
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Domain Partitioning Methods for Elliptic Partial Differential
Equations

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics w/ Specialization Computational Science

by

Christopher George Deotte

Committee in charge:

Professor Randolph E. Bank, Chair
Professor Scott B. Baden
Professor David J. Benson
Professor Michael Holst
Professor Melvin Leok

2014

Copyright
Christopher George Deotte, 2014

All rights reserved.

The dissertation of Christopher George Deotte is
approved, and it is acceptable in quality and form
for publication on microfilm:

Chair

University of California, San Diego

2014

iii

DEDICATION

To God, family, and friends.

iv

EPIGRAPH

With God all things
are possible.

—Jesus

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiii

Acknowledgements . xv

Vita . xvii

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Problem Definition . 1
1.2 Overview . 2
1.3 Our Contributions . 2

Chapter 2 Finite Elements . 4
2.1 Overview . 4

2.1.1 Weak Form . 4
2.1.2 Galerkin Approximation 5
2.1.3 Lagrange Basis Functions 5
2.1.4 Finite Element Form 5
2.1.5 Matrix Form . 6

2.2 Upwinding . 6
2.3 Nonlinear PDE . 7

Chapter 3 Domain Decomposition . 9
3.1 Overlapping Subdomains 10

3.1.1 Schwarz Framework 10
3.2 Non-overlapping Subdomains 12

3.2.1 Steklov-Poincare Framework 13
3.2.2 Lagrange Multiplier Framework 15

3.3 Bank-Holst Paradigm DD Solver 17
3.4 Multiple Subdomains . 20

vi

Chapter 4 Partitioning Algorithms . 21
4.1 Definitions . 21
4.2 Graph Partitioning Algorithms 22

4.2.1 Kernighan-Lin Algorithm 23
4.2.2 Recursive Spectral Bisection Algorithm 24
4.2.3 Multilevel Graph Partitioning Algorithm 25

4.3 METIS . 27
4.4 PLTMG . 28
4.5 Finite Element Partitioning Example 29

Chapter 5 Edge Weighting Schemes . 33
5.1 Convection Weighting . 40
5.2 Gradient Weighting . 42
5.3 Stiffness Matrix Weighting 44

5.3.1 Convection . 46
5.3.2 Diffusion . 53
5.3.3 Self Adjusting . 54

5.4 Computation Time . 55
5.5 Edge Weighting Example 56

Chapter 6 A Posteriori Error Estimation 67
6.1 An Posteriori Error Estimator 69

Chapter 7 Vertex Weighting Schemes . 71
7.1 Error Weighting . 77
7.2 Flow Weighting . 80
7.3 Interface Reconciliation 83
7.4 Adaptive meshing . 83

Chapter 8 Convergence Analysis . 86
8.1 Preconditioned Richardson Iteration 87
8.2 Additive Schwarz . 88
8.3 Multiplicative Schwarz 89
8.4 Edge Weighting Convergence 90

Chapter 9 Numerical Experiments . 103
9.1 PLTMG 11.0 . 104

9.1.1 Code Modifications 104
9.2 Edge Weighting Experiments 109

9.2.1 Convection . 109
9.2.2 Convection Strength 113
9.2.3 Convection Weighting Parameter 114
9.2.4 Boundary Conditions 117
9.2.5 Force Functions 120

vii

9.2.6 Number of Processors 122
9.2.7 Convection Scalability 123
9.2.8 Diffusion . 127
9.2.9 Diffusion Strength 131
9.2.10 Diffusion Rectangle Aspect Ratio 132
9.2.11 Diffusion Scalability 134
9.2.12 Domain Shape . 136
9.2.13 Domain Scalability 140

9.3 Vertex Weighting Experiments 143
9.3.1 Convection with Boundary Layer 143
9.3.2 Convection without Boundary Layer 146
9.3.3 Flow Function Placement 147
9.3.4 Flow Function Parameter 149
9.3.5 Vertex Weighting Scalability 151

9.4 Mixed Weighting Experiments 155
9.5 DD Convergence Dependence 158
9.6 DD Communication Time 162
9.7 Summary and Conclusions 166

9.7.1 Edge Weighting schemes 166
9.7.2 Vertex Weighting schemes 168
9.7.3 Application . 168

Chapter 10 Future Research . 170
10.1 Singularities . 170
10.2 Adaptive Refinement . 173
10.3 Preconditioned Conjugate Gradient 174
10.4 More Domain Decomposition 175
10.5 Mathematical Model . 176

Bibliography . 178

viii

LIST OF FIGURES

Figure 2.1: A linear Lagrange basis function vk on a uniform triangle mesh. 5
Figure 2.2: Scharfetter Gummel upwinding 7

Figure 3.1: Subdomain Types . 9
Figure 3.2: Local meshes of four processors. 18

Figure 4.1: A maximal matching being used to coarsen a graph and create
new edge and vertex weights. 26

Figure 4.2: Finite Element mesh . 29
Figure 4.3: Finite Element graph . 30
Figure 4.4: Different partitions of graph G. 32

Figure 5.1: Unit square partitioned into 64 parts by METIS from PLTMG’s
mesh of 40000 triangles with vertex and edge weights equal 1. . 36

Figure 5.2: Unit square partitioned in 64 uniform square parts. 37
Figure 5.3: Unit square partitioned in 64 rectangle parts. 38
Figure 5.4: The effect of q(·)s with s = 3 on Convection weighting. 41
Figure 5.5: METIS using the Convection Weighting scheme. 42
Figure 5.6: METIS using the Gradient Weighting scheme. 43
Figure 5.7: Metis partitioning using different s parameters. 44
Figure 5.8: Graph G and triangularization T 46
Figure 5.9: Domain Ω with triangularization T 47
Figure 5.10: An approximation of the stiffness matrix weighting scheme . . 51
Figure 5.11: Stiffness Matrix weighting when Scharfetter Gummel upwind-

ing is used. Each line represents a different h||b|| 52
Figure 5.12: Stiffness Matrix weighting when Streamline Diffusion upwind-

ing is used. Each line represents a different h||b|| 53
Figure 5.13: Stiffness matrix weighting scheme regulating based on h and b. 55
Figure 5.14: Rectangle aspect ratio versus convection strength 55
Figure 5.15: Two triangle mesh stencils . 57
Figure 5.16: Row k of stiffness matrix A with and without upwinding. . . . 59
Figure 5.17: Row m of stiffness matrix A with and without upwinding. . . . 61
Figure 5.18: Different orientations of triangle sides. 62
Figure 5.19: Row k and row m of stiffness matrix A. 64
Figure 5.20: A portion of Ω with Triangularization T 64
Figure 5.21: Stiffness matrix weighting for anisotropic diffusion. Each line

represents a different λ1/λ2. 66

Figure 6.1: Exact solution u. 67
Figure 6.2: Two meshes for the unit line [0,1] 68
Figure 6.3: Two Finite Element solutions using different meshes. 68

ix

Figure 7.1: Two partitions of the unit square having parts with dispropor-
tionate areas. 72

Figure 7.2: Two partitions of the unit square having parts with dispropor-
tionate areas. 73

Figure 7.3: Two partitions of the unit square into equal area parts. 74
Figure 7.4: Solving Poisson’s Equation. 78
Figure 7.5: Error Weighting placing degrees of freedom where they’re needed. 79
Figure 7.6: Information takes only 3 steps to travel across weighted partitions. 81
Figure 7.7: Partitioning an adaptive mesh with vertex weight equal 1. . . . 84
Figure 7.8: Partitioning a uniform mesh with vertex weights matching

adaptive mesh. 84

Figure 8.1: Different partitions of the unit square. 94
Figure 8.2: A portion of the mesh pictured in Figure 8.1 95
Figure 8.3: Solving −βuxx−uyy−1 = 0 for 106 unknowns on two processors

with h = 10−3. 97
Figure 8.4: Solving −4u−βux−1 = 0 for 106 unknowns on two processors

with h = 10−3. 99

Figure 9.1: Solution to (9.1)-(9.3) . 110
Figure 9.2: The three edge weighting schemes partitioning for (9.1)-(9.3) . 111
Figure 9.3: Unweighted partitioning scheme solving (9.1)-(9.3) 111
Figure 9.4: Convection, Gradient, or Stiffness Matrix weighted partitioning

scheme solving (9.1)-(9.3) . 112
Figure 9.5: Perpendicular convection weighted partitioning scheme solving

(9.1)-(9.3) . 112
Figure 9.6: The factor of DD iteration reduction versus rectangle aspect

ratio . Each line represents using a different convection strength
||b||h. 116

Figure 9.7: Different convection parameter s values partitioning the unit
square into 64 parts. 117

Figure 9.8: Solution to equation (9.6) . 118
Figure 9.9: The three edge weighting schemes partitioning for (9.6)-(9.7) . 118
Figure 9.10: Unweighted partitioning scheme solving (9.6)-(9.7) 119
Figure 9.11: Convection/ Stiffness Matrix weighted partitioning scheme solv-

ing (9.6)-(9.7) . 119
Figure 9.12: u(x, y) = sin(x) sin(y) . 120
Figure 9.13: Gradient versus Convection or Stiffness Matrix Weighting . . . 121
Figure 9.14: The factor of DD iteration reduction versus rectangle aspect

ratio. Each line represents using a different number of unknowns
per processor. 125

x

Figure 9.15: The factor of DD iteration reduction versus rectangle aspect
ratio. Each line represents using a different number of proces-
sors. 126

Figure 9.16: Different s values partitioning the unit square into 512 parts. . 126
Figure 9.17: Solution to equation (9.16) . 127
Figure 9.18: Unweighted partitioning scheme solving (9.16)-(9.17) 128
Figure 9.19: Stiffness Matrix weighted partitioning scheme solving (9.16)-

(9.17) . 128
Figure 9.20: Solution to equation (9.18) . 129
Figure 9.21: Unweighted partitioning scheme solving (9.18)-(9.19) 130
Figure 9.22: Stiffness Matrix weighted partitioning scheme solving (9.18)-

(9.19) . 130
Figure 9.23: The factor of DD iteration reduction versus rectangle aspect

ratio. Each line represents using a different diffusion strength
||a|| . 133

Figure 9.24: Stiffness Matrix weighting scheme adjusting based on uxx/uyy
in PDE. 134

Figure 9.25: The factor of DD iteration reduction versus rectangle aspect
ratio. Each line represents using a different number of unknowns
per processor. 135

Figure 9.26: The factor of DD iteration reduction versus rectangle aspect
ratio. Each line represents using a different number of proces-
sors. 136

Figure 9.27: Solution to equation (9.24)-(9.25) 137
Figure 9.28: Unweighted partitioning scheme solving (9.24)-(9.25) 137
Figure 9.29: Convection/ Stiffness Matrix weighted partitioning scheme solv-

ing (9.25)-(9.25) . 138
Figure 9.30: Unweighted partitioning scheme solving (9.26)-(9.27) 139
Figure 9.31: Convection/ Stiffness Matrix weighted partitioning scheme solv-

ing (9.26)-(9.27) . 139
Figure 9.32: The factor of DD iteration reduction versus rectangle aspect

ratio. Each line represents a different domain aspect ratio for
convection dominated PDE. 141

Figure 9.33: The factor of DD iteration reduction versus rectangle aspect
ratio. Each line represents different domain aspect ratio for
anisotropic diffusion PDE. 142

Figure 9.34: Error and Flow weighted partitioning scheme solving (9.32)-(9.34)144
Figure 9.35: Unweighted partitioning scheme solving (9.32)-(9.34) 145
Figure 9.36: Error versus Flow Weighting without boundary layer. 146
Figure 9.37: Flow Weighting with z(x, y) = |x− c|+ ε solving (9.32)-(9.34) 148
Figure 9.38: Flow Weighting with z(x, y) = |y − c|+ ε solving (9.32)-(9.34) 148
Figure 9.39: The factor of DD iteration reduction versus flow parameter.

Each line represents using a different convection strength ||b||h 150

xi

Figure 9.40: Different flow parameter s values partitioning the unit square
into 64 parts. 151

Figure 9.41: The factor of DD iteration reduction versus flow weighting
parameter. Each line represents using a different number of
unknowns per processor. 152

Figure 9.42: The factor of DD iteration reduction versus rectangle aspect
ratio. Each line represents using a different number of proces-
sors. 153

Figure 9.43: Different s values partitioning the unit square into 256 parts. . 154
Figure 9.44: The factor of DD iteration reduction versus flow weighting

parameter. Each line represents a different domain aspect ratio
for convection dominated PDE. 155

Figure 9.45: Each partition has Convection parameter sc = 2.0 and 64 parts.
Flow parameter sf varies. 158

Figure 9.46: DD convergence rate of ||δuk|| based on number of processors
or domain aspect ratio. 160

Figure 9.47: DD convergence rate of ||δuk|| based on the number of pro-
cessors. The solid lines represent 20k/200k refinement and the
dashed lines represent 100k/200k refinement. 161

Figure 9.48: Partitions of the unit square into 64, 128, and 256 processors. . 164
Figure 9.49: Time in seconds for an unweighted and weighted partition to

complete the computation of one iteration of DD. 165

Figure 10.1: Singularity examples . 171
Figure 10.2: Different partitions using different weighting schemes to address

a singularity. 172
Figure 10.3: Different partitions using different weighting schemes to address

a singularity with METIS. 172
Figure 10.4: Singularity isolated to one processor 173
Figure 10.5: When increasing the aspect ratio of subdomain rectangles, x

hops decrease and y hops increase. 176

xii

LIST OF TABLES

Table 5.1: Aspect ratio versus growth factor 39

Table 7.1: Interface characteristics immediately after partitioning. 75
Table 7.2: Interface characteristics immediately after refine/unrefine 75
Table 7.3: Error increase factor on the unit square when using z(x, y) =

x+ 10−3 with different flow function parameters s. 82

Table 9.1: 64 Processors; DD convergence rate versus convection strength . 113
Table 9.2: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iter-

ations reduction factor based on ||b||h and convection weighting
parameter s. 115

Table 9.3: 128 Processors; DD convergence rate versus convection strength 122
Table 9.4: 256 Processors; DD convergence rate versus convection strength 123
Table 9.5: 512 Processors; DD convergence rate versus convection strength 123
Table 9.6: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD

iterations reduction factor based on the number of unknowns
per processor and convection weighting parameter s. 124

Table 9.7: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD
iterations reduction factor based on number of processors and
convection weighting parameter s. 125

Table 9.8: DD convergence rate versus diffusion strength 131
Table 9.9: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD

iterations reduction factor based on ||a|| and rectangle aspect
ratio. 133

Table 9.10: (1st row:) DD convergence rate of ||δuk|| and (2nd row) DD iter-
ations reduction factor based on number of unknowns per pro-
cessor and rectangle aspect ratio. All use 64 processors. 135

Table 9.11: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD
iterations reduction factor based on number of processors and
rectangle aspect ratio. All use 2.0× 105 unknowns per processor. 135

Table 9.12: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iter-
ations reduction factor based on domain and subdomain aspect
ratio. 141

Table 9.13: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iter-
ations reduction factor based on domain and subdomain aspect
ratio. 142

Table 9.14: DD convergence rates for different flow functions 148
Table 9.15: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD

iterations reduction factor based on ||b||h and flow weighting
parameter s. 150

xiii

Table 9.16: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD
iterations reduction factor based on number of unknowns per
processor and flow weighting parameter s. All use 64 processors. 152

Table 9.17: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD
iterations reduction factor based on number of processors and
flow weighting parameter s. All use 2.0 × 105 unknowns per
processor. 153

Table 9.18: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD
iterations reduction factor based on domain and flow weighting
parameter s. 154

Table 9.19: DD convergence rates of ||δuk|| for combinations of convection
weighting and flow weighting. 156

Table 9.20: DD iteration reduction factors for combinations of convection
weighting and flow weighting. 157

Table 9.21: DD convergence rate of ||δuk|| based on the number of processors
and κ = 1 for convection dominated PDE. 159

Table 9.22: DD convergence rate of ||δuk|| based on κ and the number of
processors equal 64 for convection dominated PDE. 159

Table 9.23: DD convergence rate of ||δuk|| based on the number of processors
and κ = 1 for anisotopic diffusion PDE. 159

Table 9.24: DD convergence rate of ||δuk|| based on κ and the number of
processors equal 64 for anisotopic diffusion PDE. 159

Table 9.25: DD convergence rate of ||δuk|| based on the number of proces-
sors and κ = 1 for convection dominated PDE and 100k/200k
refinement. 161

Table 9.26: DD convergence rate of ||δuk|| based on the number of processors
for anisotropic diffusion PDE and 100k/200k refinement. 161

Table 9.27: Ratio of computation to communication time for convection-
diffusion . 163

Table 9.28: Ratio of computation to communication to time for diffusion . . 163
Table 9.29: Time to complete the computation of one iteration of DD in

seconds listed by experiment number. 165

xiv

ACKNOWLEDGEMENTS

Graduate research and writing are difficult work. Among the joyful mo-
ments of discovery and success are discouraging setbacks and obstacles. Indispens-
able is the support from God, family, friends, and teachers. I especially thank God
for his love and blessings.

I am thankful for so many caring and helpful people in my life. I thank my
mother, father, and brother for their love and support. My mother is an incredible
source of strength and encouragement. Without her, I doubt I would have finished
my PhD. Thank you mom.

Thank you Janina, my girlfriend, for your love and support. The final
months were difficult but you made them easier.

Randy Bank is a brilliant mathematician and great mentor. He is always
available whenever I need help or want to share results. No matter what obstacles
we face, he has insights and suggestions which keep us moving forward. Thank
you Randy. Also I’m grateful for his software package PLTMG 11.0 which enables
us to conduct exciting large scale numerical experiments.

Thank you Mike Holst for your friendship and optimism. If I entered your
office discouraged, I would leave hopeful and energized. Your encouragement got
me to the finish line. Thank you David Benson for introducing me to Finite
Elements. Thank you Scott Baden for introducing me to large scale parallel com-
puting. Thank you Melvin Leok for helping on my committee. And thanks James
Bunch for teaching me numerical linear algebra.

Wilson Cheung can solve any computer problem; thanks Wilson. Thank you
Holly Proudfoot, Scott Rollins, Lois, Terry, and Janice for all your administration
help.

It is a blessing to be a part of CSME and CCoM. These groups gener-
ously provide their members with many opportunities and resources including the
supercomputer BOOM.

The UCSD Math Department is a wonderful community. We enjoy weekly
ultimate frisbee games, board game meet ups, frequent pot luck dinners, and
other fun get togethers. Thanks math friends. Thanks Andy and Helen, Janine

xv

and Mark, Caleb and Leslie, Jimmy and Katie, Mike and Courtney, Jake and Suz,
Andy Parrish, Franklin, Brian, Susan, Alex Brik, and others.

My roommates Tim Banham, Pete Overholser, Mike Kelley, and Gordon
Honerkamp-Smith are great people and great friends. I am grateful to have them
in my life. The five of us struggled and celebrated graduate school together. We
shared lots of adventures together including a 100 mile hike along the Sierra High
Trail in northern California.

Thank you Jahir Orozco-Holguin and Taylor Oliver for your encouragement.
Your friendship is a blessing and I appreciate the example you provide of balancing
work and play. You are role models in your respective research fields and fun people
who enjoy dancing and playing volleyball.

The toughest class I took at UCSD was Real Analysis with Lei Ni. It was
also a qualifying exam class for my PhD. My friend Jesus Oliver helped me get
through this course. We would meet regularly to discuss the material and help each
other solve problems. This was one of the best math collaboration experiences of
my life. Thanks Jesus.

Preparing, applying, and interviewing for jobs is a big endeavor. Thanks
Pete Spragins for sharing the job hunting experience with me and thanks for being
a good friend. Winning the Intuit hackathon with you was loads of fun. I always
enjoy our programming discussions. Have fun at Google.

I thank my athletic friends Sean Mowen, Mark Olinger, Lauren Smith, and
Patrick Hauf who share playing volleyball and windsurfing with me. Without
regularly playing sports, I wouldn’t be able to focus on my work. And thanks to
Lyla Fadali, David Zimmermann, and Hooman Sherkat for letting me spend so
much time at your apartments. Hanging out is fun.

