µBwE
i ln

(
si + µB

)
−

m∑
i=1

µBwE
i ln

(
wi(si + µB)

)
+

m∑
i=1

wi(si + µB).

In the neighborhood of a minimizer of (NIPs) satisfying certain second-order op-
timality conditions, the Newton equations for a zero of the conditions (2.2) are
equivalent to the Newton equations for a minimizer of M . Under certain assump-
tions, a limit point of the iterates generated by the algorithm may always be found
that is either an infeasible stationary point or a complementary approximate KKT

point (see Andreani, Mart́ınez and Svaiter [2]). The reader is referred to Gill, Kun-
gurtsev and Robinson [15] for more details. This reference provides some numerical
examples that illustrate the performance of the method compared to the widely-used
interior-point method IPOPT.
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In the following section, the Gill-Kungurtsev-Robinson algorithm is extended to
include shifts on the dual variables w in addition to the shifts on the slack variables
s.

3. An All-Shifted Primal-Dual Penalty-Barrier Function

In order to use shifts for the dual variables, we consider the perturbed optimality
conditions

∇f(x)− J(x)Ty = 0, y − w = 0,

c(x)− s = µP(yE − y), s ≥ 0,

s · w = µB(wE − w) + µB(sE − s), w ≥ 0,

 (3.1)

where yE ∈ Rm is an estimate of a Lagrange multiplier vector for the constraints
c(x) − s = 0, wE ∈ Rm is an estimate of a Lagrange multiplier for the constraints
s ≥ 0, sE ∈ Rm is an estimate of the optimal slacks, and µP and µB are positive
scalars. The last equation of (3.1) may be written in the form (s+µBe) · (w+µBe) =
µB(sE + wE + µBe), which implies that if sE + wE + µBe > 0 then s+ µBe > 0 and
w+µBe > 0. If F (x, s, y, w; sE , yE , wE , µP , µB) denotes the vector-valued function

F (x, s, y, w ; sE , yE , wE , µP , µB) =


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 , (3.2)

then any point (x, s, y, w) that satisfies the perturbed optimality conditions (3.1)
must satisfy F (x, s, y, w ; sE , yE , wE , µP , µB) = 0. Let F (v) denote the function
at a given point v = (x, s, y, w). The Newton equations for the change in variables
∆v are given by F ′(v)∆v = −F (v), i.e.,
H(x, y) 0 −J(x)T 0

0 0 Im −Im
J(x) −Im µPIm 0
0 W + µBIm 0 S + µBIm



∆x
∆s
∆y
∆w

 = −


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 ,

(3.3)
where S and W denote diagonal matrices with diagonal entries si and wi such that
si + µB > 0 and wi + µB > 0.

The next step is to formulate a penalty-barrier function M such that in a neigh-
borhood of a minimizer ofM , the Newton equations for minimizingM approximate
the Newton equations (3.3). Consider the shifted primal-dual penalty-barrier func-
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tion

M(x, s, y, w ; sE , yE , wE , µP , µB) = f(x)︸︷︷︸
(A)

− (c(x)− s)TyE︸ ︷︷ ︸
(B)

+
1

2µP
∥c(x)− s∥2︸ ︷︷ ︸

(C)

+
1

2µP
∥c(x)− s+ µP(y − yE)∥2︸ ︷︷ ︸

(D)

− 2

m∑
i=1

µB(wE
i + sEi + µB) ln(si + µB)︸ ︷︷ ︸

(E)

−
m∑
i=1

µB(wE
i + sEi + µB) ln(wi + µB)︸ ︷︷ ︸

(F )

+
m∑
i=1

wi(si + µB)︸ ︷︷ ︸
(G)

+2µB

m∑
i=1

si︸ ︷︷ ︸
(H)

.


(3.4)

Let SE denote the diagonal matrix with diagonal entries sEi and define

SB = S + µBIm, SE
B = SE + µBIm and WB =W + µBIm.

Given the positive-definite matrices

DP = µPIm and DB = SBW
−1
B ,

and auxiliary vectors

πY (x) = yE − 1

µP
(c(x)− s) and πW (s) = µB(S + µBI)−1(wE − s+ sE),

the gradient of M may be written as

∇M =


∇f(x)− J(x)T

(
πY + (πY − y)

)
(πY − y) + (πY − πW ) + (w − πW )

−DP(π
Y − y)

−DB(π
W − w)

 , (3.5)

and the Hessian ∇2M may be written in the form
H + 2J(x)TD−1

P J(x) −2J(x)TD−1
P J(x)T 0

−2D−1
P J(x) 2(D−1

P +D−1
B W−1

B ΠW + µBS−1
B ) −Im Im

J(x) −Im DP 0
0 Im 0 DBW

−1
B ΠW + µBW−2

B SB

 ,

(3.6)



3. An All-Shifted Primal-Dual Penalty-Barrier Function 10

where H = H
(
x, πY + (πY − y)

)
and ΠW = diag(πW ).

Given the kth primal-dual iterate vk = (xk, sk, yk, wk), the search direction
∆vk = (∆xk, ∆sk, ∆yk, ∆wk) is computed by solving the linear equations

HM
k ∆vk = −∇M(vk), (3.7)

where HM
k is a positive-definite approximation of ∇2M(vk). For the remainder of

this section we focus on the computation of the search direction for a single iteration
and omit the subscript k. The matrix HM in the equations HM∆v = −∇M(v) is
defined by substituting y for πY , w for πW , s for sE and a symmetric matrix Ĥ for
H in (3.6). This gives

HM =


Ĥ + 2J(x)TD−1

P J(x) −2J(x)TD−1
P J(x)T 0

−2D−1
P J(x) 2(D−1

P +D−1
B ) −Im Im

J(x) −Im DP 0
0 Im 0 DB

 , (3.8)

where Ĥ is chosen such that Ĥ ≈ H(x, y) and HM is positive definite. A general-
ization of Theorem 5.1 of Gill, Kungurtsev and Robinson [15] may be used to show
that the choice Ĥ = H(x, y) is allowed in the neighborhood of a solution satisfying
certain second-order optimality conditions.

The distinctive property of the approximate Newton equations (3.7) is that under
certain conditions on H, their solution is also a solution of the perturbed path-
following equations (3.3). Consider the upper-triangular matrix

U =


Im 0 −2J(x)TD−1

P 0
0 Im 2D−1

P −2D−1
B

0 0 Im 0
0 0 0 W + µBIm

 . (3.9)

The matrix U is nonsingular and it follows that the solution ∆v of (3.7) must satisfy

UHM∆v = −U∇M(v). (3.10)

Upon multiplication by U and the application of the identity WBDB = SB , the
equations (3.10) may be rewritten as

Ĥ 0 −J(x)T 0
0 0 Im −Im

J(x) −Im DP 0
0 W + µBIm 0 S + µBIm



∆x
∆s
∆y
∆w

 = −


∇f(x)− J(x)Ty

y − w
c(x)− s+ µP(y − yE)

s · w − µB(wE − w + sE − s)

 .

(3.11)
These equations are identical to the shifted path-following equations (3.3) when
Ĥ = H(x, y). The solution of (3.11) is given by

∆w = y − w +∆y and ∆s = −DB(y +∆y) + µBW−1
B (wE + sE − s),
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where ∆x and ∆y satisfy the equations(
Ĥ J(x)T

J(x) −(DP +DB)

)(
∆x
−∆y

)
= −

(
∇f(x)− J(x)Ty

DP(y − πY ) +DB(y − πW )

)
. (3.12)

The matrix HM in (3.8) is positive definite if Ĥ+J(x)T(DP +DB)
−1J(x) is positive

definite or, equivalently, if the (n+m)× (n+m) matrix associated with (3.12) has
inertia (n,m, 0). If this condition does not hold for Ĥ = H(x, y), a common choice
of Ĥ is the matrix H(x, y) + δIn for some positive scalar δ (see Section 6.1).

It should be noted that in the neighborhood of a solution, both the approx-
imate Newton equations HM

k ∆vk = −∇M(vk) and the KKT equations (3.12) are
ill-conditioned for small values of µP and µB . However, the sensitivity of the solu-
tion of (3.12) is independent of the magnitudes of µP and µB (see Forsgren, Gill and
Shinnerl [12], Ponceleón [24] and Wright [28,29]).

4. Minimizing the Merit Function using Projected Search

In this section, we propose a projected-search algorithm that utilizes a non-monotone
flexible quasi-Armijo line search for minimizing the merit functionM(x, s, y, w ; sE ,
yE , wE , µP , µB) of (3.4) with fixed parameters sE , yE , wE , µP and µB . The flexible
quasi-Armijo line search is a generalization of the quasi-Armijo search (see Ferry et
al [8] and Zhang [30]) that allows the acceptance of a step under a wider range of
conditions. The generalization uses the idea of a flexible line search proposed by
Curtis and Nocedal [5], and also exploits the connection between minimizing the
merit function and finding a zero of the shifted path-following function F (x, s, y,
w ; sE , yE , wE , µP , µB) of (3.2). In our description, we simplify the notation by writ-
ing M(x, s, y, w ; sE , yE , wE , µP , µB) and F (x, s, y, w ; sE , yE , wE , µP , µB) as M(v ;µP)
and F (v ;µP), respectively.

