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Abstract

Stabilized sequential quadratic programming (sSQP) methods for nonlinear optimiza-
tion generate a sequence of iterates with fast local convergence regardless of whether or
not the active-constraint gradients are linearly dependent. This paper concerns the lo-
cal convergence analysis of an sSQP method that uses a line search with a primal-dual
augmented Lagrangian merit function to enforce global convergence. The method is
provably well-defined and is based on solving a strictly convex quadratic programming
subproblem at each iteration. It is shown that the method has superlinear local con-
vergence under assumptions that are no stronger than those required by conventional
stabilized SQP methods. The fast local convergence is obtained by allowing a small
relaxation of the optimality conditions for the quadratic programming subproblem in
the neighborhood of a solution. In the limit, the line search selects the unit step length,
which implies that the method does not suffer from the Maratos effect. The analysis
indicates that the method has the same strong first- and second-order global conver-
gence properties that have been established for augmented Lagrangian methods, yet is
able to transition seamlessly to sSQP with fast local convergence in the neighborhood
of a solution. Numerical results on some degenerate problems are reported.
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1. Introduction

Sequential quadratic programming (SQP) methods are an important class of methods for
minimizing a smooth nonlinear function subject to both equality and inequality constraints.
This paper concerns the local convergence properties of a new stabilized SQP method for
the solution of a nonlinear optimization problem written in the form

(NP) minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0,

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. For problem
(NP), the matrix J(x) denotes the m× n constraint Jacobian, which has ith row ∇ci(x)T,
the gradient of the ith constraint function ci at x. The Lagrangian associated with (NP) is
L(x, y, z) = f(x)−c(x)Ty−zTx, where y and z arem- and n-vectors of dual variables associ-
ated with the equality constraints and nonnegativity constraints, respectively. The Hessian
of the Lagrangian with respect to x is denoted by H(x, y) = ∇2f(x)−

∑m
i=1 yi∇2ci(x).

At each iteration of a conventional line-search merit-function SQP method, a sufficient
decrease in a merit function is obtained by performing a line search in the direction of a
solution of a quadratic programming (QP) subproblem in which a local quadratic model
of the Lagrangian is minimized subject to the linearized constraints. The merit function is
designed to provide a measure of the quality of a given point as an estimate of a solution
of the nonlinearly constrained problem. (For a recent survey of SQP methods, see Gill and
Wong [17].) Stabilized sequential quadratic programming (sSQP) methods are designed to
improve the poor local convergence rate that can occur when a conventional SQP method
is applied to an ill-posed or degenerate problem. Given an estimate (xk, yk) in the neigh-
borhood of a primal-dual solution (x∗, y∗) of problem (NP), sSQP methods compute a new
solution estimate based on the properties of a QP subproblem of the form

minimize
x,y

∇f(xk)T(x− xk) +
1
2 (x− xk)

TH(xk, yk)(x− xk) +
1
2µk∥y∥2

subject to c(xk) + J(xk)(x− xk) + µk(y − yk) = 0, x ≥ 0,
(1.1)

where µk is a positive scalar of the order of the distance of (xk, yk) to the set of solutions
of (NP). The QP subproblem associated with a conventional SQP method corresponds to
the value µk = 0. The terms in the objective and constraints of (1.1) associated with µk

serve to bound the change in the dual variables and provide a sequence of iterates with
fast local convergence regardless of whether or not the active-constraint gradients are lin-
early dependent. The first sSQP method was proposed by Wright [32], who established a
superlinear rate of convergence of the solutions {(xk, yk)} of (1.1) under the assumptions of
strict complementarity and the satisfaction of the Mangasarian-Fromovitz constraint qual-
ification. These assumptions were relaxed by Hager [19], and more recently by Fernández
and Solodov [9], and Solodov and Izmailov [24]. Independently, Fischer [10] proposed an
algorithm in which an auxiliary QP problem is solved for the multiplier estimate of the
conventional QP subproblem. This method also has superlinear convergence under appro-
priate assumptions. The analysis of a conventional sSQP method concerns the sequence
{(xk, yk)} of solutions of the QP subproblem (1.1). Other methods related to sSQP identify
an estimate of the optimal active set and then solve an equality constrained or inequality
constrained QP defined in terms of a subset of the constraints. Constraints omitted from the
estimated active set are allowed to be violated slightly. Wright [33,34] includes only a subset
of the linearized constraints in an inequality constrained sSQP subproblem. Wright [35],
and Oberlin and Wright [31] use an auxiliary inequality constrained subproblem to estimate
the optimal active set and then solve an sSQP subproblem with only equality constraints.
Izmailov and Solodov [21] also use an auxiliary subproblem, but solve an unstabilized equal-
ity constrained problem using a rank detection method to treat any linear dependence in
the linearized constraints.
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All of these sSQP methods can be shown to exhibit fast local convergence under suitable
assumptions. It should be emphasized that, with the notable exception of Wright [35],
previous analyses of sSQP methods do not pertain to a consistent, well-defined algorithm.
They show only that if a specific local solution of a nonconvex QP subproblem is found,
then these solutions converge at a superlinear rate. Unfortunately, in a practical method,
there is no guarantee that a nonconvex QP solver will find the specific solution required
for the theory. This problem is in addition to the well-known difficulties associated with
solving a nonconvex QP, i.e., the potential for multiple and unbounded solutions. (See
Kungurtsev [27, Chapter 5] for a discussion of these issues.)

Although sSQP methods exhibit fast local convergence, they come with little global
convergence theory, so that stabilized methods must start by solving the QP subproblem
associated with a conventional (globally convergent) SQP method and switch to the stabi-
lized QP strategy when it is determined that the iterates are in the proximity of a solution.
Moreover, as mentioned above, many sSQP methods require the solution of an auxiliary
inequality-constrained subproblem at each outer iteration, usually a linear program (LP).

In this paper we consider the local convergence properties of a globally convergent sSQP
method that does not require a switch to a conventional SQP method or the solution of an
auxiliary inequality constrained subproblem. The method is based on using a primal-dual
augmented Lagrangian merit function in conjunction with a line search to enforce global
convergence. At each iteration, an estimate of the solution is computed by minimizing a
strictly convex local quadratic model of the augmented Lagrangian subject to simple bound
constraints. This subproblem is formally equivalent to a QP problem that is closely related
to the QP subproblem associated with sSQP.

The principal contributions are the following. (i) A local descent step is proposed that is
based on allowing a small relaxation of the optimality conditions for the bound-constrained
subproblem. It is shown that this step provides iterates that are equivalent to those from
a conventional sSQP method when close to the solution. This equivalence holds under
conditions that are no stronger than those required to establish the superlinear convergence
of a conventional sSQP method. (ii) A local convergence analysis is given that does not
require the assumption of a constraint qualification or strict complementarity condition. (iii)
It is shown that the step length of one is selected in the limit, which implies that the method
does not suffer from the Maratos effect (see Maratos [28]). As far as we are aware, this is
the only stabilized SQP method with this property. (iv) Although exact second-derivatives
are used, the method does not require the solution of a nonconvex QP subproblem—a
problem that is known to be NP-hard. In addition, the local convergence theory makes no
assumptions about which local solution of the QP subproblem is computed. (v) Preliminary
numerical results indicate that the method has good global and local convergence properties
for degenerate problems under weak regularity assumptions. Overall, the local analysis of
this paper and the global analysis of [14] imply that the proposed method has the same
strong first- and second-order global convergence properties that have been established for
augmented Lagrangian methods, yet is able to transition seamlessly to sSQP with fast local
convergence in the neighborhood of a solution.

The remainder of the paper is organized as follows. This section concludes with a
summary of the notation. Section 2 contains a description of the second-order primal-dual
sSQP method. The local convergence properties of the method are established in Sect. 3. In
Sect. 4, methods are discussed for solving the sSQP subproblems, and numerical results are
provided. Although this paper describes the method in its entirety, the reader is referred
to [14] for a complete analysis of the global convergence, as well as additional details of the
method that are not related to the local analysis.

Unless explicitly indicated otherwise, ∥ · ∥ denotes the vector two-norm or its induced
matrix norm. Given vectors a and b with the same dimension, the vector with ith component
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aibi is denoted by a · b. Similarly, min(a, b) is the vector with components min(ai, bi). The
vectors e and ej denote, respectively, the column vector of ones and the jth column of the
identity matrix I. The dimensions of e, ei and I are defined by the context. The set of
integers {1, 2, . . . , n} is denoted by 1 :n. Given vectors x and y, the vector consisting of
the elements of x augmented by elements of y is denoted by (x, y). The value of a scalar-,
vector- or matrix-valued function F with arguments x and y will be written as either F (x, y)
or F (v), where v is the vector (x, y). The ith component of a vector labeled with a subscript
will be denoted by [ · ]i, e.g., [ v ]i is the ith component of the vector v. For a given ℓ-vector
u and index set S, the quantity [u ]S denotes the subvector of components uj such that
j ∈ {1, 2, . . . , ℓ } ∩ S. Similarly, if M is a symmetric ℓ× ℓ matrix, then [M ]S denotes the
symmetric matrix with elements mij for i, j ∈ {1, 2, . . . , ℓ }∩S. Let {αj}j≥0 be a sequence
of scalars, vectors or matrices and let {βj}j≥0 be a sequence of positive scalars. If there
exists a positive constant γ such that ∥αj∥ ≤ γβj , we write αj = O(βj). If there exists a
sequence {γj} → 0 such that ∥αj∥ ≤ γjβj , we say that αj = o(βj). If there exist positive
constants γ1 and γ2 such that γ1βj ≤ ∥αj∥ ≤ γ2βj , we write αj = Θ

(
βj
)
.

2. The Primal-Dual Stabilized SQP Algorithm

The proposed algorithm is designed to find first- and second-order KKT pairs associated
with problem (NP). A vector x∗ is a first-order KKT point for problem (NP) if there exists
a dual vector y∗ such that r(x∗, y∗) = 0, where

r(x, y) =
∥∥(c(x),min

(
x,∇f(x)− J(x)Ty

))∥∥ . (2.1)

Any (x∗, y∗) satisfying r(x∗, y∗) = 0, is called a first-order KKT pair. For arbitrary vectors
x and y of appropriate dimension, the scalar r(x, y) provides a practical estimate of the
distance of (x, y) to a first-order KKT pair of problem (NP). If, in addition, (x∗, y∗) satisfies
the condition pTH(x∗, y∗)p ≥ 0 for all p such that J(x∗)p = 0, with pi ≥ 0 for all i such that
x∗i = 0, then (x∗, y∗) is referred to as a second-order KKT pair. In general, the Lagrange
multiplier associated with a first-order KKT point is not unique, and the set of Lagrange
multiplier vectors is given by

Y(x∗) = {y ∈ Rm : (x∗, y) satisfies r(x∗, y) = 0}.

The algorithm is based on replacing problem (NP) by a sequence of problems

minimize
x∈Rn,y∈Rm

M(x, y ; yE

k , µk) subject to x ≥ 0,

where M(x, y ; yE

k , µk) is the primal-dual function

M(x, y ; yE

k , µk) = f(x)− c(x)TyE

k +
1

2µk
∥c(x)∥2 + 1

2µk
∥c(x) + µk(y − yE

k)∥2, (2.2)

with µk a positive penalty parameter and yE

k an estimate of a Lagrange multiplier vector
for problem (NP). The method has an inner/outer iteration structure in which each outer
iteration involves the minimization of a quadratic model of M subject to the nonnegativity
constraints. The inner iterations are then those of the active-set method used to find an
approximate bound-constrained minimizer of the quadratic model. If the Hessian of M
is not positive definite, a direction of negative curvature for M is computed. A direction
obtained by solving the QP subproblem is combined with the direction of negative curvature
(if one is computed) to give a search direction for a line search designed to find a step of
sufficient decrease in M(x, y ; yE

k , µk).
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Each outer iteration involves the definition of two related QP subproblems associated
with the primal-dual function (2.2). The objective function in both subproblems is defined
in terms of the gradient ∇M and a matrix that approximates the Hessian ∇2M . For values
of yE and µ, the gradient ∇M(x, y ; yE , µ) and Hessian ∇2M(x, y ; yE , µ) at (x, y) may be
written in the form (

∇f(x)− J(x)T
(
π(x ; yE , µ) + (π(x ; yE , µ)− y)

)
µ(y − π(x ; yE , µ))

)
,

and (
H
(
x, π(x ; yE , µ) + (π(x ; yE , µ)− y)

)
+ 2

µJ(x)
TJ(x) J(x)T

J(x) µI

)
,

where π is the vector-valued function π(x ; yE , µ) = yE − c(x)/µ.
Let (xk, yk) be the kth estimate of a primal-dual solution of (NP). Let v and vk denote

the (n + m)-vectors of primal-dual variables (x, y) and (xk, yk). Given a second penalty
parameter µR

k such that 0 < µR

k ≤ µk, the change in M at vk may be approximated by the
quadratic function Qk(v ; y

E

k , µ
R

k), where

Qk(v ; y
E , µR) = ∇M(vk ; y

E , µR)T(v − vk) +
1
2 (v − vk)

TB(vk ;µ
R)(v − vk), (2.3)

and the matrix B(vk ;µ
R

k) is obtained by replacing π(xk ; y
E

k , µ
R

k) by yk in the leading block
of the Hessian matrix ∇2M(xk, yk ; y

E

k , µ
R

k), i.e.,

B(xk, yk ;µ
R

k) =

(
H(xk, yk) +

2

µR
k

J(xk)
TJ(xk) J(xk)

T

J(xk) µR

kI

)
. (2.4)

The matrix B(xk, yk ;µ
R

k) is independent of π and therefore does not involve yE

k . If (x∗, y∗)
satisfies certain second-order sufficient conditions for an optimal solution of problem (NP),
then, for the values vk = (x∗, y∗) and yE

k = yk, there exists a positive µ̄ such that for all
0 < µR

k < µ̄, the point (x∗, y∗) satisfies the second-order sufficient optimality conditions for
the QP subproblem

minimize
v

Qk(v ; y
E

k , µ
R

k) subject to [ v ]i ≥ 0, i = 1 :n (2.5)

(see Gill, Kungurtsev and Robinson [14]). The benefit of using B(xk, yk ;µ
R

k) and not
∇2M(xk, yk ; y

E

k , µ
R

k) in the definition of the quadratic function (2.3) is that the QP sub-
problem (2.5) is formally equivalent to the QP subproblem

minimize
x,y

∇f(xk)T(x− xk) +
1
2 (x− xk)

TH(xk, yk)(x− xk) +
1
2µ

R

k∥y∥2

subject to c(xk) + J(xk)(x− xk) + µR

k(y − yE

k) = 0, x ≥ 0

(see Gill and Robinson [16]). A comparison of this subproblem and (1.1) indicates that
setting yE

k = yk in the definition of (2.3) and forcing µR

k → 0 as (xk, yk) converges to a
primal-dual solution (x∗, y∗) will induce the method to behave like an sSQP method and
thereby inherit the same fast local convergence rate.