Thank you to the community at http://play-agricola.com for providing me
with creative outlets, entertainment, and stimulating discussions. And finally,
thank you to San Diego’s Punjabi Tandoor restaurant for supplying me with hun-
dreds of fantastic Indian dinners.

xvi

VITA

1990-1995 Party Entertainer for my business, Ultimate Bass

1998-2000 Rock Climbing Instructor for Furman University, South
Carolina

1997-2007 Designed Restaurant and Entertainment Guides for
my business, City Guides

1995-2000 BA - Mathematics Cornell University and Furman
University - Major GPA: 4.0

2002-Present Buy, Sell, Lease, and Renovate Houses for my busi-
ness, BTGB

2005-2007 Robotics Coach and High School Mathematics Teacher
for Greenville High, South Carolina

2007-Present Mathematics Instructor and Mathematics TA for UCSD,
California

2007-2009 MA - Applied Mathematics UCSD - GPA: 3.9

2007-Present Scientific Software Developer as UCSD PhD student

2012-2013 Data Analyst and Software Developer for Attorney
General’s Economic Crimes Division, Florida

2008-Present Data Analyst and Software Developer for Lookout Games,
Germany

2009-2014 PhD - Mathematics w/ Specialization Compu-
tational Science UCSD - GPA: 4.0

xvii

ABSTRACT OF THE DISSERTATION

Domain Partitioning Methods for Elliptic Partial Differential
Equations

by

Christopher George Deotte
Doctor of Philosophy in Mathematics w/ Specialization Computational Science

University of California San Diego, 2014

Professor Randolph E. Bank, Chair

Numerically solving elliptic partial differential equations for a large num-
ber of degrees of freedom requires the parallel use of many computer processors.
This in turn requires algorithms to partition domains into subdomains in order to
distribute the work.

In this dissertation, we present five novel algorithms for partitioning do-
mains that utilize information from the underlying PDE. When a PDE has strong
convection or anisotropic diffusion, directional dependence exists and a partition
that favors this direction is desirable. Our schemes fall into two classes; one class
creates rectangular shaped subdomains aligned in this direction and one class cre-
ates subdomains that increase in size as you move in this direction.

These schemes are mathematically described and analyzed in detail. Then
they are tested on a variety of experiments which include solving the convection-
diffusion equation for 1

4 billion unknowns on 512 processors using over 1 teraflop
of computing power.

xviii

Theory and experiments demonstrate that these schemes improve the do-
main decomposition convergence rate when the underlying PDE has directional
dependence. In our hundreds of experiments, the number of DD iterations re-
quired for convergence reduces by a factor between 0.25 and 0.75. And these
methods maintain or improve the final finite element solution’s accuracy also.

xix

Chapter 1

Introduction

Frequently, in order to model reality, scientists wish to solve second order
partial differential equations. After discretizing their domains of interest, they
need to solve for billions of unknown values. Even with modern computing power,
this is a daunting task which may require days, weeks, or months to complete.
Consequently, many computer processors are used simultaneously. Algorithms
are needed to divide the many unknowns among the many processors. Different
algorithms affect both the time needed to find the unknowns and the accuracy of
the computed values. In this thesis, we present new algorithms to distribute these
unknowns which allow the unknowns to be found faster and more accurately than
existing methods.

1.1 Problem Definition

The problem we are interested in solving is the second order elliptic bound-
ary value problem

−∇ · (a(x, y)∇u) + b(x, y) · ∇u+ c(x, y)u− f(x, y) = 0 in Ω (1.1)

with boundary conditions

a(x, y)∇u · n = gN(x, y) on ∂ΩN (1.2)

u = gD(x, y) on ∂ΩD (1.3)

1

2

Here Ω ∈ Rd is a bounded domain, n is the unit normal vector, a is a d × d spd
matrix, b is a vector of length d, and [a]i,j, [b]i, c, f , gN , and gD are scalar functions.

1.2 Overview

Chapters 2-4 walk the reader through a typical procedure for solving (1.1)-
(1.3). In summary, you convert the above Strong Form of your PDE into a Weak
Variational Form and then apply a Galerkin Method. This reduces a problem of
infinite unknowns to one of finite unknowns. A Galerkin Approximation commonly
uses Finite Elements to define its finite dimensional space. The chosen elements
determine the quantity and location of the degrees of freedom (unknowns). Next,
in the process of Domain Decomposition, you utilize a Partitioning Algorithm and
assign each element and its associated degrees of freedom to one or more of your
multiple processors. Afterward, the processors begin solving for the unknowns.
This is generally an iterative process that requires repeated local computation and
communication between processors. When this procedure finishes, you combine the
computed values from all the processors together and have a finite approximation
to the solution of (1.1)-(1.3).

This is a popular method because computers do it well and it has been shown
that this approximate solution converges to the true solution as you increase the
number of unknowns and decrease h, the element size.

‖u− uh‖α,Ω 5 h2−α‖u‖2,Ω (1.4)

This was shown by Babuska and Aziz in [1].

1.3 Our Contributions

Standard Partitioning Algorithms don’t use information from the original
equations (1.1)-(1.3) nor the intermediate solutions during iteration. But, these
equations and solutions contain valuable information about the dependencies be-
tween the unknowns you desire. We found that by using this information, you can

3

group dependent degrees of freedom together on the same processor and minimize
the dependence between processors. Intuitively, this is a better division of labor
(partition) since each processor requires less knowledge about the unknowns on
other processors and can spend more time focused on solving for its own unknowns.
Our theory and experiments show that distributing unknowns among processors in
this fashion speeds up the convergence of Domain Decomposition Methods which
saves computing time and therefore saves money. These new divisions of labor also
maintain or improve the accuracy of the final solution.

In Chapters 5 and 7, we reveal five ways to incorporate information from
the original equations and intermediate solutions into partitioning algorithms.

In Chapter 8, we provide mathematical analysis that proves the benefit of
these methods in simple cases and in Chapter 9, we provide experimental numerical
results demonstrating the improvement in a variety of cases.

Chapter 10 outlines ideas for future research. All the work in Chapters 5,7,8
and 9 is original.

Chapter 2

Finite Elements

A typical procedure for solving the second order elliptic PDE (1.1)-(1.3)
with a computer is to convert it into its Weak Form and use a Galerkin Approxi-
mation and Finite Elements [37] [21] [31].

2.1 Overview

2.1.1 Weak Form

Let H1(Ω) denote the usual Sobolev space. Let

S = {φ ∈ H1(Ω) |φ = gD on ∂ΩD} (2.1)

V = {φ ∈ H1(Ω) |φ = 0 on ∂ΩD} (2.2)

Then the weak form of (1.1)-(1.3) is: find u ∈ S such that

a(u, v) = b(v) ∀v ∈ V, (2.3)

where

a(u, v) =
∫

Ω
a(x, y)∇u · ∇v + (b(x, y) · ∇u)v + c(x, y)uv dx dy (2.4)

b(v) =
∫

Ω
f(x, y)v dx dy +

∫
∂ΩN

gN(x, y)v ds (2.5)

4

5

2.1.2 Galerkin Approximation

The solution of (2.3) has an infinite number of degrees of freedom. A
computer prefers to solve for a finite number of unknowns. A Galerkin Method
solves (2.3) by constructing finite dimensional approximations of S and V and
finding a finite dimensional u which approximates the true solution.

The new function spaces are made by partitioning Ω into Finite Elements.
Let Th denote a triangulation of Ω and let Mh be the space of C0 piecewise linear
functions associated with Th.

2.1.3 Lagrange Basis Functions

Form a basis of linear functions from the standard linear Lagrange nodal
functions with degrees of freedom placed at the triangles’ vertices.

Figure 2.1: A linear Lagrange basis function vk on a uniform triangle mesh.

2.1.4 Finite Element Form

We can now formulate a discrete analog of (2.3). Let I : H1(Ω)→ Mh de-
note a continuous piecewise linear function interpolation operator that interpolates
at the degrees of freedom of Th. Let

Sh = {ψ ∈Mh |ψ = I(gD) on ∂ΩD} (2.6)

Vh = {ψ ∈Mh |ψ = 0 on ∂ΩD} (2.7)

Then our discrete Finite Element form of (2.3) is: find uh ∈ Sh such that

a(uh, vh) = b(vh) ∀vh ∈ Vh (2.8)

where a and b are defined above in (2.4) and (2.5). If the dimension of Sh is n,
then (2.8) is a system of n equations.

6

2.1.5 Matrix Form

If the underlying partial differential equations (1.1)-(1.3) are linear, then
these equations are n linear equations which can be represented with matrix nota-
tion. Equation (2.8) can be written as

AU = F (2.9)

where A is a matrix commonly referred to as the stiffness matrix, A ∈ Rn×n and
[A]j,k = a(ψk, ψj) where {ψk | k = 1, 2, 3..., n} are the basis functions of Vh. The
vector U ∈ Rn are the degrees of freedom of uh and are the coefficients of the basis
functions when representing uh as

uh = uD +
n∑
k=1

Ukψk (2.10)

for some uD ∈ Sh. The vector F ∈ Rn is [F]i = b(ψi) − a(uD, ψi) and is referred
to as the load vector.

2.2 Upwinding

When the underlying partial differential equation is not self-adjoint, the
discretization in (2.8) needs some upwinding terms added to improve stability.
Therefore instead of solving (2.8), we would solve

ah(uh, vh) = b(vh) ∀vh ∈ Vh (2.11)

A simple form of upwinding is artificial diffusion

ah(uh, vh) = a(uh, vh) + α||b||h
2

∫
Ω
w∇uh · ∇vh dxdy (2.12)

where b is the coefficient of ∇u in the original PDE, α is a damping constant, and
w ∈ Rd×d which depends on b and the mesh.

There are various ways of adding diffusion. Two popular methods are Schar-
fetter Gummel Upwinding and Streamline Diffusion [3] [4]. Scharfetter Gummel
Upwinding behaves as (2.12) and Figure 2.2 shows how much diffusion Scharfetter

7

Gummel adds to the convection diffusion equation −4u + b · ∇u − 1 = 0 being
solved on a uniform equilateral triangle mesh based on convection strength. The
y axis is α from (2.12). In each case, w ≈ diag(b/||b||).

Figure 2.2: Scharfetter Gummel upwinding

2.3 Nonlinear PDE

When the underlying partial differential equation is nonlinear, Newton’s
Method can be used to solve (2.8). Let the vector U correspond to the degrees
of freedom of the Finite Element solution uh as defined in (2.10), then (2.8) can
written as a system of nonlinear equations

G(U) = 0 (2.13)

where the jth nonlinear equation of G(U) = 0 is a ((uD +∑n
k=1 Ukψk), ψj)−b(ψj) =

0. The Jacobian matrix for this system is

A(U) = ∂G(U)
∂U

(2.14)

Start with an initial guess Uk for k = 0. Calculate the residual Rk = −G(Uk).
Then solve the following system of linear equations for δUk

Ak(δUk) = Rk. (2.15)

8

Afterward, Uk+1 = Uk + skδUk where sk is a damping factor. Calculate the new
residual, and repeat this procedure until a convergence criteria is met.

Chapter 3

Domain Decomposition

The Strong Form, (1.1)-(1.3), is difficult to solve on a computer, but com-
puters excel at solving the Matrix Form, (2.9), and Newton Method’s Form, (2.15).
In practice, these forms are used to tackle the solution of real world problems.

Although these two forms are more tractable, they are still difficult to solve
because each can have billions of unknowns to compute. This proves difficult for
one computer to deal with. A reasonable approach is to distribute the unknowns
over many processors (computers) and let them work together.

Given a domain Ω, you can divide the domain into overlapping subdomains
or non-overlapping subdomains and then use a Domain Decomposition method
[39] [43] [44].

(a) Overlapping (b) Non-overlapping

Figure 3.1: Subdomain Types

9

10

3.1 Overlapping Subdomains

The simplest and oldest Domain Decomposition Methods are the overlap-
ping Schwartz Methods [43] with the two most popular being the Multiplicative
Schwarz Method and the Additive Schwarz Method.

3.1.1 Schwarz Framework

The Multiplicative Schwarz Method works as follows. In Figure 3.1a, let
Ω = Ω1 ∪Ω2 and note that the boundary of Ω1 is (∂Ω1 \Γ1)∪Γ1. One part of ∂Ω1

is the original boundary of Ω and one part is a new artificial boundary. We wish
to solve (1.1)-(1.3) on Ω. In order to simplify the language in this section, define
L as the differential operator from (1.1)

Lu ≡ −∇ · (a(x, y)∇u) + b(x, y) · ∇u+ c(x, y)u (3.1)

and define B as the boundary operator from (1.2)-(1.3)

Bu ≡

 a(x, y)∇u · n on ΩN

u on ΩD

(3.2)

The Multiplicative Schwarz Method, also referred to as the Alternating Schwarz
Method, proceeds by alternating solving Lu1 = f1 on Ω1 and Lu2 = f2 on Ω2 with
appropriate boundary conditions.

11

Algorithm 1 Multiplicative Schwarz Method

Initialize u(0)
2 to an initial guess

1: for k = 1, 2, ... until convergence do
2: Find uk1 ∈ H2(Ω1) such that

Luk1 = f1 on Ω1

Buk1 = g1 on ∂Ω1 \ Γ1

uk1 = uk−1
2 on Γ1

3: Find uk2 ∈ H2(Ω2) such that
Luk2 = f2 on Ω2

Buk2 = g2 on ∂Ω2 \ Γ2

uk2 = uk1 on Γ2

4: end for

In Chapter 8, we show that the discrete version of this method, resulting
from using a Galerkin approximation, is equivalent to a block Gauss-Seidel Method
applied to that same system of equations.

Multiplicative Schwarz, Algorithm 1, is a serial algorithm. Steps 2 and 3
cannot be performed simultaneously. The parallel version of Algorithm 1 is the
Additive Schwarz Method.

12

Algorithm 2 Additive Schwarz Method

Initialize u(0)
1 and u(0)

2 to an initial guess
1: for k = 1, 2, ... until convergence do

Perform steps 2 and 3 simultaneously on different processors.
2: Find uk1 ∈ H2(Ω1) such that

Luk1 = f1 on Ω1

Buk1 = g1 on ∂Ω1 \ Γ1

uk1 = uk−1
2 on Γ1

3: Find uk2 ∈ H2(Ω2) such that
Luk2 = f2 on Ω2

Buk2 = g2 on ∂Ω2 \ Γ2

uk2 = uk−1
1 on Γ2

4: Communicate ui from Γj to neighbor processors.
5: end for

In Chapter 8, we show that the discrete version of this method resulting from
using a Galerkin approximation is equivalent to a block Jacobi Method applied to
that same system of equations.

3.2 Non-overlapping Subdomains

When the subdomains are disjoint such as Figure 3.1b, requiring that u1 =
u2 on the interface Γ and then solving for each uk on its respective domain is not
enough to determine a solution to (1.1)-(1.3). We most impose both u1 = u2 and
a∇u1·nΓ = a∇u2·nΓ on Γ. These two conditions are referred to as the transmission
conditions.

There are various ways to impose the transmission conditions. Two com-
mon methods are by using the Steklov-Poincare operator and by using Lagrange
Multipliers. The Steklov-Poincare operator leads to methods such as the Dirichlet-
Neumann or Neumann-Neumann Method and Lagrange Multipliers leads to meth-
ods such as FETI, mortar element methods, and the Bank-Holst Paradigm DD
solver.

13

3.2.1 Steklov-Poincare Framework

Algorithm 3 Dirichlet - Neumann Method (serial)
Initialize v(0) to an initial guess

1: for k = 1, 2, ... until convergence do
2: Find uk1 ∈ H2(Ω1) such that

Luk1 = f1 on Ω1

Buk1 = g1 on ∂Ω1 \ Γ
uk1 = vk−1

2 on Γ
3: Find uk2 ∈ H2(Ω2) such that

Luk2 = f2 on Ω2

Buk2 = g2 on ∂Ω2 \ Γ2

n2 · a∇uk2 = n2 · a∇uk1 on Γ
4: Update: vk2 = θuk2 + (1− θ)vk−1

2 on Γ.
5: end for

The above algorithm is serial. Below is the parallel version.

14

Algorithm 4 Dirichlet - Neumann Method (parallel)

Initialize u(1)
1 and u(1)

2 to an initial guess
1: for k = 1, 2, ... until convergence do
2: Update µk+ 1

2 = θn1 · a∇uk1 + (1− θ)n1 · a∇uk2
gk+ 1

2 = δuk1 + (1− δ)uk2
Perform steps 3 and 4 simultaneously on different processors.

3: Find uk+ 1
2

1 ∈ H2(Ω1) such that
Lu

k+ 1
2

1 = f1 on Ω1

Bu
k+ 1

2
1 = g1 on ∂Ω1 \ Γ

n1 · a∇u
k+ 1

2
1 = µk+ 1

2 on Γ
4: Find uk+ 1

2
2 ∈ H2(Ω2) such that
Lu

k+ 1
2

2 = f2 on Ω2

Bu
k+ 1

2
2 = g2 on ∂Ω2 \ Γ2

u
k+ 1

2
2 = gk+ 1

2 on Γ
5: Communicate ui from Γ to neighbor processors.
6: Update µk+1 = βn1 · a∇u

k+ 1
2

1 + (1− β)n1 · a∇u
k+ 1

2
2

gk+1 = αu
k+ 1

2
1 + (1− α)uk+ 1

2
2

Perform steps 7 and 8 simultaneously on different processors.
7: Find uk+1

1 ∈ H2(Ω1) such that
Luk+1

1 = f1 on Ω1

Buk+1
1 = g1 on ∂Ω1 \ Γ

uk+1
1 = gk+1 on Γ

8: Find uk+1
2 ∈ H2(Ω2) such that
Luk+1

2 = f2 on Ω2

Buk+1
2 = g2 on ∂Ω2 \ Γ2

n2 · a∇uk+1
2 = µk+1 on Γ

9: Communicate ui from Γ to neighbor processors.
10: end for

15

3.2.2 Lagrange Multiplier Framework

When there is an optimization principle associated with our elliptic partial
differential equation, we can impose the transmission conditions by formulating a
constrained optimization problem.

Assume that our PDE is minimizing some energy functional, J(·), then
finding a solution to Lu = 0 is the same as minimizing J(u) over all u. If we
partition our original domain into two disjoint subdomains, then solving Lu = f

becomes, find u1 and u2 such that

J∗(u1, u1) = J1(u1) + J2(u2) = min
w1∈X1,w2∈X2

J1(w1) + J2(w2) (3.3)

G(u1, u2) = u1|Γ − u2|Γ = 0 (3.4)

The Lagrangian function is

L(u1, u2, λ) ≡ J1(u1) + J2(u2) + λG(u1, u2) (3.5)

We solve this constrained optimization problem by solving the associated saddle
point problem

Lu1 − f1 + λ
∂G

∂u1
(u1, u2) = 0 (3.6)

Lu2 − f2 + λ
∂G

∂u2
(u1, u2) = 0 (3.7)

G(u1, u2) = 0 (3.8)

Applying a Galerkin Approximation and Finite Elements similar to section 2.1.2,
our Lagrange Multiplier Method Matrix Form becomes

AII1 AIB1 0 0 0
ABI1 ABB1 0 0 I

0 0 AII2 AIB2 0
0 0 ABI2 ABB2 −I
0 I 0 −I 0





U I
1

UB
1

U I
2

UB
2

λ


=



F I
1

FB
1

F I
2

FB
2

0


(3.9)

A,U , and F are defined as they were in Section 2.1.5. The additional superscripts

16

of I and B refer to degrees of freedom on the "interior" and "boundary" respectively.
In this two subdomain problem, the "interior" of Ak refers to Ωk ∪ (∂Ωk \ Γ) while
the "boundary" of Ak refers to Γ.

Two common ways to solve this saddle point problem in parallel are Uzawa’s
Method and FETI Method. Both are similar. They differ only in how they update
the Lagrange Multipliers, λ. Each repeatedly solves local subdomain problems
Luk = fk interpreting the Lagrange Multipliers as Neumann boundary data on
the interface. After each solve, the Lagrange Multipliers get updated.

Algorithm 5 Uzawa’s Method
Initialize λ(0) to an initial guess

1: for k = 0, 1, 2, ... until convergence do
2: Solve simultaneously i=1,2

Find uki ∈ H2(Ωi) such that
Luki = fk on Ωi

Buki = gi on ∂Ωi \ Γ
a∇uki · nΓ = λk on Γ

3: Communicate ui from Γ to neighbor processors.
4: Update Lagrange Multipliers

λk+1 = λk − θ(uk1 − uk2) on Γ
5: end for

17

Algorithm 6 FETI Method
Initialize λ(0) to an initial guess

1: for k = 0, 1, 2, ... until convergence do
2: Solve simultaneously i=1,2

Find uki ∈ H2(Ωi) such that
Luki = fk on Ωi

Buki = gi on ∂Ωi \ Γ
a∇uki · nΓ = λk on Γ

3: Communicate ui from Γ to neighbor processors.
4: Solve simultaneously i=1,2

Find wki ∈ H2(Ωi) such that
Lwki = 0 on Ωi

wki = 0 on ∂Ωi \ Γ
wki = uk1 − uk2 on Γ

Communicate ∇wi from Γ to neighbor processors.
Update Lagrange Multipliers
λk+1 = λk − θ(a∇wk1 · nΓ + a∇wk2 · nΓ)

5: end for

3.3 Bank-Holst Paradigm DD Solver

The Bank-Holst paradigm DD solver is a unique Domain Decomposition
solver that has properties of both overlapping and non-overlapping methods. Ev-
ery processor maintains a mesh of the entire domain giving it the benefits of over-
lapping schemes. And, similar to non-overlapping methods, each processor owns a
unique disjoint portion of the domain known as its subdomain. When a processor
refines its mesh, it places the majority of the new degrees of freedom within the
subdomain it has responsibility for. Therefore on a specific processor, the domain
has a fine mesh within its subdomain and a coarse mesh outside its subdomain.
Figure 3.2 illustrates this for 4 processors. The entire domain is the unit circle.
Processor 1’s subdomain is quadrant 1 and processor k’s subdomain is quadrant

18

k.

