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Abstract

Computational methods are proposed for solving a convex quadratic pro-
gram (QP). Active-set methods are defined for a particular primal and dual
formulation of a QP with general equality constraints and simple lower bounds
on the variables. In the first part of the paper, two methods are proposed, one
primal and one dual. These methods generate a sequence of iterates that are
feasible with respect to the equality constraints associated with the optimality
conditions of the primal-dual form. The primal method maintains feasibility of
the primal inequalities while driving the infeasibilities of the dual inequalities to
zero. In contrast, the dual method maintains feasibility of the dual inequalities
while moving to satisfy the infeasibilities of the primal inequalities. In each of
these methods, the search directions satisfy a KKT system of equations formed
from Hessian and constraint components associated with an appropriate col-
umn basis. The composition of the basis is specified by an active-set strategy
that guarantees the nonsingularity of each set of KKT equations. Each of the
proposed methods is a conventional active-set method in the sense that an ini-
tial primal- or dual-feasible point is required. In the second part of the paper,
it is shown how the quadratic program may be solved as coupled pair of pri-
mal and dual quadratic programs created from the original by simultaneously
shifting the simple-bound constraints and adding a penalty term to the objec-
tive function. Any conventional column basis may be made optimal for such
a primal-dual pair of shifted-penalized problems. The shifts are then updated
using the solution of either the primal or the dual shifted problem. An obvious
application of this approach is to solve a shifted dual QP to define an initial
feasible point for the primal (or vice versa). The computational performance
of each of the proposed methods is evaluated on a set of convex problems from
the CUTEst test collection.
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1. Introduction

We consider the formulation and analysis of active-set methods for a convex quadratic
program (QP) of the form

minimize
x∈Rn, y∈Rm

cTx+ 1
2x

THx+ 1
2y

TMy

subject to Ax+My = b, x ≥ 0,
(1.1)

where A, b, c, H and M are constant, with H and M symmetric positive semidefi-
nite. It is assumed throughout that the matrix

(
A M

)
associated with the equality

constraints has full row rank. (This assumption can be made without loss of gener-
ality, as shown in Proposition A.8.)

In order to simplify the theoretical discussion, the inequalities of (1.1) involve
nonnegativity constraints only. However, the methods to be described are easily
extended to treat all forms of linear constraints. (Numerical results are given for
problems with constraints in the form xL ≤ x ≤ xU and bL ≤ Ax ≤ bU , for fixed
vectors xL, xU , bL and bU .) IfM = 0, the QP (1.1) is a conventional convex quadratic
program with constraints defined in standard form. A regularized quadratic program
may be obtained by defining M = µI for some small positive parameter µ.

Active-set methods for quadratic programming solve a sequence of linear equa-
tions that involve the y-variables and a subset of the x-variables. Each set of equa-
tions constitutes the optimality conditions associated with an equality-constrained
quadratic subproblem. The goal is to predict the optimal active set, i.e., the set of
constraints that are satisfied with equality, at the solution of the problem. A conven-
tional active-set method has two phases. In the first phase, a feasible point is found
while ignoring the objective function; in the second phase, the objective is minimized
while feasibility is maintained. A useful feature of active-set methods is that they
are well-suited for “warm starts”, where a good estimate of the optimal active set
is used to start the algorithm. This is particularly useful in applications where a se-
quence of quadratic programs is solved, e.g., in a sequential quadratic programming
method or in an ODE- or PDE-constrained problem with mesh refinement. Other
applications of active-set methods for quadratic programming include mixed-integer
nonlinear programming, portfolio analysis, structural analysis, and optimal control.

In Section 2, the primal and dual forms of a convex quadratic program with con-
straints in standard form are generalized to include general lower bounds on both
the primal and dual variables. These problems constitute a primal-dual pair that
includes problem (1.1) and its associated dual as a special case. In Sections 3 and 4,
an active-set method is proposed for each of the primal and dual forms associated
with the generalized problem of Section 2. Both of these methods generate a se-
quence of iterates that are feasible with respect to the equality constraints associated
with the optimality conditions of the primal-dual problem pair. The primal method
maintains feasibility of the primal inequalities while driving the infeasibilities of the
dual inequalities to zero. By contrast, the dual method maintains feasibility of the
dual inequalities while moving to satisfy the infeasibilities of the primal inequalities.
In each of these methods, the search directions satisfy a KKT system of equations
formed from Hessian and constraint components associated with an appropriate col-
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umn basis. The composition of the basis is specified by an active-set strategy that
guarantees the nonsingularity of each set of KKT equations.

The methods formulated in Sections 2–4 define conventional active-set methods
in the sense that an initial feasible point is required. In Section 5, a method is
proposed that solves a pair of coupled quadratic programs created from the original
by simultaneously shifting the simple-bound constraints and adding a penalty term
to the objective function. Any conventional column basis can be made optimal for
such a primal-dual pair of shifted-penalized problems. The shifts are then updated
using the solution of either the primal or the dual shifted problem. An obvious
application of this idea is to solve a shifted dual QP to define an initial feasible
point for the primal, or vice-versa. In addition to the obvious benefit of using the
objective function while getting feasible, this approach provides an effective method
for finding a dual-feasible point when H is positive semidefinite and M = 0. Finding
a dual-feasible point is relatively straightforward for the strictly convex case, i.e.,
when H is positive definite. However, in the general case, the dual constraints for
the phase-one linear program involve entries from H as well as A, which complicates
the formulation of the phase-one method considerably.

Finally, in Section 7 some numerical experiments are presented for a simple
Matlab implementation of the coupled primal-dual method applied to a set of
convex problems from the CUTEst test collection [33].

There are a number of alternative active-set methods available for solving a QP

with constraints written in the format of problem (1.1). Broadly speaking, these
methods fall into three classes defined here in the order of increasing generality:
(i) methods for strictly convex quadratic programming (H symmetric positive defi-
nite) [1,22,31,41,44]; (ii) methods for convex quadratic programming (H symmetric
positive semidefinite) [6, 26, 38, 39, 45]; and (iii) methods for general quadratic pro-
gramming (no assumptions on H other than symmetry) [2, 3, 9, 17, 19, 23, 28–30,32,
35–37,45]. Of the methods specifically designed for convex quadratic programming,
only the methods of Boland [6] and Wong [45, Chapter 4] are dual active-set meth-
ods. Some existing active-set quadratic programming solvers include QPOPT [24],
QPSchur [1], SQOPT [26], SQIC [30] and QPA (part of the GALAHAD software library) [34].

The primal active-set method proposed in Section 3 is motivated by the methods
of Fletcher [17], Gould [32], and Gill andWong [30], which may be viewed as methods
that extend the properties of the simplex method to general quadratic programming.
At each iteration, a direction is computed that satisfies a nonsingular system of
linear equations based on an estimate of the active set at a solution. The equations
may be written in symmetric form and involve both the primal and dual variables.
In this context, the purpose of the active-set strategy is not only to obtain a good
estimate of the optimal active set, but also to ensure that the systems of linear
equations that must be solved at each iteration are nonsingular. This strategy
allows the application of any convenient linear solver for the computation of the
iterates. In this paper, these ideas are applied to convex quadratic programming.
The resulting sequence of iterates is the same as that generated by an algorithm for
general QP, but the structure of the iteration is different, as is the structure of the
linear equations that must be solved. Similar ideas are used to formulate the new
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dual active-set method proposed in Sections 4.

The proposed primal, dual, and coupled primal-dual methods use a “conven-
tional” active-set approach in the sense that the constraints remain unchanged dur-
ing the solution of a given QP. Alternative approaches that use a parametric active-
set method have been proposed by Best [4, 5], Ritter [42, 43], Ferreau, Bock and
Diehl [16], Potschka et al. [40] and implemented in the qpOASES package by Ferreau
et al. [15]. The use of shifts for the bounds have been suggested by Cartis and
Gould [11] in the context of interior methods for linear programming. Another class
of active-set methods that are shown to be convergent for strictly convex quadratic
programs have been considered by Curtis, Han, and Robinson [12].

Notation and terminology. Given vectors a and b with the same dimension,
min(a, b) is a vector with components min(ai, bi). The vectors e and ej denote,
respectively, the column vector of ones and the jth column of the identity matrix
I. The dimensions of e, ei and I are defined by the context. Given vectors x and y,
the column vector consisting of the components of x augmented by the components
of y is denoted by (x, y).

2. Background

Although the purpose of this paper is the solution of quadratic programs of the form
(1.1), for reasons that will become evident in Section 5, the analysis will focus on
the properties of a pair of problems that may be interpreted as a primal-dual pair
of QPs associated with problem (1.1).

2.1. Formulation of the primal and dual problems

For given constant vectors q and r, consider the pair of convex quadratic programs

(PQPq,r)
minimize

x,y

1
2x

THx+ 1
2y

TMy + cTx+ rTx

subject to Ax+My = b, x ≥ −q,

and

(DQPq,r)
maximize

x,y,z
−1

2x
THx− 1

2y
TMy + bTy − qTz

subject to −Hx+ATy + z = c, z ≥ −r.

The following result gives joint optimality conditions for the triple (x, y, z) such
that (x, y) is optimal for (PQPq,r), and (x, y, z) is optimal for (DQPq,r). If q and r
are zero, then (PQP0,0) and (DQP0,0) are the primal and dual problems associated
with (1.1). For arbitrary q and r, (PQPq,r) and (DQPq,r) are essentially the dual of
each other, the difference is only an additive constant in the value of the objective
function.

Proposition 2.1. Let q and r denote constant vectors in Rn. If (x, y, z) is a given
triple in Rn×Rm×Rn, then (x, y) is optimal for (PQPq,r) and (x, y, z) is optimal
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for (DQPq,r) if and only if

Ax+My − b = 0, (2.1a)

Hx+ c−ATy − z = 0, (2.1b)

x+ q ≥ 0, (2.1c)

z + r ≥ 0, (2.1d)

(x+ q)T(z + r) = 0. (2.1e)

In addition, it holds that optval(PQPq,r) − optval(DQPq,r) = −qTr. Finally, (2.1)
has a solution if and only if the sets{

(x, y, z) : −Hx+ATy + z = c, z ≥ −r
}

and
{
x : Ax+My = b, x ≥ −q

}
are both nonempty.

Proof. Let the vector of Lagrange multipliers for the constraints Ax+My− b = 0
be denoted by ỹ. Without loss of generality, the Lagrange multipliers for the bounds
x + q ≥ 0 of (PQPq,r) may be written in the form z + r, where r is the given fixed
vector r. With these definitions, a Lagrangian function L(x, y, ỹ, z) associated with
(PQPq,r) is given by

L(x, y, ỹ, z) = 1
2x

THx+ (c+ r)Tx+ 1
2y

TMy − ỹT(Ax+My − b)− (z + r)T(x+ q),

with z+ r ≥ 0. Stationarity of the Lagrangian with respect to x and y implies that

Hx+ c+ r −ATỹ − z − r = Hx+ c−ATỹ − z = 0, (2.2a)

My −Mỹ = 0. (2.2b)

The optimality conditions for (PQPq,r) are then given by: (i) the feasibility condi-
tions (2.1a) and (2.1c); (ii) the nonnegativity conditions (2.1d) for the multipliers
associated with the bounds x+q ≥ 0; (iii) the stationarity conditions (2.2); and (iv)
the complementarity conditions (2.1e). The vector y appears only in the term My
of (2.1a) and (2.2b). In addition, (2.2b) implies that My = Mỹ, in which case we
may choose y = ỹ. This common value of y and ỹ must satisfy (2.2a), which is then
equivalent to (2.1b). The optimality conditions (2.1) for (PQPq,r) follow directly.