At the outermost level, the method may be regarded as a primal-dual augmented La-
grangian method for which the parameters {yE

k} and {µk} are adjusted to give global conver-
gence. However, the sequence of penalty parameters {µR

k} is chosen in such a way that, in the
neighborhood of a solution, the search direction is equivalent to that defined by an sSQP
method. In this context, µR

k plays the role of a regularization or stabilization parameter
rather than a penalty parameter, thereby providing an O(µR

k) estimate of the conventional
SQP direction (see Gill and Robinson [16]).
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The next four sections provide some additional details of the algorithm, with an emphasis
on those aspects related to the local convergence analysis. More details of the computation,
including a step-by-step description of the main algorithms, may be found in Gill, Kungurt-
sev and Robinson [14]. In Sect. 2.1 we provide details of how the parameters yE

k , µk and
µR

k are defined. In Sect. 2.2 we consider the definition of the QP subproblem and show that
although the QP (2.5) cannot be used directly as a local quadratic model of M , it forms
the basis for two approximate convex QP subproblems, one with inequality constraints, and
the other with only equality constraints. In Sect. 2.3 we give a brief outline of the flexible
line search. Finally, Sect. 2.4 provides a brief summary of the algorithm.

2.1. Definition of the penalty parameters and multiplier estimate

At the start of the kth outer iteration, (xk, yk) is known, as well as the regularization
parameter µR

k−1 and penalty parameter µk−1. The first step is to compute yE

k and µR

k for the
new iteration. These parameters are defined in terms of an estimate of the optimal active
set of problem (NP). This estimate involves a positive scalar ϵ that reflects the distance of
(x, y) to a first-order optimal pair for problem (NP). The ϵ-active set is defined as

Aϵ(x, y, µ) =
{
i : xi ≤ ϵ, with ϵ ≡ min

(
ϵa, max

(
µ, r(x, y)γ

) )}
, (2.6)

where γ and ϵa are fixed scalars satisfying 0 < γ < 1 and 0 < ϵa < 1, and r(x, y) is the
nonnegative scalar of (2.1). Similarly, the ϵ-free set is the complement of Aϵ in {1, 2, . . . ,
n+m}, i.e.,

Fϵ(x, y, µ) = {1, 2, . . . , n+m} \ Aϵ(x, y, µ). (2.7)

The calculation of yE

k and µR

k also requires the scalar ξk (ξk ≥ 0), which is an estimate
of the magnitude of the “most negative” eigenvalue of BFϵ

(vk ;µ
R

k−1). The scalar ξk is

computed as part of the scalar-vector pair (ξk, s
(1)
k ) such that

s
(1)T
k B(vk ;µ

R

k−1)s
(1)
k = −ξk∥u

(1)
k ∥2, (2.8)

where u
(1)
k is the vector of first n components of s

(1)
k . If ξk = 0, then s

(1)
k = 0. If

BFϵ
(vk ;µ

R

k−1) is positive definite then (ξk, s
(1)
k ) = 0. (The calculation of ξk is discussed

further in [14, Algorithm 1] and Sect. 2.2.) The values of yE

k and µR

k depend on scalars
ϕmax

V,k−1, ϕ
max
O,k−1 and τk−1 defined below. The magnitudes of ϕmax

V,k−1, ϕ
max
O,k−1 and τk−1 reflect

the distance of (xk, vk) to an optimal point.
The multiplier estimate yE

k is set to yk if (xk, yk) gives an improvement in a measure
of the distance to a second-order solution (x∗, y∗). The algorithm uses the feasibility and
optimality measures η(xk) and ω(xk, yk, ξk) such that

η(xk) = ∥c(xk)∥, and

ω(xk, yk, ξk) = max
(∥∥min(xk, ∇f(xk)− J(xk)

Tyk)
∥∥ , ξk) . (2.9)

Given η(xk) and ω(xk, yk, ξk), weighted combinations of the feasibility and optimality mea-
sures are defined as

ϕV (xk, yk) = η(xk) + βω(xk, yk, ξk), and

ϕO(xk, yk, ξk) = βη(xk) + ω(xk, yk, ξk),

where β is a fixed scalar such that 0 < β ≪ 1. (With this notation, “V” indicates a measure
of the constraint violations and “O” denotes a measure of the distance to optimality.) The
assignment yE

k = yk is done if

ϕV (vk) ≤ 1
2ϕ

max
V,k−1 or ϕO(vk, ξk) ≤ 1

2ϕ
max
O,k−1. (2.10)
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The point (xk, yk) is called a “V-iterate” if it satisfies the bound on ϕV (vk), and an “O-
iterate” if it satisfies the bound on ϕO(vk, ξk). A “V-O iterate” is a point at which one
or both of these conditions holds, and the associated iteration is called a “V-O iteration.”
For a V-O iteration, new values are given by τk = 1

2τk−1, and ϕ
max
V,k = 1

2ϕ
max
V,k−1 or ϕmax

O,k =
1
2ϕ

max
O,k−1, depending on which of the inequalities in (2.10) holds. Also, the new regularization

parameter is

µR

k =

{
min

(
µR
0 , max

(
rk, ξk

)
γ
)

if max
(
rk, ξk

)
> 0;

1
2µ

R

k−1 otherwise,
(2.11)

where rk = r(xk, yk) is defined in (2.1).
If the conditions for a V-O iteration do not hold, a test is made to determine if (xk, yk)

is an approximate second-order solution of the problem

minimize
x,y

M(x, y ; yE

k−1, µ
R

k−1) subject to x ≥ 0.

In particular, (xk, yk) is tested using the conditions:

∥min
(
xk,∇xM(xk, yk ; y

E

k−1, µ
R

k−1)
)
∥ ≤ τk−1,

∥∇yM(xk, yk ; y
E

k−1, µ
R

k−1)∥ ≤ τk−1µ
R

k−1, and

ξk ≤ τk−1,

 (2.12)

where τk−1 is a positive tolerance. If these conditions are satisfied, then (xk, yk) is called
an “M-iterate” and the parameters are updated as in a typical conventional augmented
Lagrangian method, with the multiplier estimate yE

k−1 replaced by the safeguarded value

yE

k = max
(
− ymaxe, min( yk, ymaxe )

)
for some large positive scalar constant ymax, and the new regularization parameter is given
by

µR

k =

{
min

(
1
2µ

R

k−1, max
(
rk, ξk

)
γ
)
, if max(rk, ξk) > 0;

1
2µ

R

k−1, otherwise.

In addition, a new tolerance τk is computed such that τk = 1
2τk−1.

Finally, if neither (2.10) nor (2.12) are satisfied, then yE

k = yE

k−1, µ
R

k = µR

k−1, ϕ
max
V,k =

ϕmax
V,k−1, ϕ

max
O,k = ϕmax

O,k−1, and τk = τk−1. As the multiplier estimates and regularization
parameter are fixed at their current values in this case, (xk, yk) is called an “F-iterate”.

2.2. Definition of the quadratic model and line-search direction

The bound-constrained problem (2.5) is not suitable for the calculation of a search direction
because B(vk ;µ

R

k) is not positive definite in general. A nonconvex QP can have many local
minima and may be unbounded. In addition, the certification of a second-order solution of
a nonconvex QP is computationally intractable in certain situations. These difficulties are
avoided by approximating subproblem (2.5) by the convex QP

minimize
v

Q̂k(v ; y
E

k , µ
R

k) subject to [ v ]i ≥ 0, i = 1 :n, (2.13)

where Q̂k(v ; y
E

k , µ
R

k) is the strictly convex quadratic model

Q̂k(v ; y
E

k , µ
R

k) = ∇M(vk ; y
E

k , µ
R

k)
T(v − vk) +

1
2 (v − vk)

TB̂(vk ;µ
R

k)(v − vk), (2.14)
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with B̂(vk ;µ
R

k) a positive-definite approximation of B(vk ;µ
R

k) of the form

B̂(vk ;µ
R

k) =

(
Ĥ(xk, yk) +

2

µR
k

J(xk)
TJ(xk) J(xk)

T

J(xk) µR

kI

)
, (2.15)

where Ĥ(xk, yk) is defined so that B̂(xk, yk ;µ
R

k) is positive definite, and B̂Fϵ
(xk, yk ;µ

R

k) is

equal to BFϵ
(xk, yk ;µ

R

k) if BFϵ
(xk, yk ;µ

R

k) is positive definite. The matrix B̂ is computed by
a process known as “convexification” (see [16, Sect. 4] for details). If the unique solution of
the subproblem (2.13) is denoted by v̂k, then the associated direction vector starting from
vk is given by dk = v̂k − vk. The vector dk found by solving (2.13) is known as the global
descent direction because of its crucial role in the proof of global convergence.

An important property of the proposed method is the ability to compute a direction
dk from an alternative QP subproblem that has only equality constraints. The optimality
conditions for the QP subproblem (2.5) at an optimal point v̂k = vk + dk are given by

[∇Qk(vk + dk ; y
E

k , µ
R

k) ]F = 0, [∇Qk(vk + dk ; y
E

k , µ
R

k) ]A ≥ 0, and

[ vk + dk ]i ≥ 0 for i = 1 :n,

where [ · ]A and [ · ]F denote vectors with components from the active/free sets

A(x) = {i : [x ]i = 0} and F(x) = {1 :n+m} \ A(x),

at v̂k = vk + dk.
If strict complementarity does not hold for (NP), then some of the components of y∗

associated with variables on their bounds may be zero, in which case some QPs defined at xk
near x∗ may have multipliers that are close to zero. In this situation the QP algorithm may
remove active-set indices associated small negative multipliers at one outer iteration, only to
add them again at the next. This inefficiency is prevented using an approximate QP solution
in which small negative multipliers are regarded as being optimal. If BFϵ

is positive definite
and vk is a V-O iterate (in which case yE

k = yk), the solution of the equality-constraint QP
subproblem

minimize
v

Qk(v ; y
E

k , µ
R

k) subject to [ v ]Aϵ = 0, (2.16)

is unique. As in the case of a global descent direction, the solution v̂k may be defined in
terms of a step dk from the point vk using the optimality conditions

[ vk + dk ]Aϵ
= 0, [∇Qk(vk + dk ; y

E

k , µ
R

k) ]Fϵ
= 0, (2.17)

with no nonnegativity restriction on the components of the gradient vector [∇Qk(vk +
dk ; y

E

k , µ
R

k) ]Aϵ
. The unique direction satisfying these equations is referred to as the local

descent direction. When computed, it is used as the vector dk in the line search only if
certain conditions hold. Let

tk = r(xk, yk)
λ, where 0 < λ < min{γ, 1− γ} < 1, (2.18)

and γ is the parameter used in the definition (2.6) of the ϵ-active set. The local descent
direction dk satisfying (2.17) is used in the line search when

[ vk + dk ]i ≥ 0, i = 1 :n, [∇Qk(vk + dk ; y
E

k , µ
R

k) ]Aϵ
≥ −tke, and ∇MT

k dk < 0. (2.19)

These conditions may be satisfied at any iterate, but are most likely to be satisfied in the
neighborhood of a solution. If the local descent direction does not satisfy the conditions
(2.19) and is therefore not selected for the line search, it is used to initialize the active-set
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method for solving (2.13). In this sense, the equality-constrained subproblem (2.16) is not
an auxiliary subproblem, but one that must be solved anyway as part of the solution of the
QP subproblem (2.13) (for more details, see Sect. 4).

The line-search direction ∆vk is the sum of two vectors dk and sk. The vector dk is either
the global descent direction or local descent direction as computed above. The vector sk,
if nonzero, is a direction of negative curvature for the quadratic model Qk(v ; y

E

k−1, µ
R

k−1).

The vector sk has the form sk = (uk, wk) and is a scalar multiple of the vector s
(1)
k of (2.8)

defined such that

sTk B(vk ;µ
R

k)sk ≤ 0, ∇M(vk ; y
E

k , µ
R

k)
Tsk ≤ 0, and [ vk + dk + sk ]i ≥ 0, i = 1 :n. (2.20)

The direction sk is zero if no negative curvature is detected, but sk must be nonzero if ξk > 0
and dk = 0 (see [14, Lemma 2.2]), which ensures that the line-search direction is nonzero at
a first-order stationary point vk at which BFϵ

(xk, yk ;µ
R

k−1) is not positive semidefinite.

2.3. Computation of the line-search step

Once the directions dk and sk have been computed, a flexible line search is performed based
on the search direction ∆vk = dk + sk. (The idea of a flexible line search was proposed by
Curtis and Nocedal [4] in the context of minimizing an l1 penalty function, and extended
to the augmented Lagrangian function by Gill and Robinson [16].)

For a given line-search penalty parameter µ, an Armijo condition is used to define a
reduction in the function Ψk(α ;µ) = M(vk + α∆vk ; y

E

k , µ) that is at least as good as the
reduction in the line-search model function

ψk(α ;µ, ℓk) = Ψk(0 ;µ) + αΨ ′
k(0 ;µ) +

1
2 (ℓk − 1)α2 min

(
0, ∆vTk B(xk, yk ;µ

R

k−1)∆vk
)
,

where Ψ ′
k denotes the derivative with respect to α. The scalar ℓk is either 1 or 2, depending

on the order of the line-search model function. The value ℓk = 1 implies that ψk is an affine
function, which gives a first-order line-search model. The value ℓk = 2 defines a quadratic
ψk and gives a second-order line-search model. The first-order line-search model is used
when dk ̸= 0, sk = 0, and (xk, yk) is a V-O iterate. This is crucial for the proof that the
line-search algorithm returns the step length of one in the neighborhood of a second-order
solution (see Theorem 3.2 below).

Given a fixed parameter γS ∈ (0, 12 ), the flexible line search attempts to compute an αk

that satisfies the modified Armijo condition

Ψk(0 ;µ
F

k)− Ψk(αk ;µ
F

k) ≥ γS

(
ψk(0 ;µ

R

k, ℓk)− ψk(αk ;µ
R

k, ℓk)
)

(2.21)

for some µF

k ∈ [µR

k, µk]. The required step is found by repeatedly reducing αk by a constant
factor until ρk(αk ;µk, ℓk) ≥ γS or ρk(αk ;µ

R

k, ℓk) ≥ γS, where

ρk(α ;µ, ℓ) =
(
Ψk(0 ;µ)− Ψk(α ;µ)

)
/
(
ψk(0 ;µ

R

k, ℓ)− ψk(α ;µR

k, ℓ)
)
.

(Just prior to the line search, the line-search penalty parameter µk is increased if necessary
to ensure that µk ≥ µR

k, i.e., µk = max(µR

k, µk).)
The Armijo procedure is not executed in two situations. First, if dk = sk = 0, then the

step length is set at αk = 1. Second, αk is set to zero if dk = 0, ∇M(vk ; y
E

k , µ
R

k)
Tsk = 0, and

the magnitude of the curvature of the merit function in the direction of sk is not sufficiently
large compared to ξk, the magnitude of the curvature of the quadratic model. The magnitude
of the negative curvature is considered to be insufficient if −sTk ∇2M(vk ; y

E

k , µ
R

k)sk/∥uk∥2 ≤
γSξk, where uk is the vector of first n components of sk. In either case, vk+1 = vk and it
must hold that a µR

k such that µR

k < µR

k−1 is used in the next iteration (see Lemmas 2.3(2)
and 2.4(3) of [14]).



10

Once αk has been found, the next penalty parameter is set as

µk+1 =

{
µk, if ρk(αk ;µk, ℓk) ≥ γS, or dk = sk = 0, or αk = 0;

max
(
1
2µk, µ

R

k

)
, otherwise.

(2.22)

The aim is to decrease the penalty parameter only when the merit function computed with
µk is not sufficiently reduced by the trial step.