(a) processor 1 (b) processor 2

(c) processor 3 (d) processor 4

Figure 3.2: Local meshes of four processors.

The Bank-Holst paradigm DD solver enforces the transmission conditions
between the disjoint subdomains with Lagrange Multipliers as in Section 3.2.2. But
because each processor has information about the entire domain, the Bank-Holst
paradigm DD solver method doesn’t need to explicitly solve for the multipliers like
Uzawa’s Method (Algorithm 5) or the FETI Method (Algorithm 6).

Each processor creates their own saddle point problem like (3.9) and then

19

solves only for the unknowns they need.

AII1 AIB1 0 0 0
ABI1 ABB1 0 0 I

0 0 ĀII2 ĀIB2 0
0 0 ĀBI2 ĀBB2 −I
0 I 0 −I 0





δU I
1

δUB
1

δŪ I
2

δŪB
2

λ


=



RI
1

RB
1

RI
2

RB
2

UB
2 − UB

1


(3.10)

Equation (3.10) is the saddle point problem that processor 1 forms. In place
of AII2 , AIB2 , ABI2 , and ABB2 it substitutes its own stiffness matrices created from the
coarse mesh that is has located in processor 2’s subdomain and denoted above as
ĀII2 , Ā

IB
2 , ĀBI2 , and ĀBB2 . Processor 1 receives RB

2 and UB
2 from processor 2 and it

sets RI
2 = 0. Processor 2 creates a similar saddle point problem substituting its

coarse stiffness matrices for A1’s and receives RB
1 and UB

1 from processor 1.
Since processor 1 doesn’t need the quantities δŪB

2 and λ, it reorders (3.10)
and eliminates these sets of equations by block elimination

0 −I 0 I 0
−I ĀBB2 0 0 ĀBI2

0 0 AII1 AIB1 0
I 0 ABI1 ABB1 0
0 ĀIB2 0 0 ĀII2





λ

δŪB
2

δU I
1

δUB
1

δŪ I
2


=



UB
2 − UB

1

RB
2

RI
1

RB
1

RI
2


(3.11)

The 3× 3 Schur complement system is
AII1 AIB1 0
ABI1 ABB1 + ĀBB2 ĀBI2

0 ĀIB2 ĀII2



δU I

1

δUB
1

δŪ I
2

 =


RI

1

RB
1 +RB

2 + ĀBB2 (UB
2 − UB

1)
ĀIB2 (UB

2 − UB
1)

 (3.12)

20

Algorithm 7 Bank-Holst paradigm DD solver
Initialize U1 and U2 to an initial guess

1: for k = 0, 1, 2, ... until convergence do
2: Compute residuals R1 and R2

3: Communicate RB
i and UB

i from Γ to neighbor processors
4: Simultaneously for i=1,2

Solve (3.12) A∗i δUi = R∗i for δUi.
5: end for

This algorithm is described in more detail in [10] [2] [38] [15]. It is motivated
by and similar to domain decomposition algorithms described in [8] [7]. The Bank-
Holst paradigm is described in [5] [6] with an additional contribution described in
[13].

3.4 Multiple Subdomains

For simplicity of discussion, all the methods and expositions in this Chapter
have dealt with only two subdomains. Of course in practice, scientists use many
subdomains. All of these schemes extend naturally to many subdomains.

Each algorithm follows roughly the same pattern. First they solve local
problems in parallel, then communicate boundary information, and last, some
methods update variables. When you use these methods on partitions with more
than two subdomains, you follow the same pattern. Each processor solves their
local problem, then they communicate boundary information to the appropriate
neighbor processor, and lastly they optionally update variables.

Chapter 4

Partitioning Algorithms

In order to employ a Domain Decomposition Method, the original domain
must be partitioned into subdomains, non-overlapping or overlapping. In both
cases, the domain can first be partitioned into non-overlapping subdomains. Then
in the latter case, the non-overlapping subdomains can be extended to overlap
their neighbors.

The problem of decomposing a domain can be formulated as a Graph Par-
titioning problem after discretizing the original domain into Finite Elements as in
Section 2.1.2. Associate each element (triangle) with a graph’s vertex and each
side shared by elements as a graph’s edge. Then you can apply standard Graph
Partitioning algorithms with additional constraints you choose. [20] [39]

4.1 Definitions

Definition 4.1.1. A graph G = (V,E) consists of a collection V of n vertices,
V = {v1, ..., vn} together with a collection E of m edges, E = {e1, ..., em} where
each edge represents adjacency between pairs of vertices. If ek represents the
connectivity of vi and vj, we say ek = (vi, vj) = (vj, vi) ∈ E.

Associated with each graph are some useful matrices.

Definition 4.1.2. Given a graph G, its connectivity can be represented with a

21

22

symmetric n× n Adjacency Matrix, MG, defined as

[MG]i,j =

 1, if (vi, vj) ∈ E
0, if (vi, vj) 6∈ E

(4.1)

Definition 4.1.3. A weighted graph is a graph G = (V,E) with weights wi,j
assigned to each edge (vi, vj) ∈ E and weights assigned to each vertex vk ∈ V

denoted w(vk). All the edge weights then form a symmetric n× n Weight Matrix,
WG.

Remark 4.1.4. By default, an unweighted graph can be converted into a weighted
graph by assigning weight equal 1 to all of its edges and vertices; Let [WG]i,j =
[MG]i,j ∀i, j and w(vk) = 1 ∀k.

Definition 4.1.5. Given a graph G, we can define a Laplacian Matrix, LG as
follows:

[LG]i,j =


∑
k 6=iwi,k, if j = i

−wi,j, if (vi, vj) ∈ E
0, if (vi, vk) 6∈ E and i 6= j

(4.2)

4.2 Graph Partitioning Algorithms

After representing our domain as a graph, we partition it into parts. Each
processor will get assigned its own subdomain and the degrees of freedom therein.

Definition 4.2.1. Given a graph G = (V,E) and a parameter ε > 0, define Kε as
a partition of G into p parts, V1, ..., Vp of size n1, ..., np respectively if

(1− ε)n
p
≤ ni ≤

n

p
(1 + ε) for i = 1, ..., p (4.3)

Definition 4.2.2. Given a graph G = (V,E) with weight matrix WG and two
disjoint vertex subsets Vi and Vj of V , we define

δ(Vi, Vj) ≡
∑

{vr∈Vi,vs∈Vj}
wrs (4.4)

δ(Vi, Vj) is the sum of the weights of the edges connecting parts Vi and Vj and is
referred to as edge cut. For three or more vertex subsets, we define

δ(V1, ..., Vp) ≡
p−1∑
i=1

p∑
j=i+1

δ(Vi, vj) (4.5)

23

From the Algorithms in Chapter 3, we saw that iterative Domain Decompo-
sition Methods must communicate between each local solve and the communication
volume is proportional to the combined length of the interfaces between proces-
sors. Therefore, when partitioning the degrees of freedom in a discretized PDE,
the partition should strive to distribute the unknowns equally among the parts
while minimizing the length of the interfaces between parts. This can be formally
written as

Find a partition Kε such that

δ(V1, ..., Vp) = min
V̄1,...,V̄p

δ(V̄1, ..., V̄p)
(4.6)

Remark 4.2.3. This is an NP hard discrete problem in which no algorithm of
polynomial complexity is known to exist, see [40]. We therefore solve it with
heuristic algorithms and approximate the solution. In the next three subsections,
we show three of these algorithms.

The terminology of Sections 4.1 and 4.2 is illustrated in Example 4.5.1.

4.2.1 Kernighan-Lin Algorithm

The Kernighan-Lin Algorithm as detailed in [36], is a discrete descent
method to solve (4.6). Start with an initial partition V1, ..., Vp ≡ Kε and re-
peatedly consider swapping a vertex from one part with a vertex from another
part. If the new partition is still in Kε and the switch reduces edge cut δ(V1, ..., Vp)
then make the swap. To avoid being stuck in a local minimum, the Kernighan-Lin
Algorithm allows a fixed number of exchanges that increase edge cut. Additionally,
this method should be run on a set of initial partitions and the best final partition
would be selected.

Definition 4.2.4. Define the gain of exchanging vr ∈ Vi with vs ∈ Vj as

gain(vr, vs) =

 dVi
(vr)− dVj

(vr) + dVj
(vs)− dVi

(vs) if (vr, vs) 6∈ E
dVi

(vr)− dVj
(vr) + dVj

(vs)− dVi
(vs)− 2wrs if (vr, vs) ∈ E

where
dVk

(vr) ≡
∑

{(vr,vs)∈E,vs∈Vk}
wrs

24

Using the gain function, choose pairs of vertices and swap them if the gain
is negative.

4.2.2 Recursive Spectral Bisection Algorithm

Recursive Spectral Bisection Algorithm is a very popular graph partitioning
algorithm originally described here [23] [24] and written about many times since. It
works by repeatedly bisecting a graph into two subgraphs using eigenvalue theory
and produces partitions of high quality as measured by low edge cut.

Definition 4.2.5. A Laplacian Matrix’s Fiedler vector is an eigenvector of LG
corresponding to the smallest non zero eigenvalue λ2 > 0.

To Spectrally Bisect graph G = (V,E) with associated Laplacian Matrix LG
defined in (4.2), compute the Fiedler vector x2 by solving the eigenvalue problem

LGx2 = λ2x2 (4.7)

Then sort the entries of x2 from least to greatest and calculate the median
of these entries denoted m. Define qi = 1 if [x2]i ≥ m and qi = −1 if [x2]i < m.
Vector q defines the two subgraphs V1 = {vi|qi = 1} and V2 = {vi|qi = −1}. To
partition weighted vertices or to partition a graph into p 6= 2k parts, m can be
adjusted to take care of this. Regardless of your choice of m, if G is connected
then V1 and V2 will be connected [23].

Recursive Spectral Bisection is the repeated application of Spectral Bisec-
tion. To partition a graph into p = 2k parts, repeatedly bisect a graph and the
subsequent subgraphs until you have the desired number of parts. To partition G
into p 6= 2k, then instead of bisecting a graph into two equal pieces, adjust m and
bisect the graph into pieces of ratio 2k to p− 2k for a k that makes 2k ≈ p/2. For
example, to partition into 15 parts, we first bisect the graph into two parts with
ratio 8 : 7. The part with 8 area is further broken down into 8 parts. The part
with 7 area is bisected into two parts with ratio 4 : 3 etc.

Why does spectral bisection work? By construction, the edge cut of the
partition defined by q is

δ (V1, V2) = 1
4q

TLGq (4.8)

25

If G is connected then LG is s.p.d with n orthonormal eigenvectors x1, ..., xn and
corresponding eigenvalues 0 = λ1 < λ2 ≤ ... ≤ λn. We know x1 = 1√

n
[1, 1, ..., 1, 1]T

and qTx1 = 0. Thus q can be written as q = ||q||∑n
i=2 αixi with

∑n
i=2 α

2
i = 1.

qTLGq = n

(
n∑
i=2

αixi

)T n∑
i=2

λiαixi

= n
n∑
i=2

λiα
2
i (4.9)

therefore
0 < nλ2 ≤ qTLGq ≤ nλn (4.10)

From (4.9) and (4.10) we see that qTLGq is minimized when the discrete
vector q approximates the direction of the continuous Fiedler vector.

4.2.3 Multilevel Graph Partitioning Algorithm

The Multilevel Graph Partitioning Algorithm is motivated by multigrid
methodology [22] [28] and uses graph compaction algorithms. Instead of partition-
ing graphG, we construct a hierarchy of coarser (smaller) graphs and then partition
the coarsest (smallest) graph. Then we project the partition back through the finer
(larger) graphs and unto G. [42] [19]

Denote the original largest graph by G(0) = (V (0), E(0)) and the sequence
of coarser (smaller) graphs as G(k) = (V (k), E(k)) for k = 1, ..., n with Weight
Matrices W (k). Given a graph, this algorithm defines a coarser graph by pairing
vertices. Note that a pair of vertices can be referenced by the edge that connects
the vertices.

Definition 4.2.6. Given a graph G = (V,E), a matching is any subset of E such
that no two edges contained therein are incident to the same vertex. (This creates
unique pairs of vertices where each vertex belongs to at most one pair.). A maximal
matching is a matching in which no additional edge can be added without violating
the matching condition.

A maximal matching can be created by randomly choosing a vertex and then
matching it with an adjacent vertex that is unmatched. If there are no adjacent

26

unmatched vertices, then match the vertex with itself. Continue randomly choosing
vertices until all vertices are matched. Figure 4.1 shows an example. The original
graph had all vertex and edge weights equal 1.

Figure 4.1: A maximal matching being used to coarsen a graph and create new
edge and vertex weights.

A matching on G(k) defines the next coarse graph G(k+1). All vertex pairs
are merged to single vertices. This creates V (k+1) from V (k). If v(k+1)

i ∈ V (k+1)

belongs to graph G(k+1), denote its parents as v(k)
P1(i,k+1) and v

(k)
P2(i,k+1) ∈ V (k). A

vertex v(k+1)
i will be defined as adjacent to v(k+1)

j if any parent vertices of v(k+1)
i are

adjacent to any parent vertices of v(k+1)
j . This creates E(k+1). The Weight Matrix

W (k+1) is defined as follows

w(k+1)(v(k+1)
r) = w(k)

(
v

(k)
P1(r,k+1)

)
+ w(k)

(
v

(k)
P2(r,k+1)

)
(4.11)

w
(k+1)
i,j =

∑
r∈{P1(i,k+1),P2(i,k+1)}

∑
s∈{P1(j,k+1),P2(j,k+1)}

w(k)
r,s (4.12)

If v(k+1)
i is a singleton and not part of a pair, then both its parents refer to

the same vertex and
w(k+1)(v(k+1)

r) = w(k)
(
v

(k)
P1(r,k+1)

)
(4.13)

See Figure 4.1 for an example.

27

Algorithm 8 Multilevel Graph Partitioning Algorithm
1: for k = 1, ..., n do
2: Coarsen mesh using maximal matching

V (k) ← V (k−1)

E(k) ← E(k−1)

3: Compute vertex and edge weights
w(k+1)(v(k+1)

r) = w(k)
(
v

(k)
P1(r,k+1)

)
+ w(k)

(
v

(k)
P2(r,k+1)

)
w

(k+1)
i,j = ∑

r∈{P1(i,k+1),P2(i,k+1)}
∑
s∈{P1(j,k+1),P2(j,k+1)}w

(k)
r,s

4: end for
5: Partition mesh: V (n) → {V (n)

1 , ..., V (n)
p }

6: for k = n, ..., 1 do
7: Uncoarsen mesh: V (k−1)

i ← V
(k)
i for i = 1, ..., p.

8: Improve the partition using Kernighan-Lin and δ(k−1).
9: end for

Various software implementations of multilevel partitioners are available.
Two popular ones are CHACO [29] and METIS [34]. PLTMG [18] also uses mul-
tilevel graph partitioning.

4.3 METIS

METIS is a software package dedicated to graph partitioning that imple-
ments Multilevel Graph Partitioning as described in Section 4.2.3. METIS has
two main partitioning options. METIS uses either multilevel recursive bisection
or multilevel k-way partitioning. The three phases of multilevel graph partitioning
are graph coarsening, initial partitioning, and uncoarsening. In multilevel k-way
partitioning, each phase is called once. In multilevel recursive bisection, each phase
is called approximately log2 p times where p is the number of parts desired.

During graph coarsening, METIS offers two choices. The user can use ran-
dom matching as described in Section 4.2.3 or heavy edge matching. A matching
is a subset of edges. When a graph is being coarsened, any edge selected to be
in a matching subset cannot get cut during the initial partitioning phase. There-

28

fore, partitions can be improved by placing edges that will most likely not be cut
in a matching subset. Since graph partitioning algorithms attempt to minimize
edge cut, they try not to cut edges with large weights. Heavy edge matching im-
proves partitioning by places edges with large weights in a matching subset. When
choosing vertex pairs, if vr is one vertex, choose the partner vertex vs such that
max(vr,vs)∈E wr,s is obtained.

During the initial partitioning phase, METIS offers four choices. The main
choices are the Greedy Growing strategy and the Kernighan-Lin strategy (de-
scribed in section 4.2.1). Older versions of METIS offered the Spectral Bisection
strategy also (described in section 4.2.2). Keep in mind that the graph size being
partitioning is around 100 vertices when doing a bisection and 100p when doing
k-way therefore the partitioning algorithm doesn’t need to be too elaborate. The
final partition is strongly influenced by the coarsening and uncoarsening phases.

A Growing strategy starts with one vertex and adds adjacent vertices until
half of the vertex weight is consumed. When a Greedy Growing strategy chooses
which neighboring vertex to add, it chooses the one that minimizes edge cut over
the other choices. A Growing strategy just takes one at random.

During the uncoarsening phase, METIS uses a modified form of the Kernighan-
Lin strategy (described in section 4.2.1). Instead of considering all pairs of vertex
exchanges, METIS employs Boundary Kernighan-Lin which only considers ex-
changing vertices that lie on the interface between parts. This saves time since the
gain no longer needs to be calculated n2 times if n is the number of vertices.

The algorithms used by METIS are explained in detail in [35] [33] [32].

4.4 PLTMG

PLTMG is a software package for solving elliptic partial differential equa-
tions [18] that includes Open MPI and can solve problems in parallel. As such it
needs to partition domains into subdomains. It accomplishes this with multilevel
graph partitioning similar to Algorithm 8. PLTMG deviates from Algorithm 8 by
coarsening and uncoarsening in one step each.

29

During the coarsening phase, instead of using maximal matching repeatedly
and coarsening n times until it reaches a small graph, it uses a growing strategy one
time to clump groups of vertices together where each clump has a sum of vertex
weights approximately equal to wtotal/(100P) where wtotal = ∑m

i=1w(vi) and P is
the number of parts desired.

Next, it partitions this smaller graph with recursive spectral bisection.
Lastly, it projects the coarse graph unto the original fine graph and then applies
the Kernighan-Lin Algorithm focusing only on the boundaries between parts.

4.5 Finite Element Partitioning Example

Example 4.5.1. Partition the Finite Element mesh in Figure 4.2 below into two
subdomains. Try to minimize edge cut and balance the distribution of unknowns
as in (4.6).

Figure 4.2: Finite Element mesh

The mesh above uses triangle Finite Elements and piecewise linear Lagrange
basis functions with degrees of freedom located at the triangle vertices. There are
15 degrees of freedom labeled blue and 16 triangles labeled black.

First we must represent this mesh as a graph. We can either associate
the triangles with graph vertices or the degrees of freedom with graph vertices.
It seems like we would prefer to associate the degrees of freedom since we wish

30

to divide them. However, if we do that, we may be forced to break up the Finite
Element triangles. Therefore, we will associate triangles with graph vertices. Then
whichever subdomain gets assigned a certain triangle will receive responsibility for
that triangle and its associated degrees of freedom.

Figure 4.3: Finite Element graph

Figure 4.3 shows the associated graph with vertex vk = tk for k = 1, 2, ..., 16.
Edges are represented by a line connecting vertices. The Adjacency Matrix is

MG =



0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0



(4.14)

31

and the Lapacian Matrix is

LG =



1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 −1 −1 0 0 0 0 0 0 0 0
−1 −1 0 0 3 0 0 0 −1 0 0 0 0 0 0 0
0 −1 −1 0 0 3 0 0 0 −1 0 0 0 0 0 0
0 0 −1 −1 0 0 3 0 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 2 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0 2 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0 0 3 0 0 −1 −1 0 0
0 0 0 0 0 0 −1 0 0 0 3 0 0 −1 −1 0
0 0 0 0 0 0 0 −1 0 0 0 3 0 0 −1 −1
0 0 0 0 0 0 0 0 −1 −1 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 −1 −1 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1


(4.15)

We can use the Spectral Bisection Method to partition this graph into two parts
which will heuristically solve (4.6). Solving the eigenvalue problem

LGx = λx (4.16)

we find that the least non-zero eigenvalue λ2 = 0.148 and the associated eigenvector
x2 = [0.387, 0.250, 0.003,−0.232, 0.329, 0.133,−0.127,−0.303, 0.303, 0.127,−0.133,
−0.329, 0.232,−0.003,−0.250,−0.387]T . Therefore the partitions of V are V1 =
{t1, t2, t3, t5, t6, t9, t10, t13} and V2 = {t4, t7, t8, t11, t12, t14, t15, t16}.