With the substitution ỹ = y, the expression for the primal Lagrangian may be
rearranged so that

L(x, y, y, z) = −1
2x

THx− 1
2y

TMy+bTy−qTz+(Hx+c−ATy−z)Tx−qTr. (2.3)

Taking into account (2.2) for y = ỹ, the dual objective is given by (2.3) as −1
2x

THx−
1
2y

TMy+ bTy− qTz− qTr, and the dual constraints are Hx+ c−ATy− z = 0 and
z + r ≥ 0. It follows that (DQPq,r) is equivalent to the dual of (PQPq,r), the only
difference is the constant term −qTr in the objective, which is a consequence of the
shift z + r in the dual variables. Consequently, strong duality for convex quadratic
programming implies optval(PQPq,r) − optval(DQPq,r) = −qTr. In addition, the
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variables x, y and z satisfying (2.1) are feasible for (PQPq,r) and (DQPq,r) with the
difference in the objective function value being −qTr. It follows that (x, y, z) is
optimal for (DQPq,r) as well as (PQPq,r). Finally, feasibility of both (PQPq,r) and
(DQPq,r) is both necessary and sufficient for the existence of optimal solutions.

2.2. Optimality conditions and the KKT equations

The joint optimality conditions (2.1) may be written in terms of the index sets of
fixed and free primal variables. At an arbitrary point x, consider the index sets

A(x) =
{
i : xi = −qi

}
and F(x) = {1, 2, . . . , n} \ A(x).

The set A(x) is the active set of bound constraints at the point x. The variables
with indices in F(x) are referred to as the free variables. If z is any n-vector, the
nF -vector zF and nA-vector zA denote the vectors of components of z associated
with F(x) and A(x). For the symmetric Hessian H, the matrices HFF and HAA

denote the subset of rows and columns of H associated with the sets F(x) and
A(x), respectively. The unsymmetric matrix of components hij with i ∈ F(x) and
j ∈ A(x) will be denoted by HFA. Similarly, AF and AA denote the matrices of free
and active columns of A. With these definitions, the joint optimality conditions
(2.1) may be written in the form

AFxF +AAxA +My − b = 0, (2.4a)

HFFxF +HFAxA + cF −AT
F y − zF = 0, xF + qF ≥ 0, zF + rF = 0, (2.4b)

HT
FAxF +HAAxA + cA −AT

A y − zA = 0, xA + qA = 0, zA + rA ≥ 0. (2.4c)

Eliminating xA and zF using the equalities zF + rF = 0 and xA + qA = 0 yields the
equations

AFxF +My = b+AAqA,

HFFxF −AT
F y = HFAqA − cF − rF ,

HT
FAxF −AT

A y − zA = HAAqA − cA,

which may be expressed in matrix form as(
HFF AT

F

AF −M

)(
xF

−y

)
=

(
HFAqA − cF − rF

AAqA + b

)
, (2.5)

with zA = HT
FAxF + cA −AT

A y −HAAqA. If a solution of (PQPq,r) or (DQPq,r) exists,
then the equations (2.5) are compatible, but not necessarily nonsingular.

The proposed methods are based on maintaining index sets B and N that ap-
proximate the free and active sets F and A at a solution. The sets B and N define
a partition of the index set I = {1, 2, . . . , n}, i.e., I = B ∪ N with B ∩ N = ∅.
Following standard terminology, we refer to the subvectors xB and xN associated
with an arbitrary x as the basic and nonbasic variables, respectively. Let HBB , HNN ,
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HBN , AB, and AN denote submatrices of H and A analogous to HFF , HAA, HFA, AF ,
and AA, respectively. The crucial distinction between B and F is that the basic set
B is defined in such a way that the KKT matrix

KB =

(
HBB AT

B

AB −M

)
is nonsingular (cf. equation (2.5)). As in Gill and Wong [30], any set B such that KB

is nonsingular is referred to as a second-order consistent basis. Methods that impose
restrictions on the eigenvalues of KB are known as inertia-controlling methods. (For
a description of inertia-controlling methods for general quadratic programming, see,
e.g., Gill et al. [29], and Gill and Wong [30].) Given a point (x, y, z) satisfying the
optimality conditions (2.4), it is always possible to define a second-order consistent
basis B such that (x, y, z) satisfies the conditions

ABxB +ANxN +My = b, (2.6a)

HBBxB +HBNxN + cB −AT
By − zB = 0, zB + rB = 0, xB + qB ≥ 0, (2.6b)

HT
BNxB +HNNxN + cN −AT

Ny − zN = 0, zN + rN ≥ 0, xN + qN = 0. (2.6c)

(For simplicity, it is assumed that B and N can be defined so that N ⊆ A(x). In
practice it may be necessary to include indices inN that correspond to variables that
are temporarily fixed at their current values, see, e.g., Gill and Wong [30, Section 6].)
Eliminating xN and zB from the equality conditions of (2.6a) and (2.6b) gives (xB,
y) as the unique solution of the equations(

HBB AT
B

AB −M

)(
xB

−y

)
=

(
HBNqN − cB − rB

ANqN + b

)
. (2.7)

Once xB and y have been defined, the zN -variables may be computed as

zN = HT
BNxB −HNNqN + cN −AT

Ny. (2.8)

The two methods proposed in this paper generate a sequence of iterates that satisfy
the equality conditions of (2.6) for some partition B and N . The primal method of
Section 3 imposes the restriction that xB + qB ≥ 0, which implies that the sequence
of iterates is primal feasible. The dual method of Section 4 imposes dual feasibility
via the bounds zN + rN ≥ 0.

The primal and dual methods are derived in terms of a common framework that
serves to emphasize the similarities in the methods. In particular, the methods
require the solution of a common set of equations defined in terms of a partition of
the index set I = {1, 2, . . . , n}. At the start of each iteration, I is partitioned into
disjoint sets B and N such that B ∪ N = I. This initial partition has the property
that (x, y, z) is uniquely defined via the equations

Hx+ c−ATy − z = 0,
Ax+My − b = 0,

}
with xN + qN and zB + rB fixed. (2.9)
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During an iteration, xB + qB and zN + rN are free to move. In a primal iteration, x
is primal feasible, with xN + qN = 0 and xB + qB ≥ 0. In a dual iteration, z is dual
feasible, with zN + rN ≥ 0 and zB + rB = 0.

An iteration of the primal method begins with the identification of a nonbasic
primal variable xl with an infeasible dual value, i.e., zl + rl < 0. The index l is
removed from the nonbasic set, i.e., N ← N \{l}, and there follows a finite number
of subiterations during which zl + rl is driven to zero from below. During these
subiterations, the index l remains distinct from B and N while indices are moved
from B to N in order to maintain primal feasibility. On completion of the final
subiteration, zl + rl = 0 and the index l is added to the basic set, i.e., B ← B ∪ {l},
which defines a conventional partition B ∪N = {1, 2, . . . , n} for the next iteration.
An iteration of the dual method is defined in an analogous way. The iteration begins
with the identification of a basic dual variable zl associated with an infeasible primal
variable, i.e., xl + ql < 0. The index l is removed from the basic set, and the dual
subiterations drive xl + ql to zero while maintaining dual feasibility. On completion
of the final dual subiteration, xl + ql = 0 and the index l is added to the nonbasic
set, giving B ∪N = {1, 2, . . . , n} as in the primal case.

At each subiteration of both the primal and dual methods, an index l and index
sets B and N are known such that B ∪ {l} ∪N = {1, 2, . . . , n}. A search direction
(∆x,∆y,∆z) is defined that satisfies the identities

H∆x−AT∆y −∆z = 0, (2.10a)

A∆x+M∆y = 0, (2.10b)

∆xN = 0, (2.10c)

∆zB = 0. (2.10d)

As l ̸∈ B and l ̸∈ N , these identities allow both ∆xl and ∆zl to be nonzero. The
identities (2.10) may be expressed in the partitioned matrix form

hll hT
Bl HT

N l aTl 1
hBl HBB HBN AT

B I
h

N l HT
BN HNN AT

N I
al AB AN −M

I
I





∆xl
∆xB

∆xN

−∆y
−∆zl
−∆zB
−∆zN


=



0
0
0
0
0
0

 ,

which implies that the quantities ∆xl, ∆xB, ∆y and ∆zl satisfy the homogeneous
equations hll hT

Bl aTl 1
hBl HBB AT

B

al AB −M




∆xl
∆xB

−∆y
−∆zl

 =

0
0
0

 , (2.11a)

with ∆zN given by

∆zN = hN l∆xl +HT
BN∆xB −AT

N∆y. (2.11b)
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The properties of these equations are established in the next section.

2.3. The linear algebra framework

This section establishes the linear algebra framework that serves to emphasize the
underlying symmetry between the primal and dual methods. It is shown that the
search direction for the primal and the dual method is a nonzero solution of the
homogeneous equations (2.11a), i.e., every direction is a nontrivial null vector of
the matrix of (2.11a). In particular, it is shown that the null-space of (2.11a) has
dimension one, which implies that every solution of (2.11a) is unique up to a scalar
multiple. The length of the direction is then completely determined by fixing either
∆xl = 1 or ∆zl = 1. The choice of which component to fix depends on whether
or not the corresponding component in a null vector of (2.11a) is nonzero. The
conditions are stated precisely in Propositions 2.3 and 2.4 below.

The first result shows that the components ∆xl and ∆zl of any direction (∆x,
∆y, ∆z) satisfying the identities (2.10) must be such that ∆xl∆zl ≥ 0.

Proposition 2.2. If the vector (∆x,∆y,∆z) satisfies the identities

H∆x−AT∆y −∆z = 0,

A∆x+M∆y = 0,

then ∆xT∆z ≥ 0. Moreover, given an index l and index sets B and N such that
B ∪ {l} ∪ N = {1, 2, . . . , n} with ∆xN = 0 and ∆zB = 0, then ∆xl∆zl ≥ 0.

Proof. Premultiplying the first identity by ∆xT and the second by ∆yT gives

∆xTH∆x−∆xTAT∆y −∆xT∆z = 0, and ∆yTA∆x+∆yTM∆y = 0.

Eliminating the term ∆xTAT∆y gives ∆xTH∆x+∆yTM∆y = ∆xT∆z. By defi-
nition, H and M are symmetric positive semidefinite, which gives ∆xT∆z ≥ 0. In
particular, if B∪{l}∪N = {1, 2, . . . , n}, with ∆xN = 0 and ∆zB = 0, it must hold
that ∆xT∆z = ∆xl∆zl ≥ 0.

The set of vectors (∆xl, ∆xB, −∆y, −∆zl) satisfying the homogeneous equations
(2.11a) is completely characterized by the properties of the matrices KB and Kl such
that

KB =

(
HBB AT

B

AB −M

)
and Kl =

hll hT
Bl aTl

h
Bl HBB AT

B

al AB −M

 . (2.12)

The properties are summarized by the results of the following two propositions.

Proposition 2.3. If KB is nonsingular, and ∆xl is a given nonnegative scalar,
then the quantities ∆xB, ∆y, ∆zl and ∆zN of (2.11) are unique and satisfy the
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equations (
HBB AT

B

AB −M

)(
∆xB

−∆y

)
= −

(
hBl

al

)
∆xl, (2.13a)

∆zl = hll∆xl + hT
Bl∆xB − aTl ∆y, (2.13b)

∆zN = hN l∆xl +HT
BN∆xB −AT

N∆y. (2.13c)

If ∆xl = 0, then ∆xB = 0, ∆y = 0, ∆zl = 0 and ∆zN = 0. Otherwise, ∆xl > 0,
and either

(i) Kl is nonsingular and ∆zl > 0, or

(ii) Kl is singular and ∆zl = 0, in which case it holds that ∆y = 0, ∆zN = 0,
and the multiplicity of the zero eigenvalue of Kl is one, with corresponding
eigenvector (∆xl, ∆xB, 0).

Proof. The second and third blocks of the equations (2.11a) imply that(
hBl

al

)
∆xl +

(
HBB AT

B

AB −M

)(
∆xB

−∆y

)
=

(
0
0

)
. (2.14)

As KB is nonsingular by assumption, the vectors ∆xB and ∆y must constitute the
unique solution of (2.14) for a given value of ∆xl. Furthermore, given ∆xB and ∆y,
the quantities ∆zl and ∆zN of (2.13) are also uniquely defined. The specific value
∆xl = 0, gives ∆xB = 0 and ∆y = 0, so that ∆zl = 0 and ∆zN = 0. It follows
that ∆xl must be nonzero for at least one of the vectors ∆xB, ∆y, ∆zl or ∆zN to
be nonzero.