2.4. Algorithm summary

The computation associated with the kth iteration of the main algorithm may be arranged
into seven principal steps.

1. Given (xk, yk) and the regularization parameter µR

k−1 from the previous iteration,
compute Fϵ(xk, yk, µ

R

k−1) and B(vk ;µ
R

k−1). Compute the nonnegative scalar ξk and

vector s
(1)
k such that s

(1)T
k B(vk ;µ

R

k−1)s
(1)
k = −ξk∥u

(1)
k ∥2, where ξk ≥ 0 and u

(1)
k is the

vector of first n components of s
(1)
k . If ξk > 0, then ξk approximates the magnitude of

the “most negative” or “least” eigenvalue of BFϵ
(vk ;µ

R

k−1). If ξk = 0, then s
(1)
k = 0.

If BFϵ
(vk ;µ

R

k−1) is positive definite then (ξk, s
(1)
k ) = 0. (See [14, Algorithm 1].)

2. Terminate if the following conditions hold:

r(xk, yk) ≤ τstop, ξk ≤ τstop, and µR

k−1 ≤ τstop, (2.23)

where τstop is a preassigned stopping criterion. If these conditions are satisfied, xk is
an approximate second-order KKT point.

3. Compute yE

k and µR

k for the kth iteration based on the values ξk, r(xk, yk), y
E

k−1, µ
R

k−1,
ϕmax

V,k−1, ϕ
max
O,k−1 and τk−1. Compute new values for ϕmax

V,k , ϕmax
O,k , τk. (See Steps 13–24 of

Algorithm 5 [14].)

4. Terminate if xk is an M-iterate such that

min
(
∥c(xk)∥, τstop

)
> µR

k, and ∥min
(
xk, J(xk)

Tc(xk)
)
∥ ≤ τstop. (2.24)

If these conditions are satisfied, xk is an approximate infeasible stationary point of
the problem min ∥c(x)∥2 subject to x ≥ 0.

5. Compute a positive-definite matrix B̂(vk ;µ
R

k) such that B̂Fϵ
(xk, yk ;µ

R

k) = BFϵ
(xk, yk ;µ

R

k)
if the matrix BFϵ

(xk, yk ;µ
R

k) is positive definite. Compute dk = v̂k − vk, where v̂k
is the solution of either the equality-constraint QP subproblem (2.16) or the strictly
convex QP subproblem (2.13). In either case, dk has the form dk = (pk, qk), where
the primal components pk satisfy xk + pk ≥ 0. (See [14, Algorithm 2].)

6. Rescale the direction s
(1)
k to give a feasible direction of negative curvature sk = (uk, wk)

satisfying (2.20). (See [14, Algorithm 3].)

7. Perform a flexible line search along the vector ∆vk = sk + dk = (uk + pk, wk + qk).
(See [14, Algorithm 4].) Update the line-search penalty parameter µk using (2.22).
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3. Local Convergence

The analysis involves second-order sufficient conditions defined in terms of the sets of
strongly-active variables A+ and weakly-active variables A0:

A+(x, y) = {i ∈ A(x) : [∇f(x)− J(x)Ty ]i > 0},
A0(x, y) = {i ∈ A(x) : [∇f(x)− J(x)Ty ]i = 0}.

(3.1)

Definition 3.1. (Second-order sufficient conditions (SOSC))
A primal-dual pair (x∗, y∗) satisfies the second-order sufficient optimality conditions for
problem (NP) if it is a first-order KKT pair (i.e., r(x∗, y∗) = 0) and

pTH(x∗, y∗)p > 0 for all p ∈ C(x∗, y∗) \ {0},

where C(x∗, y∗) = null
(
J(x∗)

)
∩ {p : pi = 0 for i ∈ A+(x

∗, y∗), pi ≥ 0 for i ∈ A0(x
∗, y∗) }

is the critical cone.

The analysis of Gill, Kungurtsev and Robinson [14] establishes that the global conver-
gence behavior of the method falls into one of two cases, depending on whether the set
of V-O iterates is infinite or finite. If there are infinitely many V-O iterates, there exists
a subsequence with limit point x∗ that is either a first-order KKT point, or fails to sat-
isfy the constant positive generator constraint qualification (CPGCQ)1. Moreover, if the
Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x∗, then the associated
subsequence of dual estimates is bounded with limit point y∗ such that (x∗, y∗) is a first-
order KKT pair for problem (NP). If the weak constant rank condition (WCRC)2 holds in
addition to the MFCQ (in which case, the CPGCQ holds automatically), then (x∗, y∗) is a
second-order KKT point. In the case that the set of V-O iterates is finite, there are infinitely
many M-iterates, and every limit point x∗ of this sequence is an infeasible stationary point.

The local convergence analysis given here focuses on sequences that converge to first- or
second-order KKT pair. (An analysis of the rate of convergence associated with sequences
converging to locally infeasible points is beyond the scope of this paper.)

The results established in this section require three standing assumptions.

Assumption 3.1. f and c are twice Lipschitz-continuously differentiable.

Assumption 3.2. The index set S of V-O iterates, i.e.,

S = { k : (xk, yk) is a V-O iterate },

is infinite, and there exists a subsequence S∗ ⊆ S, such that limk∈S∗(xk, yk) = (x∗, y∗), with
(x∗, y∗) a first-order KKT pair for problem (NP). (This assumption requires that the finite
termination conditions (2.23) and (2.24) are omitted.)

Assumption 3.3. If (x∗, y∗) is the first-order KKT pair in Assumption 3.2, then

(i) there exists a compact set Λ(x∗) ⊆ Y(x∗) such that y∗ belongs to the (nonempty)
interior of Λ(x∗) relative to Y(x∗); and

(ii) (x∗, y) satisfies the SOSC of Definition 3.1 for every y ∈ Λ(x∗).

1Andreani et al. [1, Definition 3.1]
2Andreani et al. [2, page 532]
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The key part of Assumption 3.3 is the existence of the compact set Λ(x∗), which guarantees
that the closest point in Y(x∗) to every element yk of the subsequence {yk} satisfying
limk→∞ yk = y∗ is also in Λ(x∗) for k sufficiently large. This is equivalent to there being a
set K, open relative to Y(x∗), such that y∗ ∈ K ⊂ Λ(x∗). This, in turn, is equivalent to the
assumption that the affine hulls of Λ(x∗) and Y(x∗) are identical, with y∗ in the relative
interior of Λ(x∗). (For example, if m = 3, and Y(x∗) is a ray of the form y = a + bt for
a, b ∈ R3, t ∈ (−∞,∞), then Λ(x∗) could be a closed interval relative to the ray, e.g.,
Λ(x∗) = {y : y = a+ bt, for t ∈ [t1, t2].) Note that the set of multipliers Y(x∗) need not be
bounded. The second-order sufficient conditions need hold only for multipliers in a compact
subset of Y(x∗).

For any y, compactness of Λ(x∗) in Assumption 3.3 implies the existence of a vector
y∗P (y) ∈ Λ(x∗) that minimizes the distance from y to Λ(x∗), i.e.,

y∗P (y) ∈ Argmin
ȳ∈Λ(x∗)

∥y − ȳ∥. (3.2)

The existence of a vector y∗P (y) implies that the distance δ(x, y) of any primal-dual point
(x, y) to the primal-dual solution set V(x∗) = {x∗} × Λ(x∗) associated with x∗, may be
written in the form

δ(x, y) = min
(x̄,ȳ)∈V(x∗)

∥(x− x̄, y − ȳ)∥ = ∥(x− x∗, y − y∗P (y))∥. (3.3)

The pair
(
x∗, y∗P (y)

)
satisfies the second-order sufficient conditions as a result of Assump-

tion 3.3(ii). The following result shows that the proximity measure r(x, y) may be used as
a surrogate for δ(x, y) near (x∗, y∗).

Lemma 3.1. ([35, Theorem 3.2]) There exists a positive scalar κ ≡ κ(Λ(x∗)) such that
r(xk, yk) ∈

[
δ(xk, yk)/κ, δ(xk, yk)κ

]
for all k ∈ S∗ sufficiently large.

Proof. Under the assumptions used here, the result follows from Theorem 3.2 of Wright [35],
where Lemmas 2.1 and 2.2 of Gill, Kungurtsev and Robinson [13] are used to establish that
the exact and estimated distance of (xk, yk) to the primal-dual solution set used in [35] are
equivalent (up to a scalar multiple) to the values δ(xk, yk) and r(xk, yk) given here.

The principal steps of the local convergence analysis are summarized as follows. First,
the properties of iterates with indices k ∈ S∗ ⊆ S are considered. It is shown that for some
k ∈ S∗ sufficiently large, the following results hold.

(a) The active set at x∗ is identified correctly by the ϵ-active set, and the direction sk of
negative curvature is zero.

(b) A local descent direction dk is computed, and the conditions [ vk + dk ]i ≥ 0, i =
1 :n, ∇MT

k dk < 0, ∇Qk(vk + dk ; y
E

k , µ
R

k)Aϵ
≥ −tke are satisfied, i.e., the local descent

direction is selected for the line search.

(c) The unit step is accepted by the flexible line-search, and the variables active at x∗ are
the same as those active at xk+1.

Once (a)–(c) are established, the next step is to show that (xk+1, yk+1) is a V-iterate. This
implies that the arguments may be repeated at xk+1, and all iterates must be in S∗ for k
sufficiently large. The final step is to show that the iterates are identical to those generated
by an sSQP method for which superlinear convergence has been established.

The first result shows that for k ∈ S∗ sufficiently large, the set Aϵ correctly estimates
the active set at x∗. Moreover, for these iterations, the search direction does not include a
contribution from the direction of negative curvature.
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Lemma 3.2. The following results hold for all k ∈ S∗ ⊆ S sufficiently large.

(i) The measure r(xk, yk) of the distance to a first-order KKT point converges to zero,
i.e., limk∈S r(xk, yk) = 0.

(ii) The ϵ-active sets satisfy Aϵ(xk, yk, µ
R

k−1) = Aϵ(xk, yk, µ
R

k) = A(x∗).

(iii) The ϵ-free sets satisfy Fϵ(xk, yk, µ
R

k−1) = Fϵ(xk, yk, µ
R

k) = F(x∗).

(iv) If the suffix “F” denotes the components corresponding to the set F(x∗), then BF(vk ;µ
R

k−1)

is positive definite, with s
(1)
k = 0 and ξk = 0.

(v) BFϵ
(vk ;µ

R

k) is positive definite and a local descent direction is computed.

(vi) The feasible direction of negative curvature sk is zero.

Proof. A point (xk, yk) is designated as a V-O iterate if the optimality and feasibil-
ity measures satisfy condition (2.10). In this case yk is set to yE

k , and the values for
ϕmax

V,k or ϕmax
O,k are decreased by a fixed factor. If follows that on the infinite set S of V-

O iterates, the condition (2.10) must hold infinitely often and at least one of the func-
tions ϕV (vk) or ϕO(vk, ξk) must go to zero. The definitions of ϕV (vk) and ϕO(vk, ξk)
in terms of the feasibility and optimality measures η(xk) and ω(xk, yk, ξk) imply that
limk∈S η(xk) = 0 and limk∈S ω(xk, yk, ξk) = 0. The definition (2.1) of r(xk, yk) implies
that limk∈S r(xk, yk) = 0, which proves part (i). As r(xk, yk) goes to zero, Theorem 3.6(2)
of [14] implies limk∈S max

(
µR

k−1, r(xk, yk)
γ
)
= limk∈S max

(
µR

k, r(xk, yk)
γ
)
= 0. If these

limits are combined with (2.6), we obtain the inclusions Aϵ(xk, yk, µ
R

k−1) ⊆ A(x∗) and
Aϵ(xk, yk, µ

R

k) ⊆ A(x∗) for k ∈ S sufficiently large.
For the reverse inclusion, (2.6) together with max

(
µR

k−1, r(xk, yk)
γ
)
≥ r(xk, yk)

γ and

max
(
µR

k, r(xk, yk)
γ
)
≥ r(xk, yk)

γ , imply that for k ∈ S sufficiently large, Aγ(xk, yk) =
{
i :

xi ≤ r(xk, yk)
γ
}

satisfies Aγ(xk, yk) ⊆ Aϵ(xk, yk, µ
R

k−1) and Aγ(xk, yk) ⊆ Aϵ(xk, yk, µ
R

k).
The set Aγ(xk, yk) is an active-set estimator that is equivalent (in the sense of Gill, Kun-
gurtsev and Robinson [13, Lemma 2.2]) to the active-set estimator used by Wright [35],
and Facchinei, Fischer, and Kanzow [8]. This equivalence allows the application of The-
orem 3.3 of [35] to obtain the inclusions A(x∗) ⊆ Aγ(xk, yk) ⊆ Aϵ(xk, yk, µ

R

k−1) and
A(x∗) ⊆ Aγ(xk, yk) ⊆ Aϵ(xk, yk, µ

R

k), which completes the proof of part (ii). Part (iii)
follows directly from (ii) and the definition of the ϵ-free set in (2.7).

For the proof of (iv) it is assumed that k ∈ S∗ ⊆ S is sufficiently large that (ii) and (iii)
hold. From Assumption 3.3, (x∗, y∗) satisfies the SOSC and consequently, dTH(x∗, y∗)d > 0
for all d ̸= 0 such that J(x∗)d = 0 and di = 0 for every i ∈ A(x∗), i.e., dTFHF(x

∗, y∗)dF > 0 for
all dF ̸= 0 satisfying JF(x

∗)dF = 0, where the suffix “F” denotes quantities associated with
indices in F(x∗). Under this assumption, together with the results of part (iii), Lemma 2.2
of [16], Lemma 3 of [19], and [14, part (2) of Theorem 3.6] imply that BF(vk ;µ

R

k−1) is
positive definite for all k ∈ S∗ sufficiently large. If this matrix is positive definite, then

s
(1)
k = 0 and ξk = 0, as required.

As {µR

k} → 0 (see [14, Theorem 3.6, part (2)]), an argument like that used to estab-
lish (iv) shows that BFϵ

(vk ;µ
R

k) is positive definite for the same values of k (see Gill and
Robinson [16, Lemma 2.2]). As BFϵ

(vk ;µ
R

k) is positive definite for every k ∈ S∗ ⊆ S, and
k is a V-O iterate by definition, the conditions that initiate the solution of the equality
constraint QP (2.16) are satisfied, and a local descent direction is computed. This proves

part (v). Finally, part (iv) implies that s
(1)
k and its scaled counterpart sk are zero, which

proves part (vi).

The next result shows that dk is nonzero for certain types of iteration.
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Lemma 3.3. For all k ∈ S∗ ⊆ S sufficiently large, it must hold that either dk ̸= 0 or
(xk, yk) = (x∗, y∗).

Proof. The result holds trivially if dk ̸= 0 for all k ∈ S∗ sufficiently large. Assume without
loss of generality that there exists an infinite sequence S2 ⊆ S∗ such that dk = 0 for every
k ∈ S2. Parts (ii) and (vi) of Lemma 3.2 imply that Aϵ(xk, yk, µ

R

k) = A(x∗) and sk = 0 for
all k ∈ S2 sufficiently large. Every k ∈ S2 is a V-O iterate and there must exist an index
k2 ∈ S2 sufficiently large that

dk2
= sk2

= 0, (xk2+1, yk2+1) = (xk2
, yk2

),

yE

k2
= yk2

, and Aϵ(xk2
, yk2

, µR

k2
) = A(x∗).