4.1. The algorithm

For the merit function M(v ;µP) to be well-defined, the variables must satisfy the
implicit bounds s > −µBe, and w > −µBe. Thus, minimizing the merit function
M(v ;µP) is equivalent to solving the bound-constrained problem

minimize
v

M(v ;µP) subject to v > ℓ, (IPBC)

with ℓ =
(
−∞,−µBe,−∞,−µBe

)
, where an entry of “−∞” is used to indicate that

the associated variable has no lower bound. Let projΩk
(v) be the projection of v

onto the perturbed feasible region

Ωk =
{
v : v ≥ min

{
vk − σ(vk − ℓ), 0

}}
, (4.1)

with σ a fixed positive scalar such that 0 < σ < 1. The quantity σ may be interpreted
as the “fraction to the boundary” parameter used in many conventional interior-
point methods. The proposed projected-search method for problem (IPBC) is given
in Algorithm 1. It generates a sequence of feasible iterates {vk}∞k=0 such that vk+1 =
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projΩk
(vk + αk∆vk), where ∆vk is the search direction computed as in Section 3,

and αk is a step computed using a flexible quasi-Armijo search.
To perform the flexible quasi-Armijo search, we choose a line-search Armijo

parameter µL such that µL ≥ µP . At an iteration k, let ψk(α ;µ) and ϕk(α ;µ)
denote the functions M

(
projΩk

(vk + α∆vk) ;µ
)
and

∥∥F (projΩk
(vk + α∆vk) ;µ

)∥∥.
A step αk is acceptable if all of the three conditions

ψk(αk ;µ
P) < max

{
ψk(0 ;µ

P),Mmax

}
, (4.2a)

ψk(αk ;µ
L) < max

{
ψk(0 ;µ

L),Mmax

}
, and (4.2b)

ϕk(αk ;µ
P) ≤ ηF min

{
ϕk(0 ;µ

P), η
mk
F Fmax

}
(4.2c)

are satisfied, or

ψk(αk ;µ
F
k ) ≤ ψk(0 ;µ

F
k ) + αkηA∇M(vk ;µ

P)T∆vk, (4.2d)

for some value µF
k ∈ [µP , µL] and some positive ηF < 1. In these conditions, Mmax

and Fmax are large preassigned parameters and mk is the number of iterations prior
to iteration k at which (4.2a)–(4.2c) were satisfied. The use of the sufficient decrease
parameter of the form µF

k is characteristic of a flexible line search (see Curtis and
Nocedal [5]). In practice the step may be found by reducing αk by a constant factor
until (4.2a)–(4.2c) holds, or (4.2d) is satisfied with either µF

k = µL or µF
k = µP . The

approximate Newton direction is a descent direction for µF
k = µP , but the idea is

to choose the larger value µF
k = µL when possible because the associated penalty-

barrier function is less nonlinear. It is shown in Lemma 5.2 that µF
k = µL for all

k sufficiently large. Any αk satisfying the conditions (4.2a)–(4.2c) or the condition
(4.2d) is classified as a flexible quasi-Armijo step. Alternatively, an αk that satisfies
(4.2d) for µF

k = µP is simply known as a quasi-Armijo step (see Ferry et al. [8]). The
conditions (4.2a)–(4.2d) allow a step to be accepted if either (4.2a)–(4.2c) holds,
which implies that αk gives a sufficient decrease in the norm of the shifted path-
following function F (3.2), or (4.2d) holds, which implies that αk satisfies a flexible
variant of the quasi-Armijo condition for the minimization of M .

The convergence analysis in subsection 4.2 below establishes the convergence of
Algorithm 1 under typical assumptions. However, the ultimate purpose is to develop
a practical algorithm for the solution of problem (NIPs) that uses Algorithm 1 as
a basis for minimizing the underlying merit function. The slack-variable reset in
Step 18 of Algorithm 1 plays a crucial role in this more general algorithm for handling
(locally) infeasible problems (see Lemma 5.5). Analogous slack-variable resets are
used in Gill, Murray and Saunders [16], and Gill, Kungurtsev and Robinson [15].
As defined in Step 17 of Algorithm 1, ŝk+1 is the unique minimizer, with respect
to s, of the sum of the terms (B), (C), (D), (G) and (H) in the definition of the
function M . In particular, it follows from Step 17 and Step 18 of Algorithm 1 that
the value of sk+1 computed in Step 18 satisfies

sk+1 ≥ ŝk+1 = c(xk+1)− µF
k

(
yE + 1

2(wk+1 − yk+1) + µB
)
,

which implies, after rearrangement, that

c(xk+1)− sk+1 ≤ µF
k

(
yE + 1

2(wk+1 − yk+1) + µB
)
. (4.3)
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Algorithm 1 Minimizing M for fixed parameters sE , yE , wE , µP , µB and µL.

1: procedure merit-proj(x0, s0, y0, w0, s
E , wE , µP , µB , µL)

2: Restrictions: s0+µ
Be > 0, w0+µ

Be > 0, sE +wE +µBe > 0, µL ≥ µP > 0,
µB > 0;

3: Constants:
{
ηA, γA, ηF

}
∈ (0, 1);

4: Set v0 ← (x0, s0, y0, w0);
5: while ∥∇M(vk)∥ > 0 do
6: Choose HM

k ≻ 0, and then compute the search direction ∆vk from (3.7);
7: Set αk ← 1;
8: loop
9: if (4.2a)–(4.2c) hold or (4.2d) holds for µF

k = µL then
10: break;
11: else if (4.2d) holds for µF

k = µP then
12: break;
13: end if
14: Set αk ← γAαk;
15: end loop
16: Set vk+1 ← projΩk

(vk + αk∆vk);
17: Set ŝk+1 ← c(xk+1)− µF

k

(
yE + 1

2(wk+1 − yk+1) + µB
)
;

18: Perform a slack reset sk+1 ← max{sk+1, ŝk+1};
19: Set vk+1 ← (xk+1, sk+1, yk+1, wk+1);
20: end while
21: end procedure

4.2. Convergence analysis

The following assumptions are made for the convergence analysis:

Assumption 4.1. The functions f and c are twice differentiable.

Assumption 4.2. The sequence of matrices {HM
k }k≥0 used in (3.7) are chosen to

be uniformly positive definite and bounded in norm.

Assumption 4.3. The sequence of iterates {xk} is contained in a bounded set.

Assumption 4.3 is not a restrictive assumption. If the problem has the form (NIP),
the iterates are bounded if the upper and lower bounds are finite.

It will be shown in Section 5 (proof of Lemma 5.2) that µF
k is fixed for all

k sufficiently large if µL is chosen appropriately. In this section, without loss of
generality, we assume that the parameter µF

k in Algorithm 1 is fixed at a value µF ,
with either µF = µP or µF = µL. In order to simplify the notation, let M(v ;µF)
denote the function M(x, s, y, w ; sE , yE , wE , zE , µF , µB).

Lemma 4.1. The sequence of iterates {vk} computed by Algorithm 1 is such that{
M(vk ;µ

F)
}

is bounded. In particular, if αk is a step that satisfies (4.2d), then
M(vk+1 ;µ

F) < M(vk ;µ
F).
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Proof. As HM
k is positive definite by Assumption 4.2 and ∇M(vk ;µ

P) is assumed to
be nonzero for all k ≥ 0, the vector∆vk is a descent direction forM at vk. This prop-
erty, together with equations (4.2a) and (4.2b), imply that the line search performed
in Algorithm 1 produces an αk such that the new point vk+1 = projΩk

(vk+αk∆vk)
satisfies M(vk+1 ;µ

F) < max{M(vk ;µ
F),Mmax}. In particular, if (4.2d) holds, then

M(vk+1 ;µ
F) < M(vk ;µ

F). It follows that the only way that the desired result
cannot hold is if the slack-reset procedure of Step 18 of Algorithm 1 causes M to
increase. The proof is complete if it can be shown that this cannot happen.

The vector ŝk+1 used in the slack reset is the unique minimizer of the sum of the
terms (B), (C), (D), (G) and (H) defining the functionM(v ;µF), so that the sum of
these terms cannot increase. Also, the (A) term is independent of s, so that its value
does not change. The slack-reset procedure has the effect of possibly increasing the
value of some of the components of sk+1, which means that the (E) and (F) terms
in the definition of M can only decrease. In total, this implies that the slack reset
can never increase the value of M , which completes the proof.

Lemma 4.2. The sequence of iterates {vk} = {(xk, sk, yk, wk)} computed by Algo-
rithm 1 satisfies the following properties.