Next it is shown that if ∆xl > 0, then either (i) or (ii) must hold. For (i), it
is necessary to show that if ∆xl > 0 and Kl is nonsingular, then ∆zl > 0. If Kl is
nonsingular, the homogeneous equations (2.11a) may be written in the formhll hT

Bl aTl
hBl HBB AT

B

al AB −M

 ∆xl
∆xB

−∆y

 =

1
0
0

∆zl, (2.15)

which implies that ∆xl, ∆xB and ∆y are unique for a given value of ∆zl. In
particular, if ∆zl = 0 then ∆xl = 0, which would contradict the assumption that
∆xl > 0. If follows that ∆zl must be nonzero. Finally, Proposition 2.2 implies that
if ∆zl is nonzero and ∆xl > 0, then ∆zl > 0 as required.

For the first part of (ii), it must be shown that if Kl is singular, then ∆zl = 0.
If Kl is singular, it must have a nontrivial null vector (pl, pB, −u). Moreover, every
null vector must have a nonzero pl, because otherwise (pB, −u) would be a nontrivial
null vector of KB, which contradicts the assumption that KB is nonsingular. A fixed
value of pl uniquely defines pB and u, which indicates that the multiplicity of the
zero eigenvalue must be one. A simple substitution shows that (pl, pB, −u, vl) is
a nontrivial solution of the homogeneous equation (2.11a) such that vl = 0. As
the subspace of vectors satisfying (2.11a) is of dimension one, it follows that every
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solution is unique up to a scalar multiple. Given the properties of the known solution
(pl, pB, −u, 0), it follows that every solution (∆xl, ∆xB, −∆y, −∆zl) of (2.11a) is
an eigenvector associated with the zero eigenvalue of Kl, with ∆zl = 0.

For the second part of (ii), if∆zl = 0, the homogeneous equations (2.11a) becomehll hT
Bl aTl

hBl HBB AT
B

al AB −M

 ∆xl
∆xB

−∆y

 =

0
0
0

 . (2.16)

As Kl is singular in (2.16), Proposition A.1 implies thathll hT
Bl

hBl HBB

al AB

(
∆xl
∆xB

)
=

0
0
0

 , and

 aTl
AT

B

−M

∆y =

0
0
0

 . (2.17)

The nonsingularity of KB implies that
(
AB −M

)
has full row rank, in which case

the second equation of (2.17) gives ∆y = 0. It follows that every eigenvector of Kl

associated with the zero eigenvalue has the form (∆xl, ∆xB, 0). It remains to show
that ∆zN = 0. If Proposition A.2 is applied to the first equation of (2.17), then it
must hold that hll hT

Bl

hBl HBB

hN l HT
BN

(
∆xl
∆xB

)
=

0
0
0

 .

It follows from (2.13c) that ∆zN = h
N l∆xl+HT

BN∆xB−AT
N∆y = 0, which completes

the proof.

Proposition 2.4. If Kl is nonsingular, and ∆zl is a given nonnegative scalar, then
the quantities ∆xl, ∆xB, ∆y and ∆zN of (2.11) are unique and satisfy the equations

hll hT
Bl aTl

h
Bl HBB AT

B

al AB −M

 ∆xl
∆xB

−∆y

 =

1
0
0

∆zl, (2.18a)

∆zN = HN l∆xl +HT
BN∆xB −AT

N∆y. (2.18b)

If ∆zl = 0, then ∆xl = 0, ∆xB = 0, ∆y = 0 and ∆zN = 0. Otherwise, ∆zl > 0 and
either

(i) KB is nonsingular and ∆xl > 0, or

(ii) KB is singular and ∆xl = 0, in which case, it holds that ∆xB = 0 and the
multiplicity of the zero eigenvalue of KB is one, with corresponding eigenvector
(0, ∆y).

Proof. In Proposition 2.2 it is established that ∆xl ≥ 0 if ∆zl > 0, which implies
that the statement of the proposition includes all possible values of ∆xl.
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It follows from (2.11a) that ∆xl, ∆xB, and ∆y must satisfy the equationshll hT
Bl aTl

h
Bl HBB AT

B

al AB −M

 ∆xl
∆xB

−∆y

 =

∆zl
0
0

 . (2.19)

Under the given assumption that Kl is nonsingular, the vectors ∆xl, ∆xB and ∆y
are uniquely determined by (2.19) for a fixed value of ∆zl. In addition, once ∆xl,
∆xB and ∆y are defined, ∆zN is uniquely determined by (2.18b). It follows that if
∆zl = 0, then ∆xl = 0, ∆xB = 0, ∆y = 0 and ∆zN = 0.

It remains to show that if ∆zl > 0, then either (i) or (ii) must hold. If KB is
singular, then Proposition A.1 implies that there must exist u and v such that(

HBB

AB

)
u =

(
0
0

)
and

(
AT

B

−M

)
v =

(
0
0

)
.

Proposition A.2 implies that the vector u must also satisfy hT
Bl

HBB

AB

u =

0
0
0

 .

If u is nonzero, then (0, u, 0) is a nontrivial null vector for Kl, which contradicts
the assumption that Kl is nonsingular. It follows that

(
HBB AT

B

)
has full row rank

and the singularity of KB must be caused by dependent rows in
(
AB −M

)
. The

nonsingularity of Kl implies that
(
al AB −M

)
has full row rank and there must

exist a vector v such that vTal ̸= 0, vTAB = 0 and vTM = 0. If v is scaled so that
vTal = −∆zl, then (0, 0,−v) must be a solution of (2.19). It follows that ∆xl = 0,
v = ∆y, and (0, ∆y) is an eigenvector of KB associated with a zero eigenvalue. The
nonsingularity of Kl implies that v is unique given the value of the scalar ∆zl, and
hence the zero eigenvalue has multiplicity one.

Conversely, ∆xl = 0 implies that (∆xB, ∆y) is a null vector KB. However, if
KB is nonsingular, then the vector is zero, contradicting (2.18a). It follows that KB

must be singular.

3. A Primal Active-Set Method for Convex QP

In this section a primal-feasible method for convex QP is formulated. Each iteration
begins and ends with a point (x, y, z) that satisfies the conditions

ABxB +ANxN +My = b, xN + qN = 0, (3.1a)

HBBxB +HBNxN + cB −AT
By − zB = 0, zB + rB = 0, (3.1b)

HT
BNxB +HNNxN + cN −AT

Ny − zN = 0, xB + qB ≥ 0, (3.1c)

for appropriate second-order consistent bases. The purpose of the iterations is to
drive (x, y, z) to optimality by driving the dual variables to feasibility (i.e., by driving
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the negative components of zN + rN to zero). Methods for finding B and N at the
initial point are discussed in Section 5.

An iteration consists of a group of one or more consecutive subiterations during
which a specific dual variable is made feasible. The first subiteration is called the
base subiteration. In some cases only the base iteration is performed, but, in general,
additional intermediate subiterations are required.

At the start of the base subiteration, an index l in the nonbasic set N is identified
such that zl + rl < 0. The idea is to remove the index l from N (i.e., N ← N \ {l})
and attempt to increase the value of zl + rl by taking a step along a primal-feasible
direction (∆xl, ∆xB, ∆y, ∆zl). The removal of l from N implies that B∪{l}∪N =
{1, 2, . . . , n} with B second-order consistent. This implies that KB is nonsingular
and the (unique) search direction may be computed as in (2.13) with ∆xl = 1.

If ∆zl > 0, the step α∗ = −(zl + rl)/∆zl gives zl + α∗∆zl + rl = 0. Otherwise,
∆zl = 0, and there is no finite value of α that will drive zl + α∆zl + rl to its
bound, and α∗ is defined to be +∞. Proposition A.7 implies that the case ∆zl = 0
corresponds to the primal objective function being linear and decreasing along the
search direction.

Even in the case that ∆zl is positive, it is not always possible to take the step
α∗ and remain primal feasible. A positive step in the direction (∆xl, ∆xB, ∆y,
∆zl) must increase xl from its bound, but may decrease some of the basic variables.
This makes it necessary to limit the step to ensure that the primal variables remain
feasible. The largest step length that maintains primal feasibility is given by

αmax = min
i:∆xi<0

xi + qi
−∆xi

.

If αmax is finite, this value gives xk + αmax∆xk + qk = 0, where the index k is given
by k = argmini:∆xi<0 (xi + qi)/(−∆xi). The overall step length is then given by

α = min
(
α∗, αmax

)
.

An infinite value of α indicates that the primal problem (PQPq,r) is unbounded,
or, equivalently, that the dual problem (DQPq,r) is infeasible. In this case, the
algorithm is terminated. If the step α = α∗ is taken, then zl + α∆zl + rl = 0, the
subiterations are terminated with no intermediate subiterations and B ← B ∪ {l}.
Otherwise, α = αmax, and the basic and nonbasic sets are updated as B ← B \ {k}
and N ← N ∪ {k} giving an updated partition B ∪ {l} ∪ N = {1, 2, . . . , n} as
before. In order to show that the equations associated with the new partition are
well-defined, it is necessary to show that allowing zk to move does not give a singular
Kl. Proposition A.5 shows that the submatrix Kl associated with the updated B
and N is nonsingular for the cases ∆zl > 0 and ∆zl = 0.

Because the removal of k from B does not alter the nonsingularity of Kl, it is
possible to add l to B and thereby define a unique solution of the system (2.9).
However, if zl + rl < 0, additional intermediate subiterations are required to drive
zl + rl to zero. In each of these subiterations, the search direction is computed by
choosing ∆zl = 1 in Proposition 2.4. The step length α∗ is given by α∗ = −(zl +
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rl)/∆zl as in the base iteration above, but now α∗ is always finite because ∆zl = 1.
Similar to the base subiteration, if no constraint is added, then zl + α∗∆zl + rl =
0. Otherwise, the index of another blocking variable k is moved from B to N .
Proposition A.5 implies that the updated matrix Kl is nonsingular at the end of an
intermediate subiteration. As a consequence, the intermediate subiterations can be
repeated until zl + rl is driven to zero.

At the end of the base subiteration or after the intermediate subiterations are
completed, it must hold that zl + rl = 0 and the final Kl is nonsingular. This
implies that a new iteration may be initiated with the new basic set B∪{l} defining
a nonsingular KB.

The primal active-set method is summarized in Algorithm 1 below. Its conver-
gence properties are given in Theorem 3.1.

Theorem 3.1. Assume that problem (PQPq,r) is nondegenerate. Given an initial
point (x, y, z) satisfying conditions (3.1) for a second-order consistent basis B, then
Algorithm 1 finds a solution of (PQPq,r) or determines that (DQPq,r) is infeasible
in a finite number of iterations.

Proof. Algorithm 1 is a special case of Algorithm 3 of Section 5, which describes a
primal QP method defined as part of a primal-dual strategy for choosing appropriate
nonzero shifts q and r. The convergence of Algorithm 3 is established in Theorem 5.1.

4. A Dual Active-Set Method for Convex QP

Each iteration of the dual active-set method begins and ends with a point (x, y, z)
that satisfies the conditions

Hx+ c−ATy − z = 0, (4.1a)

Ax+My − b = 0, (4.1b)

zN + rN ≥ 0, zB + rB = 0, (4.1c)

xN + qN = 0, (4.1d)

for appropriate second-order consistent bases. For the dual method, the purpose is
to drive the primal variables to feasibility (i.e., by driving the negative components
of x+ q to zero).

An iteration begins with a base subiteration in which an index l in the basic
set B is identified such that xl + ql < 0. The corresponding dual variable zl may
be increased from its current value zl = −rl by removing the index l from B, and
defining B ← B\{l}. Once l is removed from B, it holds that B∪{l}∪N = {1, 2,. . . ,
n}. The resulting matrixKl is nonsingular, and the unique direction (∆xl, ∆xB, ∆y)
may be computed as in Proposition 2.4 with the particular value ∆zl = 1.

If ∆xl > 0, the step α∗ = −(xl + ql)/∆xl gives xl + α∗∆xl + ql = 0. Otherwise,
∆xl = 0, and there is no finite value of α that will drive xl+α∆xl+ ql to its bound.
In this case, the result of Proposition A.7 implies that the dual objective function
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Algorithm 1 A primal active-set method for convex QP.