(3.4)

As dk2
= 0, parts (ia) and (ib) of Lemma 2.3 in [14] give r(xk2

, yk2
) = 0, which implies that

(xk2
, yk2

) is a first-order KKT point for both problem (NP) and the problem of minimizing
M(x, y ; yE

k2
, µR

k2
) subject to x ≥ 0. From (3.4) it must hold that r(xk2+1, yk2+1) = 0, and

parts (iii) and (iv) of Lemma 3.2 imply that BF(xk2+1, yk2+1 ;µ
R

k2
) is positive definite, with

ξk2+1 = 0 and s
(1)
k2+1 = 0. It follows that ϕV (xk2+1, yk2+1) = 0, and k2+1 is a V-iterate from

condition (2.10). As a result, yE

k2+1 = yE

k2
and µR

k2+1 = 1
2µ

R

k2
, which implies that the primal-

dual pair (xk2+1, yk2+1) = (xk2 , yk2) is not only a first-order KKT point for problem (NP),
but also a first-order solution of the problem of minimizing M(x, y ; yE

k2+1, µ
R

k2+1) subject
to x ≥ 0. In particular, it must hold that dk2+1 = 0, and sk2+1 = 0 because ξk2+1 = 0.
Similarly, it must hold that Aϵ(xk2+1, yk2+1, µ

R

k2+1) = A(x∗).

This argument may be repeated at every (xk, yk) such that k ≥ k2 +1, and it must hold
that (xk, yk) = (x̄, ȳ) for some (x̄, ȳ), and that Aϵ(xk, yk, µ

R

k) = A(x∗) for every k ≥ k2. It
then follows from Assumption 3.3 that (x̄, ȳ) = (x∗, y∗), which completes the proof.

For a local convergence analysis, Lemma 3.3 implies that there is no loss of generality
in making the following additional standing assumption.

Assumption 3.4. The vector dk is nonzero for all k ∈ S∗ ⊆ S sufficiently large.

Lemma 3.4. It must hold that µR

k = r(xk, yk)
γ > 0 for all k ∈ S∗ ⊆ S sufficiently large.

Proof. Part (iv) of Lemma 3.2 gives ξk = 0 for all k ∈ S∗ ⊆ S sufficiently large. In
addition, r(xk, yk) must be nonzero, otherwise the definition of r(xk, yk) would imply that
c(xk) = 0, yE

k = yk (because k ∈ S), π(xk, yE

k , µ
R

k) = yk, ∇yM(xk, yk ; y
E

k , µ
R

k) = 0, and
min

(
xk,∇xM(xk, yk ; y

E

k , µ
R

k)
)
= 0. In other words, if r(xk, yk) is zero, then (xk, yk) satisfies

the first-order conditions for a minimizer of M(x, y ; yE

k , µ
R

k) subject to x ≥ 0. This implies
that there is no nonzero descent direction at (xk, yk), which contradicts Assumption 3.4.
It follows that r(xk, yk) is nonzero. The values ξk = 0 and r(xk, yk) > 0 in the definition
of µR

k in (2.11), and part (i) of Lemma 3.2 imply that µR

k = r(xk, yk)
γ for γ ∈ (0, 1) and

k ∈ S∗ ⊆ S sufficiently large.

Much of the local convergence analysis involves establishing that, in the limit, the al-
gorithm computes and accepts the local descent direction at every iteration. The next
result concerns the properties of the equality-constrained subproblem for the local descent
direction.

Lemma 3.5. If vk = (xk, yk) is a point at which the conditions for the calculation of a local
descent direction are satisfied, then the following results hold.
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(i) The bound-constrained problem (2.16) for the local descent direction is equivalent to
the stabilized QP subproblem

minimize
x,y

∇f(xk)T(x− xk) +
1
2 (x− xk)

TH(xk, yk)(x− xk) +
1
2µ

R

k∥y∥2

subject to c(xk) + J(xk)(x− xk) + µR

k(y − yk) = 0, ET
Aϵ
x = 0,

(3.5)

where EAϵ
is the matrix of columns of the identity matrix with indices in the ϵ-active

set Aϵ.

(ii) If dk = (pk, qk) is the local descent direction, and zk = ∇f(xk) − J(xk)
Tyk, then the

optimal solution to (3.5) may be written as (xk + pk, yk + qk, [ zk ]Aϵ
+ wk), where

(pk, qk, wk) satisfy the nonsingular equationsH(xk, yk) J(xk)
T EAϵ

J(xk) −µR

kI 0
ET

Aϵ
0 0

 pk
−qk
−wk

 = −

∇f(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aϵ

 ,

with zpk = EAϵ
ET

Aϵ
zk, i.e., z

p
k is the projection of zk onto range(EAϵ).

Proof. Part (i) follows from the specialization of Result 2.1 of Gill and Robinson [15] to
the equality-constraint case. The equations of part (ii) are then the optimality conditions
associated with (3.5). It remains to show that the equations are nonsingular. The vector
(pk, qk) is the unique solution of (3.5) if the primal-dual Hessian of problem (3.5) is positive
definite on the null-space of the constraints, which in this case is the set of vectors satisfying
J(xk)p+ µR

kq = 0 and ET
Aϵ
p = 0. This corresponds to the requirement that(

pFϵ

q

)T(
HFϵ

(xk, yk) 0
0 µR

kI

)(
pFϵ

q

)
= pTFϵ

HFϵ
(xk, yk)pFϵ

+
1

µR

k

pTFϵ
JFϵ

(xk)
TJFϵ

(xk)pFϵ
> 0.

Gill and Robinson [15, Lemma 2.2] show HFϵ
(xk, yk) + (1/µR

k)JFϵ
(xk)

TJFϵ
(xk) is positive

definite if BFϵ is positive definite, which is one of the conditions that must be satisfied for a
local descent direction to be computed.

The next result shows that two of the three conditions in (2.19) for acceptance of the
local descent direction hold for all k ∈ S∗ sufficiently large.

Lemma 3.6. For all k ∈ S∗ ⊆ S sufficiently large, a local descent direction dk = (pk, qk) is
computed that satisfies the following conditions:

(i) max{∥pk∥, ∥qk∥} = O
(
δ(xk, yk)

)
; and

(ii) xk + pk ≥ 0, [∇Qk(vk + dk ; y
E

k , µ
R

k) ]Aϵ
≥ −tke, where tk is the positive feasibility

parameter (2.18), and [ · ]Aϵ denotes the vector of components with indices in the ϵ-
active set Aϵ(xk, yk, µ

R

k).

Proof. Lemma 3.5 implies that the local descent direction (pk, qk) satisfiesH(xk, yk) J(xk)
T EAϵ

J(xk) −µR

kI 0
ET

Aϵ
0 0

 pk
−qk
−wk

 = −

∇f(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aϵ

 , (3.6)

where [ zk ]Aϵ
+wk is the vector of multipliers for ET

Aϵ
x = 0 of problem (3.5). Let µ̃k denote

the scalar µ̃(xk, yk, zk) = ∥(∇f(xk) − J(xk)
Tyk − zpk, c(xk), [xk ]Aϵ

)∥1. The equations (3.6)
constitute a perturbation of the linear systemH(xk, yk) J(xk)

T EAϵ

J(xk) −µ̃kI 0
ET

Aϵ
0 −µ̃kI

 p̃k
−q̃k
−w̃k

 = −

∇f(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aϵ

 , (3.7)
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which characterize the optimality conditions for the sSQP subproblem associated with the
equality constrained problem

minimize
x

f(x) subject to c(x) = 0, and [x ]Aϵ
= ET

Aϵ
x = 0. (3.8)

The matrix of (3.7) is nonsingular and the equations have a unique solution (see Izmailov
and Solodov [24, Lemma 2]). In addition, it follows from Wright [35, Lemma 4.1], Gill,
Kungurtsev and Robinson [13, Lemma 2.3], and Lemma 3.1 that the unique solution of
(3.7) satisfies

∥(p̃k, q̃k)∥ ≤ ∥(p̃k, q̃k, w̃k)∥ = O(µ̃k) = O
(
δ(xk, yk)

)
= O

(
r(xk, yk)

)
. (3.9)

The underlying quadratic program associated with (3.6) satisfies the second-order sufficient
conditions for optimality. Under this condition, Izmailov [20, Theorem 2.3]) establishes the
Lipschitz error bound for the perturbed solutions as

∥(pk − p̃k, qk − q̃k)∥ ≤ ∥(pk − p̃k, qk − q̃k, wk − w̃k)∥
= O(∥µ̃kw̃k +

(
µR

k − µ̃k

)
(qk − q̃k)∥).

Lemma 3.4 gives µR

k = r(xk, yk)
γ for γ ∈ (0, 1). It then follows from Lemma 2.3 of Gill,

Kungurtsev and Robinson [13], the bound (3.9) and Lemma 3.1 that

∥(pk − p̃k, qk − q̃k)∥ = O
(
δ(xk, yk) + r(xk, yk)

γ∥qk − q̃k∥
)
. (3.10)

The triangle inequality, (3.10), and (3.9) imply the existence of constants κ1 and κ2 that
satisfy

∥pk∥+ ∥qk∥ ≤ ∥pk − p̃k∥+ ∥qk − q̃k∥+ ∥p̃k∥+ ∥q̃k∥ (3.11)

≤ κ1δ(xk, yk) + κ2r(xk, yk)
γ∥qk − q̃k∥. (3.12)

Part (i) of Lemma 3.2 implies that 1 − κ2r(xk, yk)
γ ≥ 1

2 for k ∈ S∗ sufficiently large. This
inequality may be used to derive the bound

∥pk − p̃k∥+ 1
2∥qk − q̃k∥+ ∥p̃k∥+ ∥q̃k∥

≤ ∥pk − p̃k∥+
(
1− κ2r(xk, yk)

γ
)
∥qk − q̃k∥+ ∥p̃k∥+ ∥q̃k∥.

This upper bound may be simplified using the bound on ∥pk− p̃k∥+∥qk− q̃k∥+∥p̃k∥+∥q̃k∥
from (3.11)–(3.12), giving

∥pk − p̃k∥+ 1
2∥qk − q̃k∥+ ∥p̃k∥+ ∥q̃k∥ ≤ κ1δ(xk, yk).

The quantity 1
2 (∥pk∥ + ∥qk∥) may be bounded using similar arguments used for (3.11). In

this case,

1
2 (∥pk∥+ ∥qk∥) ≤ ∥pk − p̃k∥+ 1

2∥qk − q̃k∥+ ∥p̃k∥+ ∥q̃k∥ ≤ κ1δ(xk, yk),

which implies that max{∥pk∥, ∥qk∥} = O
(
δ(xk, yk)

)
, and proves part (i).

The second inequality to be established for part (ii) may be written equivalently as
[∇Mk + Bkdk ]Aϵ

≥ −tke, where ∇Mk = ∇M(vk ; y
E

k , µ
R

k) and Bk = B(vk, µ
R

k). The
proof requires estimates of the components of [∇Mk + Bkdk ]Aϵ

. After simplification,
the substitution of the quantities Bk, ∇Mk and dk = (pk, qk), together with the identity
J(xk)pk + µR

kqk = −c(xk) from (3.6) give

[∇Mk +Bkdk ]Aϵ =
[
zk +

1

µR

k

J(xk)
Tc(xk) +H(xk, yk)pk +

1

µR

k

J(xk)
TJ(xk)pk

]
Aϵ

, (3.13)
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where zk = ∇f(xk)−J(xk)Tyk. The first part of the proof involves the estimation of a lower
bound on the vector zk+(1/µR

k)J(xk)
Tc(xk). The definition of y∗P (·) and the fact that (x∗, y∗)

is a first-order KKT pair for problem (NP) implies that the vector ∇f(x∗)− J(x∗)Ty∗P (yk)
is nonnegative, with

−[ zk ]i = −[∇f(xk)− J(xk)
Tyk ]i

≤ −
[
∇f(xk)− J(xk)

Tyk −
(
∇f(x∗)− J(x∗)Ty∗P (yk)

)]
i

≤ −[∇f(xk)− J(xk)
Tyk + J(xk)

Ty∗P (yk)− J(xk)
Ty∗P (yk)

−∇f(x∗) + J(x∗)Ty∗P (yk) ]i.

From Assumptions 3.1–3.3, ∥J(xk)∥ is bounded independently of k and the functions g and
J are Lipschitz continuous. It follows that there exist positive constants κ3, κ4, and κ5 such
that

−[ zk ]i ≤ κ3∥xk − x∗∥+ κ4∥yk − y∗P (yk)∥ ≤ κ5δ(xk, yk),

where the last inequality follows from the definition (3.3) of δ(xk, yk). As the sequence of
iterates satisfies limk∈S∗(xk.yk) = (x∗, y∗) and limk∈S∗ y

∗
P (yk) = y∗, for k ∈ S∗ sufficiently

large, the assumptions of Lemma 3.1 apply, and

−[ zk ]i ≤ κ5δ(xk, yk) ≤ κ6r(xk, yk), (3.14)

for some positive constant κ6. The combination of the inequality (3.14), the definition of
r(xk, yk), and the result µR

k = r(xk, yk)
γ of Lemma 3.4 imply that there exists a positive

constant κ7 such that[
zk +

1

µR

k

J(xk)
Tc(xk)

]
i
≥ −κ6r(xk, yk)−

∥J(xk)∥1r(xk, yk)
r(xk, yk)γ

= −κ6r(xk, yk)− ∥J(xk)∥1r(xk, yk)1−γ

≥ −κ7r(xk, yk)1−γ ≥ − 1
2r(xk, yk)

λ, (3.15)

for all i, and every k ∈ S∗ sufficiently large, where the last inequality follows from the
assumption 0 < λ < min{γ, 1− γ} < 1.

The (1/µR

k)p
T
k J(xk)

TJ(xk)pk term of (3.13) may be bounded in a similar way using
the definition µR

k = r(xk, yk)
γ and the bound on ∥pk∥ from part (i). The assumption that

H(xk, yk) and J(xk) are bounded, the estimate δ(xk, yk) = O(r(xk, yk)) of Lemma 3.1, and
the definition of Aϵ(xk, yk, µ

R

k) give[
H(xk, yk)pk + (1/µR

k)J(xk)
TJ(xk)pk

]
i
= O

(
r(xk, yk)

1−γ
)
≤ 1

2r(xk, yk)
λ,

for all k ∈ S∗ sufficiently large. This inequality with (3.13) and (3.15) gives

[∇Mk +Bkdk ]Aϵ

≥
[
zk +

1

µR

k

J(xk)
Tc(xk)

]
Aϵ

−
∥∥∥[H(xk, yk)pk +

1

µR

k

J(xk)
TJ(xk)pk

]
Aϵ

∥∥∥
∞
e

≥ −r(xk, yk)λe = −tke,

for all k ∈ S∗ sufficiently large, which proves the second result of part (ii).
The first result of Lemma 3.2(iii) implies that F(xk, yk, µ

R

k) = F(x∗) for k ∈ S∗ suf-
ficiently large. If the limit limk∈S∗ [xk ]Fϵ

= [x∗ ]F > 0 is used in conjunction with the
definition [xk + pk ]Aϵ

= 0, and the estimate ∥[ pk ]Fϵ
∥ = ∥[ pk ]F∥ = O

(
δ(xk, yk)

)
of part (i),

it follows that xk + pk ≥ 0 for k ∈ S∗ sufficiently large, as required.
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Part (ii) of Lemma 3.6 implies that two of the three conditions needed for the acceptance
of the local descent direction are satisfied. It remains to show that the third condition
∇MT

k dk < 0 holds. Two technical results, Lemmas 3.7 and 3.8 below, are required.