This partition has characteristics δ(V1, V2) = 2 and |V1| = |V2| = n
p

= 8. By
inspection of the original graph, it can be seen that minV̄1,...,V̄p≡K0 δ(V̄1, ..., V̄p) =
2. Spectral Bisection succeeded in balancing the distribution of unknowns and
minimizing edge cut.

Our partition is pictured in Figure 4.4a. Figure 4.4b illustrates a different
partition of G that balances the distribution of unknowns but doesn’t minimize
edge cut.

32

(a) δ(V1, V2) = 2 (b) δ(V̄1, V̄2) = 4

Figure 4.4: Different partitions of graph G.

Chapter 5

Edge Weighting Schemes

In the preceding chapter, we worked through a simple example of partition-
ing a Finite Element mesh using Graph Partitioning algorithms. In the Example
4.5.1, the Weight Matrix WG associated with our graph G had all its edges’ and
vertices’ weights equal to 1, WG = MG and w(vk) = 1, as explained in Remark
4.1.4. In this chapter, we will consider other Weight Matrices.

Solving (4.6) with all the weights equal to 1 both balances the unknowns
per processor and minimizes communication between processors. In parallel algo-
rithms, each iteration is a combination of both computation and communication.
Recognizing that communication is proportional to the combined interface length
(or more accurately discrete edge cut) between the parts of your partition moti-
vates scientists to minimize this length.

Definition 5.0.2. Given a domain Ω with area (volume) A and a parameter ε > 0,
define K̄ε as a partition of Ω into P parts, Ω1, ...,ΩP of areas (volumes) A1, ..., AP

respectively if
(1− ε)A

P
≤ Ai ≤

A

P
(1 + ε) for i = 1, ..., P (5.1)

Definition 5.0.3. Given a domain Ω and partition K̄ε of P parts labeled {Ω1, ...,Ωp},
define the interface length as the sum length of all the boundaries shared by 2 or
more partitions. Denote this interface length as δ̄(Ω1, ...,ΩP) or δ̄(K̄ε). Formally,
δ̄(K̄ε) =

∫
Γ ds where Γ is the interface.

33

34

Lemma 5.0.4. δ̄(Ω1, ...,ΩP) = 1
2
∑P
k=1

∫
∂Ωk

ds − 1
2
∫
∂Ω ds where ∂Ωk and ∂Ω are

the boundaries of Ωk and Ω respectively.

Proof. ∑P
k=1

∫
∂Ωk

ds−
∫
∂Ω ds is the combined length of all the parts’ boundaries on

the interior of Ω counted twice.

Theorem 5.0.5. Given a domain Ω ∈ R2 with area A and boundary (perimeter)
length S, then all partitions K̄0 of size P have interface length greater than or
equal to

√
πAP − 0.5S.

For Ω ∈ R2 min
Ω1,...,ΩP≡K̄0

δ̄(Ω1, ...,ΩP) ≥
√
πAP − 0.5S (5.2)

Proof. Since ε = 0, each part Ωk has area A
P
. The shape in R2 which minimizes

the ratio of perimeter to area is a circle. Assume every part is shaped optimally
as a circle. Then the radius of each part is r =

√
A
πP

and has perimeter 2πr.
The total of all the part’s perimeters is t = 2πP

√
A
πP

. The portion of these
perimeters in the interior of the domain are t− S and the interface length = t−S

2 .

Theorem 5.0.6. Given a domain Ω ∈ R3 with volume A and boundary surface
area S, then all partitions K̄0 of size P have interface length (interface surface
area) greater than or equal to 3

√
4.5πA2P − 0.5S .

For Ω ∈ R3 min
Ω1,...,ΩP≡K̄0

δ̄(Ω1, ...,ΩP) ≥ 3
√

4.5πA2P − 0.5S (5.3)

Proof. Since ε = 0, the volume of each part equals A
P
. Assume every part is shaped

optimally as a sphere. Then the radius of each part is r = 3
√

3A
4πP and has surface

area 4πr2. Apply Lemma 5.0.4.

Interface length, δ̄(Ω1, ...,ΩP), is the continuous analogy of edge cut, δ(V1, ..., VP)
which was presented in Definition 4.2.2. The relationship is explained by Lemma
5.0.9.

35

Definition 5.0.7. Let Ω be a domain with a triangularization Th of m triangles
t1, ..., tm. Let the graphG = (V,E) be a representation of Th, formed by associating
each vertex vk ∈ V with a triangle tk ∈ Th. Let the edges of G represent the
adjacency of the triangles. If triangle ti is adjacent to triangle tj, then (vi, vj) ∈
E. Let Kε be a partition of G into P parts V1, ..., VP and let K̄ε be a partition
of Ω into P parts Ω1, ...,ΩP . We say that K̄ε coincides with Kε if each Ωk =
∪nk
i=1ti for each ti ≡ vi ∈ Vk. We say that K̄ε coincides with Th if each Ωk = ∪ni=1tki

for some collection of triangles {tk1 , ..., tkn} ∈ Th.

Definition 5.0.8. If Th is a triangularization of a domain Ω, define a mesh’s
element density function as DE(x, y) : Ω → R+ = 1/hx,y where hx,y is the length
of the closest edge to (x, y) ∈ Ω. If two of more edges are equidistant from (x, y),
take the average, DE(x, y) = m/(∑m

i=1 hx,y,i).

Lemma 5.0.9. Given a domain Ω with triangularization Th, mesh element den-
sity function DE(x, y), a representative graph G with edges weights equal 1, and
partitions Kε and K̄ε of size P that coincide, then δ(Kε) =

∫
Γ DEds where Γ is the

interface of K̄ε. If Th is a uniform mesh, then DE(x, y) is a constant function and
δ(Kε) = DE δ̄(K̄ε).

When partitioning a non-pathological domain into finite equal area (vol-
ume) parts, one can never achieve an interface length of

√
πAP − 0.5S in R2 nor

3
√

4.5πA2P −0.5S in R3 because a domain cannot be divided into disjoint circles or
spheres, but it is helpful to have a lower bound on the NP hard continuous problem
which is analogous to (4.6), the NP hard discrete problem we wish to solve.

We will continue the discussion in R2 but all of the results in this chapter can
be derived in R3 also. The minimum edge cut achievable in (4.6) depends on the
shape of the domain and the number of parts desired. Although circles can never
tile your domain and achieve an edge cut of DE(

√
π
√
AP − 0.5S), it is sometimes

possible to use regular hexagons, squares, and equilateral triangles to achieve edge
cuts of DE(

√
2
√

3
√
AP − 0.5S), DE(2

√
AP − 0.5S), and DE(30.75

√
AP − 0.5S)

respectively. (The proofs for these values follow the form of the proof for Theorem
5.0.5.)

36

Remark 5.0.10. When
√
AP >> 0.5S, the ratio between the interface lengths from

using theoretical circles versus achievable regular hexagons, squares, and equilat-
eral triangles is

√
π :

√
2
√

3 : 2 : 30.75 ≈ 1.77 : 1.86 : 2.00 : 2.28 = 1.00 : 1.05 :
1.13 : 1.29. Therefore the lower bound on the minimum interface length is close to
achievable.

(a) METIS partition (b) PLTMG mesh

Figure 5.1: Unit square partitioned into 64 parts by METIS from PLTMG’s mesh
of 40000 triangles with vertex and edge weights equal 1.

Figure 5.1 shows METIS partitioning the unit square in R2 into 64 parts by
solving (4.6) on a graph representing PLTMG’s triangularization of 40000 trian-
gles. Notice how the parts are shaped similar to regular hexagons or squares. As
mentioned in Remark 4.2.3, algorithms will minimize the interface length heuristi-
cally not perfectly. The interface length in this partition equals 16.4 and the edge
cut equals 2087. When PLTMG partitions the unit square, it achieves an interface
length of 15.3 and edge cut of 1923 and the partition looks similar to Figure 5.1a.
The lower bound on the minimum interface length is

√
π
√
AP−0.5S ≈ 12.2. With

40000 triangles, if DE were constant, then DE(x, y) =
√

104
√

3 ≈ 131.6 and there-
fore the lower bound on the minimum edge cut is 1606. We don’t know what the
optimal achievable minimum interface length nor edge cut is, but if you partition
the unit square uniformly into 64 squares as in Figure 5.2, you would achieve 14.0

37

and 1842.

Figure 5.2: Unit square partitioned in 64 uniform square parts.

Since the communication in iterative Domain Decomposition Methods is
proportional to the interface length, increasing the interface length will increase
the time needed to complete each iteration. The significance of this increase will
depend on the ratio between computation time and communication time.

Lemma 5.0.11. Given that the ratio of computation time, tcomp, to communica-
tion time, tcomm, during one iteration of an iterative parallel method is α = tcomp

tcomm

and assuming that communication time is proportional to the interface length and
assuming that computation time is independent of interface length, then increasing
the interface length by a factor of β > 1 will increase the time for one iteration by
a factor of α+β

α+1 .

Lemma 5.0.11 demonstrates that if α = 10, 100, or 1000, then doubling
the interface length (β = 2) will increase the time per iteration by a factor of
approximately 1.1, 1.01 and 1.001 respectively. In general if α = 10k, doubling the
interface length will increase the time per iteration by 102−k percent.

Choosing a partition that doesn’t minimize the interface length but does re-
duce the total number of required iterations, can achieve an overall faster execution
time even though the time for each iteration is longer.

38

Lemma 5.0.12. Assume that the ratio of computation time, tcomp, to communica-
tion time, tcomm, during one iteration of an iterative parallel method is α = tcomp

tcomm .
Assume that communication time is proportional to the interface length and that
computation time is independent of interface length. Consider two partitions, K̄(1)

ε

and K̄(2)
ε where the ratio of their interface lengths is β > 1, δ̄(K̄(1)

ε)/δ̄(K̄(2)
ε) = β.

If K̄(1)
ε reduces the number of required iterations compared to K̄(2)

ε by less than a
factor of α+1

α+β , then the total execution time of that iterative method is less when
using K̄(1)

ε .

Lemma 5.0.12 encourages us to consider partitions other than the ones
that minimize the interface length. Parts shaped like circles or squares minimize
interface length. A natural alternative is using rectangles for parts.

(a) uniform rectangles (b) METIS rectangles

Figure 5.3: Unit square partitioned in 64 rectangle parts.

The length of the interface from uniform rectangles with aspect ratio of 4:1
in Figure 5.3a equals 18.0 while the length from METIS rectangles in Figure 5.3b
equals 19.6. Compare these to uniform squares (Figure 5.2) that have length 14.0
and METIS squares (Figure 5.1a) that have length 16.4. These rectangles have
interfaces that are approximately 25% and 20% longer respectively.

Theorem 5.0.13. Given a domain Ω ∈ R2 with area A and boundary perimeter

39

length S, if K̄ε partitions this domain into rectangles with aspect ratio θ:1 and area
equal A

P
, then δ̄(K̄ε) = 1+θ√

θ

√
AP − 0.5S.

Proof. Let each part Ωk be a rectangle with aspect ratio θ:1 and area A
P
. Then

the short side of the rectangle equals
√
A/(θP) and the perimeter equals (2 +

2θ)
√
A/(θP). Apply Lemma 5.0.4.

Corollary 5.0.14. Let Ω ∈ R2 be a domain with area A and boundary length S.
Let K̄rect

ε be a partition of Ω into P rectangle parts with aspect ratio θ : 1 and let
K̄square
ε be a partition of Ω into P square parts. Assume both partitions have parts

of area A
P
. Assume 2

√
AP >> 0.5S, then δ̄(K̄rect

ε)/δ̄(K̄square
ε) = 1+θ

2
√
θ
.

This Corollary agrees with our findings above where a partition of uniform
rectangles with aspect ratio 4:1 produced interfaces that were 25% longer than
using uniform squares. Table 5.1 summarizes the interface length growth factor,
β, for different rectangle aspect ratios, θ.

Table 5.1: Aspect ratio versus growth factor

θ 1 2 3 4 5 6 7 8 9 10
β 1.00 1.06 1.15 1.25 1.34 1.43 1.51 1.59 1.67 1.74

Given a triangularization TH of a domain Ω and two partitions K(1)
ε and

K(2)
ε , which one is better? After our Domain Decomposition Method converges, the

separate processors combine their solutions to produce a global solution uk which
approximates uh, the finite element solution to PDE (1.1)-(1.3), to a tolerance
of our choosing. Regardless of the partition, each global solution has its degrees
of freedom in the same locations and will approach the same uh. Even if each
part refines its mesh further in a uniform fashion to a target number of unknowns
during the DD Method, both K(1)

ε and K(2)
ε will still have the same global degrees

of freedom and will approach the same uh. Therefore the better partition is the
one that converges the fastest.

When a domain has been uniformly discretized and represented as a graph,
all partitioning algorithms will attempt to generate parts shaped as close to circles
as possible when the edge weights are all equal to 1. Rectangular parts can be

40

encouraged by adding weight to the edges in a non uniform fashion. Using rectan-
gular parts increases edge cuts and communication time, but if it achieves a faster
convergent rate, it can cause the DD Method to solve for uh faster. This is the
basis of the following three Weighting Schemes; Convection Weighting, Gradient
Weighting, and Stiffness Matrix Weighting. In Chapter 7, we discuss the result of
weighting the vertices of G.

5.1 Convection Weighting

In equations (1.1)-(1.3), when b 6= 0 then convection is present. Convection
causes unknowns to become dependent on the unknowns that are up and down-
wind of them. In order to solve for an unknown, you need to know the value of
the neighboring unknown that is upwind against the direction of the convection.
Therefore when partitioning a domain, it is reasonable to group degrees of free-
dom and their neighbors in the direction of convection together. This is Convection
Weighting.

Definition 5.1.1. Convection Weighting for the solution of (1.1)-(1.3). Let T be
a triangularization of domain Ω and G = (V,E) be its representative graph. Edge
ek = (vi, vj) = (vj, vi) is associated with the side shared by triangles ti and tj. Let
ni,j denote the unit normal of this triangle side. Define the weight matrix WG as

wi,j =

 qs
(
ni,j · b(x,y)

||b(x,y)||

)
if (vi, vj) ∈ E

0 otherwise
(5.4)

where qs(·) : [0, 1] → [1, ss + 1] is a scaling function chosen based on the graph
partitioner being used. The variable s is called the convection weighting parameter
and

qs(r) = (sr)s + 1 (5.5)

Convection weighting adds weight to graph edges parallel to convection.
This corresponds to adding weight to any triangle side that is perpendicular to the
direction of convection. Thus convection weighting discourages whatever graph
partitioning algorithm you are using from cutting against convection.

41

We also designed a convection weighting scheme that encourages cutting
with convection. However, we found that the nature of METIS and PLTMG
work better with a discouraging scheme. Notice that the scaling function qs(·)
both scales the dot product and transforms it. After applying qs(·), triangle sides
with angles in relation to convection ∈ [0, π/6] are mainly unweighted while sides
situated with angles ∈ [π/3, π/2] are weighted to be discouraged from being cut.
Other scaling functions were tried, but qs(·) proved most sucessful. Figure 5.4
illustrates the transformation. We found that s = 2.0 matches this weighting
scheme to METIS’s partitioner and s = 3.0 matches it to PLTMG’s partitioner to
produce rectangles with aspect ratio 5:1.

(a) wi,j before scaling

(b) wi,j after scaling with q3(·)

Figure 5.4: The effect of q(·)s with s = 3 on Convection weighting.

Figure 5.5 shows two partitions of the unit square ∈ R2. Each has 64

parts and a different PDE. In Figure 5.5a, b = β

 1
1

 and in Figure 5.5b, b =

42

β

 0.5− y
x− 0.5

 where b is the coefficient of ∇u in the PDE (1.1)-(1.3) and β is a

scaler.

(a) diagonal convection (b) circular convection

Figure 5.5: METIS using the Convection Weighting scheme.

5.2 Gradient Weighting

The solutions to many PDEs with strong convection have gradients in the
direction of convection. This enables us to implement the Convection Weighting
scheme by using the gradient instead of the convection coefficient b. Figure 5.6a
shows the solution of −4u− βux − 1 = 0 on the unit square with u = 0 dirichlet
boundary conditions. Notice the correlation between the gradient and convection.
Strong convection flowing into the dirichet boundary on the y-axis creates a bound-
ary layer. This boundary layer results in a gradient traveling off the boundary in
the direction of convection.

Definition 5.2.1. Gradient Weighting for the solution of (1.1)-(1.3). Let T be a
triangularization of domain Ω and G = (V,E) be its representative graph. Edge
ek = (vi, vj) = (vj, vi) is associated with the side shared by triangles ti and tj. Let

43

ni,j denote the unit normal of this triangle side. Define the weight matrix WG as

wi,j =

 qs
(
ni,j · ∇u(x,y)

||∇u(x,y)||

)
if (vi, vj) ∈ E

0 otherwise
(5.6)

where qs(·) : [0, 1] → [1, ss + 1] is a scaling function chosen based on the graph
partitioner being used.

qs(r) = (sr)s + 1 (5.7)

Similar to Convection Weighting, s = 2 matches these weighting schemes
to METIS’s partitioner and s = 3 matches them to PLTMG’s partitioner to pro-
duce rectangles with aspect ratio 5:1. Figure 5.6 shows METIS using Gradient
Weighting.

(a) solution u (b) gradient weighted partition

Figure 5.6: METIS using the Gradient Weighting scheme.

Both Convection Weighting and Gradient Weighting cause partitioners to
make rectangle shaped parts. The choice of parameter s in the scaling function
qs(·) together with a specific graph partitioner’s sensitivity determines the aspect
ratio of the rectangles. Elongated rectangles have a longer interface length and
greater element cut as shown in Table 5.1. Based on the graph partitioner you
use, parameter s should be chosen to create aspect ratios ∈ [3, 5] which have been
shown to maximize convergence increase at the expense of minimally increasing

44

element cut (only 15 to 34 % more). Once s is determined for your partitioner,
you don’t need to change it anymore.

(a) s = 2.0 (b) s = 2.75 (c) s=4.0

Figure 5.7: Metis partitioning using different s parameters.

Gradient Weighting may have a few potential advantages over Convection
Weighting. First, if you don’t have access to the underlying PDE but you only
have access to approximations of the solution u, then you can use the information
that you have. Second, Gradient Weighting might improve more PDEs than just
convection dominated PDEs. Gradient Weighting can also detect the presence of
singularities in the solution. In Section 10.1 we describe how Gradient Weighting
may improve the convergence of PDEs with singularities. If this proves true, then
the Gradient Weighting scheme will simultaneously deal with convection problems
and singular problems.

5.3 Stiffness Matrix Weighting

Stiffness Matrix Weighting is motivated by Convection Weighting but it ac-
complishes what Convection Weighting can do plus more. When the pure diffusion
problem −4u = f is solved with linear elements on a uniform mesh of triangles,
the diagonal elements of a specific row within the stiffness matrix have magnitudes
four or more times greater than the off diagonal elements for 2-D problems (and
are six or more times greater for 3-D). The presence of convection challenges this
dominance. When very strong convection is present (and the gradient is approx-
imated with a first order approximation), the ratio of the largest magnitude off

45

diagonal element to the diagonal element approaches one to one.
When only convection and diffusion are present such as−∇·a∇u−b·∇u = f ,

most rows of the stiffness matrix sum to 0. Therefore as convection increases in one
direction and the ratio of the diagonal element and an element corresponding with
an unknown in this convection direction approaches 1, the ratios of the diagonal
element with the other directions approach 0. We use this fact to build the Stiffness
Matrix Weighting scheme.

Definition 5.3.1. Stiffness Matrix Weighting for the solution of (1.1)-(1.3). Let
T be a triangularization of domain Ω and G = (V,E) be its representative graph.
Edge ek = (vi, vj) = (vj, vi) is associated with the side sk shared by triangles ti
and tj. Let the finite element solution uh belong to the space of piecewise linear
functions defined by linear Lagrange basis functions at the vertices of each triangle.
Let A be this system’s stiffness matrix defined in (2.9). The degrees of freedom
Um and Um+1 are the endpoints of sk. The remaining two degrees of freedom
associated with triangles ti and tj are Um+2 and Um+3. Refer to Figure 5.8 for the
definitions of ek, sk, vi, vj, ti, tj, Um, Um+1, Um+2, and Um+3.