Find (x, y, z) satisfying conditions (3.1) for some second-order consistent basis B;
while ∃ l : zl + rl < 0 do
N ← N \ {l};
PRIMAL BASE(B, N , l, x, y, z); [returns B, N , x, y, z]
while zl + rl < 0 do

PRIMAL INTERMEDIATE(B, N , l, x, y, z); [returns B, N , x, y, z]
end while
B ← B ∪ {l};

end while

function PRIMAL BASE(B, N , l, x, y, z)

∆xl ← 1; Solve

(
HBB AT

B

AB −M

)(
∆xB

−∆y

)
= −

(
hBl

al

)
;

∆zN ← h
N l∆xl +HT

BN∆xB −AT
N∆y;

∆zl ← hll∆xl + hT
Bl∆xB − aTl ∆y; [∆zl ≥ 0]

α∗ ← −(zl + rl)/∆zl; [α∗ ← +∞ if ∆zl = 0]
αmax ← min

i:∆xi<0
(xi + qi)/(−∆xi); k ← argmin

i:∆xi<0
(xi + qi)/(−∆xi);

α← min
(
α∗, αmax

)
;

if α = +∞ then
stop; [(DQPq,r) is infeasible]

end if
xl ← xl + α∆xl; xB ← xB + α∆xB;
y ← y + α∆y; zl ← zl + α∆zl; zN ← zN + α∆zN ;
if zl + rl < 0 then
B ← B \ {k}; N ← N ∪ {k};

end if
return B, N , x, y, z;

end function

function PRIMAL INTERMEDIATE(B, N , l, x, y, z)

∆zl ← 1; Solve

hll hT
Bl aTl

h
Bl HBB AT

B

al AB −M

 ∆xl
∆xB

−∆y

 =

1
0
0

; [∆xl ≥ 0]

∆zN ← H
N l∆xl +HT

BN∆xB −AT
N∆y;

α∗ ← −(zl + rl);
αmax ← min

i:∆xi<0
(xi + qi)/(−∆xi); k ← argmin

i:∆xi<0
(xi + qi)/(−∆xi);

α← min
(
α∗, αmax

)
;

xl ← xl + α∆xl; xB ← xB + α∆xB;
y ← y + α∆y; zl ← zl + α∆zl; zN ← zN + α∆zN ;
if zl + rl < 0 then
B ← B \ {k}; N ← N ∪ {k};

end if
return B, N , x, y, z;

end function
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is linear and increasing along the search direction and α∗ is defined to be +∞. As
xl + ql is increased towards its bound, the associated dual variable zl increases from
its current value, but other nonbasic dual variables may decrease and violate their
bounds. This makes it necessary to limit the step by

αmax = min
i:∆zi<0

zi + ri
−∆zi

to maintain dual feasibility. If αmax is finite, then zk+αmax∆zk+ rk = 0, where the
index k is given by k = argmini:∆zi<0 (zi + ri)/(−∆zi). The overall step length is
then α = min

(
α∗, αmax

)
, where an infinite value of α implies that the dual problem

is unbounded, or, equivalently, that the primal problem (PQPq,r) is infeasible. If
α = α∗, then xl+α∆xl+ ql = 0. Otherwise α = αmax, and N and B are updated as
N = N \{k} and B = B∪{k}. Regardless of the definition of the step, the partition
at the new point satisfies B∪{l}∪N = {1, 2, . . . , n}. To ensure nonsingularity, it is
necessary to show that allowing the variable xk to move does not cause singularity.
In Proposition A.6 it is established that KB is nonsingular for the two possible cases
∆xl > 0 and ∆xl = 0..

As KB is nonsingular, moving l into N would provide second-order consistent
sets B and N such that B ∪N = {1, 2, . . . , n} with the current x a unique solution
of (2.9). However, if xl + ql < 0, additional intermediate subiterations are necessary
to drive xl + ql to zero. The nonsingularity of KB implies that the search direction
may be computed as in Proposition 2.3, with the definition ∆xl = 1. The step
length is computed as α∗ = −(xl + ql)/∆xl as above, but in this case α∗ is always
finite because ∆xl = 1. As in the case of a base subiteration, if no constraint index
is added to B, then xl + α∆xl + ql = 0. Otherwise, the index k of a blocking
variable is moved from N to B. In Proposition A.6 it is shown that the updated
KB is nonsingular at the end of an intermediate subiteration. Consequently, the
intermediate subiterations can be repeated until the final xl + ql is zero.

Once a zero value of xl + ql is obtained at the end of the base subiteration or
after intermediate subiterations, the resulting KB matrix is nonsingular. At this
point, the iteration is complete and the index l is moved to N . The new KB matrix
is nonsingular, and a new iteration may be initiated.

The dual active-set method is summarized in Algorithm 2 below. Its convergence
properties are given in Theorem 4.1.

Theorem 4.1. Assume that problem (DQPq,r) is nondegenerate. Then, given an
initial point (x, y, z) satisfying conditions (4.1) for some second-order consistent
basis B, Algorithm 2 either solves (DQPq,r) or concludes that (PQPq,r) is infeasible
in a finite number of iterations.

Proof. The proof mirrors that of the primal active-set method of Section 5 (see
Theorem 5.1).
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Algorithm 2 A dual active-set method for convex QP.

Find (x, y, z) satisfying conditions (4.1) for some second-order consistent basis B;
while ∃ l : xl + ql < 0 do
B ← B \ {l};
DUAL BASE(B, N , l, x, y, z); [Base subiteration]
while xl + ql < 0 do

DUAL INTERMEDIATE(B, N , l, x, y, z); [Intermediate subiteration]
end while
N ← N ∪ {l};

end while

function DUAL BASE(B, N , l, x, y, z)

∆zl ← 1; Solve

hll hT
Bl aTl

hBl HBB AT
B

al AB −M

 ∆xl
∆xB

−∆y

 =

1
0
0

; [∆xl ≥ 0]

∆zN ← h
N l∆xl +HT

BN∆xB −AT
N∆y;

α∗ ← −(xl + ql)/∆xl; [α∗ ← +∞ if ∆xl = 0]
αmax ← min

i:∆zi<0
(zi + ri)/(−∆zi); k ← argmin

i:∆zi<0
(zi + ri)/(−∆zi);

α← min
(
α∗, αmax

)
;

if α = +∞ then
stop; [(PQPq,r) is infeasible]

end if
xl ← xl + α∆xl; xB ← xB + α∆xB;
y ← y + α∆y; zl ← zl + α∆zl; zN ← zN + α∆zN ;
if xl + ql < 0 then
B ← B ∪ {k}; N ← N \ {k};

end if
return B, N , x, y, z;

end function

function DUAL INTERMEDIATE(B, N , l, x, y, z)

∆xl ← 1; Solve

(
HBB AT

B

AB −M

)(
∆xB

−∆y

)
= −

(
hBl

al

)
;

∆zl ← hll∆xl + hT
Bl∆xB − aTl ∆y; [∆zl ≥ 0]

∆zN ← h
N l∆xl +HT

BN∆xB −AT
N∆y;

α∗ ← −(xl + ql);
αmax ← min

i:∆zi<0
(zi + ri)/(−∆zi); k ← argmin

i:∆zi<0
(zi + ri)/(−∆zi);

α← min
(
α∗, αmax

)
;

xl ← xl + α∆xl; xB ← xB + α∆xB;
y ← y + α∆y; zl ← zl + α∆zl; zN ← zN + α∆zN ;
if xl + ql < 0 then
B ← B ∪ {k}; N ← N \ {k};

end if
return B, N , x, y, z;

end function
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5. Combining Primal and Dual Active-Set Methods

The primal active-set method proposed in Section 3 may be used to solve (PQPq,r)
for a given initial second-order consistent basis satisfying the conditions (3.1). An
appropriate initial point may be found by solving a conventional phase-1 linear
program. Alternatively, the dual active-set method of Section 4 may be used in
conjunction with an appropriate phase-1 procedure to solve the quadratic program
(PQPq,r) for a given initial second-order consistent basis satisfying the conditions
(4.1). In this section a method is proposed that provides an alternative to the
conventional phase-1/phase-2 approach. It is shown that a pair of coupled quadratic
programs may be created from the original by simultaneously shifting the bound
constraints. Any second-order consistent basis can be made optimal for such a
primal-dual pair of shifted problems. The shifts are then updated using the solution
of either the primal or the dual shifted problem. An obvious application of this
approach is to solve a shifted dual QP to define an initial feasible point for the
primal, or vice-versa. This strategy provides an alternative to the conventional
phase-1/phase-2 approach that utilizes the QP objective function while finding a
feasible point.

5.1. Finding an initial second-order-consistent basis

For the methods described in Section 5.2 below, it is possible to define a simple
procedure for finding the initial second-order consistent basis B. The required basis
must define a nonsingular KKT matrix KB such that

KB =

(
HBB AT

B

AB −M

)
. (5.1)

The initial basis may be obtained by a finding a symmetric permutation Π of the
“full” KKT matrix K such that

ΠTKΠ = ΠT

(
H A
A −M

)
Π =

HBB AT
B HBN

AB −M AN

HT
BN AT

N HNN

 , (5.2)

where the leading principal block 2× 2 submatrix is of the form (5.1). The full row-
rank assumption on

(
A −M

)
ensures that the partition (5.2) is well defined, see [20,

Section 6]. In practice, the permutation may be determined using any method
for finding a symmetric indefinite factorization of K, see, e.g., [8, 10, 18]. Such
methods use symmetric interchanges that implicitly form the nonsingular matrix
KB by deferring singular pivots. In this case, KB may be defined as any submatrix
of the largest nonsingular principal submatrix obtained by the factorization (There
may be further permutations within Π that are not relevant to this discussion; for
further details, see, e.g., [13, 14,20,21].)

The permutation Π defines the initial B-N partition of the columns of A. Once
Π has been determined, the variables with indices in N are set on their bounds and
the shifts are initialized.
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5.2. Initializing the shifts

Given a second-order consistent basis, it is straightforward to create a (q(0), r(0))-
pair and corresponding (x, y, z) so that q(0) ≥ 0, r(0) ≥ 0 and (x, y, z) are optimal

for (PQPq(0),r(0)) and (DQPq(0),r(0)). First, choose nonnegative vectors q
(0)
N and r

(0)
B .

(Obvious choices are q
(0)
N = 0 and r

(0)
B = 0.) Define zB = −r(0)B , xN = −q(0)N , and

solve the nonsingular KKT-system (2.7) to obtain xB and y, and compute zN from

(2.8). Finally, let q
(0)
B ≥ max{−xB, 0} and r

(0)
N ≥ max{−zN , 0}. Then, it follows

from Proposition 2.1 that x, y and z are optimal for the problems (PQPq(0),r(0)) and

(DQPq(0),r(0)), with q(0) ≥ 0 and r(0) ≥ 0. If q(0) and r(0) are zero, then x, y and z
are optimal for the original problem.

5.3. Solving the original problem by removing the shifts

The original problem may now be solved as a pair of shifted quadratic programs.
Two alternative strategies are proposed. The first is a “primal first” strategy in
which a shifted primal quadratic program is solved, followed by a dual. The second
is an analogous “dual first” strategy.

The “primal-first” strategy is summarized as follows.

(0) Find B, N , q(0), r(0), x, y, z, as described in Sections 5.1 and 5.2.

(1) Set q(1) = q(0), r(1) = 0. Solve (PQPq,0) using the primal active-set method.

(2) Set q(2) = 0, r(2) = 0. Solve (DQP0,0) using the dual active-set method.

In steps (1) and (2), the initial B–N partition and initial values of x, y, and z are
defined as the final B–N partition and final values of x, y, and z from the preceding
step.

The “dual-first” strategy is defined in an analogous way.

(0) Find B, N , q(0), r(0), x, y, z, as described in Section 5.1 and 5.2.

(1) Set q(1) = 0, r(1) = r(0). Solve (DQP0,r) using the dual active-set method.

(2) Set q(2) = 0, r(2) = 0. Solve (PQP0,0) using the primal active-set method.