Lemma 3.7. For all k ∈ S∗ ⊆ S sufficiently large, a local descent direction dk = (pk, qk) is
computed such that (x̂k, ŷk) = (xk + pk, yk + qk) satisfies

δ(x̂k, ŷk) = ∥x̂k − x∗∥+ ∥ŷk − y∗P (ŷk)∥ = O
(
δ(xk, yk)

1+γ
)
, (3.16)

with y∗P (·) defined in (3.2).

Proof. The proof uses Izmailov [20, Theorem 2.3] to provide a bound on the change in the
solution of a problem perturbed by a quantity ε. If the second-order sufficient conditions
hold at a primal-dual solution (x∗, y∗) of a problem P , then the primal-dual solution (x̃, ỹ)
of a perturbed problem P (ε) satisfies

∥x̃− x∗∥+ inf
y∈Y(x∗)

∥ỹ − y∥ = O(∥ε∥). (3.17)

For the purposes of this theorem, the unperturbed problem is an equality-constrained variant
of problem (NP) for which the optimal active set has been identified. Parts (ii) and (iii)
of Lemma 3.2 imply that A(x∗) = Aϵ(xk, yk, µ

R

k), and F(x∗) = Fϵ(xk, yk, µ
R

k) for k ∈ S∗
sufficiently large. Let EA denote the matrix of columns of the identity matrix with indices
in A(x∗). At any iteration with k ∈ S∗, consider the perturbed problem

minimize
x

f(x) + xTε
(1)
k subject to c(x) + ε

(2)
k = 0, ET

Ax = 0, (3.18)

where ε
(1)
k and ε

(2)
k are perturbation vectors such that εk =

(
ε
(1)
k , ε

(2)
k

)
with(

ε
(1)
k

ε
(2)
k

)
=

(
∇f(xk)− J(xk)

Tŷk − (∇f(x̂k)− J(x̂k)
Tŷk) +H(xk, yk)(x̂k − xk)

c(xk) + J(xk)(x̂k − xk)− c(x̂k) + µR

k(ŷk − yE

k)

)
. (3.19)

The following argument shows that the perturbations go to zero as k → ∞ for k ∈ S∗.
Part (i) of Lemma 3.6 implies that limk∈S∗(x̂k − xk, ŷk − yk) = limk∈S∗(pk, qk) = 0 for
k ∈ S∗ sufficiently large. Also, as limk∈S∗(xk, yk) = (x∗, y∗) and yE

k = yk for k ∈ S∗, it must
be the case that limk∈S∗ εk = 0.

The proof of (3.16) is based on applying the bound (3.17) for the values (x̃, ỹ) = (x̂k, ŷk).
In this case, under Assumption 3.3, it holds that

δ(x̂k, ŷk) = ∥x̂k − x∗∥+ ∥ŷk − y∗P (ŷk)∥ = ∥x̂k − x∗∥+ inf
y∈Λ(x∗)

∥ŷk − y∥ = O(∥εk∥).

Three results must be established in order to apply this result. First, (x∗, y∗) must satisfy
the second-order sufficient conditions for the equality-constrained problem (3.18) with εk =
0. Second, (x̂k, ŷk) must be an optimal solution for the perturbed problem (3.18) with
perturbation (3.19). Third, the perturbation (3.19) must be bounded in terms of δ(xk, yk).

For the first part it must be shown that (x∗, y∗) satisfies the second-order sufficient
conditions for problem (3.18) with no perturbation. The first-order KKT conditions for
(3.18) are

∇f(x)− J(x)Ty + ε
(1)
k − EAzA = 0, c(x) + ε

(2)
k = 0, and ET

Ax = 0. (3.20)

If εk = 0 then (x∗, y∗) satisfies these conditions, which implies that the primal-dual pair
(x∗, y∗) is a first-order KKT point. The second-order conditions for problem (NP) imply



3. Local Convergence 19

that pTH(x∗, y∗)p > 0 for all p such that J(x∗)p = 0 and pi = 0 for every i ∈ A(x∗). These
conditions also apply for problem (3.18) when εk = 0, which imply that (x∗, y∗) satisfies the
second-order sufficient conditions for the unperturbed problem.

Next, it must be shown that (x̂k, ŷk) is an optimal solution for the problem (3.18) with
perturbation (3.19). By definition, the point (x̂k, ŷk) satisfies the optimality conditions for
the equality-constrained problem (2.16). If yE

k = yk, then these conditions are

∇f(xk) +H(xk, yk)(x̂k − xk)− J(xk)
Tyk − EAzA = 0,

c(xk) + J(xk)(x̂k − xk) + µR

k(ŷk − yk) = 0, and ET
A x̂k = 0,

where zA = [ zk ]A with zk = ∇f(xk) − J(xk)
Tyk (cf. (3.6)). These identities may be used

to show that (x̂k, ŷk) satisfies the optimality conditions (3.20) with εk defined as in (3.19).
It remains to bound the perturbation norm ∥εk∥ from (3.19). The Taylor-series expan-

sions of ∇f(x̂k) = ∇f(xk + pk) and J(x̂k) = J(xk + pk), together with the assumption that
{∇2ci(xk)}k∈S∗ is bounded, give

∇f(xk)−∇f(xk + pk) +H(xk, yk)pk − (J(xk)− J(xk + pk))
Tŷk

=

m∑
i=1

[ ŷk − yk ]i∇2ci(xk)pk +O(∥pk∥2) = O
(
∥pk∥∥ŷk − yk∥) +O(∥pk∥2

)
,

which bounds the norm of the first block of (3.19).
Three properties of the iterates are needed to bound the norm of the second block. First,

a Taylor-series expansion of c(xk+pk) gives c(xk)−c(xk+pk)+J(xk)pk = O(∥pk∥2). Second,
as S∗ contains only V-O iteration indices, the rule for updating yE

k described in Sect. 2.1
gives yE

k = yk for all k ∈ S∗. Third, Lemma 3.4 gives µR

k = r(xk, yk)
γ , which implies that

µR

k∥ŷk−yk∥ = r(xk, yk)
γ∥ŷk−yk∥. The combination of these results gives ∥εk∥ = O(∥pk∥2)+

O(∥pk∥∥ŷk − yk∥) + O(r(xk, yk)
γ∥ŷk − yk∥). Writing qk = ŷk − yk, using the results that

r(xk, yk) = O(δ(xk, yk)) (from Lemma 3.1) and that max{∥pk∥, ∥qk∥} = O
(
δ(xk, yk)

)
(from

Lemma 3.6(i)), and the definition 0 < γ < 1, gives ∥εk∥ = O
(
δ(xk, yk)

2 + δ(xk, yk)
1+γ
)
=

O
(
δ(xk, yk)

1+γ
)
, which gives the required bound (3.16).

The second technical lemma concerns the properties of the vector of approximate mul-
tipliers π(xk ; y

E

k , µ
R

k).

Lemma 3.8. Let πk denote π(xk ; y
E

k , µ
R

k). For every k ∈ S∗ ⊆ S it holds that

(i) ∥yk − πk∥ = O
(
∥c(xk)∥/µR

k

)
and

(ii) ∥∇2M(vk ; y
E

k , µ
R

k)−Bk∥ = O
(
∥c(xk)∥/µR

k

)
.

Moreover, limk∈S∗ ∥yk − πk∥ = 0 and limk∈S∗ ∥∇2M(vk ; y
E

k , µ
R

k)−Bk∥ = 0.

Proof. As yk = yE

k for all k ∈ S∗ ⊆ S, the definition of πk gives ∥yk − πk∥ = ∥c(xk)∥/µR

k.
This estimate in conjunction with the definitions of ∇2M and B imply that part (ii) also
holds.

Lemma 3.4 and part (i) of Lemma 3.2 give limk∈S∗ r(xk, yk) = 0, with µR

k = r(xk, yk)
γ

and 1− γ > 0 for all k ∈ S∗ ⊆ S sufficiently large. These results may be combined to give

0 ≤ lim
k∈S∗

∥c(xk)∥
µR

k

≤ lim
k∈S∗

r(xk, yk)

µR

k

= lim
k∈S∗

r(xk, yk)

r(xk, yk)γ
= lim

k∈S∗
r(xk, yk)

1−γ = 0.

It follows from (i) that limk∈S∗ ∥yk − πk∥ = 0. Also, as {∇2ci(xk)}k∈S∗ is bounded, it must
hold that limk∈S∗ ∥∇2M(vk ; y

E

k , µ
R

k)−Bk∥ = 0.
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Given Lemmas 3.7 and 3.8, we show that the last of the conditions in (2.19) required for
the acceptance of the local descent direction is satisfied, i.e., that the local descent direction
is a descent direction for the merit function.

Lemma 3.9. For any σ̄ satisfying 0 < σ̄ < 1, and all k ∈ S∗ ⊆ S sufficiently large, a local
descent direction dk = (pk, qk) is computed that satisfies

∇M(vk ; y
E

k , µ
R

k)
Tdk ≤ −σ̄dTk Bkdk − c̄∥dk∥2 and ∇M(vk ; y

E

k , µ
R

k)
Tdk < 0, (3.21)

for some positive constant c̄. In particular, dk is a strict descent direction for M(v ; yE

k , µ
R

k)
at vk.

Proof. Throughout the proof, the gradient ∇M(xk, yk ; y
E

k , µ
R

k) and approximate Hessian
B(xk, yk ;µ

R

k) are denoted by ∇Mk and Bk, respectively. In addition, it is assumed that k ∈
S∗ ⊆ S is sufficiently large that parts (ii) and (iii) of Lemma 3.2 hold; i.e., Aϵ(xk, yk, µ

R

k) =
A(x∗), and Fϵ(xk, yk, µ

R

k) = F(x∗). With this assumption, [Bk ]A, [Bk ]F and [Bk ]A,F

denote the rows and columns of the matrix Bk associated with the index sets A(x∗) and
F(x∗).

The definition of dk from (2.17) gives [∇Mk +Bkdk ]F = 0, or equivalently

[Bk ]F [ dk ]F + [Bk ]
T
A,F [ dk ]A = −[∇Mk ]F . (3.22)

Similarly, the scalar dTk Bkdk may be written in the form

dTk Bkdk = [ dk ]
T
F [Bk ]F [ dk ]F + (2[Bk ]A,F [ dk ]F + [Bk ]A[ dk ]A)

T[ dk ]A. (3.23)

Combining (3.22) and (3.23) yields

−[∇Mk ]
T
F [ dk ]F = dTk Bkdk − ([Bk ]A,F [ dk ]F + [Bk ]A[ dk ]A)

T[ dk ]A

= dTk Bkdk − [Bkdk ]
T
A [ dk ]A,

which implies that, for any σ̄ satisfying 0 < σ̄ < 1, it must hold that

∇MT
k dk + σ̄dTk Bkdk = (σ̄ − 1)dTk Bkdk + [Bkdk ]

T
A [ dk ]A + [∇Mk ]

T
A [ dk ]A. (3.24)

The proof involves constructing a bound on each of the terms of the right-hand side of this
identity. These bounds are characterized in terms of the index setsA+(x

∗, y∗) andA0(x
∗, y∗)

defined in (3.1), together with the set F0(x
∗, y∗) = A0(x

∗, y∗) ∪ F(x∗, y∗). In what follows,
[Bk ]A+

and [Bk ]F0
denote the matrices of rows and columns of Bk associated with the

index sets A+ and F0, with similar definitions for [Bk ]A0
and [Bk ]A+,F0

, etc. The index

sets F0 and A+ define a partition of {1, 2, . . . , n +m}, and dTk Bkdk may be partitioned
analogous to (3.23) as

dTk Bkdk = [ dk ]
T
F0
[Bk ]F0

[ dk ]F0
+ ([Bk ]A+

[ dk ]A+
+ 2[Bk ]A+,F0

[ dk ]F0
)T[ dk ]A+

. (3.25)

The second-order sufficient conditions given in Definition 3.1, [14, Theorem 1.3 and part 2
of Theorem 3.6], together with a continuity argument imply that, for all k ∈ S∗ sufficiently
large, Bk is uniformly positive definite when restricted to the set C = {(p, q) ∈ Rn+m : pA+

=

0 and pA0
≥ 0}. The relation (−d)TBk(−d) = dTBkd implies that if d satisfies dA0

≤ 0 and
dA+

= 0, then dTBkd > 0. For the particular vector d = (0, [ dk ]A0
, [ dk ]F) = (0, [ dk ]F0

) for
which [ dk ]A0

≤ 0, it follows that

[ dk ]
T
F0
[Bk ]F0

[ dk ]F0
≥ κ8∥[ dk ]F0

∥2, for some κ8 ∈ (0, 1), (3.26)
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and all k ∈ S∗ sufficiently large. This inequality provides a bound on the first term on the
right-hand side of (3.25). An estimate of the second and third terms may be determined
using a bound on the magnitude of the components of [Bkdk ]A, where, by definition,

[Bkdk ]A+
=
[(
H(xk, yk) +

2

µR

k

J(xk)
TJ(xk)

)
pk + J(xk)

Tqk

]
A+

.

For sufficiently large k ∈ S∗, Lemma 3.4 gives µR

k = r(xk, yk)
γ . Also, as ∥J(xk)∥ and

∥H(xk, yk)∥ are bounded on S, it follows from the bounds on ∥pk∥ and ∥qk∥ from Lemma 3.6(i),
and the equivalence r(xk, yk) = Θ

(
δ(xk, yk)

)
of Lemma 3.1, that the magnitude of the com-

ponents of [Bkdk ]A+
are estimated by

∥[Bkdk ]A+
∥ = O(r(xk, yk)

1−γ) = O(δ(xk, yk)
1−γ). (3.27)

A similar argument gives the bound∣∣([Bk ]A+
[ dk ]A+

+ 2[Bk ]A+,F0
[ dk ]F0

)
T[ dk ]A+

∣∣ = O(δ(xk, yk)
1−γ ∥[ dk ]A+

∥). (3.28)

The application of the bound (3.26) and estimate (3.28) to (3.25) gives

−dTk Bkdk ≤ −κ8∥[ dk ]F0
∥2 + κ9δ(xk, yk)

1−γ∥[ dk ]A+
∥, (3.29)

for some positive κ9 independent of k, which serves to bound (σ̄− 1)dTk Bkdk, the first term
of the right-hand side of (3.24).

The second and third terms of (3.24) are estimated by bounding components from the
index set A+. The estimate (3.27) gives

[Bkdk ]
T
A+

[ dk ]A+
≤ κ10δ(xk, yk)

1−γ∥[ dk ]A+
∥, for some κ10 ∈ (0, 1). (3.30)

A Taylor-series expansion of ∇M(vk ; y
E , µR

k) at y
E = yE

k (= yk) gives

∇Mk = ∇M(vk ; y
∗ + (yk − y∗), µR

k) = ∇M(vk ; y
∗, µR

k) +O(∥yk − y∗∥). (3.31)

A Taylor-series expansion of [∇M(v ; y∗, µR

k) ]
T
A+

[ dk ]A+
at v = v∗ gives

[∇M(vk ; y
∗, µR

k) ]
T
A+

[ dk ]A+

= [ dk ]
T
A+

[∇M(v∗ + (vk − v∗) ; y∗, µR

k) ]A+

= [ dk ]
T
A+

[∇M(v∗ ; y∗, µR

k) ]A+
+O

( 1

µR

k

∥[ dk ]A+
∥ ∥vk − v∗∥

)
.