(i) The sequences {sk}, {c(xk)− sk}, {yk}, and {wk} are bounded.

(ii) For every i it holds that

lim inf
k≥0

[ sk + µBe ]i > 0 and lim inf
k≥0

[wk + µBe ]i > 0.

(iii) The sequences
{
πY (xk, sk)

}
,
{
πW (sk)

}
, and

{
∇M(vk ;µ

P)
}
are bounded.

(iv) There exists a scalar Mlow such that M(vk ;µ
F) ≥Mlow > −∞ for all k.

Proof. First, we consider the case where (4.2c) holds only finitely many times.
For a proof by contradiction, assume that {sk} is unbounded. As sk + µBe > 0 by
construction, there exists a subsequence of iterations S and component i such that

lim
k∈S

[ sk ]i =∞ and [ sk ]i ≥ [ sk ]j for every j and all k ∈ S. (4.4)

Next it will be shown that M must go to infinity on S. It follows from Assump-
tion 4.3 and the continuity of f that the term (A) in the definition of M is bounded
below for all k. Similarly, Assumption 4.3, the continuity of c and (4.4) implies that
(B) cannot go to −∞ any faster than ∥sk∥ on S, and that (C) converges to ∞ on
S at the same rate as ∥sk∥2. It is also clear that (D) is bounded below by zero.
On the other hand, (E) goes to −∞ on S at the rate − ln

(
[ sk ]i + µB

)
. Next, note

that (H) is bounded below. Now, if (F) is bounded below on S, then the preceding
arguments imply that M converges to infinity on S, which contradicts boundedness
of M established in Lemma 4.1. Otherwise, if (F) goes to −∞ on S, then (G)
converges to ∞ faster than (F) converges to −∞. Thus, M converges to ∞ on S,
which again contradicts Lemma 4.1. These arguments imply that {sk} is bounded,
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which establishes the first part of result (i). The second part of (i), i.e., the uniform
boundedness of {c(xk) − sk}, follows from the first result, the continuity of c, and
Assumption 4.3.

The next step is to establish the third bound in part (i), i.e., that {yk} is
bounded. For a proof by contradiction, assume that there exists some subsequence
S and component i such that

lim
k∈S

∣∣[ yk ]i∣∣ =∞ and
∣∣[ yk ]i∣∣ ≥ ∣∣[ yk ]j∣∣ for every j and all k ∈ S.

Using arguments similar to those of the preceding paragraph, together with the
result established above that {sk} is bounded, it follows that (A), (B) and (C) are
bounded below over all k, and that (D) converges to ∞ on S at the rate of [ yk ]

2
i

because {sk} is bounded, as has been shown above. Using the uniform boundedness
of

{
sk

}
and the assumption that sE +wE + µB > 0, it may be deduced that (E) is

bounded below. If (F) is bounded below on S, then (G) is also bounded, and as (H)
is bounded below by zero we would conclude, in totality, that limk∈S M(vk) = ∞,
which contradicts Lemma 4.1. Thus, (F) must converge to −∞, which implies that
(G) converges to∞ faster than (F) converges to −∞, so that limk∈S M(vk ;µ

F) =∞
on S, which contradicts Lemma 4.1. Thus,

{
yk

}
is bounded.

We now establish the final bound in part (i), i.e., we show that
{
wk

}
is bounded.

The boundedness of
{
xk

}
,
{
sk

}
and

{
yk

}
imply that (A), (B), (C), (D) and (H)

are bounded and that (E) is bounded below. For a proof by contradiction, assume
that the set is unbounded, which implies the existence of a subsequence S and a
component i such that

lim
k∈S

[wk ]i =∞.

Then (F) converges to −∞, while (G) converges to ∞ faster than (F) converges to
−∞, so that limk∈S1 M(vk ;µ

F) =∞ on S, which contradicts Lemma 4.1. It follows
that

{
wk

}
is bounded.

Part (ii) is also proved by contradiction. Suppose that
{
[ sk + µBe ]i

}
→ 0 on

some subsequence S and for some component i. As before, (A), (B), (C), (D), (G)
and (H) are all bounded from below over all k. We may also use wE + sE + µB > 0
and the fact that

{
sk

}
and

{
wk

}
were proved to be bounded in part (i) to conclude

that (E) and (F) converge to∞ on S. It follows that limk∈S M(vk ;µ
F) =∞, which

contradicts Lemma 4.1, and therefore establishes that lim inf [ sk + µBe ]i > 0 for
every 1 ≤ i ≤ m. A similar argument may be used to prove that lim inf [wk+µ

Be ]i >
0 for every 1 ≤ i ≤ m, which completes the proof.

Part (iii) and Part (iv) can be proved similarly as in the proof of Lemma 3.2(iii)
and (iv) in [15].

Certain results hold when the gradient of M(v ;µP) is bounded away from zero.

Lemma 4.3. If there exists a positive scalar ϵ and a subsequence of iterates S sat-
isfying

∥∇M(vk ;µ
P)∥ ≥ ϵ for all k ∈ S,

then the following results must hold.
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(i) The set
{
∥∆vk∥

}
k∈S is bounded above and bounded away from zero.

(ii) There exists a positive scalar δ such that ∇M(vk ;µ
P)T∆vk ≤ −δ for all k ∈ S.

Proof. See the proof of Lemma 3.3 in [15].

Next we establish the main convergence result for Algorithm 1.

Theorem 4.1. (Flexible quasi-Armijo search) Under Assumptions 4.1–4.3, there
exists an iteration subsequence S such that

lim
k∈S
∇M(vk ;µ

P) = 0.

Proof. First, consider the case where there exists an infinite subsequence of iter-
ates S such that the line-search conditions (4.2a)–(4.2c) hold for all k ∈ S. Then
the line-search condition (4.2c) implies that limk∈S ∥F (vk ;µP)∥ = 0. By (3.10),
F (vk ;µ

P) = Uk∇M(vk ;µ
P), where Uk is a matrix of the form (3.9). Lemma 4.2(ii)

implies that
{
∥Uk∥

}
is uniformly bounded away from zero, which ensures that

limk∈S ∇M(vk ;µ
P) = 0.

Now assume the complementary case where the subsequence of iterates such that
the line-search conditions (4.2a)–(4.2c) hold is finite. This implies that there exists
k0 such that for all k > k0, the line-search condition (4.2d) must hold. Thus, all the
subsequent iterates

{
vk

}
k>k0

lies within the level set

L
(
M(vk0 ;µ

F)
) △

=
{
v ∈ Ω :M(v ;µF) ≤M(vk0 ;µ

F)
}
,

where Ω represents the open set in which the merit functionM(v ;µF) is well defined,
i.e.,

Ω =
{
v = (x, s, y, w) : v > ℓ

}
, with ℓ =

(
−∞,−µBe,−∞,−µBe

)
.

Notice that the value of M(v ;µF) is +∞ on the boundary of Ω. Then by the
continuity of the function M(v ;µF), the level set L

(
M(vk0 ;µ

F)
)
is a closed subset

of Ω. Moreover, Assumption 4.3 and Lemma 4.2(i) imply that the set of iterates{
vk

}
k>k0

is a bounded subset of L
(
M(vk0 ;µ

F)
)
. Hence, there exists a compact

subset of Ω such that
{
vk

}
k>k0

lies within the compact subset. It follows that

κ △
= min

k>k0,1≤i≤n

{
[ vk ]i − [ ℓ ]i

}
> 0.

We show by contradiction that limk→∞∇M(vk ;µ
P) = 0. Suppose there exists a

constant ϵ > 0 and a subsequence G such that ∥∇M(vk ;µ
P)∥ ≥ ϵ for all k ∈ G. It

follows from Lemma 4.1 and Lemma 4.2(iv) that limk→∞M(vk ;µ
F) =Mmin > −∞.