Define the weight matrix WG as

wi,j = αmax
{
|Am+2,m|+ |Am+2,m+1|

2|Am+2,m+2|
,
|Am,m+2|
2|Am,m|

+ |Am+1,m+2|
2|Am+1,m+1|

}

+αmax
{
|Am+3,m|+ |Am+3,m+1|

2|Am+3,m+3|
,
|Am,m+3|
2|Am,m|

+ |Am+1,m+3|
2|Am+1,m+1|

}
+ β

(5.8)

where α and β are scaling constants chosen based on the graph partitioner being
used.

46

Figure 5.8: Graph G and triangularization T

METIS needs integer weights, so we use α = 100, β = 1 with METIS. Note
that when α >> β, then regardless of their values, the aspect ratio of the rectangle
parts produced is the same as α = 1 and β = 0. PLTMG can use real values so
we left α = 1 and β = 0, however the weight needed to be transformed with q4(·)
from (5.7) for PLTMG to operate. The qs(·) transformation alters the aspect ratio
of rectangle parts. The Stiffness Matrix weight function before scaling can be seen
in Figures 5.11 and 5.12.

5.3.1 Convection

One of the features of using Stiffness Matrix Weighting is that is detects
convection and discourages the partitioner from cutting against convection. It
accomplishes this because the formula uses the ratio of stiffness elements corre-
sponding with physical unknowns in one space direction versus stiffness elements
corresponding with physical unknowns in the perpendicular space direction. To
understand this, we will look at a finite element stiffness matrix in more detail.

47

Figure 5.9: Domain Ω with triangularization T

Example 5.3.2. Let domain Ω have a uniform square triangularization as shown
in Figure 5.9. Find the stiffness matrix of a finite difference approximation of
Poisson’s Equation; find u ∈ H2(Ω) such that −4u− f(x, y) = 0 on Ω and u = 0
on ∂Ω. The length of the side of each square is h.

We will mimic a linear Finite Element stiffness matrix which is second order
accurate by using the approximations

∂uxx = 1
h2 (Uj+1 − 2Uj + Uj−1) (5.9)

∂ux = 1
2

1
h

(Uj+1 − Uj+1) (5.10)

The mth row of A is

− 1
h2 (Um+1 − 2Um + Um−1)− 1

h2 (Um+n − 2Um + Um−n) = Fm (5.11)

therefore

[A]m,m−1 = [A]m,m−n = [A]m,m+1 = [A]m,m+n = (−1) 1
h2 (5.12)

[A]m,m = (4) 1
h2

48

with the exception that

[A]m,m−1 = [A]m+n−1,m+n = 0 when m mod n = 1 (5.13)

The stiffness matrix A is n× n block tridiagonal toeplitz. The off diagonal
blocks are the identity matrix times − 1

h2 . And the diagonal blocks are n × n

tridiagonal toeplitz matrices.

A = 1
h2



T −I

−I
. . . −I
−I T

 , T =



4 −1

−1
. . . −1
−1 4

 (5.14)

Therefore in the absence of convection

|Am,m−1|+ |Am,m+1|
|Am,m|

= 1
2 (5.15)

|Am,m−n|+ |Am,m+n|
|Am,m|

= 1
2 (5.16)

The fractions (5.15) and (5.16) sum to 1 and half of the diagonal support
is from corresponding physical unknowns in the x space direction and half is from
corresponding physical unknowns in the y space direction. Now let’s see what
happens when convection is present.

Example 5.3.3. Let domain Ω have a uniform square triangularization as shown
in Figure 5.9. Find the stiffness matrix of a finite difference approximation of the
convection diffusion equation; find u ∈ H2(Ω) such that −4u+b ·∇u−f(x, y) = 0
on Ω and u = 0 on ∂Ω. Let b = [β 0]T and β > 0. The length of the side of each
square is h.

We will mimic a linear Finite Element stiffness matrix which is second order
accurate by using the approximations

∂uxx = 1
h2 (Uj+1 − 2Uj + Uj−1) (5.17)

∂ux = 1
2

1
h

(Uj+1 − Uj+1) (5.18)

49

The mth row of A is

− 1
h2 (Um+1 − 2Um + Um−1)− 1

h2 (Um+n − 2Um + Um−n)

+1
2β

1
h

(Uj+1 − Uj+1) = Fm

(5.19)

therefore

[A]m,m−n = [A]m,m+n = (−1) 1
h2

[A]m,m−1 = (−1) 1
h2 −

1
2β

1
h

(5.20)

[A]m,m+1 = (−1) 1
h2 + 1

2β
1
h

[A]m,m = (4) 1
h2

with the exception that

[A]m,m−1 = [A]m+n−1,m+n = 0 when m mod n = 1 (5.21)

The stiffness matrix A is n× n block tridiagonal toeplitz. The off diagonal
blocks are the identity matrix times − 1

h2 . And the diagonal blocks are n × n

tridiagonal toeplitz matrices.

A = 1
h2



T −I

−I
. . . −I
−I T



T =



4 −1 + 1
2βh

−1− 1
2βh

.

. . . −1 + 1
2βh

−1− 1
2βh 4



(5.22)

Therefore when convection is present and βh > 2

|Am,m−1|+ |Am,m+1|
|Am,m|

= βh

4 >
1
2 (5.23)

|Am,m−n|+ |Am,m+n|
|Am,m|

= 1
2 (5.24)

50

The fractions (5.23) and (5.24) sum to greater than 1 and using classic meth-
ods to solve AU = F become unstable. Therefore in practice, artificial diffusion is
added to the stiffness matrix as described in Section 2.2 in the form of

Ã = 1
h2



T̃ 0

0
. . . 0

0 T̃

 , T̃ =



βh −1
2βh

−1
2βh

.

. . . −1
2βh

−1
2βh βh

 (5.25)

Then the new stiffness matrix is A∗ = A+ Ã.

A∗ = 1
h2



T ∗ −I

−I
. . . −I
−I T ∗

 , T ∗ =



4 + βh −1

−1− βh
. . . −1
−1− βh 4 + βh


(5.26)

and

1 > |Am,m−1|+ |Am,m+1|
|Am,m|

= 2 + βh

4 + βh
>

1
2 (5.27)

0 < |Am,m−n|+ |Am,m+n|
|Am,m|

= 2
4 + βh

<
1
2 (5.28)

and now the fractions (5.27) and (5.28) sum to 1 when convection is present

|Am,m−1|+ |Am,m+1|
|Am,m|

+ |Am,m−n|+ |Am,m+n|
|Am,m|

= 1 (5.29)

The Stiffness Matrix Weighting scheme mimics the fractions in (5.27)-(5.28)
and therefore can detect the convection from the stiffness matrix in (5.26) when its
values differ from the values in the stiffness matrix and fractions of (5.14)-(5.16).

The Stiffness Matrix Weighting scheme (formula (5.8)) looks messy, but one
can understand (5.8) simply as an approximation of (5.27) for the PDE (1.1)-(1.3)
acting on the square mesh pictured as the dotted line in Figure 5.10 with stiffness
matrix denoted Ā. The weight wi,j for edge ek which connects graph vertices vi
and vj can be thought of as

wi,j ≈
|Ār,r−1|+ |Ār,r+1|

|Ār,r|
(5.30)

51

This is a crude approximation, but it helps to conceptualize (5.8). A less simplified
conceptualization of (5.8) but a more accurate approximation is

wi,j ≈
|Ār,r−1|+ |Ār,r+1|+ 1

4

(
|Ār,r−n|+ |Ār,r+n|

)
|Ār,r|

(5.31)

Equation (5.8) uses the stiffness matrix from a triangle mesh. The geometry
of triangles doesn’t separate the x and y directions like squares do so the numerator
in (5.30) becomes a better approximation with the additional terms shown in
(5.31). (To understand these terms, read Example 5.5.1.) The nature of a triangle
mesh prevents wi,j from becoming equal to zero even when there is very strong
convection in the y direction. In fact, wi,j ≥ 1

4 ∀i, j and when Scharfetter Gummel
upwinding is used, wi,j ≤ 1.

Remark 5.3.4. Therefore, when the Stiffness Matrix Weighting scheme is used on
a triangle mesh solving a convection dominated problem, it produces rectangles
with aspect ratios of 4 : 1 (when α = 1, β = 0).

Figure 5.10: An approximation of the stiffness matrix weighting scheme

The preceding discussion explains how the Stiffness Matrix Weighting scheme
adds more weight to triangle sides that are perpendicular to convection than sides

52

that are parallel to convection. (Technically, weighting schemes add weight to
graph edges not triangle sides. But the two objects have a one to one correspon-
dence, so informally, one can interchange the two words for clarity.)

In Section 5.3.1, Figure 5.4a illustrated how much weight the Convection
and Gradient Weighting schemes added to triangle sides oriented at various angles
to convection (before scaling). Similarly, Figures 5.11 and 5.12 below show how
much weight the Stiffness Matrix Weighting scheme adds to triangle sides oriented
at various angles to convection (before scaling) Both figures assume a uniform
equilateral mesh, side h, with upwinding being employed to solve the convection
diffusion equation −4u− b · ∇u− f(x, y) = 0.

Each figure has five lines. The constant line is when b = 0. The top line is
the limit as ||b|| → ∞. When I plotted ||b|| = 100/h and ||b|| = 1000/h they both
coincided with this limit. The three in between lines are ||b|| = 1/h, ||b|| = 3/h,
and ||b|| = 10/h.

Figure 5.11: Stiffness Matrix weighting when Scharfetter Gummel upwinding is
used. Each line represents a different h||b||

53

Figure 5.12: Stiffness Matrix weighting when Streamline Diffusion upwinding is
used. Each line represents a different h||b||

5.3.2 Diffusion

Another feature of using Stiffness Matrix Weighting is that is detects aniso-
tropic diffusion and discourages the partitioner from cutting against the prominent
diffusion direction. It accomplishes this in the same way that it detected convec-
tion.

Example 5.3.5. Let domain Ω have a uniform square triangularization as shown
in Figure 5.9. Find the stiffness matrix of a finite element approximation of the
PDE; find u ∈ H2 such that −∇ · a∇u− f(x, y) = 0 on Ω and u = 0 on ∂Ω. Let

a =
 α 0

0 1

 and α > 1. The length of the side of each square is h.

We find the stiffness matrix A the same way that we did in Examples 5.3.2
and 5.3.3.

A = 1
h2



T I

I
.
. . . I

I T

 , T =



2 + 2α −α

−α
. . . −α

−α 2 + 2α

 (5.32)

54

1 > |Am,m−1|+ |Am,m+1|
|Am,m|

= 2α
2 + 2α >

1
2 (5.33)

0 < |Am,m−n|+ |Am,m+n|
|Am,m|

= 2
2 + 2α <

1
2 (5.34)

and
|Am,m−1|+ |Am,m+1|

|Am,m|
+ |Am,m−n|+ |Am,m+n|

|Am,m|
= 1 (5.35)

5.3.3 Self Adjusting

Another feature of Stiffness Matrix Weighting is that it regulates itself. As
stated previously, favoring convection and creating partitions with rectangle parts
increases interface length and element cut. See Table 5.1. Therefore you only
want to use rectangles when using them will speed up convergence sufficiently.
This corresponds to when the PDE is dominated by convection. But how much
convection classifies it as dominating? From the discussions above, we see that
convection is scaled by a factor of h when influencing the stiffness matrix. Therefore
the question of whether convection is dominating relates to both the coefficient b on
∇u and the mesh size h. In Chapter 9 sections 9.2.2 and 9.2.6, we provide numerical
experiments that investigate the relationship between convection dominance, b, h,
and P the number of parts.

Our numerical experiments led us to create a model of when strong convec-
tion justifies modifying the partition. Namely, use rectangle parts when approx-
imately h||b|| ≥ 1. This model coincides perfectly with how the Stiffness Matrix
Weighting self regulates. As you can see from the weighting scheme (5.8) and
(5.27), the scheme bases its weights on both b and h. Figures 5.11 and 5.12 show
that h||b|| = 1 will encourage rectangles of aspect ratio 1.45:1 and h||b|| = 3 will
encourage 2.4:1 and h||b|| = 10 will encourage 3.6:1 and as h||b|| → ∞ the aspect
ratio will converge to 4:1. Figure 5.14 shows rectangle aspect ratio versus con-
vection strength when using Scharfetter Gummel upwinding. (Other upwinding
schemes produce similar results.)

Figure 5.13 shows the Stiffness Matrix Weighting scheme regulating itself in
action. The unit square was discretized into a non uniform mesh where h gradually
gets larger when moving in the x direction. The equation, −4u+b·∇u−f(x, y) = 0

55

was then solved. In the middle of the left side (x ≈ 0.25), h||b|| = 2 and in the
middle of the right side (x ≈ 0.75), h||b|| = 8 .

(a) non uniform mesh (b) self regulating rectangles

Figure 5.13: Stiffness matrix weighting scheme regulating based on h and b.

Figure 5.14: Rectangle aspect ratio versus convection strength

5.4 Computation Time

In Lemmas 5.0.11 and 5.0.12, we assumed that computation time is in-
dependent of interface length. This is not always true. Each parallel Domain

56

Decomposition Method performs different computations during one iteration than
the other methods. A processor updates the unknowns it is responsible for using
data that it receives from other processors. We saw that Domain Decomposition
Methods pass data proportional to their interface lengths, but they each use this
data differently. If a certain DD Method’s computation time is proportional to
this data, we can still use Lemmas 5.0.11 and 5.0.12.

Instead of splitting the time of one iteration, t, into computation time,
tcomp, and communication time, tcomm which we assumed were independent and
proportional respectively, we can split t into tA and tB. Let tA be the portion of
the time of one iteration that is independent to interface length and let tB be the
portion that is proportional.

Also, we assumed that tB was linearly proportional to interface length,
tB = αδ̄(K̄ε). If tB is proportional to either the square of the interface length or
its cube, Lemmas 5.0.11 and 5.0.12 can be modified easily to accommodate this.

5.5 Edge Weighting Example

Example 5.5.1. Describe the partition of the unit square in R2 when using Stiff-
ness Matrix Weighting to solve find u ∈ H2(Ω) such that −4u+[β 0]T ·∇u+1 = 0
on Ω and u = 0 on ∂Ω. Assume the domain has a quasi uniform triangularization
T with element side length h . Use linear finite elements with Scharfetter-Gummel
upwinding.

57

(a) one (b) two

Figure 5.15: Two triangle mesh stencils

First we will calculate row k of the stiffness matrix A for the interior degree
of freedom Uk pictured in Figure 5.15a. Let the coordinate axis be denoted as
(r, s) and the basis functions as vi(r, s). We will use isoparametric elements and
map each triangle to the standard reference triangle in quadrant 1 with coordinate
axis (x, y) and linear lagrange basis wi(x, y). Define Ad

i,j =
∫

Ω∇vj∇vi drds and
Ac
i,j =

∫
Ω[β 0]T · ∇vjvi drds. Then Ai,j = Ad

i,j + Ac
i,j.

For triangles I and II, here are the maps, Jacobians, and reference basis

functions. T1 =
 h h

2

0
√

3h
2

  x

y

. J1 =
 h 0

h
2

√
3h
2

. J−1
1 =

 1
h

0
− 1√

3h
2√
3h

.
T2 =

 −h
2

h
2√

3h
2

√
3h
2

. J2 =
 −h

2

√
3h
2

h
2

√
3h
2

. J−1
2 =

 1
h

− 1
h

− 1√
3h −

1√
3h

. wk = 1−x−y,

58

wk+1 = x, and wk+2 = y. ∇wk = [−1 − 1]T , ∇wk+1 = [1 0]T , and ∇wk+2 = [0 1]T .

Ad
k,k+2 =

∫
I
∇vk+2∇vk drds+

∫
II
∇vk+2∇vk drds

=
∫ 1

0

∫ 1−x

0
J−1

1 ∇wk+2J
−1
1 ∇wk|J1| dydx

+
∫ 1

0

∫ 1−x

0
J−1

2 ∇wk+2J
−1
2 ∇wk|J2| dydx

=
∫ 1

0

∫ 1−x

0
− 2

3h2

(√
3h2

2

)
dxdy +

∫ 1

0

∫ 1−x

0
− 2

3h2

(√
3h2

2

)
dxdy

= − 1√
3

(5.36)

Ad
k,k+1 = Ad

k,k+3 = Ad
k,k+4 = Ad

k,k+5 = Ad
k,k+6 = − 1√

3
(5.37)

Ad
k,k = 6

∫
I
∇vk∇vk drds

= 6
∫ 1

0

∫ 1−x

0
J−1

1 ∇wkJ−1
1 ∇wk|J1| dydx

= 6
∫ 1

0

∫ 1−x

0

4
3h2

(√
3h2

2

)
dydx (5.38)

= 2
√

3

Ac
k,k+6 = Ac

k,k+2 =
∫
I

 β

0

∇vk+2vk drds+
∫
II

 β

0

∇vk+2vk drds

=
∫ 1

0

∫ 1−x

0

 β

0

 J−1
1 ∇wk+2wk|J1| dydx

+
∫ 1

0

∫ 1−x

0

 β

0

 J−1
2 ∇wk+2wk|J2| dydx

=
∫ 1

0

∫ 1−x

0
0 dydx+

√
3

2 βh
∫ 1

0

∫ 1−x

0
(1− x− y) dydx (5.39)

=
√

3
12 βh

59

Ac
k,k+1 = 2

∫
I

 β

0

∇vk+1vk drds

= 2
∫ 1

0

∫ 1−x

0

 β

0

 J−1
1 ∇wk+1wk|J1| dydx

=
√

3βh
∫ 1

0

∫ 1−x

0
(1− x− y) dydx (5.40)

=
√

3
6 βh

Ac
k,k+4 = −

√
3

6 βh (5.41)

Ac
k,k+3 = Ac

k,k+5 = −
√

3
12 βh (5.42)

Ac
k,k = 0 (5.43)

Therefore row k of A is all zeroes except for the seven entries defined above. Figure
5.16a represents the non zeroes in a picture. The number next to node i is the
value of Ak,i.

(a) without upwinding (b) with Scharfetter-Gummel up-
winding

Figure 5.16: Row k of stiffness matrix A with and without upwinding.

Now we will calculate row m of the stiffness matrix A for the interior degree
of freedom Um pictured in Figure 5.15b. For triangles XI and XV I, here are the

maps, Jacobians, and reference basis functions. T11 =
 √

3h
2 0
h
2 h

 x

y

. J11 =
 √

3h
2

h
2

0 h

. J−1
11 =

 2√
3h −

1√
3h

0 1
h

. T16 =
 √

3h
2

√
3h
2

h
2 −h

2

. J16 =
 √

3h
2

h
2√

3h
2 −h

2

.

60

J−1
16 =

 − 1√
3h −

1√
3h

− 1
h

1
h

. wm = 1 − x − y, wm+1 = x, and wm+6 = y. ∇wm =

[−1 − 1]T , ∇wm+1 = [1 0]T , and ∇wm+6 = [0 1]T .

Ad
m,m+1 =

∫
XI
∇vm+1∇vm drds+

∫
XV I
∇vm+1∇vm drds (5.44)

=
∫ 1

0

∫ 1−x

0
J−1

11 ∇wm+1J
−1
11 ∇wm|J11| dydx

+
∫ 1

0

∫ 1−x

0
J−1

16 ∇wm+1J
−1
16 ∇wm|J16| dydx

=
∫ 1

0

∫ 1−x

0
− 2

3h2

(√
3h2

2

)
dxdy +

∫ 1

0

∫ 1−x

0
− 2

3h2

(√
3h2

2

)
dxdy

= − 1√
3

(5.45)

Ad
m,m+2 = Ad

m,m+3 = Ad
m,m+4 = Ad

m,m+5 = Ad
m,m+6 = − 1√

3
(5.46)

Ad
m,m = 6

∫
XI
∇vm∇vm drds

= 6
∫ 1

0

∫ 1−x

0
J−1

11 ∇wmJ−1
11 ∇wm|J11| dydx

= 6
∫ 1

0

∫ 1−x

0

4
3h2

(√
3h2

2

)
dydx (5.47)

= 2
√

3

Ac
m,m+6 = Ac

m,m+1 =
∫
XI

 β

0

∇vm+1vm drds+
∫
XV I

 β

0

∇vm+1vm drds

=
∫ 1

0

∫ 1−x

0

 β

0

 J−1
11 ∇wm+1wm|J11| dydx

+
∫ 1

0

∫ 1−x

0

 β

0

 J−1
16 ∇wm+1wm|J16| dydx

= β
∫ 1

0

∫ 1−x

0
(1− x− y) dydx+ βh

2

∫ 1

0

∫ 1−x

0
(1− x− y) dydx (5.48)

= 1
4βh

Ac
m,m+3 = Ac

m,m+4 = −1
4βh (5.49)

Ac
m,m+2 = Ac

m,m+5 = 0 (5.50)

61

Therefore rowm of A is all zeroes except for the seven entries defined above.
Figure 5.17a represents the non zeroes in a picture. The number next to node i is
the value of Am,i.