In order to bound the last term on the right-hand side, we substitute the value µR

k =
r(xk, yk)

γ implied by Lemma 3.4, and apply the estimate r(xk, yk) = Θ
(
δ(xk, yk)

)
from

Lemma 3.1. If the resulting value is used with the value ∥[ dk ]A+
∥ = O(∥dk∥) = O(δ(xk, yk))

of Lemma 3.6(i), then it follows that

[∇M(vk ; y
∗, µR

k) ]
T
A+

[ dk ]A+
= [ dk ]

T
A+

[∇M(v∗ ; y∗, µR

k) ]A+
+O

(
δ(xk, yk)

1−γ∥vk − v∗∥
)
.

This estimate can be combined with (3.31) to obtain

[∇Mk ]
T
A+

[ dk ]A+
= [ dk ]

T
A+

[∇M(v∗ ; y∗, µR

k) ]A+
+O(δ(xk, yk)

1−γ∥vk − v∗∥)

+O(∥[ dk ]A+
∥ ∥yk − y∗∥). (3.32)
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As v∗ = (x∗, y∗) is a primal-dual KKT pair for problem (NP), it follows from the definition
of A+ that [∇M(v∗ ; y∗, µR

k) ]A+
= [∇f(x∗) − J(x∗)Ty∗ ]A+

> 0. Combining this with
[ dk ]A+

≤ 0 from the first equality of (2.17) yields

[∇M(v∗ ; y∗, µR

k) ]
T
A+

[ dk ]A+
≤ −κ11∥[ dk ]A+

∥ for some positive κ11. (3.33)

As γ < 1, the limit δ(xk, yk) → 0 and estimates (3.32)–(3.33) imply that the inequality
[∇Mk ]

T
A+

[ dk ]A+
≤ − 1

2κ11∥[ dk ]A+
∥ holds for k ∈ S∗ sufficiently large. The combination of

this inequality with (3.30) gives

[Bkdk ]
T
A+

[ dk ]A+
+ [∇Mk ]

T
A+

[ dk ]A+
≤ κ10δ(xk, yk)

1−γ∥[ dk ]A+
∥

− 1
2κ11∥[ dk ]A+

∥, (3.34)

for all k ∈ S∗ sufficiently large.

Finally, consider the last two terms of (3.24) associated with the set A0. As k ∈ S,
it holds that yE

k = yk and πk = π(xk ; y
E

k , µ
R

k) = yk − c(xk)/µ
R

k. Let ỹk denote the vector
ỹk = πk + (πk − yk) = yk − 2c(xk)/µ

R

k. The definitions of ∇Mk and Bk, together with the
definition dk = (pk, qk) and the identity c(xk) + J(xk)pk + µR

kqk = 0 from (3.5) give

[∇Mk +Bkdk ]A0

= [∇f(xk)− J(xk)
Tỹk +H(xk, yk)pk +

2

µR

k

J(xk)
TJ(xk)pk + J(xk)

Tqk ]A0

= [∇f(xk)− J(xk)
Tỹk +H(xk, yk)pk − 2

µR

k

J(xk)
Tc(xk)− J(xk)

Tqk ]A0

= [∇f(xk)− J(xk)
Tyk +H(xk, yk)pk − J(xk)

Tqk ]A0
.

It follows from the previous displayed equation and a Taylor-series expansion with respect
to x of ∇f(x)− J(x)T(yk + qk) that

[∇Mk +Bkdk ]A0
=
[
∇f(xk + pk)− J(xk + pk)

T(yk + qk) + o(∥(pk, qk)∥)
]
A0

=
[
∇f(x̂k)− J(x̂k)

Tŷk + o(∥(pk, qk)∥)
]
A0
, (3.35)

where (x̂k, ŷk) = (xk + pk, yk + qk). Part (ii) of Lemma 3.6 then gives

r(x̂k, ŷk) ≥
∣∣min

(
[ x̂k ]i, [∇f(x̂k)− J(x̂k)

Tŷk ]i
)∣∣

=
∣∣min(0, [∇f(x̂k)− J(x̂k)

Tŷk ]i)
∣∣, for all i ∈ A0. (3.36)

There are two possible cases for each i ∈ A0, depending on the sign of [∇f(x̂k)−J(x̂k)Tŷk ]i.
If [∇f(x̂k)− J(x̂k)

Tŷk ]i ≥ 0, then the property that [ dk ]i ≤ 0 for every i ∈ A implies that
[∇f(x̂k) − J(x̂k)

Tŷk ]i[ dk ]i ≤ 0. The expression for [∇Mk + Bkdk ]i[ dk ]i from (3.35), and
the result that ∥(pk, qk)∥ = O

(
δ(xk, yk)

)
from Lemma 3.6(i) gives

[∇Mk +Bkdk ]i[ dk ]i =
[
∇f(x̂k)− J(x̂k)

Tŷk
]
i
[ dk ]i + o(∥(pk, qk)∥)[ dk ]i

= o
(
δ(xk, yk)

)∣∣[ dk ]i∣∣.
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Alternatively, if i ∈ A0 and [∇f(x̂k)− J(x̂k)
Tŷk ]i < 0, then

[∇Mk +Bkdk ]i[ dk ]i

= [∇f(x̂k)− J(x̂k)
Tŷk + o(∥(pk, qk)∥) ]i[ dk ]i

≤ r(x̂k, ŷk)
∣∣[ dk ]i∣∣+ o

(
δ(xk, yk)

)∣∣[ dk ]i∣∣ (
(3.36) and Lemma 3.6(i)

)
≤ κδ(x̂k, ŷk)

∣∣[ dk ]i∣∣+ o
(
δ(xk, yk)

)∣∣[ dk ]i∣∣ (
Lemma 3.1

)
= O

(
δ(xk, yk)

1+γ
)
|[ dk ]i|+ o

(
δ(xk, yk)

)∣∣[ dk ]i∣∣ (
Lemma 3.7

)
= o
(
δ(xk, yk)

)∣∣[ dk ]i∣∣.
A combination of the two cases provides the estimate

[∇Mk +Bkdk ]
T
A0
[ dk ]A0

≤ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥. (3.37)

It now follows from (3.24), (3.29), (3.34), (3.37), and limk∈S∗ dk = 0 that there exist positive
constants κ12, κ13, and κ14 such that

∇MT
k dk + σ̄dTk Bkdk ≤ −κ12∥[ dk ]F0

∥2 + κ13δ(xk, yk)
1−γ∥[ dk ]A+

∥
− κ14∥[ dk ]A+

∥+ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥.

As limk∈S∗ δ(xk, yk) = 0, it must hold that κ13δ(xk, yk)
1−γ ≤ 1

2κ14 for all k ∈ S∗ sufficiently
large, which gives

∇MT
k dk + σ̄dTk Bkdk ≤ −κ12∥[ dk ]F0

∥2 − 1
2κ14∥[ dk ]A+

∥+ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥. (3.38)

The next step is to show that the right-hand side of (3.38) is bounded above by a positive
multiple of −∥dk∥2. Consider the sequence vpk =

(
x∗, y∗P (ŷk)

)
, where y∗P (·) is given by (3.2)

and satisfies the second-order sufficient conditions for all k. The triangle inequality and
substitution of v̂k for vk + dk yields

∥vk − vpk∥ = ∥vk + dk − vpk − dk∥ = ∥v̂k − vpk − dk∥ ≤ ∥v̂k − vpk∥+ ∥dk∥. (3.39)

By definition, ∥v̂k − vpk∥ = δ(x̂k, ŷk), and the estimate δ(x̂k, ŷk) = o
(
δ(xk, yk)

)
given by

Lemma 3.7 implies that δ(x̂k, ŷk) ≤ 1
2δ(xk, yk) for k sufficiently large. In addition, the

definition of δ(xk, yk) is such that δ(xk, yk) ≤ ∥vk − vpk∥. If these inequalities are used to
estimate ∥dk∥ in (3.39), then

−∥dk∥ ≤ ∥v̂k − vpk∥ − ∥vk − vpk∥ ≤ −1
2δ(xk, yk). (3.40)

Consider the inequality (3.38). Suppose that k is large enough that the bound κ12∥[ dk ]F0
∥ ≤

1
4κ14 holds. Standard norm inequalities applied in conjunction with the estimates ∥dk∥ ≤



24

∥[ dk ]F0
∥+ ∥[ dk ]A+

∥, ∥[ dk ]A0
∥ ≤ ∥[ dk ]F0

∥, and ∥dk∥ ≥ 1
2δ(xk, yk) from (3.40), give

− κ12∥[ dk ]F0
∥2 − 1

2κ14∥[ dk ]A+
∥+ o

(
δ(xk, yk)

)
∥[ dk ]A0

∥
≤ −κ12∥[ dk ]F0

∥2 − 1
4κ14∥[ dk ]A+

∥ − 1
2κ12∥[ dk ]F0

∥ ∥[ dk ]A+
∥

+ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥
≤ − 1

2κ12∥[ dk ]F0
∥2 − 1

4κ14∥[ dk ]A+
∥ − 1

2κ12∥dk∥ ∥[ dk ]F0
∥

+ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥
≤ − 1

4κ14∥[ dk ]A+
∥ − 1

2κ12∥[ dk ]F0
∥2 − 1

4κ12δ(xk, yk) ∥[ dk ]F0
∥

+ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥
≤ − 1

4κ14∥[ dk ]A+
∥ − 1

2κ12∥[ dk ]F0
∥2 − 1

4κ12δ(xk, yk) ∥[ dk ]A0
∥

+ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥
≤ − 1

4κ14∥[ dk ]A+
∥ − 1

2κ12∥[ dk ]F0
∥2

≤ − 1
4κ14∥[ dk ]A+

∥2 − 1
2κ12∥[ dk ]F0

∥2.

These inequalities, when used with (3.38), imply that

∇MT
k dk + σ̄dTk Bkdk ≤ −κ12∥[ dk ]F0

∥2 − 1
2κ14∥[ dk ]A+

∥+ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥
≤ −c̄ ∥dk∥2, (3.41)

with c̄ = min{ 1
4κ14,

1
2κ12}. This establishes the first part of (3.21).

To prove the second part of (3.21), the bounds on ∇MT
k dk+ σ̄d

T
k Bkdk and dTk Bkdk given

by (3.38) and (3.29) imply that

∇MT
k dk = ∇MT

k dk + σ̄dTk Bkdk − σ̄dTk Bkdk

≤ −κ12∥[ dk ]F0
∥2 − 1

2κ14∥[ dk ]A+
∥+ o

(
δ(xk, yk)

)
∥[ dk ]A0

∥
− σ̄κ8∥[ dk ]F0

∥2 + σ̄κ9δ(xk, yk)
1−γ∥[ dk ]A+

∥. (3.42)

As limk∈S∗ dk = 0, there is an index k sufficiently large that σ̄κ9δ(xk, yk)
1−γ ≤ 1

4κ14,
and the bound (3.42) may be written in the form ∇MT

k dk ≤ −(κ12 + σ̄κ8)∥[ dk ]F0
∥2 −

1
4κ14∥[ dk ]A+

∥+ o
(
δ(xk, yk)

)
∥[ dk ]A0

∥, which is the inequality (3.38) with different positive
constants. If the argument used to derive (3.41) is repeated for this inequality, it follows that
there is a positive ĉ such that ∇MT

k dk ≤ −ĉ ∥dk∥2. From Assumption 3.4, dk is nonzero,
which implies that dk is a strict descent direction for M(v ; yE

k , µ
R

k) at vk.

Lemma 3.9 establishes that the third condition in (2.19) needed for the acceptance of
the local descent direction dk holds for all k ∈ S∗ sufficiently large.

Theorem 3.1. For all k ∈ S∗ ⊆ S sufficiently large, it holds that:

(i) a local descent direction dk = (pk, qk) is computed;

(ii) vk + dk is feasible, [∇Qk(vk + dk ; y
E

k , µ
R

k) ]Aϵ
≥ −tke, and ∇MT

k dk < 0, i.e., all three
conditions (2.19) are satisfied; and

(iii) Aϵ(xk, yk, µ
R

k) = A(x∗) = A(xk + pk).

Proof. Part (i) follows from Lemma 3.6. Part (ii) follows from Lemmas 3.6(ii) and 3.9.
It remains to prove part (iii). The equality Aϵ(xk, yk, µ

R

k) = A(x∗) is established in
Lemma 3.2(ii). Suppose that i ∈ A(x∗) = Aϵ(xk, yk, µ

R

k). The definition of the local



3. Local Convergence 25

descent direction dk in (2.17) implies that [xk + pk ]i = 0, which gives i ∈ A(xk + pk).
For the reverse inclusion, suppose that i /∈ A(x∗), i.e., x∗i > 0. In this case, the as-
sumption that limk∈S∗ xk = x∗ implies that [xk ]i ≥ 1

2x
∗
i for all k ∈ S∗ sufficiently

large. Part (i) of Lemma 3.6 gives max{∥pk∥, ∥qk∥} = O
(
δ(xk, yk)

)
, and the assumption

limk∈S∗(xk, yk) = (x∗, y∗) implies that limk∈S∗ δ(xk, yk) = 0. It follows that limk∈S∗ pk = 0,
with [xk + pk ]i ≥ 1

2x
∗
i + [ pk ]i ≥ 1

3x
∗
i > 0 for all k ∈ S∗ sufficiently large, which means that

i /∈ A(xk + pk).

The next result shows that the flexible line search returns the unit step length for all
k ∈ S∗ sufficiently large. Lemma 3.2(vi) and Theorem 3.1 imply that sk = 0 and the line-
search direction ∆vk = dk is a nonzero local descent direction for every k ∈ S∗ sufficiently
large. In this case the modified Armijo procedure is executed at every vk with ℓk = 1, and
reduces to finding an αk that satisfies the condition

M(vk ; y
E

k , µ
R

k)−M(vk + αkvk ; y
E

k , µ
R

k) ≥ −γSαk∇M(vk ; y
E

k , µ
R

k)
Tdk, (3.43)

for either µ = µk or µ = µR

k.

Theorem 3.2. The line search gives αk = 1 for all k ∈ S∗ ⊆ S sufficiently large.