Using this result and the assumption that the line-search condition (4.2d) is satisfied
for all k sufficiently large, it must follow that

lim
k→∞

αk∇M(vk ;µ
P)T∆vk = 0,
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which, together with Lemma 4.3(ii), implies that limk∈G αk = 0. For each k, define
βk

△
= αk/γA. Then limk∈G βk = 0 and the backtracking procedure in Algorithm 1

implies that the condition (4.2d) does not hold for the step βk for all k sufficiently
large. This means that the more stringent quasi-Armijo condition does not hold,
i.e.,

M
(
projΩk

(vk + βk∆vk) ;µ
P
)
> M

(
vk ;µ

P
)
+ αkηA∇M(vk ;µ

P)T∆vk (4.5)

for all k sufficiently large. By Lemma 4.3(i), we also have limk∈G ∥βk∆vk∥ = 0. Thus,
there exists k̄ such that every component of βk∆vk satisfies |[βk∆vk ]i| < σγ for all
k > k̄ in G. It follows that vk + βk∆vk ∈ Ωk, which implies projΩk

(vk + βk∆vk) =
vk +βk∆vk. Now let G′ denote the indices k > max

{
k0, k̄

}
of iterations at which a

reduction in the initial step length was necessary, i.e., G′ =
{
k : αk < 1, k ∈ G, k >

max
{
k0, k̄

}}
. As αk converges to zero, G′ must be an infinite set. The inequality

(4.5) implies that

M(vk + βk∆vk ;µ
P) > M(vk ;µ

P) + βkηA∇M(vk ;µ
P)T∆vk

for all k in G′. Adding −βk∇M(vk ;µ
P)T∆vk to both sides and rearranging gives

M(vk + βk∆vk ;µ
P)−M(vk ;µ

P)− βk∇M(vk ;µ
P)T∆vk > −βk(1− ηA)∇M(vk ;µ

P)T∆vk

> βk(1− ηA)δ, for all k ∈ G′.
(4.6)

The Taylor expansion of M(vk + βk∆vk ;µ
P) gives

M(vk + βk∆vk ;µ
P)−M(vk ;µ

P)− βk∇M(vk ;µ
P)T∆vk

= βk

∫ 1

0

(
∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)
)
T∆vk dτ. (4.7)

If ∥ · ∥D denotes the norm dual to ∥ · ∥, i.e., ∥v∥D = maxu̸=0 |vTu|/∥u∥, then∣∣(∇M(vk + τβk∆vk ;µ
P)−∇M(vk ;µ

P)
)
T∆vk

∣∣
≤ ∥∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)∥D∥∆vk∥.

If this inequality is substituted in (4.7), it then follows from (4.6) that

(1− ηA)δ <
∫ 1

0

(
∇M(vk + τβk∆vk ;µ

P)−∇M(vk ;µ
P)
)
T∆vk dτ

≤ max
0≤τ≤1

∥∇M(vk + τβk∆vk ;µ
P)−∇M(vk ;µ

P)∥D∥∆vk∥, for all k ∈ G′.

The continuity of ∇M implies that there exists some τk ∈ [0, βk] such that

max
0≤τ≤1

∥∇M(vk+τβk∆vk ;µ
P)−∇M(vk ;µ

P)∥D = ∥∇M(vk+τk∆vk ;µ
P)−∇M(vk ;µ

P)∥D.

Then
(1− ηA)δ < ∥∇M(vk + τk∆vk ;µ

P)−∇M(vk ;µ
P)∥D∥∆vk∥. (4.8)
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However, αk∆vk → 0 implies τk∆vk → 0 for k ∈ G, and the continuity of ∇M gives

∥∇M(vk + τk∆vk ;µ
P)−∇M(vk ;µ

P)∥D → 0.

Lemma 4.3(i) implies that the right-hand side of (4.8) converges to zero, which gives
the required contradiction.

5. Solving the Nonlinear Optimization Problem

In this section, a projected-search interior-point method for solving the nonlinear
optimization problem (NIPs) is formulated and analyzed. The method incorporates
the projected-search algorithm presented in Section 4 with strategies for adjusting
the parameters in the definition of the merit function. These parameters were fixed
in Algorithm 1.

5.1. The algorithm

The proposed method is given in Algorithm 2. The method uses the distinction
among O-iterations, M-iterations and F-iterations, which are described below.

The definition of an O-iteration is based on the optimality conditions for problem
(NIPs). Progress towards optimality of the iterate vk+1 = (xk+1, sk+1, yk+1, wk+1)
is defined in terms of the following feasibility, stationarity, and complementarity
measures:

χfeas(vk+1) = ∥c(xk+1)− sk+1∥,
χstny(vk+1) = max

(
∥∇f(xk+1)− J(xk+1)

Tyk+1∥, ∥yk+1 − wk+1∥
)
, and

χcomp(vk+1, µ
B
k ) =

∥∥min
(
q1(vk+1), q2(vk+1, µ

B
k )
)∥∥ ,

where

q1(vk+1) = max
(
|min(sk+1, wk+1, 0)|, |sk+1 · wk+1|

)
, and

q2(vk+1, µ
B
k ) = max

(
µB
k e, |min(sk+1 + µB

k e, wk+1 + µB
k e, 0)|, |(sk+1 + µB

k e) · (wk+1 + µB
k e)|)

)
.

A first-order KKT point vk+1 for problem (NIPs) satisfies χ(vk+1, µ
B
k ) = 0, where

χ(v, µ) = χfeas(v) + χstny(v) + χcomp(v, µ). (5.1)

Given these definitions, the kth iteration is designated as an O-iteration if χ(vk+1, µ
B
k ) ≤

χmax
k , where

{
χmax
k

}
is a monotonically decreasing positive sequence. At an O-

iteration the parameters are updated as yE
k+1 = yk+1, w

E
k+1 = wk+1 and χmax

k+1 =
1
2χ

max
k (see Step 11 of Algorithm 2). These updates ensure that

{
χmax
k

}
converges

to zero if infinitely many O-iterations occur. The point vk+1 is called an O-iterate.
If the condition for an O-iteration does not hold, a test is made to determine if

vk+1 = (xk+1, sk+1, yk+1, wk+1) is an approximate first-order solution of the problem

minimize
v=(x,s,y,w)

M(v ; sEk , y
E
k , w

E
k , µ

P
k , µ

B
k ). (5.2)
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In particular, the kth iteration is called an M-iteration if vk+1 satisfies

∥∇xM(vk+1 ; s
E
k , y

E
k , w

E
k , µ

P
k , µ

B
k )∥∞ ≤ τk, (5.3a)

∥∇sM(vk+1 ; s
E
k , y

E
k , w

E
k , µ

P
k , µ

B
k )∥∞ ≤ τk, (5.3b)

∥∇yM(vk+1 ; s
E
k , y

E
k , w

E
k , µ

P
k , µ

B
k )∥∞ ≤ τk∥DP

k+1∥∞, and (5.3c)

∥∇wM(vk+1 ; s
E
k , y

E
k , w

E
k , µ

P
k , µ

B
k )∥∞ ≤ τk∥DB

k+1∥∞, (5.3d)

where τk is a positive tolerance, DP
k+1 = µP

kI, and DB
k+1 = (Sk+1 + µB

k I)(Wk+1 +
µB
k I)

−1. In this case vk+1 is called an M-iterate because it is an approximate first-
order solution of (5.2). The estimates sEk+1, y

E
k+1 and wE

k+1 are defined by the
safeguarded values

sEk+1 = min
(
max(0, sk+1), smaxe

)
,

yE
k+1 = max

(
− ymaxe,min(yk+1, ymaxe)

)
,

wE
k+1 = min

(
wk+1, wmaxe

)
 (5.4)

for some large positive constants smax, ymax and wmax. Next, Step 15 checks if the
condition

χfeas(vk+1) ≤ τk (5.5)

holds. If the condition holds, then µP
k+1 ← µP

k ; otherwise, µ
P
k+1 ←

1
2µ

P
k to place

more emphasis on satisfying the constraints c(x) − s = 0 in subsequent iterations.
Similarly, Step 16 checks the inequalities

χcomp(vk+1, µ
B
k ) ≤ τk, sk+1 ≥ −τke, and wk+1 ≥ −τke. (5.6)

If these conditions hold, then µB
k+1 ← µB

k ; otherwise, µ
B
k+1 ←

1
2µ

B
k to place more

emphasis on achieving complementarity in subsequent iterations.
An iteration that is not an O- or M-iteration is called an F-iteration. In an F-

iteration none of the parameters in the merit function are changed, so that progress
is measured solely in terms of the reduction in the merit function.

Reducing the barrier parameter µB in Step 19 of Algorithm 2 may cause a slack
variable si or a dual variable wi to become infeasible with respect to its shifted
bounds. In Step 20, if a multiplier wi becomes infeasible after µB is reduced, it is
reinitialized as max

{
yi,

1
2wi

}
. To remedy the infeasibility of a slack variable si,

suppose µB and µ̄B denote a shift before and after it is reduced, with si + µB > 0
and si + µ̄B ≤ 0, a strategy is proposed in Section 5.4 of [15], which temporarily
imposes an equality constraint si = 0. This constraint is enforced by the primal-
dual augmented Lagrangian term until the nonlinear constraint value ci(x) becomes
larger than µ̄B , at which point si is assigned the value si = ci(x) and allowed to
move. On being freed, the corresponding Lagrange multiplier wi is reinitialized as
max

{
yi, ϵ

}
, where ϵ is a small positive constant.

Given an initial value µL
0 ≥ µP

0 , in Step 25 of Algorithm 2, the line-search pa-
rameter µL

k is updated as

µL
k+1 =

{
µL
k if ψk(αk ;µ

L
k) ≤ ψk(0 ;µ

L
k) + αkηAδk and µP

k+1 = µP
k ;

max
{

1
2µ

L
k, µ

P
k+1

}
otherwise,

(5.7)
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Algorithm 2 An all-shifted projected-search interior-point method.