As in the “primal-first” strategy, the initial B–N partition and initial values of x, y,
and z for steps (1) and (2), are defined as the final B–N partition and final values
of x, y, and z from the preceding step.

In order for these approaches to be well-defined, a simple generalization of the
primal and dual active-set methods is needed.

5.4. Relaxed initial conditions for the primal QP method.

For Algorithm 1, the initial values of B, N , q, r, x, y, and z must satisfy conditions
(3.1). However, the choice of r = r(1) = 0 in Step (1) of the primal-first strategy
may give some negative components in the vector zB + rB. This possibility may be
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handled by defining a simple generalization of Algorithm 1 that allows initial points
satisfying the conditions

Hx+ c−ATy − z = 0, (5.3a)

Ax+My − b = 0, (5.3b)

xB + qB ≥ 0, xN + qN = 0, (5.3c)

zB + rB ≤ 0, (5.3d)

instead of the conditions (3.1). In Algorithm 1, the index l identified at the start of
the primal base iteration is selected from the nonbasic indices such that zj + rj < 0.
In the generalized algorithm, the set of eligible indices for l is extended to include
indices associated with negative values of zB + rB. If the index l is deleted from B,
the associated matrix Kl is nonsingular, and intermediate subiterations are executed
until the updated value satisfies zl + rl = 0. At this point, the index l is returned
B. The method is summarized in Algorithm 3.

Algorithm 3 A primal active-set method for convex QP.

Find (x, y, z) satisfying conditions (5.3) for some second-order consistent basis B;
while ∃ l : zl + rl < 0 do

if l ∈ N then
N ← N \ {l};
PRIMAL BASE(B, N , l, x, y, z); [returns B, N , x, y, z]

else
B ← B \ {l};

end if
while zl + rl < 0 do

PRIMAL INTERMEDIATE(B, N , l, x, y, z); [returns B, N , x, y, z]
end while
B ← B ∪ {l};

end while

Theorem 5.1. Assume that problem (PQPq,r) is nondegenerate. Given an initial
point (x, y, z) satisfying conditions (5.3) for a second-order consistent basis B, then
Algorithm 3 finds a solution of (PQPq,r) or determines that (DQPq,r) is infeasible
in a finite number of iterations.

Proof. Assume that (x, y, z) satisfies the conditions (5.3) for the second-order
consistent basis B. Let B< denote the index set B< = {i ∈ B : zi + ri < 0}, and
let r̃ be the vector r̃i = ri, i ̸∈ B<, and r̃i = −zi, i ∈ B<. These definitions imply
that r̃i = −zi > −zi + zi + ri = ri, for every i ∈ B<. It follows that r̃ ≥ r, and the
feasible region of (DQPq,r) is a subset of the feasible region of (DQPq,r̃). In addition,
if r is replaced by r̃ in (3.1), the only difference is that zB + r̃B = 0, i.e., the initial
point for (5.3) is a stationary point with respect to (PQPq,r̃).

The first step of the proof is to show that after a finite number of iterations
of Algorithm 3, one of three possible events must occur: (i) the cardinality of the
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set B< is decreased by at least one; (ii) a solution of problem (PQPq,r) is found; or
(iii) (DQPq,r) is declared infeasible. The proof will also establish that if (i) does not
occur, then either (ii) or (iii) must hold after a finite number of iterations.

Assume that (i) never occurs. This implies that the index l selected in the base
iteration can never be an index in B< because at the end of such an iteration, it would
belong to B with zl + rl = 0, contradicting the assumption that the cardinality of
B< never decreases. For the same reason, it must hold that k ̸∈ B< for every index k
selected to be moved from B to N in any subiteration, because an index can only be
moved from N to B by being selected in the base iteration. These arguments imply
that zi = −r̃i, with i ∈ B<, throughout the iterations. It follows that the iterates
may be interpreted as being members of a sequence constructed for solving (PQPq,r̃)
with a fixed r̃, where the initial stationary point is given, and each iteration gives
a new stationary point. The nondegeneracy assumption implies that the objective
value of (PQPq,r̃) is strictly decreasing at each base subiteration, and nonincreasing
at each intermediate subiteration. The number of intermediate subiterations is
finite, which implies that a strict improvement of the objective value of (PQPq,r̃) is
obtained at each iteration. As there are only a finite number of stationary points,
Algorithm 3 either solves (PQPq,r̃) or concludes that (DQPq,r̃) is infeasible after a
finite number of iterations. If (PQPq,r̃) is solved, then zN + rN ≥ 0, because r̃j = rj
for j ∈ N . Hence, Algorithm 3 can not proceed further by selecting an l ∈ N , and
the only way to reduce the objective is to select an l in B such that zj + rj < 0.
Under the assumption that (i) does not occur, it must hold that no eligible indices
exist and B< = ∅. However, in this case (PQPq,r) has been solved with r̃ = r, and
(ii) must hold. If Algorithm 3 declares (DQPq,r̃) to be infeasible, then (DQPq,r) must
also be infeasible because the feasible region of (DQPq,r) is contained in the feasible
region of (DQPq,r̃). In this case (DQPq,r) is infeasible and (iii) occurs.

Finally, if (i) occurs, there is an iteration at which the cardinality of B< decreases
and an index is removed from B<. There may be more than one such index, but
there is at least one l moved from B< to B\B<, or one k moved from B< to N .
In either case, the cardinality of B< is decreased by at least one. After such an
iteration, the argument given above may be repeated for the new set B< and new
shift r̃. Applying this argument repeatedly gives the result the situation (i) can
occur only a finite number of times.

It follows that, (ii) or (iii) must occur after a finite number of iterations, which
is the required result.

5.5. Relaxed initial conditions for the dual QP method.

Analogous to the primal case, the choice of q = q(1) = 0 in Step (1) of the dual-first
strategy may give some negative components in the vector xN + qN . In the case, the
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conditions on the initial values of B, N , q, r, x, y, and z are generalized so that

Hx+ c−ATy − z = 0, (5.4a)

Ax+My − b = 0, (5.4b)

zN + rN ≥ 0, zB + rB = 0, (5.4c)

xN + qN ≤ 0. (5.4d)

Similarly, the set of eligible indices may be extended to include indices associated
with negative values of xN + qN . If the index l is from N , the associated matrix
KB is nonsingular, and intermediate subiterations are executed until the updated
value satisfies xl + ql = 0. At this point, the index l is returned N . The method is
summarized in Algorithm 4.

The strategies of solving two consecutive quadratic programs may be generalized
to a sequence of more than two quadratic programs, where we alternate between
primal and dual active-set methods, and eliminate the shifts in more than two steps.

Algorithm 4 A dual active-set method for convex QP.

Find (x, y, z) satisfying conditions (5.4) for some second-order consistent B;
while ∃ l : xl + ql < 0 do

if l ∈ B then
B ← B \ {l};
DUAL BASE(B, N , l, x, y, z); [Base subiteration]

else
N ← N \ {l};

end if
while xl + ql < 0 do

DUAL INTERMEDIATE(B, N , l, x, y, z); [Intermediate subiteration]
end while
N ← N ∪ {l};

end while

6. Practical Issues

6.1. Quadratic programs with upper and lower bounds

As stated, the primal quadratic program has lower bound zero on the x-variables.
This is for notational convenience. This form may be generalized in a straightfor-
ward manner to a form where the x-variables has both lower and upper bounds on
the primal variables, i.e., bL ≤ x ≤ bU , where components of bL can be −∞ and
components of bU can be +∞. Given primal shifts qL and qU , and dual shifts rL and
rU , we have the primal-dual pair

(PQPq,r)
minimize

x,y

1
2x

THx+ 1
2y

TMy + cTx+ (rL − rU)
Tx

subject to Ax+My = b, bL − qL ≤ x ≤ bU + qU ,
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and

(DQPq,r)
maximize
x,y,zL,zU

−1
2x

THx− 1
2y

TMy + bTy + (bL − qL)
TzL − (bU + qU)

TzU

subject to −Hx+ATy + zL − zU = c, zL ≥ −rL, zU ≥ −rU .

An infinite bound has neither a shift nor a corresponding dual variable. For example,
if xj is a free variable, then the corresponding components of bL and bU are infinite.
In the procedure given in Section 5.1 for finding the first second-order consistent
basis B, it is assumed that variables with indices not selected for B are initialized at
one of their bounds. As a free variable has no finite bounds, any index j associated
with a free variable should be selected for B. However, this cannot be guaranteed in
practice, and in the next section it is shown that the primal and dual QP methods
may be extended to allow a free variable to be fixed temporarily at some value.

6.2. Temporary bounds

If the QP is defined in the general problem format of Section 6.1, then any free vari-
able not selected for B has no upper or lower bound and must be temporarily fixed
at some value xj = x̄j (say). The treatment of such “temporary bounds” involves
some additional modifications to the primal and dual methods of Sections 5.4 and
5.5.

Each temporary bound xj = x̄j defines an associated dual variable zj with initial
value z̄j . Since the bound is temporary, it is treated as an equality constraint, and
the desired value of zj is zero. Initially, an index j corresponding to a temporary
bound is assigned a primal shift qj = 0 and a dual shift rj = −z̄j , making x̄j and z̄j
feasible for the shifted problem. In both the primal-first and dual-first approaches,
the idea is to drive the zj-variables associated with temporary bounds to zero in the
primal and leave them unchanged in the dual.

In a primal problem, regardless of whether it is solved before or after the dual
problem, an index j corresponding to a temporary bound for which zj ̸= 0 is consid-
ered eligible for selection as l in the base subiteration, i.e., the index can be selected
regardless of the sign of zj . Once selected, zj is driven to zero and j belongs to
B after such an iteration. In addition, since xj is unbounded, j will remain in B
throughout the iterations. Hence, at termination of a primal problem, any index j
corresponding to a temporarily bounded variable must have zj = 0. If the maximum
step length at a base subiteration is infinite, the dual problem is infeasible, as in the
case of a regular bound.

In a dual problem, the dual method is modified so that the dual variables as-
sociated with temporary bounds remain fixed throughout the iterations. At any
subiteration, if it holds that ∆zj ̸= 0 for some temporary bound, then no step is
taken and one such index j is moved from N to B. Consequently, a move is made
only if ∆zj = 0 for every temporary bound j. It follows that the dual variables for
the temporary bounds will remain unaltered throughout the dual iterations. Note
that an index j corresponding to a temporary bound is moved at most once from N
to B, and never moved back since the corresponding xj-variable is unbounded. If the
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maximum step length at a base subiteration is infinite, it must hold that ∆zj = 0
for all temporary bounds j, and the primal problem is infeasible.

The discussion above implies that a pair of primal and dual problems solved
consecutively will terminate with zj = 0 for all indices j associated with temporary
bounds. This is because zj is unchanged in the dual problem and driven to zero in
the primal problem.

7. Numerical Examples

In this section we describe a particular formulation of the primal-dual shifted method
of Section 5. In addition, some numerical experiments are presented for a simple
Matlab implementation applied to a set of convex problems from the CUTEst test
collection (see Bongartz et al. [7], and Gould, Orban and Toint [33]).

7.1. The coupled primal-dual algorithm PDQP

For illustrative purposes, a primal-dual shifted method is used in which either a
“primal-first” or “dual-first” strategy is selected based on the initial point. In par-
ticular, if the point is dual feasible, then the “dual-first” strategy. is used. Otherwise,
the “primal-first” strategy is selected.

7.2. The implementation

Each CUTEst QP problem may be written in the form

minimize
x

cTx+ 1
2x

THx subject to ℓ ≤
(

x

Ãx

)
≤ u, (7.1)

where ℓ and u are constant vectors of lower and upper bounds and Ã has dimension
m×n. In this format, a fixed variable or equality constraint has the same value for
its upper and lower bound. Each problem was converted to the equivalent form

minimize
x,s

cTx+ 1
2x

THx subject to Ãx− s = 0, ℓ ≤
(
x
s

)
≤ u, (7.2)

where s is a vector of slack variables. With this formulation, the QP problem involves
simple upper and lower bounds instead of nonnegativity constraints. It follows that
the matrix M is zero, but the full row-rank assumption on the constraint matrix is
satisfied because the constraint matrix A takes the form

(
Ã − I

)
and has rank m.