Proof. Throughout the proof, the quantitiesM(v ; yE

k , µ
R

k),∇M(v ; yE

k , µ
R

k), and∇2M(vk ; y
E

k , µ
R

k)
are denoted byM(v), ∇M(v), and ∇2Mk. Assumption 3.4 and part (vi) of Lemma 3.2 imply
that the first-order line-search model is used for all k ∈ S∗ ⊆ S sufficiently large, i.e., the
quantity ℓk is set to one. A Taylor-series expansion of M(vk + dk) gives

M(vk + dk) =M(vk) +∇M(vk)
Tdk + 1

2d
T
k ∇2Mkdk +O

( 1

µR

k

∥dk∥3
)

=M(vk) +∇M(vk)
Tdk + 1

2d
T
k ∇2Mkdk +O

(
δ(xk, yk)

1−γ∥dk∥2
)
,

where the bound on the last term follows from the sequence of estimates (1/µR

k)∥dk∥ =
r(xk, yk)

−γ∥dk∥ = O
(
δ(xk, yk)

−γ
)
∥dk∥ = O

(
δ(xk, yk)

1−γ
)
derived in Lemmas 3.4, 3.1, and

3.6(i).
Let the scalar σ̄ of Lemma 3.9 be defined so that (1−γS)σ̄ = 1

2 , where γS (0 < γS <
1
2 ) is

the parameter used for the modified Armijo condition (2.21) defined with ℓk = 1. With this
definition, σ̄ satisfies 0 < σ̄ < 1, and Lemma 3.9 with the particular value σ̄ = 1

2 (1− γS)
−1

gives

M(vk + dk)−M(vk)− γS∇M(vk)
Tdk

= (1− γS)∇M(vk)
Tdk + 1

2d
T
k ∇2Mkdk +O

(
δ(xk, yk)

1−γ∥dk∥2
)

≤ [ 12 − (1− γS)σ̄]d
T
k Bkdk − (1− γS)c̄ ∥dk∥2

+ 1
2∥∇

2Mk −Bk∥ ∥dk∥2 +O
(
δ(xk, yk)

1−γ∥dk∥2
)

= −(1− γS)c̄ ∥dk∥2 + 1
2∥∇

2Mk −Bk∥ ∥dk∥2 +O
(
δ(xk, yk)

1−γ∥dk∥2
)
,

for all k ∈ S∗ sufficiently large. The global convergence property of Assumption 3.3(3.2)
implies that limk∈S∗ δ(xk, yk) = 0, which gives limk∈S∗ dk = 0 from part (i) of Lemma 3.6.
In addition, Lemma 3.8 implies that limk∈S∗ ∥∇2Mk − Bk∥ = 0. The combination of these
results gives the estimate

M(vk + dk)−M(vk)− γS∇M(vk)
Tdk ≤ −(1− γS)c̄ ∥dk∥2 + o(∥dk∥2) < 0,

for all k ∈ S∗ sufficiently large. As limk∈S∗ dk = 0 (see Lemma 3.6(i)), the computation of
αk = 1 follows from the previous displayed inequality and the Armijo condition (3.43).
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Next it is shown that the properties established in Lemmas 3.1–3.9 and Theorems 3.1–3.2
hold for every k sufficiently large, not just those in the set S∗ ⊆ S.

Theorem 3.3. For any positive ϵ sufficiently small, and any ρ such that 1 < ρ < 1 + γ,
there exists a V-iteration index kV = kV (ϵ) such that the following results hold for every
k ≥ kV :

(i) ∥(xk − x∗, yk − y∗)∥ ≤ ϵ;

(ii) δ(xk+1, yk+1) ≤ δ(xk, yk)
ρ;

(iii) k is a V-iterate; and

(iv) the results of Lemmas 3.1–3.9 and Theorems 3.1–3.2 hold.

Proof. Let the positive scalar ϵ be sufficiently small that the results of Lemmas 3.1–3.9
and Theorems 3.1–3.2 hold for every V-O iterate (xk, yk) satisfying ∥(xk −x∗, yk − y∗)∥ ≤ ϵ.
(The proof of (iv) establishes that these results hold for every k sufficiently large.)

Let (xk, yk) be a primal-dual iterate with k ∈ S∗. Theorem 3.1 implies that the unit
step is accepted in the line search, in which case (xk+1, yk+1) = (xk + pk, yk + qk). Let κ be
the positive scalar defined in Lemma 3.1. Similarly, let c1 (c1 > 0) and c2 (c2 ≥ 1) denote
constants such that

max{∥xk+1 − xk∥, ∥yk+1 − yk∥} ≤ c1δ(xk, yk), and

δ(xk+1, yk+1) ≤ c2δ(xk, yk)
1+γ .

(3.44)

(The existence of c1 and c2 is implied by the results of Lemmas 3.6(i) and 3.7.)
If ρ is any scalar satisfying 1 < ρ < 1 + γ, let kV = kV (ϵ) be an index in S∗ ⊆ S that is

sufficiently large that (xkV
, ykV

) is a V-iterate and satisfies

max { ∥xkV
− x∗∥, ∥ykV

− y∗∥, 2c1δV , 2c1δρV /(1− δρV ) } ≤ 1
4ϵ, and (3.45)

max
{
2κρ+2δρ−1

V /β, c2δ
1+γ−ρ
V , δρV

}
≤ 1, (3.46)

where δV = δ(xkV
, ykV

), and β (0 < β < 1) is the weight used in the definitions of
ϕV (x, y) and ϕV (x, y). The following argument shows that an index κV satisfying these
conditions must exist. As limk∈S∗(xk, yk) = (x∗, y∗), it must hold that the optimality and
feasibility measures (2.9) give limk∈S∗ ϕV (xk, yk) = 0 and limk∈S∗ ϕO(xk, yk) = 0. As As-
sumption 3.3(3.2) implies that there are infinitely many V-O iterates, and the condition
ϕV (vk) ≤ 1

2ϕ
max
V,k for a V-iteration is checked before the condition for an O-iteration, then

there must be infinitely many V -iterates. In addition, as limk∈S∗ δ(xk, yk) = 0, there must
be an index k = kV such that δV = δ(xk, yk) is sufficiently small to give (3.45) and (3.46).

An inductive argument is used to prove that parts (i)–(iv) hold for all k ≥ kV . The
base case is k = kV . The definition of kV implies that k = kV is a V-iteration index, and it
follows trivially that part (iii) holds. Moreover, the assumption (3.45) and standard norm
inequalities yield

∥(xkV
− x∗, ykV

− y∗)∥ ≤ ∥xkV
− x∗∥+ ∥ykV

− y∗∥ ≤ 1
4ϵ+

1
4ϵ < ϵ, (3.47)

which establishes part (i) for k = kV . It follows immediately from (3.47) and the choice of
ϵ that part (iv) holds for k = kV . As part (iv) holds for k = kV , (3.44), and (3.46) may be
combined to give δ(xkV +1, ykV +1) ≤ c2δ

1+γ
V = c2δ

1+γ−ρ
V δρV ≤ δρV , which establishes part (ii)

for k = kV . This completes the base case k = kV .
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The inductive hypothesis is that (i)–(iv) hold for every iterate k such that kV ≤ k ≤
kV + j − 1. Under this hypothesis, it must be shown that (i)–(iv) hold for k = kV + j. For
part (i), standard norm inequalities give∥∥∥∥(xkV +j − x∗

ykV +j − y∗

)∥∥∥∥ ≤ ∥xkV +j − x∗∥+ ∥ykV +j − y∗∥

=
∥∥∥ j−1∑

l=0

(xkV +l+1 − xkV +l) + xkV
− x∗

∥∥∥+ ∥∥∥ j−1∑
l=0

(ykV +l+1 − ykV +l) + ykV
− y∗

∥∥∥
≤

j−1∑
l=0

(
∥xkV +l+1 − xkV +l∥+ ∥ykV +l+1 − ykV +l∥

)
+ ∥xkV

− x∗∥+ ∥ykV
− y∗∥

≤ 2c1

j−1∑
l=0

δ(xkV +l, ykV +l) +
1
2ϵ,

where the first inequality of (3.44) has been used to bound each of the terms in the sum-
mation, and the term ∥xkV

− x∗∥ + ∥ykV
− y∗∥ is estimated by (3.47). It follows from the

inductive hypothesis for part (ii) and (3.45) that∥∥∥∥(xkV +j − x∗

ykV +j − y∗

)∥∥∥∥ = 2c1

[
δV +

j−1∑
i=1

δiρV

]
+ 1

2ϵ < 2c1

[
δV +

δρV
1− δρV

]
+ 1

2ϵ ≤ ϵ,

which establishes that part (i) holds for k = kV + j.
The next stage involves establishing that part (iii) holds for k = kV + j. For all k ≥ kV ,

it holds that ξk = 0 and the feasibility measure ϕV satisfies

βr(xk, yk) ≤ ϕV (xk, yk) = η(xk) + βω(xk, yk, ξk) ≤ 2r(xk, yk) ≤ 2κδ(xk, yk),

where the last inequality follows from Lemma 3.1. Applying these inequalities at the
next point (xkV +j , ykV +j), together with Lemma 3.1 and the induction assumption (ii)
at (xkV +j−1, ykV +j−1), gives

ϕV (xkV +j , ykV +j) ≤ 2κδ(xkV +j , ykV +j) ≤ 2κδ(xkV +j−1, ykV +j−1)
ρ

≤ 2κρ+1r(xkV +j−1, ykV +j−1)
ρ

= 2κρ+1r(xkV +j−1, ykV +j−1)
ρ−1r(xkV +j−1, ykV +j−1)

≤ (2κρ+1/β)r(xkV +j−1, ykV +j−1)
ρ−1ϕV (xkV +j−1, ykV +j−1). (3.48)

If ϕmax
V,k−1 denotes the parameter used in condition (2.10) to test for a V-iterate, then the

assumption that the point (xkV +j−1, ykV +j−1) is a V-iterate implies that the inequality
ϕV (xkV +j−1, ykV +j−1) ≤ 1

2ϕ
max
V,kV +j−1 holds. This allows the bound (3.48) to be extended so

that

ϕV (xkV +j , ykV +j) ≤ (κρ+1/β)r(xkV +j−1, ykV +j−1)
ρ−1ϕmax

V,kV +j−1

≤ (κρ+2/β)δ(xkV +j−1, ykV +j−1)
ρ−1ϕmax

V,kV +j−1

≤ (κρ+2δρ−1
V /β)ϕmax

V,kV +j−1 ≤ 1
2ϕ

max
V,kV +j−1.

The last of these inequalities follows from (3.46) and implies that (xkV +j , ykV +j) is a V-
iterate. This establishes that part (iii) holds for k = kV + j, as required. Part (iv) then
follows immediately from the choice of ϵ and the fact that (i) and (iii) hold at k = kV + j.
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It remains to show that (ii) holds for k = kV + j. It follows from the bound (3.46) and

definition of ρ (ρ > 1), that c2(δ
jρ
V )1+γ−ρ ≤ c2δ

ρ(1+γ−ρ)
V ≤ c2δ

1+γ−ρ
V ≤ 1. This inequality,

the induction hypotheses of parts (ii) and (iv), and Lemma 3.7, together give

δ(xkV +j+1, ykV +j+1) ≤ c2δ(xkV +j , ykV +j)
1+γ

= c2δ(xkV +j , ykV +j)
1+γ−ρδ(xkV +j , ykV +j)

ρ

≤ c2(δ
jρ
V )1+γ−ρδ(xkV +j , ykV +j)

ρ ≤ δ(xkV +j , ykV +j)
ρ,

which shows that part (ii) holds for k = kV + j. This completes the proof.

It remains to establish the rate of convergence of the primal-dual iterates to (x∗, y∗).
The proof is based on showing that the iterates are equivalent to those of an sSQP method
for which superlinear convergence has been established.

Theorem 3.4. The iterates satisfy limk→∞(xk, yk) = (x∗, y∗) and the convergence rate is
superlinear.

Proof. As ϵ > 0 was arbitrary in Theorem 3.3, it follows that limk→∞(xk, yk) = (x∗, y∗).
It remains to show that the convergence rate is superlinear. Theorem 3.3(iii) shows that
the iterates generated by the algorithm are all V-iterates for k sufficiently large. Moreover,
Theorem 3.3(iv) implies that Lemmas 3.1–3.9 and Theorems 3.1–3.2 hold for all k sufficiently
large (not just for k ∈ S∗ ⊆ S). It follows that for all k sufficiently large: (a) µR

k = r(xk, yk)
γ

(from Lemma 3.4); (b) A(x∗) = A(xk) = Aϵ(xk, yk, µ
R

k) (from Lemma 3.2(ii)); and (c)
(xk+1, yk+1) = (xk+pk, yk+qk) with every direction (pk, qk) a local descent direction (from
Theorems 3.2 and 3.1(i)–(iii)). The combination of these results gives [xk ]A = 0 for all k
sufficiently large, where the suffix “A” denotes the components with indices in the optimal
active set A(x∗). It follows that the sequence (xk, yk) is identical to the sequence generated
by a conventional sSQP method applied to the equality-constrained problem (3.8), i.e., the
iterates correspond to performing a conventional sSQP method on problem (NP) having
correctly estimated the active set (the associated stabilized QP subproblem is defined in the
statement of Lemma 3.5). The superlinear rate convergence of the iterates now follows, for
example, from [24, Theorem 1].

4. Numerical Experiments

This section concerns an implementation of the algorithm described in Sect. 2, and includes
the results of some numerical experiments designed to illustrate the behavior of the algorithm
on degenerate problems. Sects. 4.1–4.4 evaluate the performance of the method on problems
that exhibit various forms of degeneracy. All the results are from a variant of the method
that does not test for a direction of negative curvature until a first-order stationary point is
located. Both the global and local convergence analysis remain valid.

From a numerical stability perspective, it is important that every computation be per-
formed without forming the matrix B(vk ;µ) given by (2.4) explicitly. All the relevant
properties of the matrix B may be determined from the matrix(

H(x, y) J(x)T

J(x) −µI

)
,

which is said to have “regularized KKT form.” In particular, each iteration involves the
factorization of a matrix of the form

KFϵ
=

(
HFϵ

(x, y) JFϵ
(x)T

JFϵ
(x) −µR

kI

)
. (4.1)
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The (implicitly defined) positive-definite matrix B̂(vk ;µ
R

k) (2.15) associated with the bound-
constrained QP problem (2.13) is obtained by using a pre-convexification scheme. Specifi-

cally, the positive-definite matrix Ĥ of (2.15) has the form Ĥ(xk, yk) = H(xk, yk)+Ek+Dk

for some positive-semidefinite matrix Ek and positive-semidefinite diagonal matrix Dk, as
described in [16, Sect. 4]. If the matrix formed from the ϵ-free rows and columns of B is

positive definite (see (2.4)), then Ek is zero, in which case, the (implicit) B̂Fϵ
(xk, yk ;µ

R

k)
is equal to BFϵ

(xk, yk ;µ
R

k) and the regularized KKT equations remain unmodified (see the
equations (4.7) below). The calculation of the matrix Ek is based on an LBLT factoriza-
tion of a matrix in the form (4.1). The factorization also provides the direction of negative

curvature s
(1)
k (2.8) used to compute ξk (see, e.g., Forsgren [11], Forsgren and Gill [12], and

Kungurtsev [27, Chapter 9]).