1: procedure pdProj(x0, s0, y0, w0)
2: Restrictions: s0 ≥ 0 and w0 ≥ 0;
3: Constants:

{
ηA, γA

}
⊂ (0, 1) and

{
ymax, wmax, smax

}
⊂ (0,∞);

4: Choose yE
0 ; χmax

0 > 0;
{
µP
0 , µ

B
0

}
⊂ (0,∞); and µL

0 ≥ µP
0 ;

5: Choose wE
0 and sE0 such that wE

0 + sE0 + µB
0 e > 0;

6: Set v0 = (x0, s0, y0, w0); k ← 0;
7: while ∥∇M(vk)∥ > 0 do
8: (sE , yE , wE , µP , µB)← (sEk , y

E
k , w

E
k , µ

P
k , µ

B
k );

9: Compute vk+1 in Steps 6–19 of Algorithm 1;
10: if χ(vk+1, µ

B
k ) ≤ χmax

k then [O-iterate]

11: (χmax
k+1, y

E
k+1, w

E
k+1, µ

P
k+1, µ

B
k+1, τk+1)← (12χ

max
k , yk+1, wk+1, µ

P
k , µ

B
k , τk);

12: sEk+1 ← max
{
0, sk+1

}
;

13: else if vk+1 satisfies (5.3a)–(5.3d) then [M-iterate]
14: Set (χmax

k+1, τk+1) = (χmax
k , 12τk); Set sEk+1, y

E
k+1 and wE

k+1 using (5.4);

15: if χfeas(vk+1) ≤ τk then µP
k+1 ← µP

k else µP
k+1 ←

1
2µ

P
k end if

16: if χcomp(vk+1, µ
B
k ) ≤ τk, sk+1 ≥ −τke and wk+1 ≥ −τke then

17: µB
k+1 ← µB

k ;
18: else
19: µB

k+1 ←
1
2µ

B
k ;

20: Reset sk+1 and wk+1 so that sk+1+µ
B
k+1e > 0 and wk+1+µ

B
k+1e >

0;
21: end if
22: else [F-iterate]
23: (χmax

k+1, s
E
k+1, y

E
k+1, w

E
k+1, µ

P
k+1, µ

B
k+1, τk+1)← (χmax

k , sEk , y
E
k , w

E
k , µ

P
k , µ

B
k , τk);

24: end if
25: Update µL

k+1 as in (5.7);
26: end while
27: end procedure

where δk = ∇M(vk ;µ
P)T∆vk. This updating rule guarantees that µL

k ≥ µP
k for all

k.

5.2. Convergence analysis

Convergence analysis for Algorithm 2 follows a similar procedure as in Section 4.2
of [15], which uses the properties of the complementary approximate KKT (CAKKT)
condition proposed by Andreani, Mart́ınez and Svaiter [2], as described below.

Definition 5.1. (CAKKT condition) A feasible point (x∗, s∗) (i.e., a point such
that s∗ ≥ 0 and c(x∗) − s∗ = 0) is said to satisfy the CAKKT condition if there
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exists a sequence
{
(xj , sj , uj , zj)

}
with

{
xj

}
→ x∗ and

{
sj

}
→ s∗ such that{

∇f(xj)− J(xj)Tuj
}
→ 0, (5.8){

uj − zj
}
→ 0, (5.9){

zj
}
≥ 0, and (5.10){

zj · sj
}
→ 0. (5.11)

Any (x∗, s∗) satisfying these conditions is called a CAKKT point.

Theorem 5.1. (Andreani et al. [1, Theorem 4.3]) If (x∗, s∗) is a CAKKT point
that satisfies CAKKT-regularity, then (x∗, s∗) is a first-order KKT point for (NIPs).

The first part of the analysis concerns the conditions under which limit points of
the sequence

{
(xk, sk)

}
are CAKKT points. As the results are tied to the different

iteration types, to facilitate referencing of the iterations during the analysis we define

O =
{
k : iteration k is an O-iteration

}
,

M =
{
k : iteration k is an M-iteration

}
, and

F =
{
k : iteration k is an F-iteration

}
.

Lemma 5.1. If |O| =∞ there exists at least one limit point (x∗, s∗) of the infinite
sequence

{
(xk+1, sk+1)

}
k∈O and any such limit point is a CAKKT point.

Proof. Assumption 4.3 implies that there must exist at least one limit point of{
xk+1

}
k∈O. If x∗ is such a limit point, Assumption 4.1 implies the existence of

K ⊆ O such that
{
xk+1

}
k∈K → x∗ and

{
c(xk+1)

}
k∈K → c(x∗). As |O| = ∞, the

updating strategy of Algorithm 2 gives
{
χmax
k

}
→ 0. Furthermore, as χ(vk+1, µ

B
k ) ≤

χmax
k for all k ∈ K ⊆ O, and χfeas(vk+1) ≤ χ(vk+1, µ

B
k ) for all k, it follows that{

χfeas(vk+1)
}
k∈K → 0, i.e.,

{
c(xk+1) − sk+1

}
k∈K → 0. With the definition s∗ =

c(x∗), it follows that
{
sk+1

}
k∈K → limk∈K c(xk+1) = c(x∗) = s∗, which implies that

(x∗, s∗) is feasible for the general constraints because c(x∗)− s∗ = 0. The remaining
feasibility condition s∗ ≥ 0 is proved componentwise. For any 1 ≤ i ≤ m, define

Q1 =
{
k : [q1(vk+1)]i ≤ [q2(vk+1, µ

B
k )]i

}
and Q2 =

{
k : [q2(vk+1, µ

B
k )]i < [q1(vk+1)]i

}
,

where q1 and q2 are used in the definition of χcomp. If the set K ∩ Q1 is infinite,
then it follows from the inequalities

{
χcomp(vk+1, µ

B
k )

}
k∈K ≤

{
χ(vk+1, µ

B
k )

}
k∈K ≤{

χmax
k

}
k∈K → 0 that s∗i = limK∩Q1 [sk+1]i ≥ 0. Using a similar argument, if the

set K∩Q2 is infinite, then s∗i = limK∩Q2 [sk+1]i = limK∩Q2 [sk+1+µB
k e]i ≥ 0, where

the second equality uses the limit
{
µB
k

}
k∈K∩Q2

→ 0 that follows from the definition
of Q2. Combining these two cases implies that s∗i ≥ 0, as claimed. It follows that
the limit point (x∗, s∗) is feasible.

It remains to show that (x∗, s∗) is a CAKKT point. Let

[s̄k+1]i =

{
[sk+1]i if k ∈ Q1;

[sk+1 + µB
k e]i if k ∈ Q2,
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and

[w̄k+1]i =

{
max

{
[wk+1]i, 0

}
if k ∈ Q1;

[wk+1 + µB
k e]i if k ∈ Q2,

for every 1 ≤ i ≤ m, and consider the sequence (xk+1, s̄k+1, yk+1, w̄k+1)k∈K as a
candidate for the sequence used in Definition 5.1 to verify that (x∗, s∗) is a CAKKT

point. If O ∩ Q2 is finite, then it follows from the definition of s̄k+1 and the limit{
sk+1

}
k∈K → s∗ that

{
[ s̄k+1 ]i

}
k∈K → s∗i ; also,

{
χcomp(vk+1, µ

B
k )

}
k∈K → 0 im-

plies that lim infk∈K[wk+1 ]i ≥ 0, therefore
{
[ w̄k+1 − wk+1 ]i

}
k∈K → 0. On the

other hand, if O ∩ Q2 is infinite, then the definitions of Q2 and χcomp(vk+1, µ
B
k ),

together with the limit
{
χcomp(vk+1, µ

B
k )

}
k∈K → 0 imply that

{
µB
k

}
→ 0, giving{

[ s̄k+1 ]i
}
k∈K → s∗i and

{
[ w̄k+1−wk+1 ]i

}
k∈K → 0. As the choice of i was arbitrary,

these cases taken together imply that
{
s̄k+1

}
k∈K → s∗ and

{
w̄k+1−wk+1

}
k∈K → 0.

The next step is to show that
{
(xk+1, s̄k+1, yk+1, w̄k+1)

}
k∈K satisfies the condi-

tions required by Definition 5.1. It follows from the limit
{
χ(vk+1, µ

B
k )

}
k∈K → 0 es-

tablished above that
{
χstny(vk+1)+χcomp(vk+1, µ

B
k )

}
k∈K ≤

{
χ(vk+1, µ

B
k )

}
k∈K → 0.