(a) without upwinding (b) with Scharfetter-Gummel up-
winding

Figure 5.17: Row m of stiffness matrix A with and without upwinding.

Let G = (V,E) be the graph representing T . Each edge ek ∈ E is associated
with a triangle tj ∈ T . Since the edges have a one to one correspondence with
triangle sides, we will refer to edge weights as triangle side weights from now
on. The weight of a triangle side depends on the angle between the side and the
direction of convection. Triangles in our mesh have sides oriented at all different
angles as seen in Figure 5.20. We will calculate the two extreme orientations.

First, consider a triangle side that is parallel to convection as pictured in
Figure 5.18a.

62

(a) convection parallel side (b) convection perpendicular side

Figure 5.18: Different orientations of triangle sides.

From the Stiffness Matrix Weighting formula (5.8) and the stencil in Figure 5.16b

w(si) = max
{

(|Ai,i+1|+ |Ai,i+2|)
2|Ai,i|

,
|Ai+1,i|

2|Ai+1,i+1|
+ |Ai+2,i|

2|Ai+2,i+2|

}

+ max
{

(|Ai+3,i+1|+ |Ai+3,i+2|)
2|Ai+3,i+3|

,
|Ai+1,i+3|
2|Ai+1,i+1|

+ |Ai+2,i+3|
2|Ai+2,i+2|

}

= max 3
4
√

3βh

{(∣∣∣∣∣−
√

3
6 βh

∣∣∣∣∣+ |0|
)
, |0|+

∣∣∣∣∣−
√

3
6 βh

∣∣∣∣∣
}

+ max 3
4
√

3βh

{(∣∣∣∣∣−
√

3
6 βh

∣∣∣∣∣+ |0|
)
, |0|+

∣∣∣∣∣−
√

3
6 βh

∣∣∣∣∣
}

= 1
4 (5.51)

Second, consider a triangle side that is perpendicular to convection as pic-
tured in Figure 5.18b. From the Stiffness Matrix Weighting formula (5.8) and the

63

stencil in Figure 5.17b that uses Scharfetter-Gummel upwinding

w(sj) = max
{

(|Aj+1,j|+ |Aj+1,j+3|)
2|Aj+1,j+1|

,
|Aj,j+1|
2|Aj,j|

+ |Aj+3,j+1|
2|Aj+3,j+3|

}

+ max
{

(|Aj+2,j|+ |Aj+2,j+3|)
2|Aj+2,j+2|

,
|Aj,j+2|
2|Aj,j|

+ |Aj+3,j+2|
2|Aj+3,j+3|

}

= max 1
4√
3 + 2βh

{
(|0|+ |0|) ,

∣∣∣∣−1
2βh

∣∣∣∣+ ∣∣∣∣−1
2βh

∣∣∣∣}

+ max 1
4√
3 + 2βh

{(∣∣∣∣−1
2βh

∣∣∣∣+ ∣∣∣∣12βh
∣∣∣∣), |0|+ |0|}

= βh
2√
3 + βh

≈ 1 when βh >> 1 (5.52)

These calculations tell us that when βh >> 1, triangle sides that are per-
pendicular to convection will be weighted equal to 1 and triangle sides that are
parallel to convection will be weighted equal to 1

4 . Sides oriented at in-between
angles will have values in-between. (See Figure 5.11). To minimize edge cut, the
partition will have parts shaped like rectangles with aspect ratio 4 : 1 pointing in
the x axis direction.

Example 5.5.2. Describe the partition of the unit square in R2 when using Stiff-

ness Matrix Weighting to solve find u ∈ H2(Ω) such that −∇·
 α 0

0 1

∇u+1 = 0

on Ω and u = 0 on ∂Ω. Also α ≥ 1. Assume the domain has a quasi uniform
triangularization T with element side length h . Use linear finite elements.

We will follow the same procedure as Example 5.5.1. First we calculate
row k of the stiffness matrix A for the interior degree of freedom Uk pictured in
Figure 5.15a using isoparametric elements. Row k of A is all zeroes except for
seven entries. Figure 5.19a represents the non zeroes in a picture. The number
next to node i is the value of Ak,i.

Next we calculate row m of the stiffness matrix A for the interior degree of
freedom Um pictured in Figure 5.15b using isoparametric elements. Row m of A
is all zeroes except for seven entries. Figure 5.19b represents the non zeroes in a
picture. The number next to node i is the value of Am,i.

64

(a) Row k (b) Row m

Figure 5.19: Row k and row m of stiffness matrix A.

Let G = (V,E) be the graph representing T . Each edge ek ∈ E is associated
with a triangle tj ∈ T . Since the edges have a one to one correspondence with
triangle sides, we will refer to edge weights as triangle side weights from now
on. The weight of a triangle side depends on the angle between the side and the
direction of convection.

Figure 5.20: A portion of Ω with Triangularization T .

Triangles in our mesh have sides oriented at all different angles as seen
in Figure 5.20. We will calculate the two extreme orientations. First consider a
triangle side that is parallel to convection as pictured in Figure 5.18a. From the

65

Stiffness Matrix Weighting formula (5.8) and the stencil in Figure 5.19a

w(si) = max
{

(|Ai,i+1|+ |Ai,i+2|)
2|Ai,i|

,
|Ai+1,i|

2|Ai+1,i+1|
+ |Ai+2,i|

2|Ai+2,i+2|

}

+ max
{

(|Ai+3,i+1|+ |Ai+3,i+2|)
2|Ai+3,i+3|

,
|Ai+1,i+3|
2|Ai+1,i+1|

+ |Ai+2,i+3|
2|Ai+2,i+2|

}

= max 1
2
√

3(α + 1)

{(∣∣∣∣∣− 1√
3

∣∣∣∣∣+
∣∣∣∣∣− 1√

3

∣∣∣∣∣
)
,

∣∣∣∣∣− 1√
3

∣∣∣∣∣+
∣∣∣∣∣− 1√

3

∣∣∣∣∣
}

+ max 1
2
√

3(α + 1)

{(∣∣∣∣∣− 1√
3

∣∣∣∣∣+
∣∣∣∣∣− 1√

3

∣∣∣∣∣
)
,

∣∣∣∣∣− 1√
3

∣∣∣∣∣+
∣∣∣∣∣− 1√

3

∣∣∣∣∣
}

= 2
3(α + 1) (5.53)

Second, consider a triangle side that is perpendicular to convection as pic-
tured in Figure 5.18b. From the Stiffness Matrix Weighting formula (5.8) and the
stencil in Figure 5.19b.

w(sj) = max
{

(|Aj+1,j|+ |Aj+1,j+3|)
2|Aj+1,j+1|

,
|Aj,j+1|
2|Aj,j|

+ |Aj+3,j+1|
2|Aj+3,j+3|

}

+ max
{

(|Aj+2,j|+ |Aj+2,j+3|)
2|Aj+2,j+2|

,
|Aj,j+2|
2|Aj,j|

+ |Aj+3,j+2|
2|Aj+3,j+3|

}

= max 1
2
√

3(α + 1)

{(∣∣∣∣∣− α√
3

∣∣∣∣∣+
∣∣∣∣∣− α√

3

∣∣∣∣∣
)
,

∣∣∣∣∣− α√
3

∣∣∣∣∣+
∣∣∣∣∣− α√

3

∣∣∣∣∣
}

+ max 1
2
√

3(α + 1)

{(∣∣∣∣∣− α√
3

∣∣∣∣∣+
∣∣∣∣∣− α√

3

∣∣∣∣∣
)
,

∣∣∣∣∣− α√
3

∣∣∣∣∣+
∣∣∣∣∣− α√

3

∣∣∣∣∣
}

= 2α
3(α + 1) (5.54)

These calculations tell us that triangle sides that are perpendicular to con-
vection will be weighted equal to 2α

3(α+1) and triangle sides that are parallel to
convection will be weighted equal to 2

3(α+1) . Sides oriented at in-between angles
will have values in-between as shown in Figure 5.21. To minimize edge cut, the
partition will have parts shaped like rectangles with aspect ratio α : 1 when α ≤ 4
and 4:1 when α > 4. Aspect ratio is approximated by dividing the average weight
of a side with orientation angle ∈ [0.4π, 0.5π] with the average weight of a side
∈ [0, 0.1π]. The rectangles point in the x axis direction. Example partitions are
displayed in Figure 9.24.

66

Figure 5.21: Stiffness matrix weighting for anisotropic diffusion. Each line repre-
sents a different λ1/λ2.

Chapter 6

A Posteriori Error Estimation

Let’s begin this chapter with an example. We will solve a second order
elliptic PDE on the unit line in R1 using two different approximations to illustrate
a point.

Example 6.0.3. For Ω = [0, 1] ∈ R1, find u ∈ H2(Ω) such that Lu = f on Ω
and u = 0 on ∂Ω for some continuous and coercive elliptic differential operator L
which produces the exact solution pictured in Figure 6.1.

Figure 6.1: Exact solution u.

We would like to solve for u, but instead of finding u, we will find uh, a
discrete approximation using Finite Elements. A finite space of piecewise linear
functions of dimension 5 will be used, therefore we divide our domain interval into
six elements (subintervals) and use standard linear Lagrange basis functions.

67

68

There are an infinite number of choices for element placement. For illustra-
tion purposes, we will solve this problem twice using two different meshes pictured
in Figure 6.2.

(a) mesh 1 (b) mesh 2

Figure 6.2: Two meshes for the unit line [0,1]

Mesh 1 with linear Lagrange basis functions defines a finite function space,
S

(1)
h while mesh 2 defines a space, S(2)

h . The finite element solution u(k)
h ∈ S

(k)
h for

k = 1, 2 satisfies Céa’s Lemma [21]

||u− u(k)
h || ≤ C inf

w∈S(k)
h

||u− w|| (6.1)

therefore in general if S(1)
h 6= S

(2)
h then u(1)

h 6= u
(2)
h . This means that the placement

of our degrees of freedom will affect our finite element solution and its accuracy.
After solving the associated system of linear equations, we find the finite

element solutions u(1)
h and u

(2)
h . They are different with different errors. These

piecewise linear solutions are pictured in Figure 6.3 superimposed on the exact
solution.

(a) mesh 1 (b) mesh 2

Figure 6.3: Two Finite Element solutions using different meshes.

Notice that mesh 2 produced a more accurate approximation to u. How
could we have known to use mesh 2 instead of mesh 1 from the start? During our
solution process, if we can determine where the error of ||u − uh|| would be the
greatest, then we can position our degrees of freedom there and reduce the final
error. This is the essence of a posteriori error estimation and non-uniform meshes.

69

The reason mesh 1 had difficulty approximating u was because u was curved
in the interval [0.33, 0.67]. The piecewise linear functions had difficulty approxi-
mating this curve. (Piecewise polynomials of degree n cannot interpolate curves
with non-zero n + 1 derivatives without error.) If we have an approximation of
the exact solution u, we can place our linear basis function degrees of freedoms in
regions where u has the most curvature. (Or in general, place our degree n basis
function degrees of freedom in regions where u has the greatest n+ 1 derivative.).
This is the basis of the following a posteriori error Estimator.

6.1 An Posteriori Error Estimator

For linear finite elements solving problems in R2 , Randy Bank and Jinchao
Xu developed an asymptotically exact estimate of ||∇(u − uh)||L2(Ω) in [16] [17]
which is based on a superconvergent approximation of the order 2 derivatives of u.
[9] [16] [17]

||∇(u − uh)||L2(Ω) is approximated by ||∇(u2 − u1)||L2(Ω) where uk is the
usual Lagrange interpolant. On a given triangle element, u1 will interpolate at the
3 vertices and u2 will interpolate at the 3 vertices and 3 side midpoints. Denote
the 3 sides as k = 1, 2, 3. Let lk be the length of side k and let tk be side k’s unit
tangent. Let qk be a quadratic function equal to 1 at the midpoint of side k and
equal to 0 at the 3 vertices and other 2 midpoints. Then

u2 − u1 =
3∑

k=1
l2kt

T
kMttkqk(x, y) (6.2)

where Mt = −1
2

 ∂xxu2 ∂xyu2

∂yxu2 ∂yyu2

 (6.3)

The only values that are unknown in (6.2)-(6.3) are the elements of the
Hessian. We approximate these from the recovered gradient of uh. The function
uh is piecewise linear therefore before we can differentiate ∇u, we must smooth the
gradient out. This is done with the operators Qh and Sm. Qh is the L2 projection
from the space of discontinuous piecewise constant functions into the space of
continuous piecewise linear polynomials. Sm is a smoothing operator based on the

70

discrete Laplace operator. We approximate Mt with

M̄t = αt
2 (M̃t + M̃T

t) (6.4)

M̃t = −1
2

 ∂xS
mQh∂xuh ∂xS

mQh∂yuh

∂yS
mQh∂xuh ∂yS

mQh∂yuh

 (6.5)

Now our error is
et =

3∑
k=1

l2kt
T
k M̄ttkqk(x, y) (6.6)

And we can use this to approximate our finite element solution’s error

||u− uh||L2(Ω) ≈ ||et||L2(Ω) (6.7)

||∇(u− uh)||L2(Ω) ≈ ||∇et||L2(Ω) (6.8)

Chapter 7

Vertex Weighting Schemes

In Chapter 5, our weighting schemes partitioned domains into parts of equal
area and equal numbers of unknowns. In discrete terms, we worked with uniform
triangularizations and partitioned their representative graphs with vertex weights
equal to 1.

Since we are using triangle Finite Elements with linear Lagrange basis func-
tions, each vertex of G represents one Finite Element with three degrees of freedom.
Naturally, we would like each processor to be responsible for an equal number of
unknowns. Since we would like to balance the workload, weighting each vertex
equally is reasonable.

However, if we allow each processor the ability to refine their meshes after
partitioning, then regardless of how many unknowns a processor initially receives,
it can subsequently refine its mesh uniformly until it has the same target number
of unknowns as all the other processors. This allows us to consider partitions
of disproportionate area or disproportionate original numbers of unknowns while
maintaining work balance between processors during the DD Method.

In Chapter 5, we saw that setting the edge weights in MG to values other
than 1 affected the interface length by deviating the shape of partition parts away
from the optimal circle shape, and this modification did not affect the global mesh
nor consequently the accuracy of the global finite element solution uh. What are
the consequences of setting the vertex weights to values other than 1?

71

72

(a) partition 1 (b) partition 2

Figure 7.1: Two partitions of the unit square having parts with disproportionate
areas.

Figure 7.1 shows two partitions of the unit square whose 61 parts have
disproportionate area. These partitions were created by weighting the area of the
unit square by the function DV (x, y) = 1/(x + ε)2 and then balancing this new
weighted area among parts. These partitions of Ω = [0, 1]× [0, 1] have the property
that

∫
Ωk
DV dA for k = 1, 2, ..., 61 is constant and interface length is minimized.

Partition 1 was done by METIS on a uniform mesh of 40000 triangles from PLTMG.
Partition 2 was done theoretically by hand.

73

(a) partition 4 (b) partition 3

Figure 7.2: Two partitions of the unit square having parts with disproportionate
areas.

Figure 7.2 shows two more partitions of the unit square whose 61 parts have
disproportionate area. These partitions were created by weighting the area by the
function DV (x, y) = 12.25 for (x, y) ∈ [0.25, 0.75] × [0.25, 0.75] and DV (x, y) = 1
otherwise. Partition 4 was done by hand and partition 3 was done by METIS using
a triangularization from PLTMG.

After partitioning, we need to refine each part to an equal number of un-
knowns to balance the work load. Imagine that each get refined to 106. Then each
global mesh created by combining the 61 parts would have 6.1 × 107 unknowns
and all the global meshes from the four different partitions pictured in Figures 7.1
and 7.2 would each have the same number of unknowns but they would be placed
in different locations. Global meshes 3 and 4 would have the majority of their
unknowns in the middle of the unit square while global meshes 1 and 2 would have
the majority of their unknowns near the y axis (left side in the figures).

This will affect the accuracy of the respective finite element solutions u(k)
h for

k = 1, 2, 3, 4 as we saw in Example 6.0.3. Therefore when considering to weight the
area in the continuous partitioning problem or analogously weighting the vertices
in the graph partitioning problem, the effect on the accuracy of the final solution

74

needs to be considered.
The next question is, how does vertex weighting affect edge cut? How does

area weighting affect interface length? In order to discuss this, we need to introduce
new terminology.

Definition 7.0.1. Given a triangularization T = {t1, ..., tm} of domain Ω, define
K̃ as a partition of T into P parts, T1, ..., TP where each Tk is a subset of triangles
T and disjoint.

Definition 7.0.2. Given a triangularization T of a domain Ω with partition K̃

into P parts, define element cut, denoted δt(K̃), as the number of triangle sides
on the interface. δt(K̃) = 0.5∑P

i=1 e(Ti) − 0.5e(T) where e(Tk) is the number of
triangle sides on the boundary of part Tk and e(T) is the number of triangle sides
on the boundary of Ω.

Lemma 7.0.3. Let T be a triangularization and G be its representative graph. Let
K̃ and Kε be partitions of each respectively. If each edge of G is weighted 1, then
δ(Kε) = δt(K̃), edge cut equals element cut.

(a) partition 5 (b) partition 6

Figure 7.3: Two partitions of the unit square into equal area parts.

Immediately after partitioning the graph representation of our mesh using
unequal vertex weights, Table 7.1 summarizes the interface length, edge cut, and

75

element cut for the four partitions in Figures 7.1 and 7.2 plus the two equal area
partitions in Figure 7.3. Partition 5 is METIS partitioning 40000 uniform triangles
from PLTMG into 61 equal area parts and partition 6 is a theoretical optimal
partitioning of the unit square in 61 parts.

Table 7.1: Interface characteristics immediately after partitioning.

Partition 1 3 5 2 4 6
interface length 7.3 14.1 16.0 9.06 11 13.6

edge cut 938 1727 2037 1192 1447 1790
element cut 938 1727 2037 1192 1447 1790

From Table 7.1, it appears like vertex weighting (partitions 1-4) lowered
the element cut versus not weighting (partitions 5-6). However, immediately after
partitioning, we are not ready to begin our DD Method. First we must refine each
partition to an equal number of degrees of freedom. We started with a uniform
mesh of 40000 triangles. After partitioning, let’s refine/unrefine each processor’s
region into 40000/61 ≈ 656 uniform triangles. Table 7.2 summarizes the interface
length and element cut after this operation. Edge cut is no longer meaningful since
we don’t have a graph that represents the new mesh.

Table 7.2: Interface characteristics immediately after refine/unrefine

Partition 1 3 5 2 4 6
interface length 7.3 14.1 16.0 9.06 11 13.6
element cut 2049 2077 2037 1693 1921 1790

As you can see, unequal vertex weighting and then refining each part to have
the same number of unknowns does not significantly affect the element cut even
though it does affect the interface length. This is what we would expect. Vertex
weighting affects the size of each partition but not their shape. Graph partitioning
algorithms will still try to make parts shaped like circles or squares because these
optimal shapes place the least number of element sides on a given part’s boundary.

Even though partitions 2,4, and 6 have parts of differing sizes, all partitions
use 61 square parts and each part contains 656 elements. The elements are roughly

76

uniform equilateral triangles, so each square part will place
√

656
√

3/4 ≈ 16.85
triangle sides on each square part’s side regardless of the part’s size. Therefore
each partition will have ≈ (16.85 ·61 ·4−B)/2 element cut where B is the number
of triangle sides on the boundary of the unit square.

Theorem 7.0.4. Let Ω be a domain with triangularization T and representative
graph G. The area of Ω equals A and the perimeter equals S. Let K(1)

ε and K(2)
ε

be two different partitions of G into P parts using two different vertex weighting
schemes. In both cases, let all the edge weights equal 1. Let K̃1 and K̃2 be K(1)

ε ’s
and K(2)

ε ’s coinciding partitions of T into parts T1, ..., TP . Refine/unrefine Tk for
k = 1, ..., P such that |Tk| = m∀k. Let Bi denote the number of triangle sides
on the boundary of K̃i. When B1 ≈ B2 or 2.5P

√
m >> Bi for i = 1, 2 then

δt(K̃1) ≈ δt(K̃2).