In this situation, a nonsingular m ×m submatrix AB of A may be identified using
a so-called “crash” procedure. One algorithm for doing this has been proposed by
Gill, Murray and Saunders [25], who use a sparse LU factorization of AT to identify
a square nonsingular subset of the columns of AB. These factors give a matrix Z
whose columns form a basis for the null space of A as

Z =

(
−A−1

B AN

I

)
.
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This Z may be used to form ZTHZ, and a partial Cholesky factorization with
interchanges may be used to find an upper-triangular matrix R that is the factor of
the largest nonsingular leading submatrix of ZTHZ. Let ZR denote the columns of
Z corresponding to R, and let Z be partitioned as Z =

(
ZR ZA

)
. Then, the set

B given by the nonsingular AB may be augmented by the indices corresponding to
ZR, giving a final B for which the corresponding KKT-matrix KB is nonsingular.

7.3. Numerical results

Numerical results from a simple Matlab implementation of Algorithm PDQP were
obtained for a set of 143 convex QPs in standard interface format (SIF). The prob-
lems were selected based on the dimension of the constraint matrix A in (7.2). In
particular, the test set includes all QP problems for which the smaller of m and n
is of the order of 500 or less. This gave 143 QPs ranging in size from BQP1VAR (one
variable and one constraint) to TABLE1 (1584 variables and 510 constraints).

In order to judge how the proposed method compares to a conventional two-phase
active-set method, the same 143 problems were solved using the convex QP solver
SQOPT [26], which is a Fortran implementation of a two-phase (primal) reduced-
gradient active-set method for large-scale QP. All SQOPT runs were made using the
default parameter options.

Both PDQP and SQOPT are terminated at a point (x, y, z) that satisfies the equa-
tions conditions of (2.6) modified to conform to the constraint format of (7.2). The
feasibility and optimality tolerances are given by ϵfea = 10−6 and ϵopt = 10−6,
respectively. For a given ϵopt, PDQP and SQOPT terminate when

max
i∈B
|zi| ≤ ϵopt∥y∥∞, and

 zi ≥ −ϵopt∥y∥∞ if xi ≥ −ℓi, i ∈ N ;

zi ≤ ϵopt∥y∥∞ if xi ≤ ui, i ∈ N .
(7.3)

Both PDQP and SQOPT use the EXPAND procedure of Gill et al. [27] to allow the
variables (x, s) to move outside their bounds by as much as ϵfea.

A summary of the results is given in Table 1. The first four columns give the
name of the problem, the number of linear constraints m, the number of variables n,
and the optimal objective value Objective. The next two columns summarize the
SQOPT result for the given problem, with Phs1 and Itn giving the phase-one itera-
tions and iteration total, respectively. The last four columns summarize the results
for the PDQP implementation. The first column gives the total number of primal and
dual iterations Itn. The second column gives the order in which the primal and
dual algorithms were applied, with PD indicating the “primal-first” strategy, and DP

the “dual-first” strategy. The final two columns, headed by p-Itn, and d-Itn, give
the iterations required for the primal method and the dual method, respectively.

Of the 143 problems tested, five (LINCONT, NASH, ARGLALE, ARGLBLE, and ARGLCLE)
are known to be infeasible. This infeasibility was identified correctly by both SQOPT

and PDQP. In total, SQOPT solved 136 of the remaining 138 problems, but declared
(incorrectly) that problems RDW2D51U and RDW2D52U are unbounded. PDQP solved
the same number of problems, but failed to achieve the required accuracy for the



26 Convex Quadratic Programming

problems RDW2D52B and RDW2D52F. In these two cases, the final objective values com-
puted by PDQP were 1.0947332E-02 and 1.0490828E-02 respectively, instead of the
optimal values 1.0947648E-02 and 1.0491239E-02. (The five RDW2D5* problems in
the test set are known to be difficult to solve, see Gill and Wong [30].)

If the failed and infeasible runs are excluded, Algorithm PDQP required the same
or fewer number of iterations than SQOPT on 84 of the 134 QP problems solved to
optimality by both methods. This constitutes 63% of the problems solved. Of this
63%, the “dual-first” strategy made up 39% of the cases and 61% of the improve-
ments were associated with the “primal-first” strategy.

The reader should exercise some care when interpreting these results. Many of
the CUTEst problems are variants of one case (see, e.g., the problems LISWET1–
LISWET14). Typically, a method will behave in a similar way on all the problems of
one type, which can distort any numerical comparison between methods.

Table 1: Results for PDQP and SQOPT on 143 CUTEst QPs.

SQOPT PDQP

Name m n Objective Phs1 Itn Itn Order P-Itn D-Itn

ALLINQP 50 100 -9.1592833E+00 0 45 65 PD 63 2

ARGLALE 400 200 infeasible 1 1i 0i DP 0 0

ARGLBLE 400 200 infeasible 0 0i 0i DP 0 0

ARGLCLE 399 200 infeasible 0 0i 0i DP 0 0

AUG2DCQP 100 220 3.0399206E+02 8 133 485 PD 344 141

AUG2DQP 100 220 1.7797215E+02 8 116 440 PD 326 114

AUG3D 27 156 8.3333333E-02 0 45 45 DP 0 45

AVGASA 10 8 -4.6319255E+00 5 8 5 DP 0 5

AVGASB 10 8 -4.4832193E+00 5 8 7 DP 0 7

BIGGSB1 1 100 1.5000000E-02 0 103 101 PD 101 0

BOOTH 2 2 0.0000000E+00 1 1 2 DP 0 2

BQP1VAR 1 1 0.0000000E+00 0 1 1 DP 0 1

BQPGABIM 1 50 -3.7903432E-05 0 36 7 PD 7 0

BQPGASIM 1 50 -5.5198140E-05 0 40 8 PD 8 0

CHENHARK 1 100 -2.0000000E+00 0 130 32 DP 0 32

CVXBQP1 1 100 2.2725000E+02 0 100 119 DP 2 117

CVXQP1 50 100 1.1590718E+04 5 67 91 DP 1 90

CVXQP2 25 100 8.1209404E+03 2 82 85 DP 2 83

CVXQP3 75 100 1.1943432E+04 17 46 113 DP 2 111

DEGENQP 1005 10 0.0000000E+00 0 6 18 PD 18 0

DTOC3 18 29 2.2459038E+02 1 10 17 DP 0 17

DUAL1 1 85 3.5012967E-02 0 88 88 PD 88 0

DUAL2 1 96 3.3733671E-02 0 99 99 PD 99 0

DUAL3 1 111 1.3575583E-01 0 106 106 PD 106 0

DUAL4 1 75 7.4609064E-01 0 61 61 PD 61 0

DUALC1 215 9 6.1552516E+03 1 9 4 DP 0 4

DUALC2 229 7 3.5513063E+03 2 4 4 DP 0 4

DUALC5 278 8 4.2723256E+02 1 7 6 DP 0 6

DUALC8 503 8 1.8309361E+04 4 6 8 DP 0 8

GENHS28 8 10 9.2717369E-01 0 3 5 DP 0 5

GMNCASE2 1050 175 -9.9444495E-01 18 99 91 DP 0 91

GMNCASE3 1050 175 1.5251466E+00 31 100 86 DP 0 86

GMNCASE4 350 175 5.9468849E+03 74 171 175 DP 0 175

GOULDQP2 199 399 9.0045697E-06 0 213 419 DP 0 419

GOULDQP3 199 399 5.6732908E-02 0 200 406 PD 205 201

GRIDNETA 100 180 9.5242163E+01 5 35 134 PD 81 53

GRIDNETB 100 180 4.7268237E+01 0 81 97 DP 0 97

GRIDNETC 100 180 4.8352347E+01 6 93 153 DP 0 153

HIE1372D 525 637 2.7798711E+02 0 382 523 DP 0 523

HILBERTA 1 10 2.9582284E-31 138 2 0 PD 0 0
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Table 1: Results for PDQP and SQOPT on 143 CUTEst QPs. (continued)

SQOPT PDQP

Name m n Objective Phs1 Itn Itn Order P-Itn D-Itn

HILBERTB 1 2 1.0004398E-29 0 10 0 PD 0 0

HS3 1 2 0.0000000E+00 0 2 1 PD 1 0

HS3MOD 1 2 1.2325951E-32 0 2 1 PD 1 0

HS21 1 2 -9.9960000E+01 0 1 0 PD 0 0

HS28 1 3 1.2325951E-32 0 2 0 PD 0 0

HS35 1 3 1.1111111E-01 0 5 1 DP 0 1

HS35I 1 3 1.1111111E-01 0 5 1 DP 0 1

HS35MOD 1 3 2.5000000E-01 0 1 0 PD 0 0

HS44 6 4 -1.5000000E+01 0 2 4 PD 4 0

HS44NEW 6 4 -1.5000000E+01 0 4 9 PD 9 0

HS51 3 5 -8.8817841E-16 0 2 0 DP 0 0

HS52 3 5 5.3266475E+00 0 2 1 DP 0 1

HS53 3 5 4.0930232E+00 0 2 1 DP 0 1

HS76 3 4 -4.6818181E+00 0 4 4 DP 0 4

HS76I 3 4 -4.6818181E+00 0 4 4 DP 0 4

HS118 17 15 6.6482045E+02 0 21 23 DP 0 23

HS268 5 5 7.2759576E-12 0 8 0 PD 0 0

HUES-MOD 2 100 3.4829823E+07 0 103 7 DP 0 7

HUESTIS 2 100 3.4829823E+09 1 103 7 DP 0 7

JNLBRNG1 1 529 -1.8004556E-01 1 292 82 PD 82 0

JNLBRNG2 1 529 -4.1023852E+00 0 252 42 PD 42 0

JNLBRNGA 1 529 -3.0795806E-01 0 292 292 PD 292 0

JNLBRNGB 1 529 -6.5067871E+00 0 247 247 PD 247 0

KSIP 1001 20 5.7579792E-01 0 2847 36 DP 0 36

LINCONT 419 1257 infeasible 138 138i 304i DP 0 304

LISWET1 100 106 2.6072632E-01 0 52 401 DP 0 401

LISWET2 100 106 2.5876398E-01 0 63 378 DP 0 378

LISWET3 100 106 2.5876398E-01 0 64 378 DP 0 378

LISWET4 100 106 2.5876399E-01 0 61 378 DP 0 378

LISWET5 100 106 2.5876410E-01 0 58 378 DP 0 378

LISWET6 100 106 2.5876390E-01 0 67 378 DP 0 378

LISWET7 100 106 2.5895785E-01 0 68 378 DP 0 378

LISWET8 100 106 2.5747454E-01 0 94 417 DP 0 417

LISWET9 100 103 2.1543892E+01 0 28 263 DP 0 263

LISWET10 100 106 2.5874831E-01 0 68 378 DP 0 378

LISWET11 100 106 2.5704145E-01 0 68 379 DP 0 379

LISWET12 100 106 9.1994948E+00 0 37 460 DP 0 460

LOTSCHD 7 12 2.3984158E+03 4 8 16 DP 0 16

MARATOSB 1 2 1.0000000E+06 0 4 0 PD 0 0

MOSARQP1 10 100 -1.5420010E+02 0 102 52 DP 0 52

MOSARQP2 10 100 -2.0651670E+02 0 100 33 DP 0 33

NASH 24 72 infeasible 5 5i 24i DP 0 24

OBSTCLAE 1 529 1.6780270E+00 0 605 178 DP 0 178

OBSTCLAL 1 529 1.6780270E+00 0 263 263 PD 263 0

OBSTCLBL 1 529 6.5193252E+00 0 469 469 PD 469 0

OBSTCLBM 1 529 6.5193252E+00 0 484 189 DP 0 189

OBSTCLBU 1 529 6.5193252E+00 0 303 303 PD 303 0

OSLBQP 1 8 6.2500000E+00 0 6 0 PD 0 0

PALMER1C 1 8 9.7605046E-02 0 16 0 PD 0 0

PALMER1D 1 7 6.5267398E-01 0 14 0 PD 0 0

PALMER2C 1 8 1.4368886E-02 0 16 0 PD 0 0

PALMER3C 1 8 1.9537638E-02 0 16 0 PD 0 0

PALMER4C 1 8 5.0310686E-02 0 15 0 PD 0 0

PENTDI 1 500 -7.5000000E-01 0 2 2 PD 2 0

POWELL20 100 100 5.2703125E+04 49 52 99 DP 0 99

PRIMAL1 85 325 -3.5012967E-02 0 217 70 PD 70 0

PRIMAL2 96 649 -3.3733671E-02 0 407 97 PD 97 0

PRIMAL3 111 745 -1.3575583E-01 0 1223 102 PD 102 0

PRIMAL4 75 1489 -7.4609064E-01 0 1264 63 PD 63 0

PRIMALC1 9 230 -6.1552516E+03 0 18 5 PD 5 0
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Table 1: Results for PDQP and SQOPT on 143 CUTEst QPs. (continued)