This, together with the limit
{
w̄k+1 − wk+1

}
k∈K → 0, implies that

{
∇f(xk+1) −

J(xk+1)
Tyk+1

}
k∈K → 0 and

{
yk+1−wk+1

}
k∈K → 0, which establishes that condi-

tions (5.8) and (5.9) hold. The nonnegativity of w̄k+1 for all k is obvious from its
definition, which implies that (5.10) is satisfied for

{
w̄k

}
k∈K. Finally, it must be

shown that (5.11) holds, i.e., that
{
w̄k+1 · s̄k+1

}
k∈K → 0. Consider the ith com-

ponents of s̄k and w̄k. If the set K ∩ Q1 is infinite, then the definitions of s̄k+1,
q1(vk+1) and χcomp(vk+1, µ

B
k ), together with the limit

{
χcomp(vk+1, µ

B
k )

}
k∈K →

0, imply that
{
[ w̄k+1 · s̄k+1 ]i

}
K∩Q1 → 0. Similarly, if the set K ∩ Q2 is infi-

nite, then the definitions of s̄k+1, q2(vk+1, µ
B
k ) and χcomp(vk+1, µ

B
k ), together with

the limits
{
χcomp(vk+1, µ

B
k )

}
k∈K → 0 and

{
w̄k+1 − wk+1

}
k∈K → 0, imply that{

[ w̄k+1 · s̄k+1 ]i
}
k∈K∩Q2 → 0. Thus, these two cases lead to the conclusion that{

w̄k+1 · s̄k+1

}
k∈K → 0, which implies that condition (5.11) is satisfied. This com-

pletes the proof that (x∗, s∗) is a CAKKT point.

In the complementary case where |O| < ∞, it will be shown that every limit
point of the iteration subsequence

{
(xk+1, sk+1)

}
k∈M is infeasible with respect to

the constraints c(x)− s = 0 but solves the least-infeasibility problem

minimize
x,s

1
2∥c(x)− s∥

2
2 subject to s ≥ 0. (5.12)

The first-order KKT conditions for problem (5.12) are

J(x∗)T
(
c(x∗)− s∗

)
= 0, s∗ ≥ 0, (5.13a)

s∗ ·
(
c(x∗)− s∗

)
= 0, c(x∗)− s∗ ≤ 0. (5.13b)

These conditions define an infeasible stationary point.

Definition 5.2. (Infeasible stationary point) The pair (x∗, s∗) is an infeasible
stationary point if c(x∗) − s∗ ̸= 0 and (x∗, s∗) satisfies the optimality conditions
(5.13).
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Lemma 5.2. If |O| <∞, then |M| =∞.

Proof. The proof is by contradiction. Suppose that |M| < ∞, in which case
|O ∪M| < ∞. It follows from the definition of Algorithm 2 that k ∈ F for all k
sufficiently large, i.e., there must exist an iteration index kF such that

k ∈ F , yE
k = yE , and (τk, w

E
k , µ

P
k , µ

B
k ) = (τ, wE , µP , µB) > 0 (5.14)

for all k ≥ kF . The updating rule for
{
µL
k

}
implies that µL

k will be fixed at some
µL ≥ µP , and µF

k is then fixed at the value µL for all k sufficiently large. It follows
from Theorem 4.1 that there exists a subsequence of iterates S such that

lim
k→S
∥∇M(vk)∥ = 0.

Then Lemma 4.2(i) and Lemma 4.2(ii) can be applied to show that (5.3) is satisfied
for all k ∈ S. This would mean, in view of Step 13 of Algorithm 2, that S ∈ M
with |S| =∞, which contradicts (5.14) because F ∩M = ∅.

For the next lemma, we introduce the quantities

πY
k+1 = yE

k −
1

µP
k

(
c(xk+1)− sk+1

)
and πW

k+1 = µB
k (Sk+1 + µB

k I)
−1(wE

k − sk+1 + sEk ),

with Sk+1 = diag(sk+1) associated with the gradient of the merit function in (3.5).

Lemma 5.3. If |M| =∞ then

lim
k∈M

∥πY
k+1 − yk+1∥ = 0.

Moreover, if there exists a subsequence of iterates K ⊆ M such that limk∈K sk =
s∗ ≥ 0, then

lim
k∈K
∥πW

k+1 − wk+1∥ = lim
k∈K
∥πY

k+1 − πW
k+1∥ = lim

k∈K
∥yk+1 − wk+1∥ = 0.

Proof. It follows from (3.5) and (5.3c) that

∥πY
k+1 − yk+1∥ ≤ τk. (5.15)

As |M| = ∞ by assumption, Step 14 of Algorithm 2 implies that limk→∞ τk = 0.
Combining this with (5.15) establishes the first limit in the result.

Furthermore, if there exists a subsequence K ⊆M such that limk∈K sk = s∗ ≥ 0,
then the updating rule of Algorithm 2 for sEk implies that limk∈K (sEk −sk) = 0. The
limit limk→∞ τk = 0 may then be combined with (3.5), (5.3b) and (5.3c) to show
that

lim
k∈K
∥πW

k+1 − wk+1∥ = 0 and lim
k∈K
∥πY

k+1 − πW
k+1∥ = 0. (5.16)

Finally, as limk→∞ τk = 0, it follows from the bound (5.15) and limits (5.16) that

lim
k∈K
∥yk+1 − wk+1∥ = lim

k∈K
∥(yk+1 − πY

k+1) + (πY
k+1 − πW

k+1) + (πW
k+1 − wk+1)∥ = 0.

This establishes the last of the four limits.
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Lemma 5.4. If |O| <∞, then every limit point (x∗, s∗) of the iterate subsequence{
(xk+1, sk+1)

}
k∈M satisfies c(x∗)− s∗ ̸= 0.

Proof. The proof is similar to the proof of Lemma 4.7 in [15] but with some modified
technical details.

Let (x∗, s∗) be a limit point of (the necessarily infinite) sequenceM, i.e., there
exists a subsequence K ⊆ M such that limk∈K (xk+1, sk+1) = (x∗, s∗). For a proof
by contradiction, assume that c(x∗)− s∗ = 0, which implies that

lim
k∈K
∥c(xk+1)− sk+1∥ = 0. (5.17)

First, we show that s∗ ≥ 0, which will imply that (x∗, s∗) is feasible because of the
assumption that c(x∗)−s∗ = 0. The line search in Algorithm 1 gives sk+1+µ

B
k e > 0

for all k. If limk→∞ µB
k = 0, then s∗ = limk∈K sk+1 ≥ − limk∈K µ

B
k e = 0. On the

other hand, if limk→∞ µB
k ̸= 0, then Step 19 of Algorithm 2 is executed a finite

number of times, µB
k = µB > 0 and (5.6) holds for all k ∈ M sufficiently large. A

combination of the assumption that |O| < ∞, the result of Lemma 5.2, and the
updates of Algorithm 2, establishes that limk→∞ τk = 0 and

χmax
k = χmax > 0 for all sufficiently large k ∈ K. (5.18)

Taking limits over k ∈M in (5.6) and using limk→∞ τk = 0 gives s∗ ≥ 0.
Using |O| <∞ together with Lemma 5.3, the fact that limk∈K sk = s∗ ≥ 0 with

K ⊆M, and Step 16 of the line search of Algorithm 1 gives

lim
k∈K
∥yk+1 − wk+1∥ = 0, and wk+1 + µB

k+1 > 0 for all k ≥ 0. (5.19)

Next, it can be observed from the definitions of πY
k+1 and ∇xM that

∇f(xk+1)− J(xk+1)
Tyk+1 = ∇f(xk+1)− J(xk+1)

T(2πY
k+1 + yk+1 − 2πY

k+1)

= ∇f(xk+1)− J(xk+1)
T
(
2πY

k+1 − yk+1

)
− 2J(xk+1)

T(yk+1 − πY
k+1)

= ∇xM(vk+1 ; y
E
k , w

E
k , µ

P
k , µ

B
k )− 2J(xk+1)

T(yk+1 − πY
k+1),

which combined with
{
xk+1

}
k∈K → x∗, limk→∞ τk = 0, (5.3a), and Lemma 5.3

gives
lim
k∈K

{
∇f(xk+1)− J(xk+1)

Tyk+1

}
= 0. (5.20)

The proof that limk∈K χcomp(vk+1, µ
B
k ) = 0 involves two cases.

Case 1: limk→∞ µB
k ̸= 0. In this case µB

k = µB > 0 for all sufficiently large
k. Combining this with |M| = ∞ and the update to µB

k in Step 19 of Algo-
rithm 2, it must be that (5.6) holds for all sufficiently large k ∈ K, i.e., that
χcomp(vk+1, µ

B
k ) ≤ τk for all sufficiently large k ∈ K. As limk→∞ τk = 0, it must hold

that limk∈K χcomp(vk+1, µ
B
k ) = 0.