Proof. Since K(1)
ε and K(2)

ε are partitions from graphs with edge weights equal 1,
their parts will be roughly shaped as squares in order to minimize edge cut. With
a uniform equilateral triangle mesh, each square part will have roughly

√
m
√

3/4
triangle sides on their boundary. Each partition has P parts. By Lemma 5.0.4,
the element cut of each partition is

δt
(
K̃i

)
= P

√
m
√

3− 0.5Bi (7.1)

where Bi is the number of triangle sides on the boundary of Ω of K̃i.

Corollary 7.0.5. Use the same setup as Theorem 7.0.4. When B1 ≈ B2 or
2.5P

√
m >> Bi for i = 1, 2, then using vertex weighting compared to not using

vertex weighting does not significantly affect the element cut.

Proof. Apply Theorem 7.0.4 and let K̃(2)
ε be a weighted partition with w(vk) = 1

for all k (which is like an unweighted partition).

Corollary 7.0.6. Using the same setup as Theorem 7.0.4, δt(K̃i) < δt(K̃j) iff
Bi > Bj.

Proof. This result follow from (7.1)

77

In light of Theorem 7.0.4 which says δt(K̃1) ≈ δt(K̃2), Corollary 7.0.6 points
out that vertex weighting can be used to slightly reduce (or increase) element cut.
An example is given by partitions 2 and 6 pictured in Figures 7.1 and 7.3. Table
7.2 shows that partition 2 has less element cut than the unweighted partition 6
because partition 2 placed a significant number of its triangle sides on the original
domain’s boundary.

Using vertex weights other than 1 is the basis of the following two Weighting
Schemes; Error Weighting and Flow Weighting.

7.1 Error Weighting

In Chapter 6, Example 6.0.3 demonstrated that the placement of degrees of
freedom associated with the solution uh of (1.1)-(1.3) affects its accuracy ||eh||L2(Ω) =
||u−uh||L2(Ω). Roughly speaking, when approximating the solution u of (1.1)-(1.3)
with with piecewise linear basis functions, regions where the function u is curved
will contain more error than regions where the function is flat. (See Chapter 6
for a more rigorous discussion.) In order to minimize the overall error, we need to
place more triangles in these troublesome regions than other regions (because the
degrees of freedom are at each triangle vertex). This is the essence of the Error
Weighting scheme.

Definition 7.1.1. Error Weighting for the solution of (1.1)-(1.3). Let T be a
triangularization of Ω and G = (V,E) its representative graph. Each vertex vi

corresponds with triangle ti. Define the weight matrix WG as

w(vi) = α||∇(u− uh)||L2(ti) + β (7.2)

where α and β are scaling constants chosen based on the graph partitioner being
used.

After the Error Weighting scheme partitions a uniform mesh, each part
most likely will contain a different number of elements (triangles) which means
that each processor will receive a different number of degrees of freedom. At
first, this appears that the work is unbalanced. However, as part of the Error

78

Weighting scheme, it is understood that after partitioning, each processor will
refine its subdomain to an agreed upon number of degrees of freedom. Then all
processors will have equal work. From the perspective of the global mesh, this
accomplishes placing the degrees of freedom where they are most needed to reduce
the overall error.

Example 7.1.2. Consider the PDE; find u ∈ H2(Ω) where Ω is the unit circle in
R2 such that

−4u+ 16x2 + 16y2 = 0 on Ω

u = 1 on ∂Ω
(7.3)

The exact solution to this PDE is u = (x2 + y2)2 pictured in Figure 7.4a.

(a) u =
(
x2 + y2)2 (b) Linear finite element error

Figure 7.4: Solving Poisson’s Equation.

The solution u is flattest near the origin and most curved near the boundary.
Figure 7.4b is PLTMG displaying an approximation of this error based on the
current coarse solution uk pictured in Figure 7.4a and the current mesh pictured
in Figure 7.4.

If we use Error Weighting to partition this domain so we can solve it in
parallel then the parts near the boundary will be smaller than the parts near the
middle because Error Weighting will balance the error among the parts.

79

(a) Error Weighting Partition (b) Global mesh

Figure 7.5: Error Weighting placing degrees of freedom where they’re needed.

Immediately after partitioning, the parts near the boundary contain less
triangles and less degrees of freedom than the parts near the middle. But before
we begin the Domain Decomposition iteration, each part will uniformly add more
triangles until all the parts have the same amount of triangles. This will cause
the triangles in the smaller parts to be more dense. When you combine all the
local meshes together, it will no longer be overall uniform. The global mesh is
pictured in Figure 7.5b. You can see that most of the degrees of freedom are
near the boundary of the unit circle where they are needed. The finite element
solution produced from this global mesh will more closely approximate u than a
finite element solution from a uniform global mesh. (Figure 6.3 also demonstrated
this in Example 6.0.3.)

This is how Error Weighting produces more accurate finite element solu-
tions. Additionally in many cases, Error Weighting also speeds up convergence of
the DD solve. This is explored in the numerical experiments of Chapter 9 and it
is discussed in the next section.

Also, when using adaptive meshing after partitioning, Error Weighting pre-
vents the need for time expensive load rebalancing. This is one of the innovations
of the Bank-Holst paradigm and is explained in [5] [6].

80

7.2 Flow Weighting

FlowWeighting is motivated by the observation that Error Weighting speeds
up convergence of the DD solve for certain problems, while at other times, Error
Weighting doesn’t affect convergence or may even slow down convergence. An
analysis of this situation led us to understand the effects of Error Weighting so
that we can mimic these effects at will.

Definition 7.2.1. Flow Weighting for the solution of (1.1)-(1.3). Let T be a
triangularization of Ω and G = (V,E) its representative graph. Each vertex vi

corresponds with triangle ti. Define a function called flow z(·) : Ω→ [0, 1] + ε for
some small ε > 0. Define the weight matrix WG as

w(vi) = α (z (p (ti)))−s + β (7.4)

where p(ti) = (x, y, z) center of triangle ti (7.5)

and α and β are scaling constants chosen based on the graph partitioner being
used. The variable s is called the flow function parameter.

The user supplies the flow function. An effective flow function is one that
characterizes the direction of convection or anisotropic diffusion. In most cases,
the best choice is to parameterize the domain as follows. Let x0 ∈ R2 be a
point furthest downwind of convection such that x0 ∈ ∂Ω. Then for t ∈ [0, 1]
parameterize a curve through Ω going upwind, z0(t) = x0 − b̂t where b̂ is the
unit vector in the direction of convection. Finally, for every point x ∈ Ω, define
z(x) = z−1

0

(
x0 + b̂b̂T (x− x0)

)
+ ε for some small ε > 0.

In Chapter 5, we saw that Convection Weighting encouraged the creation of
rectangle parts in the direction of convection which facilitated information travel
and Chapter 9 shows that it speeds up DD convergence. Similarily, Flow Weighting
facilitates information travel and improves convergence.

81

(a) Flow Weighting (b) Convection Weighting (c) Unweighted

Figure 7.6: Information takes only 3 steps to travel across weighted partitions.

Figure 7.6 shows the unit square partitioned three different ways into about
15 parts each. Assume we are solving −4u + ux − 1 = 0 on this domain with
dirichlet boundary conditions. Figure 7.6a depicts the partition of the unit square
using Flow Weighting with z(x, y) = 1.001−x and parameters s = 2, α = 1, β = 0.
Figure 7.6b uses Convection Weighting and Figure 7.6c uses no weighting.

Both Flow Weighting and Convection Weighting facilitate the convection
in the x direction. Information travels from the left dirichlet boundary condition
through the domain in 3 hops for both schemes. It takes 4 hops for the informa-
tion to travel across the unweighted partition. Numerical experiments show that
both Flow and Convection Weighting improve the DD convergence of solving the
convection-diffusion equation. See Chapter 9.

Care must be taken when using Flow Weighting. If the finite element so-
lution to your PDE would have uniform error ||u − uh||L2(tk) ≈ c ∀tk on a global
uniform mesh T , then Flow Weighting will deviate the global mesh from uniform
and degrade the accuracy. The next theorem illuminates this.

Theorem 7.2.2. Given a PDE whose solution has uniform error ||u−uh||L2(tk) = c

for k = 1, ..., n over domain Ω with uniform triangularization T into t1, ..., tn, let
K̃(1) be a partition of T created from unweighting the representative graph and K̃(2)

be a partition from using Flow Weighting. After partitioning, refine each part to
the same number of unknowns. If u(i)

h is the final global finite element solution on
K̃(i) and ||e(i)

h || = ||u− u
(i)
h ||L2(Ω) then as n→∞

||e(2)
h ||

||e(1)
h ||

=
∫

Ω
z(x, y)−s dxdy

∫
Ω
z(x, y)s dxdy

(∫
Ω

1dxdy
)−1

(7.6)

82

Proof.
h(2)(tk)
h(1)(tk)

=

√√√√ ∫
tk

1dxdy /
∫

Ω 1dxdy∫
tk
z(x, y)−s dxdy /

∫
Ω z(x, y)−s dxdy (7.7)

For a finite element solution

||e(i)
h ||L2(tk) ≈ c1

(
h(i)(tk)

)2
||u||H2(tk) (7.8)

therefore
||e(2)(tk)||
||e(1)(tk)||

=
∫
tk

1dxdy /
∫

Ω 1dxdy∫
tk
z(x, y)−s dxdy /

∫
Ω z(x, y)−s dxdy (7.9)

and
||e(2)

h ||
||e(1)

h ||
=

n∑
k=1

(
||e(2)(tk)||
||e(1)(tk)||

∫
tk

1dxdy
)

(7.10)

Substituting (7.9) into (7.10) and letting n→∞ completes the proof.

To illustrate the magnitude of the implication of Theorem 7.2.2, we provide
an example. We solved (7.6) numerically with the flow function

z(x, y) = x+ 10−3 (7.11)

on the unit square (which produces partitions that look like Figure 7.1b). When
solving a PDE on the unit square whose solution has uniform error on a uniform
mesh

(
||u− uh||L2(tk) ≈ c ∀tk with k = 1, ..., n

)
, then using Flow Weighting with

flow function (7.11) increases your final solution’s total error as compared to using
an unweighted partition. Table 7.3 displays the error increase factor for different
flow function parameters.

Table 7.3: Error increase factor on the unit square when using z(x, y) = x+ 10−3

with different flow function parameters s.

s 0 0.5 0.75 1.0 1.25 1.5 2.0
||e(2)

h ||/||e
(1)
h || 1.0 1.29 1.88 3.46 8.24 24.6 334

83

7.3 Interface Reconciliation

Theorem 7.0.4 proves that when B1 ≈ B2 or 2.5P
√
m >> Bi then δt(K̃1) ≈

δt(K̃2) for two different partitions created from two different vertex weighting
schemes. In layman’s terms, it stated that using vertex weighting does not af-
fect element cut because regardless of part size, each part will still try to shape
itself as a circle and if each part has m elements, they will each place the same
number of those elements on their boundary regardless of part size. This assumes
that the interface is not reconciled.

Some Domain Decomposition Methods work with mismatched grids on the
interface. If part Ti and part Tj share the boundary Γ and part Ti has m unknowns
on Γ and part Tj has n unknowns on Γ. Then when part Ti communicates its m
unknowns to part Tj, part Tj interpolates those values onto its n boundary degrees
of freedom before incorporating them into computation.

Other methods require that the grids match on the interface. Therefore after
partitioning and after refining each part to have the same number of unknowns
as each other part, another step may be required. Reconciliation is the process
whereby when two parts share a boundary, part Ti refines its mesh to include part
Tj’s boundary degrees of freedom, and part Tj refines its mesh to include part i’s
boundary degrees of freedom. This is what the Bank-Holst Paradigm does. This
of course increases the element cut.

7.4 Adaptive meshing

So far, we’ve only discussed uniform meshing. All of the weighting schemes
discussed in both this chapter and Chapter 5 acted on uniform partitions. After
partitioning, each processor then refined its subdomain further using more uniform
meshing. For Edge Weighting schemes, the global meshes remained uniform. In
the case of Vertex Weighting schemes, this lead to global meshes that were not
overall uniform but were uniform in each subdomain.

Adaptive meshing can be employed both before and/or after partitioning.
Employment after partitioning is a subject for future study described in Section

84

10.2. Adaptive meshing before partitioning was investigated during this research.
Approximately, partitioning an adaptive mesh with vertex weights equal 1

creates the same partition as partitioning a uniform mesh with vertex weighting
matching the adaptive mesh’s density.

(a) Adaptive mesh (b) Partition from adaptive mesh

Figure 7.7: Partitioning an adaptive mesh with vertex weight equal 1.

(a) Uniform mesh (b) Partition from uniform mesh

Figure 7.8: Partitioning a uniform mesh with vertex weights matching adaptive
mesh.

85

The partition in Figure 7.8b was created by setting the vertex weights cor-
responding to each uniform triangle equal to the number of adaptive triangles it
would cover if the uniform mesh was superimposed on top of the adaptive mesh.
Formally w(vi) =

∫
ti
Dv(x, y) dxdy where Dv is the density of adaptive triangles

per area at position (x, y).
Adaptive meshing provides an alternative way of weighting vertices. Instead

of weighting vertices in the graph partitioning algorithm, you can start with an
adaptive mesh that contains the weighting information and then partition with the
weights equal 1. From Figures 7.7 and 7.8, you see that this does a decent job. If
your goal is to balance the parts very precisely, then adaptive meshing should be
used because it does a better job.

Lemma 7.4.1. Given a domain Ω ∈ Rd and an area weighting function function
Dv : Ω → R. Let T (1) be an adaptive triangularization of Ω based on Dv into n
elements and let T (2) be a uniform triangularization of Ω into n elements. Let n
be a multiple of P . Let K̃(1)

ε1 and K̃(2)
ε2 be partitions of T (1) and T (2) respectively

into P parts that minimize εi in

for i = 1, 2

for each T (i)
k ∈ K̃(i)

εi

∫
T

(i)
k

Dv(x, y) dxdy = 1 + δk
P

∫
Ω
Dv(x, y) dxdy (7.12)

where |δk| < εi

then it follows that |ε1| ≤ |ε2|.

Proof. If T (1) is a perfect adaptive mesh, then
∫
t
(1)
k

Dv(x, y) dxdy = c for all k =
1, ..., n. Let each Tk ∈ K̃(1)

εi
contain n/P triangles, then ε1 = 0 and this guarantees

that |ε1| ≤ |ε2|.

Chapter 8

Convergence Analysis

In Chapters 5 and 7, we presented new Weighting Schemes to be used
with Graph Partitioning algorithms. Chapter 5 showed how to add weights to
the edges of a representative graph and Chapter 7 explained how to add weights
to the vertices. Each set of techniques can speed up the convergence of Domain
Decomposition Methods.

Adding weight to the edges encourages partitioning algorithms to create
partition parts shaped like rectangles instead of optimally shaped squares or circles.
This increases element cut and consequently communication time and sometimes
increases computation time. But, when rectangles are used appropriately, they
speed up convergence which reduces the number of iterations needed to achieve
one’s desired level of accuracy and ultimately shortens the solve time.

Chapter 3 introduced many Domain Decomposition methods. We would
like our Weighting Schemes to improve the solve time for all of them. In this
chapter, we prove that the edge weighting schemes from Chapter 5 speed up the
convergence of the Additive Schwarz and Multiplicative Schwarz Methods in simple
cases. In Chapter 9, we provide numerical experiments that demonstrate faster
convergence for the Bank-Holst Paradigm DD solver using these edge weighting
schemes.

Adding weight to the vertices encourages partitioning algorithms to create
partition parts of different sizes without deviating the parts from the optimal shape
of squares or circles. This affects the final global mesh because it non-uniformly

86

87

distributes the degrees of freedom. When used appropriately, this redistribution
can increase the accuracy of the final finite element solution and speed up conver-
gence at the same time. At other times, the final accuracy cannot be improved
but one can decide to decrease the solution accuracy slightly in exchange for faster
convergence and a shorter solve time.

In Chapter 9, we provide numerical experiments that demonstrate faster
convergence for the Bank-Holst Paradigm DD solver using these vertex weighting
schemes.

8.1 Preconditioned Richardson Iteration

Richardson Iteration solves a system of linear questions Ax = f by starting
with an initial guess x(0) and creating a sequence of approximations that converge
to the true solution x.

Algorithm 9 Preconditioned Richardson Iteration
Initialize x(0) to an initial guess

1: for k = 1, 2, ... until convergence do
2: x(k) = x(k−1) +B(f − Ax(k−1)).
3: end for

Matrix B is called the preconditioner and is an approximation of A−1.

Theorem 8.1.1. Richardon’s Method will converge iff the spectral radius ρ(I −
BA) < 1.

Proof. The error of the kth iteration e(k) = x− x(k).

x(k+1) = x(k) +B(f − Ax(k))

x− x(k+1) = x− x(k) −B(Ax− Ax(k))

e(k+1) = (I −BA)e(k)

Therefore
e(k+1) = (I −BA)(k+1)e(0) (8.1)

and e(k+1) → 0 iff ρ(I −BA) < 1.

88

Definition 8.1.2. Since ||e(k+1)|| ≤ ||(I−BA)||(k+1)||e(0)|| from (8.1), the asymptotic
convergence rate of preconditioned richardson iteration with precondition B is
ρ(I −BA).

8.2 Additive Schwarz

The Additive Schwarz Method was presented in Chapter 3 in Algorithm 2.
It was presented in its continuous Strong Form. By following the procedures in
Chapter 2, we can convert it into its Weak Form, then Galerkin Approximation,
then Finite Element Form, and finally its Matrix Form.

Let’s consider the case of partitioning Ω into two subdomains. Assume
the subdomain meshes are matching in the overlapping region. Let A1U1 = B1

and A2U2 = B2 be the stiffness matrices, degrees of freedom, and load vectors for
subdomains 1 and 2 respectively. And let A1,2 be the interaction of subdomain 1
with the degrees of freedom on Γ1 and A2,1 be the interaction of subdomain 2 with
Γ2. See Figure 3.1a and (2.8) for clarification.

Then we want to solve the block system A1 A1,2

A2,1 A2

  U1

U2

 =
 B1

B2

 (8.2)

Algorithm 10 Finite Elements Additive Schwarz

Initialize U (0)
1 and U (0)

2 to an initial guess
1: for k = 1, 2, ... until convergence do

Perform steps 2 and 3 simultaneously on different processors.
2: Solve A1U

k
1 = B1 − A1,2U

k−1
2 for Uk

1

3: Solve A2U
k
2 = B2 − A2,1U

k−1
1 for Uk

2

4: Communicate Ui from Γj to neighbor processors.
5: end for

This is equivalent to solving AU = B with Richardson Iteration and a block

89

Jacobi preconditioner. A1 0
0 A2

 U1

U2

k =
 B1

B2

−
 0 0
A2,1 0

 U1

U2

k−1

−

 0 A1,2

0 0

 U1

U2

k−1

DUk = (E + F)Uk−1 +B

Uk =
(
D−1(E + F)

)
Uk−1 +D−1B

where A = D−E −F and D is block diagonal, E strictly block lower, and
F strictly block upper.

8.3 Multiplicative Schwarz

The Multiplicative Schwarz Method was presented in Chapter 3 in Algo-
rithm 1. It was presented in its continuous Strong Form. By following the proce-
dures in Chapter 2, we can convert it into its Weak Form, then Galerkin Approx-
imation, then Finite Element Form, and finally its Matrix Form.

Let’s consider the case of partitioning Ω into two subdomains. Assume
the subdomain meshes are matching in the overlapping region. Let A1U1 = B1

and A2U2 = B2 be the stiffness matrices, degrees of freedom, and load vectors for
subdomains 1 and 2 respectively. And let A1,2 be the interaction of subdomain 1
with the degrees of freedom on Γ1 and A2,1 be the interaction of subdomain 2 with
Γ2. See Figure 3.1a and (2.8) for clarification.

Then we want to solve the block system A1 A1,2

A2,1 A2

 U1

U2

 =
 B1

B2

 (8.3)

Algorithm 11 Finite Elements Multiplicative Schwarz

Initialize U (0)
2 to an initial guess

1: for k = 1, 2, ... until convergence do
2: Solve A1U

k
1 = B1 − A1,2U

k−1
2 for Uk

1

3: Solve A2U
k
2 = B2 − A2,1U

k
1 for Uk

2

4: end for

90

This is equivalent to solving AU = B with Richardson Iteration and a block
Gauss Seidel preconditioner.
 A1 0

0 A2

  U1

U2

k =
 B1

B2

−
 0 0
A2,1 0

 U1

U2

k −
 0 A1,2

0 0

 U1

U2

k−1

(D − E)Uk = FUk−1 +B

Uk =
(
(D − E)−1F

)
Uk−1 + (D − E)−1B

where A = D − E − F and D is block diagonal, E strictly block lower, and F

strictly block upper.