SQOPT PDQP

Name m n Objective Phs1 Itn Itn Order P-Itn D-Itn

PRIMALC2 7 231 -3.5513063E+03 0 3 5 PD 5 0

PRIMALC5 8 287 -4.2723256E+02 0 10 6 PD 6 0

PRIMALC8 8 520 -1.8309432E+04 0 30 6 PD 6 0

QPCBLEND 74 83 -7.8425425E-03 0 111 182 PD 182 0

QPCBOEI1 351 384 1.1503952E+07 415 1055 793 PD 395 398

QPCBOEI2 166 143 8.1719635E+06 142 315 340 PD 163 177

QPCSTAIR 356 467 6.2043917E+06 210 433 970 PD 645 325

QUDLIN 1 420 -8.8290000E+06 0 419 419 PD 419 0

RDW2D51F 225 578 1.1209939E-03 29 29 217 DP 0 217

RDW2D51U 225 578 8.3930032E-04 14 16f 219 DP 0 219

RDW2D52B 225 578 1.0947648E-02 349 488 316f DP 0 316

RDW2D52F 225 578 1.0491239E-02 29 191 414f DP 0 414

RDW2D52U 225 578 1.0455316E-02 15 318f 219 DP 0 219

S268 5 5 7.2759576E-12 0 8 0 PD 0 0

SIM2BQP 1 2 0.0000000E+00 0 1 1 PD 1 0

SIMBQP 1 2 6.0185310E-31 0 2 1 PD 1 0

STCQP1 30 65 4.9452085E+02 8 53 20 DP 0 20

STCQP2 128 257 1.4294017E+03 80 215 73 DP 0 73

STEENBRA 108 432 1.6957674E+04 14 89 183 PD 2 181

TABLE1 510 1584 3.7060711E+05 2 757 1678 DP 333 1345

TABLE6 510 1584 3.7060711E+05 2 757 1678 DP 333 1345

TABLE7 230 624 5.9577319E+04 2 320 343 DP 0 343

TABLE8 72 1271 1.8957162E+00 0 1195 72 DP 0 72

TAME 1 2 3.0814879E-33 0 1 1 PD 1 0

TARGUS 63 162 1.0837991E+03 0 72 89 DP 0 89

TOINTQOR 1 2 1.1754722E+03 0 50 0 PD 0 0

TORSION1 1 484 -4.5608771E-01 0 256 256 PD 256 0

TORSION2 1 484 -4.5608771E-01 0 544 144 DP 0 144

TORSION3 1 484 -1.2422498E+00 0 112 112 PD 112 0

TORSION4 1 484 -1.2422498E+00 0 689 288 DP 0 288

TORSION5 1 484 -2.8847068E+00 0 40 40 PD 40 0

TORSION6 1 484 -2.8847068E+00 0 708 360 DP 0 360

TORSIONA 1 484 -4.1611287E-01 0 272 272 PD 272 0

TORSIONB 1 484 -4.1611287E-01 0 529 128 DP 0 128

TORSIONC 1 484 -1.1994864E+00 0 120 120 PD 120 0

TORSIOND 1 484 -1.1994864E+00 0 681 280 DP 0 280

TORSIONE 1 484 -2.8405962E+00 0 40 40 PD 40 0

TORSIONF 1 484 -2.8405962E+00 0 761 360 DP 0 360

UBH1 60 99 1.1473520E+00 11 40 112 DP 0 112

YAO 20 22 2.3988296E+00 0 2 20 DP 0 20

ZANGWIL2 1 2 -1.8200000E+01 0 2 0 PD 0 0

ZANGWIL3 3 3 0.0000000E+00 2 2 4 DP 0 4

ZECEVIC2 2 2 -4.1250000E+00 0 4 5 PD 5 0

i = infeasible, f = failed

Algorithm PDQP would not be recommended for solving a linear program (LP).
Nevertheless, it was applied to 16 LPs from the CUTEst test set. The results are
summarized in Table 2.

Table 2: Results for PDQP and SQOPT on 16 CUTEst LPs.

SQOPT PDQP

Name m n Objective Phs1 Itn Itn Order P-Itn D-Itn

AGG 488 163 -3.5991767e+07 84 124 200 PD 156 44

DEGENLPA 15 20 3.0603419e+00 9 11 52 PD 26 26

DEGENLPB 15 20 -3.0742351e+01 9 10 69 PD 37 32
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Table 2: Results for PDQP and SQOPT on 16 CUTEst LPs. (continued)

SQOPT PDQP

Name m n Objective Phs1 Itn Itn Order P-Itn D-Itn

EXTRASIM 1 2 1.0000000e+00 0 0 0 PD 0 0

GOFFIN 50 51 -1.2612134e-13 3 25 100 PD 100 0

MAKELA4 40 21 0.0000000e+00 0 1 42 PD 42 0

MODEL 38 1542 infeasible 12 12i 44i DP 0 44

OET1 1002 3 5.3824312e-01 1 107 22 DP 0 22

OET3 1002 4 4.5050529e-03 1 319 18 DP 0 18

PT 501 2 1.7839423e-01 1 135 20 DP 0 20

S277-280 4 4 5.0761905e+00 1 6 10 DP 0 10

SIMPLLPA 2 2 1.0000000e+00 1 2 5 DP 1 4

SIMPLLPB 3 2 1.1000000e+00 1 1 6 DP 0 6

SSEBLIN 72 194 1.6170600e+07 26 136 262 DP 8 254

SUPERSIM 2 2 6.6666667e-01 1 1 2 DP 0 2

TFI2 101 3 6.4903111e-01 0 34 48 DP 46 2

i = infeasible

8. Summary and Conclusions

A general framework has been proposed for solving a convex quadratic program
with general equality constraints and simple lower bounds on the variables. This
framework allows the definition of two methods, one primal and one dual, that gen-
erate a sequence of iterates that are feasible with respect to the equality constraints
associated with the optimality conditions of a general primal-dual form. The primal
method maintains feasibility of the primal inequalities while driving the infeasibil-
ities of the dual inequalities to zero. The dual method maintains feasibility of the
dual inequalities while moving to satisfy the infeasibilities of the primal inequalities.
In each of these methods, the search directions satisfy a KKT system of equations
formed from Hessian and constraint components associated with an appropriate col-
umn basis. The composition of the basis is specified by an active-set strategy that
guarantees the nonsingularity of each set of KKT equations.

Each of the proposed methods is a conventional active-set method in the sense
that an initial primal- or dual-feasible point is required. In addition, it has been
shown how the bounds of the primal and dual problems may be shifted so as to give
a strategy for solving the original problem by solving a pair of coupled quadratic
programs, one primal and one dual. An application of this approach is to solve a
shifted dual QP for a feasible point for the primal (or vice versa), thereby avoiding
the need for a traditional feasibility phase that ignores the properties of the objective
function.

The numerical results indicate that the proposed primal, dual, and coupled
primal-dual QP methods can be efficient relative to existing two-phase active-set
methods. Future work will focus on the application of the proposed methods to
situations in which a series of related QPs must be solved, for example, in sequential
quadratic programming methods and methods for mixed-integer nonlinear program-
ming.
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A. Appendix

The appendix concerns some basic results used in previous sections. The first result
shows that the nonsingularity of a KKT matrix may be established by checking that
the two row blocks

(
H AT

)
and

(
A −M

)
have full row rank.

Proposition A.1. Assume that H and M are symmetric, positive semidefinite ma-
trices. The vectors u and v satisfy(

H AT

A −M

)(
u
−v

)
=

(
0
0

)
(A.1)

if and only if (
H
A

)
u =

(
0
0

)
and

(
AT

−M

)
v =

(
0
0

)
. (A.2)

Proof. If (A.2) holds, then (A.1) holds, which establishes the “if” direction. Now
assume that u and v are vectors such that (A.1) holds. Then,

uTHu− uTATv = 0, and vTAu+ vTMv = 0.

Adding these equations gives the identity uTHu+ vTMv = 0. But then, the sym-
metry and semidefiniteness of H and M imply uTHu = 0 and vTMv = 0. This can
hold only if Hu = 0 and Mv = 0. If Hu = 0 and Mv = 0, (A.1) gives ATv = 0 and
Au = 0, which implies that (A.2) holds.

The next result shows that when checking a subset of the columns of a symmetric
positive semidefinite matrix for linear dependence, it is only the diagonal block that
is of importance. The off-diagonal block may be ignored.

Proposition A.2. Let H be a symmetric, positive semidefinite matrix partitioned
as

H =

(
H11 H12

HT
12 H22

)
.

Then, (
H11

HT
12

)
u =

(
0
0

)
if and only if H11u = 0.

Proof. If H is positive semidefinite, then H11 is positive semidefinite, and it holds
that (

0
0

)
=

(
H11

HT
12

)
u =

(
H11 H12

HT
12 H22

)(
u
0

)
if and only if

0 =
(
uT 0

)(H11 H12

HT
12 H22

)(
u
0

)
= uTH11u

if and only if H11u = 0, as required.
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In the following propositions, the distinct integers k and l, together with integers
from the index sets B and N define a partition of I = {1, 2, . . . , n}, i.e., I =
B ∪ {k} ∪ {l} ∪N . If w is any n-vector, the nB-vector wB and wN -vector wN denote
the vectors of components of w associated with B and N . For the symmetric Hessian
H, the matricesHBB andHNN denote the subset of rows and columns ofH associated
with the sets B and N respectively. The unsymmetric matrix of components hij
with i ∈ B and j ∈ N will be denoted by HBN . Similarly, AB and AN denote the
matrices of columns associated with B and N .

The next result concerns the row rank of the
(
A −M

)
block of the KKT matrix.

Proposition A.3. If the matrix
(
al ak AB −M

)
has full row rank, and there

exist ∆xl, ∆xk, ∆xB, and ∆y such that al∆xl + ak∆xk +AB∆xB +M∆y = 0 with
∆xk ̸= 0, then

(
al AB −M

)
has full row rank.

Proof. It must be established that uT
(
al AB −M

)
= 0 implies that u = 0. For

a given u, let γ = −uTak, so that

(
uT γ

)(al ak AB −M
1

)
=

(
0 0 0 0

)
.

Then,

0 =
(
uT γ

)(al ak AB −M
1

)
∆xl
∆xk
∆xB

−∆y

 = γ ∆xk.

As ∆xk ̸= 0, it must hold that γ = 0, in which case

uT
(
al ak AB −M

)
= 0.

As
(
al ak AB −M

)
has full row rank by assumption, it follows that u = 0 and(

al AB −M
)
must have full row rank.

An analogous result holds concerning the
(
H AT

)
block of the KKT matrix.

Proposition A.4. If
(
HBB AT

B

)
has full row rank, and there exist quantities ∆xN ,

∆xB, ∆y, and ∆zk such that

(
hT

Nk hT
Bk aTk 1

hBN HBB AT
B

)
∆xN

∆xB

−∆y
−∆zk

 =

(
0
0

)
, (A.3)

with ∆zk ̸= 0, then the matrix (
hkk hT

Bk aTk
h

Bk HBB AT
B

)
has full row rank.
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Proof. Let
(
µ vT

)
be any vector such that

(
µ vT

)(hT
Nk hT

Bk aTk
hBN HBB AT

B

)
=

(
0 0 0

)
.