Case 2: limk→∞ µB
k = 0. Lemma 5.3 implies that limk∈K (πW

k+1 − wk+1) = 0. The
sequence

{
Sk+1+µ

B
k I

}
k∈K is bounded because

{
µB
k

}
is positive and monotonically
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decreasing and limk∈K sk+1 = s∗, which means by the definition of πW
k+1 and the

updating rule for sEk+1 in (5.4),

0 = lim
k∈K

(Sk+1 + µB
k I)(π

W
k+1 − wk+1) = lim

k∈K

(
µB
kw

E
k − (Sk+1 + µB

k I)wk+1

)
. (5.21)

Moreover, as |O| < ∞ and wk > 0 for all k by construction, the updating strategy
for wE

k in Algorithm 2 guarantees that
{
wE
k

}
is bounded over all k (see (5.4)). It

then follows from (5.21), the uniform boundedness of
{
wE
k

}
, and limk→∞ µB

k = 0
that

0 = lim
k∈K

(
[sk+1]i + µB

k

)
[wk+1]i = lim

k∈K

(
[sk+1]i + µB

k

)
([wk+1]i + µB

k ). (5.22)

There are two subcases.

Subcase 2a: s∗i > 0 for some i. As limk∈K[ sk+1 ]i = s∗i > 0 and limk→∞ µB
k = 0,

it follows from (5.22) that limk∈K[wk+1 ]i = 0. Combining these limits allows us to
conclude that limk∈K[ q1(vk+1) ]i = 0, which is the desired result for this case.

Subcase 2b: s∗i = 0 for some i. In this case, it follows from the limits limk→∞ µB
k =

0 and (5.22), wk+1+µ
B
k > 0 and the limit limk∈K[ sk+1 ]i = s∗i = 0 that limk∈K[q2(vk+1, µ

B
k )]i =

0, which is the desired result for this case.

As one of the two subcases above must occur for each component i, it follows that

lim
k∈K

χcomp(vk+1, µ
B
k ) = 0,

which completes the proof for Case 2.

Under the assumption c(x∗) − s∗ = 0 it has been shown that (5.17), (5.19),
(5.20), and the limit limk∈K χcomp(vk+1, µ

B
k ) = 0 hold. Collectively, these results

imply that limk∈K χ(vk+1, µ
B
k ) = 0. This limit, together with the inequality (5.18)

and the condition checked in Step 10 of Algorithm 2, gives k ∈ O for all k ∈ K ⊆M
sufficiently large. This is a contradiction because O∩M = ∅, which establishes the
desired result that c(x∗)− s∗ ̸= 0.

Lemma 5.5. If |O| < ∞, then there exists at least one limit point (x∗, s∗) of the
infinite sequence

{
(xk+1, sk+1)

}
k∈M, and any such limit point is an infeasible sta-

tionary point as given by Definition 5.2.

Proof. The proof is similar to the proof of Lemma 4.8 in [15] but with some modified
technical details.

If |O| < ∞ then Lemma 5.2 implies that |M| = ∞. Moreover, the updating
strategy of Algorithm 2 forces

{
yE
k

}
and

{
wE
k

}
to be bounded (see (5.4)). The

next step is to show that
{
sk+1

}
k∈M is bounded.

For a proof by contradiction, suppose that
{
sk+1

}
k∈M is unbounded. It fol-

lows that there must be a component i and a subsequence K ⊆ M for which{
[ sk+1 ]i

}
k∈K →∞. When Assumption 4.3 and Assumption 4.1 hold,

{
c(xk+1)

}
k∈K,{

∇f(xk+1)
}
k∈K and

{
J(xk+1)

}
k∈K must be bounded. This implies that

{
[πY

k+1 ]i
}
k∈K
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is unbounded. On the other hand, by (3.5), (5.3a), together with the limit limk→∞ τk =
0 and Lemma 5.3,

0 = lim
k∈M

∥∇xM(vk+1 ; y
E
k , w

E
k , µ

P
k , µ

B
k )∥

= lim
k∈M

∥∇f(xk+1)− J(xk+1)
TπY

k+1 − J(xk+1)
T(πY

k+1 − yk+1)∥

= lim
k∈M

∥∇f(xk+1)− J(xk+1)
TπY

k+1∥ = 0,

which contradicts the unboundedness of
{
[πY

k+1 ]i
}
k∈K . Thus, it must be the case

that
{
sk+1

}
k∈M is bounded.

The next part of the proof is to establish that s∗ ≥ 0, which is the inequality
condition of (5.13a). The test in Step 16 of Algorithm 2 (i.e., testing whether (5.6)
holds) is checked infinitely often because |M| = ∞. If (5.6) is satisfied finitely
many times, then the update µB

k+1 =
1
2µ

B
k forces

{
µB
k+1

}
→ 0. Combining this with

sk+1+µ
B
k e > 0 shows that s∗ ≥ 0, as claimed. On the other hand, if (5.6) is satisfied

for all sufficiently large k ∈ M, then µB
k+1 = µB > 0 for all sufficiently large k and

limk∈K χcomp(vk+1, µ
B
k ) = 0 because

{
τk

}
→ 0. It follows from these two facts that

s∗ ≥ 0, as claimed.
The boundedness of

{
sk+1

}
k∈M and Assumption 4.3 ensure the existence of at

least one limit point of
{
(xk+1, sk+1)

}
k∈M. If (x∗, s∗) is any such limit point, there

must be a subsequence K ⊆M such that
{
(xk+1, sk+1)

}
k∈K → (x∗, s∗). It remains

to show that (x∗, s∗) is an infeasible stationary point (i.e., that (x∗, s∗) satisfies the
optimality conditions (5.13a)–(5.13b)).

As |O| <∞, it follows from Lemma 5.4 that c(x∗)−s∗ ̸= 0. Combining this with{
τk

}
→ 0, which holds because K ⊆M is infinite (on such iterations τk+1 ← 1

2τk),
it follows that the condition (5.5) of Step 15 of Algorithm 2 will not hold for all
sufficiently large k ∈ K ⊆ M. The subsequent updates ensure that

{
µP
k

}
→ 0,

hence
{
µF
k

}
→ 0 by the updating rule for

{
µL
k

}
, which, combined with (4.3), the

boundedness of
{
yE
k

}
, and Lemma 5.3, gives

{c(xk+1)− sk+1}k∈K ≤
{
µF
k

(
yE
k + 1

2(wk+1 − yk+1) + µB
k

)}
k∈K → 0.

This implies that c(x∗)− s∗ ≤ 0 and the second condition in (5.13b) holds.
The rest of the proof is the same as in the proof of Lemma 4.8 in [15].

Theorem 5.2. Under Assumptions 4.1–4.3, one of the following occurs:

(i) |O| =∞, limit points of
{
(xk+1, sk+1)

}
k∈O exist, and every such limit point

(x∗, s∗) is a CAKKT point for problem (NIPs). If, in addition, CAKKT-
regularity holds at (x∗, s∗), then (x∗, s∗) is a KKT point for problem (NIPs).

(ii) |O| <∞, |M| =∞, limit points of
{
(xk+1, sk+1)

}
k∈M exist, and every such

limit point (x∗, s∗) is an infeasible stationary point.

Proof. Part (i) follows from Lemma 5.1 and Theorem 5.1. Part (ii) follows from
Lemma 5.5. Also, the exclusive conditions on |O| imply that only one of these two
cases must occur.
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6. Numerical Experiments

Numerical results were obtained for Algorithm pdProj, which is a Matlab imple-
mentation of the projected-search primal-dual interior-point method proposed in
Sections 3–5. For comparison purposes, results are also given for two primal-dual
interior-point methods that do not use projection. The first is Algorithm pdbAll,
which is a method that shifts both the primal and dual variables. The second is Al-
gorithm pdb, which is an extension of the primal-shifted method of Gill, Kungurtsev
and Robinson [15].

Algorithms pdb and pdbAll are implemented with a flexible Armijo line search in
which the step length is chosen to satisfy the conditions (4.2a)–(4.2d) with ψk(α ;µ)
and ϕk(α ;µ) given by M

(
vk + α∆vk ;µ

)
and ∥F

(
vk + α∆vk ;µ

)
∥. Exact second

derivatives were used for all the runs.

6.1. Implementation details

The iterates were terminated at the first point that satisfied the conditions eP (x, s) <
τP and eD(x, s, y, w) < τD, where eP and eD are the primal and dual infeasibilities

eP (x, s) =

∥∥∥∥( min
{
0, s

}
∥c(x)− s∥∞/max

{
1, ∥s∥∞

})∥∥∥∥
∞
, (6.1a)

and

eD(x, s, y, w) =

∥∥∥∥∥∥
∥∇f(x)− J(x)Ty∥∞/σ∥w − y∥∞

w · min
{
1, s

}
∥∥∥∥∥∥

∞

, (6.1b)

with σ = max
{
1, ∥∇f(x)∥, max

{
1, ∥y∥

}
∥J(x)∥∞

}
. These quantities provide a

measure of the scaled distance to the primal and dual optimality conditions (2.1).
Similarly, the iterates were terminated at an infeasible stationary point (x, s) if
eP (x, s) > τP , min

{
0, s} ≤ τP and eI(x, s) ≤ τinf , where

eI(x, s) =
∥∥J(x)T(c(x)− s) · min

{
1, s

}∥∥
∞ /σ. (6.2)

All threeMatlab implementations were initialized with identical control param-
eters that were chosen based on the empirical performance on the entire collection
of problems. A summary of the values is given in Table 1.