Solution of the QP subproblem. Let Q̂k(v) denote the convex QP objective (2.14)

defined with parameters yE

k and µR

k. Given an initial feasible point v̂
(0)
k for problem (2.13)

(i.e., a point such that [ v̂
(0)
k ]i ≥ 0, i = 1 :n), a typical active-set method generates a

feasible sequence {v̂(j)k }j>0 such that Q̂k(v̂
(j)
k ) ≤ Q̂k(v̂

(j−1)
k ) and v̂

(j)
k minimizes Q̂k(v) on a

“working set” Wj of variables fixed at their bounds. An iterate v̂
(j)
k is optimal for (2.13) if

the Lagrange multipliers for the bound constraints in the working set are nonnegative, i.e.,

[∇Q̂k(v̂
(j)
k ) ]Wj

= [∇M(vk ; y
E

k , µ
R

k) + B̂(vk ;µ
R

k)(v̂
(j)
k − vk) ]Wj

≥ 0, (4.2)

where the suffix “Wj” denotes the vector of components with indices in the working set Wj .
The initial working set W0 is defined as the ϵ-active set Aϵ(xk, yk, µ

R

k). The first step is to
move the current iterate vk onto the bounds in the working set. This gives the first feasible

point v̂
(0)
k such that

[ v̂
(0)
k ]Aϵ

= 0 and [ v̂
(0)
k ]Fϵ

= [ vk ]Fϵ
, (4.3)

where the suffices “Aϵ” and “Fϵ” refer to the components associated with the ϵ-active and

ϵ-free sets at (xk, yk). In general, v̂
(0)
k will not minimize Q̂k(v) on W0, and an estimate

of the next QP iterate v̂
(1)
k is found by minimizing Q̂k(v) subject to [ v ]W0

= 0. If the
primal components of this solution are feasible for x ≥ 0, then the solution is used to define

v̂
(1)
k . Otherwise one of the violated bounds is added to the working set and the iteration is

repeated. Eventually, the working set will include enough bounds to define an appropriate

minimizer v̂
(1)
k . If v̂

(1)
k does not satisfy the gradient condition (4.2) then the index of a

variable with a negative gradient is selected for deletion from W1.

Computation of the local descent direction. Here, vk + dk is a solution of the
equality-constrained subproblem (2.16) and must satisfy the optimality conditions (2.17).
Let Qk(v) denote the QP objective (2.3) defined with parameters yE

k and µR

k. The vector dk

is computed in the form dk = v̂
(0)
k +∆v̂

(0)
k − vk, where v̂

(0)
k is the feasible point (4.3) and

∆v̂
(0)
k is defined uniquely by the equations

[∆v̂
(0)
k ]Aϵ

= 0, and BFϵ
[∆v̂

(0)
k ]Fϵ

= −[∇Qk(v̂
(0)
k ) ]Fϵ

. (4.4)

The definition of v̂
(0)
k from (4.3) together with the form of the ϵ-free and ϵ-active components

of dk yields

[ dk ]Fϵ
= [∆v̂

(0)
k ]Fϵ

and [ dk ]Aϵ
= −[ vk ]Aϵ

= −[xk ]Aϵ
≤ 0, (4.5)

where the last inequality follows from the feasibility of xk with respect to the bounds. The

benefit of computing dk in this form is that the vector v̂
(0)
k +∆v̂

(0)
k is an initial estimate of
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v̂
(1)
k used in the active-set method for solving the inequality constrained QP (2.13). (The

conditions necessary for the computation of the local descent direction include the fact that
BFϵ

must be positive definite, which implies that B̂Fϵ
= BFϵ

.) It follows that if the local
descent direction does not satisfy the conditions (2.19) and is not suitable for the line search,
it may be used to initialize the active-set method for solving (2.13).

The system of equations for [∆v̂
(0)
k ]Fϵ

in (4.4) may be written in regularized KKT form

as follows. Consider the matrix UFϵ
=
(

I −(2/µR
k )JFϵ (xk)

T

0 I

)
, where JFϵ

(xk) denotes the

matrix of ϵ-free columns of J(xk). The matrix UFϵ
is nonsingular and can be applied to

both sides of (4.4) without changing the solution. Using the definitions (4.5) and performing
some simplification yields(

HFϵ
(xk, yk) JFϵ

(xk)
T

JFϵ(xk) −µR

kI

)(
[ pk ]Fϵ

−qk

)
= −

(
[∇f(xk) +H(xk, yk)(x̂

(0)
k − xk)− J(xk)

Tyk ]Fϵ

c(xk) + J(xk)(x̂
(0)
k − xk) + µR

k(yk − yE

k)

)
, (4.6)

where pk and qk are the vectors of primal and dual components of dk, and HFϵ
(xk, yk) is

the matrix of ϵ-free rows and columns of H(xk, yk).
The local convergence analysis of Sect. 3 implies that for k sufficiently large, it must

hold that Aϵ(xk, yk, µ
R

k) = A(x∗), [xk ]Aϵ
= 0, and yE

k = yk. It follows that x̂
(0)
k = xk and

the equations (4.6) become(
HFϵ

(xk, yk) JFϵ
(xk)

T

JFϵ
(xk) −µR

kI

)(
[ pk ]Fϵ

−qk

)
= −

(
[∇f(xk)− J(xk)

Tyk ]Fϵ

c(xk)

)
, (4.7)

i.e., the dual-regularized Newton equations for minimizing M on Aϵ.

Parameter definitions. The numerical experiments were performed using pdSQP, a pre-
liminary implementation of the method written in Matlab [29]. The control parameter
values and their initial values are specified in Table 1. If pdSQP did not converge within
kmax = 1000 iterations, it was considered to have failed. The tests used to terminate the
algorithm at an approximate solution or an infeasible stationary point are given by (2.23)
and (2.24), respectively.

Table 1: Control parameter and initial values required by Algorithm pdSQP.

Parameter Value Parameter Value Parameter Value

ϕmax
V,0 , ϕmax

O,0 1.0e+3 µR
0 1.0e-4 τstop 1.0e-6

ϵa 1.0e-6 µ1 1.0 β 1.0e-5

γ 0.5 γS 1.0e-3 λ 0.2

ymax 1.0e+6 θ 1.0e-5 τ0 1.0

4.1. Degenerate CUTEst problems

The local rate of convergence of algorithm pdSQP was investigated for a set of degenerate
problems from the CUTEst test set [18]. In particular, 84 problems were identified for which
the active-constraint Jacobian is numerically rank deficient at the computed solution. In
addition, 56 problems have at least one negligible multiplier associated with a variable on
its bound. In this case, a multiplier is considered as being negligible if it is less than τstop
in absolute value. A zero multiplier associated with an active constraint implies that the
property of strict complementarity does not hold. A total of 26 problems were identified that
fail both the linear independence constraint qualification (LICQ) and strict complementarity.
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For these degenerate problems, the order of convergence was estimated by

EOC = log r(xkf
, ykf

)/ log r(xkf−1, ykf−1), (4.8)

where kf denotes the final computed iterate. The results are given in Table 2. The column
with heading “Last is global” contains the statistics for problems for which the final search
direction is a global descent direction. The column marked “Last is local” gives the statistics
for problems for which the final direction is a local descent direction. Column headed “Last
two are local” contains the statistics for problems for which the final two descent steps
are local descent directions. The values in parentheses indicate the number of problems
that satisfy the weak second-order sufficient optimality conditions, i.e., the Hessian of the
Lagrangian is positive definite on the null space of the active constraint Jacobian matrix.
In the implementation considered here, this property is considered to hold if the smallest
eigenvalue of ZTHFϵ

Z is greater than τstop, where the columns of Z form a basis for the
null space of JFϵ

.

Table 2: Estimated order of convergence for pdSQP on the degenerate CUTEst problems.

Last is global Last is local Last two are local Total

Problems not satisfying the LICQ

1.25 < EOC 20 (7) 16 (12) 33 (31) 69 (50)

1.1 < EOC ≤ 1.25 3 (3) 1 (1) 6 (6) 10 (10)

EOC ≤ 1.1 3 (2) 0 (0) 2 (2) 5 (4)

Problems not satisfying strict complementarity

1.25 < EOC 17 (6) 4 (2) 16 (16) 37 (24)

1.1 < EOC ≤ 1.25 4 (4) 0 (0) 3 (3) 7 (7)

EOC ≤ 1.1 9 (7) 1 (0) 2 (1) 12 (8)

Problems not satisfying strict complementarity and the LICQ

1.25 < EOC 11 (3) 4 (2) 6 (6) 21 (11)

1.1 < EOC ≤ 1.25 2 (2) 0 (0) 2 (2) 4 (4)

EOC ≤ 1.1 1 (1) 0 (0) 0 (0) 1 (1)

Table 2 shows that if the LICQ does not hold, but strict complementarity does, then local
descent steps are computed in the final stages and they contribute to a superlinear rate of
convergence. Moreover, superlinear convergence is typical even when the local descent step
is not computed. This observation is consistent with [27, Chapter 8], which shows that the
iterates generated by algorithm pdSQP of Gill and Robinson [15] converge superlinearly when
the second-order sufficient conditions for optimality hold as well as the property of strict
complementarity. The results are more mixed on those problems for which pdSQP converges
to a solution at which strict complementarity fails.

4.2. The degenerate problems of Mostafa, Vicente, and Wright

In [30], Mostafa, Vicente and Wright analyze the performance of an sSQP algorithm pro-
posed by Wright [34] that estimates the weakly and strongly active multipliers. The authors
demonstrate that the algorithm is robust in general and converges rapidly on a specified
collection of 12 degenerate problems that includes some of the original Hock-Schittkowski
problems; several Hock-Schittkowski problems modified to include redundant constraints;
and several problems drawn from the literature (see the reference [30] for additional details).
All 12 problems have either a rank-deficient Jacobian or at least one weakly active multiplier
at the solution.

Algorithm pdSQP was tested on ten of the twelve problems that could be coded directly
or obtained from other sources. Of the ten cases, pdSQP converges superlinearly on seven



32

problems, converges linearly on two problems, and fails to converge on one problem. These
results appear to be similar to those obtained by Mostafa, Vicente and Wright using their
code sSQPa [30].

4.3. Degenerate MPECs

Mathematical programs with equilibium constraints (MPECs) are optimization problems
that have variational inequalities as constraints. Various reformulations of MPECs as non-
linear programs (see Baumrucker, Renfro and Biegler [3]) include complementarity con-
straints that do not satisfy the LICQ or the MFCQ. This is generally recognized as the
main source of difficulty for conventional nonlinear solvers. In the case of pdSQP, the viola-
tion of the MFCQ implies that [14, Theorem 3.16] cannot be used to ensure the existence
of limit points of the sequence of dual variables. As a consequence, the primal-dual iterates
of pdSQP may never enter a region of superlinear convergence. Nonetheless, as MPECs
constitute an important and challenging class of problems, this section includes results from
pdSQP on a large set of MPECs.

We evaluated pdSQP was evaluated on 86 MPECs obtained from Sven Leyffer at the
Argonne National Laboratory. Many of these problems are included in the MPECLib li-
brary [5], which is a varied collection of MPECs from both theoretical and practical test
models. pdSQP solved 78 of the 86 problems.

As discussed above, the theoretical results of Sect. 3 do not guarantee that the primal-
dual iterates will enter a region in which local descent steps are used. In order to study this
possibility, Table 3 gives the EOC rates defined in (4.8) for all of the MPEC problems. The
results indicate that, as predicted by the theory, the last search direction is a global descent
direction in 23 cases. Nonetheless, 20 of these cases still converge at a superlinear rate.
By comparison, of the 55 problems for which the last direction is a local descent direction,
superlinear convergence occurs in 52 cases.

Table 3: Estimated order of convergence for pdSQP on the MPEC test set.

Last is global Last is local Last two are local Total

1.25 < EOC 18 (9) 17 (17) 31 (31) 66 (57)

1.1 < EOC ≤ 1.25 2 (2) 1 (1) 3 (3) 6 (6)

EOC ≤ 1.1 3 (2) 2 (2) 1 (1) 6 (5)

4.4. Degenerate problems from the DEGEN test set

In a series of numerical tests, Izmailov and Solodov [22, 23, 25] demonstrate that Newton-
like algorithms such as SQP or inexact SQP methods tend to generate dual iterates that
converge to critical multipliers, when they exist. (Critical multipliers are those multipliers
y ∈ Y(x∗) for which the regularized KKT matrix (4.1) is singular at x∗). This is significant
because dual convergence to critical multipliers will result in a linear rate of convergence [23].
However, Izmailov [23] shows that an implementation of a conventional sSQP algorithm is
less likely to exhibit this behavior, although poor performance can still occur in a small
number of cases. This has motivated the use of sSQP subproblems as a way of accelerating
local convergence in the presence of critical multipliers. However, such algorithms have had
mixed results in practice (see, e.g., Izmailov [26]). The purpose of this section is to use a
subset of the DEGEN test set to investigate the performance of pdSQP on problems with
critical multipliers. The subset of problems consists of those considered by Izmailov [22],
and Izmailov and Solodov [23].

Table 4 gives the estimated orders of convergence for these problems. The results are
separated based on the following properties: (i) no critical multipliers exist; (ii) critical
multipliers exist but the limit point y∗ is not critical; and (iii) the limit point y∗ is critical.
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The summaries indicate which optimal multipliers (if any) are critical. If the final multiplier
estimate is within 10−3 of a critical multiplier, the multiplier is designated as critical. As
shown in Table 4, empirically, pdSQP converges superlinearly on 45 of the 51 problems that
do not have critical multipliers. For the 58 problems that have critical multipliers, pdSQP
converges to a critical multiplier for 46 of them, and for those 46 problems the rate of
convergence was typically slower. The slower convergence supports the theory in [23], but
the results indicate that on this test set, pdSQP often converges to critical multipliers when
they are present.

Table 4: Estimated order of convergence (EOC) of pdSQP on the DEGEN test set.

Critical multipliers? y∗ critical? EOC > 1.25 1.25 ≥ EOC > 1.1 EOC ≤ 1.1

No – 36 9 6

Yes No 9 1 2

Yes Yes 6 29 11

5. Conclusions

This paper considers the local convergence analysis and some aspects of the numerical per-
formance of an sSQP method for nonlinearly constrained optimization. The method appears
to constitute the first algorithm with provable convergence to second-order points as well as
a superlinear rate of convergence. The method is formulated as a stabilized SQP method
with an implicit safeguarding strategy based on minimizing a bound-constrained primal-
dual augmented Lagrangian. The method involves a flexible line search along a direction
formed from an approximate solution of a regularized quadratic programming subproblem
and, when one exists, a direction of negative curvature for the primal-dual augmented La-
grangian. With an appropriate choice of termination condition, the method terminates in a
finite number of iterations under weak assumptions on the problem functions. Safeguarding
becomes relevant only when the iterates are converging to an infeasible stationary point
of the norm of the constraint violations. Otherwise, the method terminates with a point
that either satisfies the second-order necessary conditions for optimality, or fails to satisfy
a weak second-order constraint qualification. In the former case, superlinear local conver-
gence is established by using an approximate solution of the stabilized QP subproblem that
guarantees that the optimal active set, once correctly identified, remains active regardless
of the presence of weakly active multipliers. It is shown that the method has superlinear
local convergence under the assumption that limit points become close to a solution set
containing multipliers satisfying the second-order sufficient conditions for optimality. This
rate of convergence is obtained without the need to solve a nonconvex QP subproblem, or
impose restrictions on which local minimizer of the QP is found. For example, it is not
necessary to compute the QP solution closest to the current solution estimate.

Numerical results on a variety of problems indicate that the method performs relatively
well compared to a state-of-the-art SQP method. Superlinear convergence is typical, even
for problems that do not satisfy standard constraint qualifications. Results are more mixed
for problems that do not satisfy the property of strict complementarity.

The proposed method is based on the beneficial properties of dual regularization, which
makes it necessary to assume a second-order sufficient condition to rule out the possibility
of critical multipliers at the solution. Future research will focus on primal regularization
techniques that allow superlinear convergence when critical multipliers are present. For
a local algorithm framework based on primal regularization, see Facchinei, Fischer and
Herrich [6, 7].
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