The assumed identity (A.3) gives

0 =
(
µ vT

)(hT
Nk hT

Bk aTk
hBN HBB AT

B

) ∆xN

∆xB

−∆y

 = µ∆zk.

As∆zk ̸= 0 by assumption, it must hold that µ = 0. The full row rank of
(
HBB AT

B

)
then gives v = 0 and (

hT
Nk hT

Bk aTk
hBN HBB AT

B

)
must have full row rank. Proposition A.1 implies that this is equivalent to(

hkk hT
Bk aTk

h
Bk HBB AT

B

)
having full row rank.

The next proposition concerns the primal subiterations when the constraint in-
dex k is moved from B to N . In particular, it is shown that the Kl matrix is
nonsingular after a subiteration.

Proposition A.5. Assume that (∆xl, ∆xk, ∆xB, −∆y, −∆zl) is the unique solu-
tion of the equations

hll hkl hT
Bl aTl 1

hkl hkk hT
Bk aTk

h
Bl h

Bk HBB AT
B

al ak AB −M
1 −1




∆xl
∆xk
∆xB

−∆y
−∆zl

 =


0
0
0
0
1

 , (A.4)

and that ∆xk ̸= 0. Then, the matrices Kl and Kk are nonsingular, where

Kl =

hll hT
Bl aTl

h
Bl HBB AT

B

al AB −M

 and Kk =

hkk hT
Bk aTk

h
Bk HBB AT

B

ak AB −M

 .

Proof. By assumption, the equations (A.4) have a unique solution with ∆xk ̸= 0.
This implies that there is no solution of the overdetermined equations

hll hkl hT
Bl aTl 1

hkl hkk hT
Bk aTk

h
Bl h

Bk HBB AT
B

al ak AB −M
1 −1

1




∆xl
∆xk
∆xB

−∆y
−∆zl

 =



0
0
0
0
1
0

 . (A.5)
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Given an arbitrary matrix D and nonzero vector f , the fundamental theorem of
linear algebra implies that if Dw = f has no solution, then there exists a vector v
such that vTf ̸= 0. The application of this result to (A.5) implies the existence of
a nontrivial vector (∆x̃l, ∆x̃k, ∆x̃B, −∆ỹ, −∆z̃l, −∆z̃k) such that

hll hkl hT
Bl aTl 1

hkl hkk hT
Bk aTk 1

h
Bl h

Bk HBB AT
B

al ak AB −M
1 −1





∆x̃l
∆x̃k
∆x̃B

−∆ỹ
−∆z̃l
−∆z̃k

 =


0
0
0
0
0

 , (A.6)

with ∆z̃l ̸= 0. The last equation of (A.6) gives ∆x̃l + ∆z̃l = 0, in which case
∆x̃l∆z̃l = −∆z̃2l < 0 because ∆z̃l ̸= 0. Any solution of (A.6) may be viewed as
a solution of the equations H∆x̃ − AT∆ỹ −∆z̃ = 0, A∆x̃ +M∆ỹ = 0, ∆z̃B = 0,
and ∆x̃i = 0 for i ∈ {1, 2, . . . , n} \ {l} \ {k}. An argument similar to that used to
establish Proposition 2.2 gives

∆x̃l∆z̃l +∆x̃k∆z̃k ≥ 0,

which implies that ∆x̃k∆z̃k > 0, with ∆x̃k ̸= 0 and ∆z̃k ̸= 0.
As the search direction is unique, it follows from (A.4) that

(
h

Bl H
Bk HBB AT

B

)
has full row rank, and Proposition A.2 implies that

(
HBB AT

B

)
has full row rank.

Hence, as ∆z̃l ̸= 0, it follows from (A.6) and Proposition A.4 that the matrix(
hll hkl hT

Bl aTl
h

Bl h
Bk HBB AT

B

)
has full row rank, which is equivalent to the matrix(

hll hT
Bl aTl

h
Bl HBB AT

B

)
having full row rank by Proposition A.2,

Again, the search direction is unique and (A.4) implies that
(
al ak AB −M

)
has full row rank. As ∆x̃k ̸= 0, Proposition A.3 implies that

(
al AB −M

)
must

have full row rank. Consequently, Proposition A.1 implies that Kl is nonsingular.
As ∆x̃k, ∆x̃l, ∆z̃k and ∆z̃l are all nonzero, the roles of k and l may be reversed

to give the result that Kk is nonsingular.

The next proposition concerns the situation when a constraint index k is moved
from N to B in a dual subiteration. In particular, it is shown that the resulting
matrix KB defined after a subiteration is nonsingular.

Proposition A.6. Assume that there is a unique solution of the equations

hll hkl hT
Bl aTl 1

hkl hkk hT
Bk aTk 1

h
Bl h

Bk HBB AT
B

al ak AB −M
1 −1

1





∆xl
∆xk
∆xB

−∆y
−∆zl
−∆zk

 =



0
0
0
0
1
0

 , (A.7)



A. Appendix 37

with ∆zk ̸= 0. Then, the matrices Kl and Kk are nonsingular, where

Kl =

hll hT
Bl aTl

h
Bl HBB AT

B

al AB −M

 , and Kk =

hkk hT
Bk aTk

h
Bk HBB AT

B

ak AB −M

 .

Proof. As (A.7) has a unique solution with ∆zk ̸= 0, there is no solution of

hll hkl hT
Bl aTl 1

hkl hkk hT
Bk aTk

h
Bl h

Bk HBB AT
B

al ak AB −M
1 −1

1




∆xl
∆xk
∆xB

−∆y
−∆zl

 =



0
0
0
0
1
0

 . (A.8)

The fundamental theorem of linear algebra applied to (A.8) implies the existence of
a solution of 

hll hkl hT
Bl aTl 1

hkl hkk hT
Bk aTk 1

h
Bl h

Bk HBB AT
B

al ak AB −M
1 −1





∆x̃l
∆x̃k
∆x̃B

−∆ỹ
−∆z̃l
−∆z̃k

 =


0
0
0
0
0

 , (A.9)

with ∆z̃l ̸= 0. It follows from (A.9) that ∆x̃l + ∆z̃l = 0. As ∆z̃l ̸= 0, this
implies ∆x̃l∆z̃l < 0. The solution of (A.9) may be regarded as a solution of the
homogeneous equations H∆x− AT∆y −∆z = 0, A∆x+M∆y = 0, with ∆zi = 0,
for i ∈ B, and ∆xi = 0, for i ∈ {1, . . . , n} \ {k} \ {l}. Hence, Proposition 2.2 gives

∆x̃l∆z̃l +∆x̃k∆z̃k ≥ 0,

so that ∆x̃k∆z̃k > 0. Hence, it must hold that ∆x̃k ̸= 0 and ∆z̃k ̸= 0.
As ∆x̃k ̸= 0, ∆x̃l ̸= 0, ∆z̃k ̸= 0 and ∆z̃l ̸= 0, the remainder of the proof is

analogous to that of Proposition A.5.

The next result gives expressions for the primal and dual objective functions in
terms of the computed search directions.

Proposition A.7. Assume that (x, y, z) satisfies the primal and dual equality con-
straints

Hx+ c−ATy − z = 0, and Ax+My − b = 0.

Consider the partition {1, 2, . . . , n} = B ∪ {l} ∪ N such that xN + qN = 0 and
zB + rB = 0. If the components of the direction (∆x, ∆y, ∆z) satisfy (2.10), then
the primal and dual objective functions for (PQPq,r) and (DQPq,r), i.e.,

fP (x, y) =
1
2x

THx+ 1
2y

TMy + cTx+ rTx

fD(x, y, z) = −1
2x

THx− 1
2y

TMy + bTy − qTz,
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satisfy the identities

fP (x+ α∆x, y + α∆y) = fP (x, y) +∆xl(zl + rl)α+ 1
2∆xl∆zlα

2,

fD(x+ α∆x, y + α∆y, z + α∆z) = fD(x, y, z)−∆zl(xl + ql)α− 1
2∆xl∆zlα

2.

Proof. The directional derivative of the primal objective function is given by(
∆xT ∆yT

)
∇fP (x, y) =

(
∆xT ∆yT

)(Hx+ c+ r
My

)
=

(
∆xT ∆yT

)(ATy + z + r
My

)
(A.10a)

= (A∆x+M∆y)Ty +∆xT(z + r)

= ∆xl(zl + rl), (A.10b)

where the identity Hx + c = ATy + z has been used in (A.10a) and the identities
A∆x+M∆y = 0, ∆xN = 0 and zB + rB = 0 have been used in (A.10b).

The curvature in the direction (∆x,∆y) is given by(
∆xT ∆yT

)
∇2fP (x, y)

(
∆x
∆y

)
=

(
∆xT ∆yT

)(H
M

)(
∆x
∆y

)
=

(
∆xT ∆yT

)(AT∆y +∆z
M∆y

)
(A.11a)

= (A∆x+M∆y)T∆y +∆xT∆z

= ∆xl∆zl, (A.11b)

where the identity H∆x − AT∆y − ∆z = 0 has been used in (A.11a) and the
identities A∆x+M∆y = 0, ∆xN = 0 and ∆zB = 0 have been used in (A.11b).

The directional derivative of the dual objective function is given by

(
∆xT ∆yT ∆zT

)
∇fD(x, y, z) =

(
∆xT ∆yT ∆zT

) −Hx
−My + b
−q

 (A.12a)

= −∆xTHx+∆yT(−My + b)−∆zTq (A.12b)

= −(AT∆y +∆z)Tx+∆yT(−My + b)

−∆zTq (A.12c)

= −∆yT(Ax+My − b)−∆zT(x+ q) (A.12d)

= −∆zl(xl + ql), (A.12e)

where the identityH∆x−AT∆y−∆z = 0 has been used in (A.12c) and the identities
Ax+My − b = 0, xN + qN = 0 and ∆zB = 0 have been used in (A.12e).

As z only appears linearly in the dual objective function, it follows from the
structure of the Hessian matrices of fP (x, y) and fD(x, y, z) that

(
∆xT ∆yT ∆zT

)
∇2fD(x, y, z)

∆x
∆y
∆z

 = −
(
∆xT ∆yT

)
∇2fP (x, y)

(
∆x
∆y

)
.
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Consequently, (A.11) gives

(
∆xT ∆yT ∆zT

)
∇2fD(x, y, z)

∆x
∆y
∆z

 = −∆xl∆zl.

Finally, it is shown that there is no loss of generality in assuming that
(
A M

)
has full row rank in (PQPq,r).

Proposition A.8. There is no loss of generality in assuming that
(
A M

)
has full

row rank in (PQPq,r).

Proof. Let (x, y, z) be any vector satisfying (2.1a) and (2.1b). Assume that(
A M

)
has linearly dependent rows, and that

(
A M

)
and b may be partitioned

conformally such that

(
A M

)
=

(
A1 M11 M12

A2 MT
12 M22

)
, and b =

(
b1
b2

)
,

with
(
A1 M11 M12

)
of full row rank, and(
A2 MT

12 M22

)
= N

(
A1 M11 M12

)
, (A.13)

with A1 ∈ Rm1×n and A2 ∈ Rm2×n for some matrix N ∈ Rm2×m1 . From the linear
dependence of the rows of

(
A M

)
, it follows that x, y and z satisfy (2.1a) and

(2.1b) if and only if

A1x+M11y1 +M12y2 − b1 = 0 and b2 = Nb1,

Hx+ c−AT
1 y1 −AT

2 y2 − z = 0.

It follows from (A.13) that M12 = M11N
T and AT

2 = AT
1 N

T, so that x, y and z
satisfy (2.1a) and (2.1b) if and only if

A1x+M11(y1 +NTy2)− b1 = 0 and b2 = Nb1,

Hx+ c−AT
1 (y1 +NTy2)− z = 0.

We may now define ỹ1 = y1 +NTy2 and replace (2.1a) and (2.1b) by the system

A1x+M11ỹ1 − b1 = 0,

Hx+ c−AT
1 ỹ1 − z = 0.

By assumption,
(
A1 M11 M12

)
has full row rank. Proposition A.2 implies that(

A1 M11

)
has full row rank. This gives an equivalent problem for which

(
A1 M11

)
has full row rank.
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