The results were obtained for optimization problems from the CUTEst test col-
lection (see Bongartz et al. [3] and Gould, Orban and Toint [21]). Results were
obtained for five subsets of problems from the CUTEst test collection. The subsets
consisted of all 126 problems formulated by Hock and Schittkowski ( [23]) (problems
HS); 139 problems with a general nonlinear objective and upper and lower bounds
on the variables (problems BC); 212 problems with a general nonlinear objective,
general linear constraints and bounds on the variables (problems LC); 648 problems
with a general nonlinear objective, general linear and nonlinear constraints and
bounds on the variables (problems NC); and 141 problems with a quadratic objec-
tive, general linear constraints and bounds on the variables (problems QP). The NC

problems include 264 feasibility problems, i.e., problems with nonlinear constraints



6. Numerical Experiments 28

Table 1: Control parameters for Algorithms pdb, pdbAll and
pdProj.

Parameter Description Value

smax, ymax, wmax Maximum allowed yE , wE , sE 1.0e+6

µP
0 Initial penalty parameter 1.0e-4

µB
0 Initial barrier parameter 1.0e-4

µL
0 Initial flexible line-search penalty parameter 1.0

τ0 Initial termination tolerance for specifying an M-iterate 0.5

τP Primal feasibility tolerance (6.1a) 1.0e-4

τD Dual feasibility tolerance (6.1b) 1.0e-4

τinf Infeasible stationary point tolerance (6.2) 1.0e-4

χmax
0 Initial target for an O-iteration 1.0e+3

ηA Line-search Armijo sufficient reduction 1.0e-2

ηF Line-search sufficient reduction for ∥F∥ 0.9

γA Line-search factor for reducing an Armijo step 0.5

funb Unbounded objective -1.0e+12

Mmax Constants in line-search tolerance (4.2a) and (4.2b) 1.0e+12

Fmax Constant in the line-search tolerance (4.2c) 1.0e+8

σ Bound perturbation in the definition of Ωk (4.1) 0.8

kmax Iteration limit 500

but a constant objective function. In an attempt to create a unique solution for
comparison purposes, all the feasibility problems were modified to find the feasible
point of least Euclidean length. For example, in terms of the problem format (NIPs)
the constant objective function was replaced by 1

2∥x∥
2.

The BC, LC, NC and QP subsets were selected based on the number of variables
and general constraints. In particular, a problem was chosen if the associated KKT

system was of the order of 2000 or less. The same criterion was used to set the
dimension of those problems for which the problem size can be specified. The only
eligible problem omitted from the test-set was lhaifam, which generated a floating-
point exception when computed at the initial point. A complete list of the problems
tested, together with additional details of the number of function evaluations and
iterations needed for each problem is given by Gill and Zhang [20].

Each CUTEst problem may be written in the general form (NIP). In this format,
a fixed variable or an equality constraint has the same value for its upper and
lower bounds. A variable or constraint with no upper or lower limit is indicated
by a bound of ±1020. The approximate Newton equations for problem (NIP) are
derived by Gill and Zhang [19]. As is the case for problem (NIPs) the principal
work at each iteration is the solution of a reduced (n+m)× (n+m) KKT system
analogous to (3.12). Each KKT matrix was factored using the Matlab built-in
command LDL, which uses the routine MA57 [7]. If the inertia of this matrix was
incorrect, i.e., the matrix was singular or had more than m negative eigenvalues,
the Hessian of the Lagrangian H was modified using the method of Wächter and
Biegler [27, Algorithm IC, p. 36], which factors the KKT matrix with δIn added to
H. At any given iteration the value of δ is increased from zero if necessary until the
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inertia of the KKT matrix is correct.

The initial primal-dual estimate (x0, y0) was based on the default initial values
supplied by CUTEst. If necessary, x0 was projected onto the set

{
x : ℓX ≤ x ≤ uX

}
to ensure feasibility with respect to the bounds on x. An algorithm was considered to
have converged if the iterates were terminated at a point that satisfied the conditions
(6.1a)–(6.1b) and (6.2) defined in terms of the constraints associated with problem
(NIP).

We note that an interior-point method that does not use shifts would require
a strictly interior starting point, which implies that the choice of default CUTEst
starting point would not be possible in this situation. Moreover, this choice of
starting point illustrates the potential benefits of using shifts for performing a warm-
start. The CUTEst QP problems ferrisdc and linspanh both have a solution at
the initial point. All three algorithms pdb, pdbAll and pdProj recognize the initial
point as being optimal and terminate immediately.

6.2. Performance profiles

The runs were done using Matlab version R2022b on an iMac Pro with a 3.0 GHz
Intel Xeon W processor and 128 GB of 800 MHz DDR4 RAM running macOS, ver-
sion 12.6.8 (64 bit). The overall cpu-time required by a constrained optimization
method is dominated by the time needed to solve the KKT equations and the time to
evaluate the problem functions (i.e., the objective and constraint functions and their
derivatives). Given the difficulty of accurately measuring cpu time in a multipro-
cessor and multiuser computing environment, function and iteration performance
profiles provide a clear, accurate and concise way to display the relative efficiencies
of methods. Performance profiles are particularly effective when comparing methods
on problems for which the cpu time is negligible.

Performance profiles were proposed by Dolan and Moré [6]. Let P denote a set
of problems used for a given numerical experiment. For each method s we define
the function πs : [0, rM ] 7→ R+ such that

πs(τ) =
1

np

∣∣{ p ∈ P : log2(rp,s) ≤ τ
}∣∣ ,

where np is the number of problems in the test set and rp,s denotes the ratio of the
number of function evaluations needed to solve problem p with method s and the
least number of function evaluations needed to solve problem p. If method s failed
for problem p, then rp,s is set to be twice the maximal ratio. The parameter rM is the
maximum value of log2(rp,s). Figures 1–5 give the function-evaluation and iteration
performance profiles for the HS, BC, LC, NC and QP test-sets respectively. The
profiles show the benefits of shifting both primal and dual variables, as well as using
a projected-search method based on the primal-dual search direction. The proposed
method pdProj outperforms the other two solvers in terms of both efficiency and
robustness. In particular, the number of times that the search direction must be
computed is substantially reduced. This reduction is most pronounced when the
problem is a quadratic program.
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Figure 1: Performance profiles for the primal-dual interior-point algorithms pdb, pdbAll and
pdProj applied to all 126 Hock-Schittkowski (HS) problems from the CUTEst test set. The left
figure gives the profiles for the number of function evaluations. The right figure gives the profiles
for the number of iterations.

7. Conclusions

A new projected-search primal-dual interior-point method has been formulated and
analyzed for constrained optimization problems. The method is based on com-
bining a new primal-dual interior-point method with a projected-search method for
bound-constrained optimization that uses a flexible non-monotone quasi-Armijo line
search. The projected-search method projects the underlying search direction onto
a superset of the feasible region defined by perturbing the constraint bounds. With
this approach the direction of the search path may change multiple times along the
boundary of the perturbed feasible region at the cost of computing a single direction.
The direction for the projected search is an approximate Newton direction associ-
ated with minimizing a shifted primal-dual penalty-barrier function. This function
involves a primal-dual shifted penalty term for the equality constraints in conjunc-
tion with an analogous primal-dual shifted barrier term for enforcing the inequality
constraints and the nonnegativity constraints on their associated multipliers. It
is shown that a specific approximate Newton method for the unconstrained mini-
mization of the penalty-barrier function generates directions that are identical to
those associated with a variant of the conventional path-following method. In this
context the penalty-barrier function is used as a merit function for assessing points
generated by Newton’s method for a zero of the path-following equations. Numer-
ical results from a large number of test problems from the CUTEst test collection
indicate that the use of a projected search can significantly reduce the number of
iterations, thereby reducing the number of times that a search direction must be
computed. In particular, the numerical results indicates that the method is par-
ticularly well-suited to solving the quadratic programming subproblem in an SQP
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Figure 2: Performance profiles for the primal-dual interior-point algorithms pdb, pdbAll and
pdProj applied to 139 bound-constrained (BC) problems from the CUTEst test set. The left figure
gives the profiles for the number of function evaluations. The right figure gives the profiles for the
number of iterations.

method. In this context the work per iteration is dominated by the cost of solving
a large symmetric indefinite system of equations for the search direction. Moreover,
the shifts on the primal and dual variables allow the method to be safely “warm
started” from the solution of the preceding QP subproblem.

Future work will consider the implementation of the method within an SQP

solver, the integration of the method with iterative KKT solvers and the extension
of the method to a stochastic setting.
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