8.4 Edge Weighting Convergence

In this section, we will prove that both the Additive and Multiplicative
Schwarz Domain Decomposition Methods converge faster when using the edge
weighting schemes presented in Chapter 5 versus not using them when there is
convection and/or diffusion in the direction of the rectangular parts of partitioning.

Theorem 8.4.1. Let matrix A be toepliz block tridiagonal with m×m blocks and
m even, whose off diagonal blocks are m×m diagonal matrices and whose diagonal
blocks are m×m toepliz tridiagonal matrices.

A =



T Y

X
.
. . . Y

X T

 , T =



a c

b
.
. . . c

b a


X = xI, Y = yI, bc > 0, and xy > 0. Let D be a 2×2 block diagonal matrix whose
diagonal blocks are all equal Ã where Ã is the upper left m

2 ×
m
2 block submatrix of

A. Then the m2 eigenvalues of (I −D−1A) are

λ = 0,±
Um

2 −1(λT)
Um

2
(λT)

where λT = a

2√xy +
√
bc
√
xy

cos
(

kπ

m+ 1

)
for k = 1, ...,m

(8.4)

91

The eigenvalue 0 is repeated m2−2m times. Uk(·) is the kth Chebyshev polynomial
of the second kind.

Proof. Let A = D − E − F where −E is the lower left m
2 ×

m
2 block submatrix of

A and −F is the upper right m
2 ×

m
2 block submatrix of A. Then

I −D−1A = D−1(E + F) =

=



Ã−1 0

0 Ã−1





0 0
−Y

−X
0 0



=



−yM1,m
2

0 ... 0
−yMm

2 ,
m
2

−xM1,1

0 ... 0
−xMm

2 ,1


(8.5)

where [M]i,j is the block of [Ã]−1 in block row i block column j. [M]i,j is a matrix
of size m×m. According to [25] on page 9

[M]i,j =


(−1)i+j Y j−i

(√Y X)j−i+1
Ui−1(T̃)Um

2 −j(T̃)
Um

2
(T̃) if i ≤ j

(−1)i+j Xi−j

(√Y X)i−j+1
Uj−1(T̃)Um

2 −i(T̃)
Um

2
(T̃) if i > j

(8.6)

where T̃ = T/(2
√
Y X) and Uk(·) is the kth Chebyshev polynomial of the second

kind. By symmetry, [M]m
2 ,

m
2

= [M]1,1. Then by (8.6)

[M]1,1 = 1
√
xy

Um
2 −1(T̃)
Um

2
(T̃)

(8.7)

The eigenvalues of I − D−1A are m2 − 2m zeros corresponding with the

92

m2 − 2m columns of zeros in I −D−1A and 2m non zeros.

λ(I −D−1A) = 0, λ
 0 −yM1,1

−xM1,1 0

 (8.8)

and λ
 0 −yM1,1

−xM1,1 0

 = ±√xyλ(M1,1)

Since Uk(·) is a polynomial

λ (Uk(X)) = λ

2k
k∏
j=1

(X − rjI)


where rj = cos
(

jπ

k + 1

)
(8.9)

= 2k
k∏
j=1

(λ(X)− rj)

= Uk (λ(X))

Since T̃ is a tridiagonal toeplitz matrix,

λ
(
T̃
)

= a

2√xy +
√
bc
√
xy

cos
(

kπ

m+ 1

)
for k = 1, ...,m (8.10)

Complete the proof by substituting (8.10) into (8.7) into (8.8).

Theorem 8.4.2. Let matrix A and function U be define as in Theorem 8.4.1. If
b, c, x, y < 0 and a = −b− c− x− y, then the spectral radius

ρ(I −D−1A) =
Um

2 −1(a
2√xy +

√
bc√
xy

cos
(
mπ
m+1

)
)

Um
2

(a
2√xy +

√
bc√
xy

cos
(
mπ
m+1

)
)

(8.11)

Proof. From Theorem 8.4.1, we have

λ
(
I −D−1A

)
= 0,±

Um
2 −1(λT)
Um

2
(λT)

where λT = a

2√xy +
√
bc
√
xy

cos
(

kπ

m+ 1

)
for k = 1, ...,m

(8.12)

93

Since b, c, x, y < 0 and a = −b− c− x− y and a > 0, we have λT > 1.

λT = a

2√xy +
√
bc
√
xy

cos
(

kπ

m+ 1

)
for k = 1, ...,m

≥ a

2√xy +
√
bc
√
xy

cos
(
mπ

m+ 1

)

>
a

2√xy +
√
bc
√
xy

(−1)

= a− 2
√
bc

2√xy

≥ −x− y2√xy

≥ 1

(8.13)

Now since

Uk(x) = 2k
k∏
j=1

(x− rk,j)

where rk,j = cos
(

jπ

k + 1

) (8.14)

we have
Um

2 −1(λT)
Um

2
(λT) = 1

2
(
λT − rm

2 ,
m
2

) m
2 −1∏
j=1

(
λT − rm

2 −1,j
)

(
λT − rm

2 ,j

) (8.15)

Since all λT > 1 and rm
2 −1,j < rm

2 ,j
< 1 for j ∈ {1, ..., m2 − 1} and rm

2 ,
m
2
< 0 we

have (
λT,i − rm

2 −1,j
)

(
λT,i − rm

2 ,j

) >

(
λT,j − rm

2 −1,j
)

(
λT,j − rm

2 ,j

) for λT,i < λT,j

and 1
2
(
λT,i − rm

2 ,
m
2

) > 1
2
(
λT,j − rm

2 ,
m
2

) for λT,i < λT,j

(8.16)

Therefore

max
∣∣∣λ (I −D−1A

)∣∣∣ =
Um

2 −1(a
2√xy +

√
bc√
xy

cos
(
mπ
m+1

)
)

Um
2

(a
2√xy +

√
bc√
xy

cos
(
mπ
m+1

)
)

(8.17)

Theorem 8.4.3. Let two partitions of the unit square Ω = [0, 1] × [0, 1] ∈ R2

be K̄
(1)
0 = {[0, 0.5] × [0, 1], [0.5, 1] × [0, 1]} and K̄

(2)
0 = {[0, 1] × [0, 0.5], [0, 1] ×

94

[0.5, 1]} which are then enlarged slightly to overlap. When solving the boundary
value problem, find u ∈ H2(Ω) such that

−∇ ·

 β 0
0 1

∇u− 1 = 0 on Ω

u = 0 on ∂Ω

(8.18)

with uniform right triangle Finite Elements side length h and Additive Schwarz
Domain Decomposition, if β > 1 then the asymptotic convergent rate of using K̄(2)

0

will be less than using K̄(1)
0 . Enlarge the parts of each partition to include one layer

of Finite Element overlap as in Figure 8.1.

(a) Partition K̄(1)
0 (b) Partition K̄(2)

0

Figure 8.1: Different partitions of the unit square.

Proof. First we will compute the global stiffness matrix for the entire mesh on Ω
as in (2.9). Let m = 1/h

95

Figure 8.2: A portion of the mesh pictured in Figure 8.1

The kth row of A when (k mod m) > 1 is

[A]k,k =
∫

Ω
∇vk · ∇vk dxdy (8.19)

=
6∑
i=1

∫
i
∇vk · ∇vk dxdy

= (2 + 2β) 1
h2

[A]k,k+m−1 = [A]k,k−m+1 (8.20)

=
∫
I
∇vk−m+1 · ∇vk dxdy +

∫
II
∇vk−m+1 · ∇vk dxdy

= 0

[A]k−1 = [A]k+1 (8.21)

=
∫
I
∇vk+1 · ∇vk dxdy +

∫
V I
∇vk+1 · ∇vk dxdy

= −β 1
h2

[A]k,k−m = [A]k+m (8.22)

=
∫
V
∇vk+1 · ∇vk dxdy +

∫
IV
∇vk+1 · ∇vk dxdy

= −1 1
h2

The kth row of A when (k mod m) = 1 has [A]k,k−1 = 0 and when (k mod m) = 0
has [A]k,k+1 = 0 with the other values being the same as above. For the kth row

96

of A when m2 −m ≥ k > m ignore the elements defined above where either index
i < 1 or j < 1 in [A]i,j. Therefore A is a m×m block matrix

A = 1
h2



T −I

−I
. . . −I
−I T

 , T =



2 + 2β −β

−β
. . . −β

−β 2 + 2β

 (8.23)

T is a m×m matrix. When we use partition K̄(1)
0 and rearrange unknowns,

then using Additive Schwarz corresponds to solving AU = F with Richardson’s
Method and a block Jacobi preconditioner (see section 8.2). The iteration matrix
is I −D−1A as defined in theorem 8.4.1 with

for K̄(1)
0 b, c, x, y = −1/h2,−1/h2,−β/h2,−β/h2 (8.24)

and using partition K̄(2)
0 corresponds with

for K̄(2)
0 b, c, x, y = −β/h2,−β/h2,−1/h2,−1/h2 (8.25)

Theorem 8.4.6 tells us the asymptotic convergence rate for each partition by (8.11).
It involves the quantity a

2√xy +
√
bc√
xy

cos
(
mπ
m+1

)
.

for K̄(1)
0

a

2√xy +
√
bc
√
xy

cos
(
mπ

m+ 1

)
= 2 + 2β

2β + 1
β

cos
(
mπ

m+ 1

)
= 1 + 1

β

(
1 + cos

(
mπ

m+ 1

))
(8.26)

for K̄(2)
0

a

2√xy +
√
bc
√
xy

cos
(
mπ

m+ 1

)
= 2 + 2β

2 + β cos
(
mπ

m+ 1

)
= 1 + β

(
1 + cos

(
mπ

m+ 1

))
(8.27)

We see that (8.26) < (8.27) and by the arguments (8.15) and (8.16) we can use
(8.11) to finish the proof

ρ(1)(I −D−1
(1)A) =

Um
2 −1

(
1 + 1

β

(
1 + cos

(
mπ
m+1

)))
Um

2

(
1 + 1

β

(
1 + cos

(
mπ
m+1

)))
> ρ(2)(I −D−1

(2)A) =
Um

2 −1
(
1 + β

(
1 + cos

(
mπ
m+1

)))
Um

2

(
1 + β

(
1 + cos

(
mπ
m+1

)))
(8.28)

(Note that both asymptotic convergence rates depend on h since m = 1/h.)

97

Figure 8.3: Solving −βuxx− uyy − 1 = 0 for 106 unknowns on two processors with
h = 10−3.

Theorem 8.4.4. Let two partitions of the unit square Ω = [0, 1] × [0, 1] ∈ R2

be K̄
(1)
0 = {[0, 0.5] × [0, 1], [0.5, 1] × [0, 1]} and K̄

(2)
0 = {[0, 1] × [0, 0.5], [0, 1] ×

[0.5, 1]} which are then enlarged slightly to overlap. When solving the boundary
value problem, find u ∈ H2(Ω) such that

−4u+
 β

0

∇u− 1 = 0 on Ω

u = 0 on ∂Ω

(8.29)

with uniform square mesh Finite Difference and Additive Schwarz Domain Decom-
position, if β > 1/h where h is the mesh size, then the asymptotic convergent rate
of using K̄(2)

0 will be less than using K̄(1)
0 . Enlarge the parts of each partition to

include one layer of Finite Difference overlap as in Figure 8.1.

Proof. Let m = 1/h. Using Figure 8.1 and applying Finite Difference with a first
order approximation of ∇u, we find the global stiffness matrix A to be m × m

block matrix

A = 1
h2



T −I

−I
. . . −I
−I T

 , T =



3 + βh −1

−βh
. . . −1
−βh 3 + βh

 (8.30)

98

T is a m×m matrix. When we use partition K̄(1)
0 and rearrange unknowns,

then using Additive Schwarz corresponds to solving AU = F with Richardson’s
Method and a block Jacobi preconditioner (see section 8.2). The iteration matrix
is I −D−1A as defined in theorem 8.4.1 with

for K̄(1)
0 b, c, x, y = −1/h2,−1/h2,−β/h,−1/h2 (8.31)

and using partition K̄(2)
0 corresponds with

for K̄(2)
0 b, c, x, y = −β/h,−1/h2,−1/h2,−1/h2 (8.32)

Theorem 8.4.6 tells us the asymptotic convergence rate for each partition by (8.11).
It involves the quantity a

2√xy +
√
bc√
xy

cos
(
mπ
m+1

)
.

for K̄(1)
0

a

2√xy +
√
bc
√
xy

cos
(
mπ

m+ 1

)
= 3 + βh

2
√
βh

+ 1√
βh

cos
(
mπ

m+ 1

)

= 1 + βh

2
√
βh

+ 1√
βh

(
1 + cos

(
mπ

m+ 1

))

= 1 + 1 + βh− 2
√
βh

2
√
βh

+ 1√
βh

(
1 + cos

(
mπ

m+ 1

))
(8.33)

for K̄(2)
0

a

2√xy +
√
bc
√
xy

cos
(
mπ

m+ 1

)
= 3 + βh

2 +
√
βh cos

(
mπ

m+ 1

)

= 3 + βh− 2
√
βh

2 +
√
βh

(
1 + cos

(
mπ

m+ 1

))
= 1 + 1 + βh− 2

√
βh

2 +
√
βh

(
1 + cos

(
mπ

m+ 1

))
(8.34)

Recognize that 1 + βh− 2
√
βh =

(
1−
√
βh
)2
> 0 and it’s given that βh > 1 then

we see that (8.33) < (8.34) and by the arguments (8.15) and (8.16) we can use
(8.11) to finish the proof

ρ(1)(I −D−1
(1)A) =

Um
2 −1

(
1 + 1+βh−2

√
βh

2
√
βh

+ 1√
βh

(
1 + cos

(
mπ
m+1

)))
Um

2

(
1 + 1+βh−2

√
βh

2
√
βh

+ 1√
βh

(
1 + cos

(
mπ
m+1

)))

> ρ(2)(I −D−1
(2)A) =

Um
2 −1

(
1 + 1+βh−2

√
βh

2 +
√
βh

(
1 + cos

(
mπ
m+1

)))
Um

2

(
1 + 1+βh−2

√
βh

2 +
√
βh

(
1 + cos

(
mπ
m+1

)))
(8.35)

99

Figure 8.4: Solving −4u− βux − 1 = 0 for 106 unknowns on two processors with
h = 10−3.

Theorem 8.4.5. Let matrix A be toepliz block tridiagonal with m×m blocks and
m even, whose off diagonal blocks are m×m diagonal matrices and whose diagonal
blocks are m×m toepliz tridiagonal matrices.

A =



T yI

xI
.
. . . yI

xI T

 , T =



a c

b
.
. . . c

b a


Now consider A as a 2× 2 block matrix and let D be its diagonal, −E its strictly
lower part, and −F its strictly upper part such that A = D−E−F . Then the m2

eigenvalues of (I − (D − E)−1A) are

λ = 0,
(
Um

2 −1(λT)
Um

2
(λT)

)2

where λT = a

2√xy +
√
bc
√
xy

cos
(

kπ

m+ 1

)
for k = 1, ...,m

(8.36)

The eigenvalue 0 is repeated m2 − 2m times and the other eigenvalues are each
repeated 2 or more times. Uk(·) is the kth Chebyshev polynomial of the second
kind.

100

Proof. Since ED−1 is strictly lower,

(D − E)
(
D−1 +D−1ED−1

)
= (I − ED−1)(I + ED−1)

= I − (ED−1)(ED−1) (8.37)

= I

implies that
(D − E)−1 = D−1 +D−1ED−1 (8.38)

Let Ã be the the upper left block of D.

I − (D − E)−1A = (D − E)−1(F) =

=



Ã−1 0

−xM1,1Mm
2 ,

m
2

0 Ã−1





0 0
−yI

0 0



=



−yM1,m
2

0 ... 0
−yMm

2 ,
m
2

xyM1,1Mm
2 ,

m
2

0 0


(8.39)

where [M]i,j is the block of [Ã]−1 in block row i block column j. [M]i,j is a matrix
of size m×m. By symmetry, [M]m

2 ,
m
2

= [M]1,1. Using (8.6)

[M]1,1 = 1
√
xy

Um
2 −1(T̃)
Um

2
(T̃)

(8.40)

The eigenvalues of I − (D − E)−1A are m2 −m zeros corresponding with
the m2 −m columns of zeros in I − (D − E)−1A and m non zeros.

λ
(
I − (D − E)−1A

)
= 0, λ

(
xyM2

1,1

)
(8.41)

101

Since Uk(·) is a polynomial

λ (Uk(X)) = Uk (λ(X))

Since T̃ is a tridiagonal toeplitz matrix,

λ
(
T̃
)

= a

2√xy +
√
bc
√
xy

cos
(

kπ

m+ 1

)
for k = 1, ...,m (8.42)

Complete the proof by substituting (8.42) into (8.40) into (8.41).

Theorem 8.4.6. Let matrix A and function U be define as in Theorem 8.4.5. If
b, c, x, y < 0 and a = −b− c− x− y, then the spectral radius

ρ
(
I − (D − E)−1A

)
=

Um
2 −1(a

2√xy +
√
bc√
xy

cos
(
mπ
m+1

)
)

Um
2

(a
2√xy +

√
bc√
xy

cos
(
mπ
m+1

)
)


2

(8.43)

Proof. The proof follows the form of the proof for Theorem 8.4.6.

Theorem 8.4.7. Let two partitions of the unit square Ω = [0, 1] × [0, 1] ∈ R2

be K̄
(1)
0 = {[0, 0.5] × [0, 1], [0.5, 1] × [0, 1]} and K̄

(2)
0 = {[0, 1] × [0, 0.5], [0, 1] ×

[0.5, 1]} which are then enlarged slightly to overlap. When solving the boundary
value problem, find u ∈ H2(Ω) such that

−∇ ·

 β 0
0 1

∇u− 1 = 0 on Ω

u = 0 on ∂Ω

(8.44)

with uniform right triangle Finite Elements side length h and Multiplicative Schwarz
Domain Decomposition, if β > 1 then the asymptotic convergent rate of using K̄(2)

0

will be less than using K̄(1)
0 . Enlarge the parts of each partition to include one layer

of Finite Element overlap as in Figure 8.1.

Proof. The proof follows the form of the proof for Theorem 8.4.3.

Theorem 8.4.8. Let two partitions of the unit square Ω = [0, 1] × [0, 1] ∈ R2

be K̄
(1)
0 = {[0, 0.5] × [0, 1], [0.5, 1] × [0, 1]} and K̄

(2)
0 = {[0, 1] × [0, 0.5], [0, 1] ×

102

[0.5, 1]} which are then enlarged slightly to overlap. When solving the boundary
value problem, find u ∈ H2(Ω) such that

−4u+
 β

0

∇u− 1 = 0 on Ω

u = 0 on ∂Ω

(8.45)

with uniform square mesh Finite Difference and Multiplicative Schwarz Domain
Decomposition, if β > 1/h where h is the mesh size, then the asymptotic convergent
rate of using K̄(2)

0 will be less than using K̄(1)
0 . Enlarge the parts of each partition

to include one layer of Finite Difference overlap as in Figure 8.1.

Proof. The proof follows the form of the proof for Theorem 8.4.4.

Chapter 9

Numerical Experiments

In the preceding chapter, we proved that the methods presented in Chapter
5 improve the convergence rate of simple Domain Decomposition Methods applied
to simple uniform meshes and domains. In this chapter, we will show the effect
of the Weighting Schemes presented in Chapters 5 and 7 on more complicated
Domain Decomposition Methods, more complicated meshes, and more complicated
domains. Once again, we find that these methods improve convergence rates and
in some cases, they improve solution accuracy also.

All the numerical experiments in this chapter are performed using PLTMG
11.0, METIS 5.1.0, and SG running on CCoM’s computing resource BOOM.
PLTMG 11.0 is a package for solving elliptic partial differential equations in gen-
eral regions of the plane created by Randolph Bank [18]. BOOM is a resource
of the Center for Computational Mathematics at the University of California San
Diego. BOOM is a ROCKS-based 720-core/1440-GB (60 dual-cpu/six-core/24GB
nodes) 64-bit Xeon Cluster (from Dell). METIS 5.1.0 is a serial software package
for partitioning large irregular graphs, partitioning large meshes, and computing
fill-reduced ordering of sparse matrices created by George Karypis [34]. METIS
5.1.0 is described in more detail in Section 4.3. SG is a visualization tool created
by Michael Holst which provides most of the visualizations for this dissertation
[30].

103

104

9.1 PLTMG 11.0

PLTMG 11.0 solves elliptic partial differential equations by the methods
presented in this paper. It starts with an equation in the form of (1.1)-(1.3) and
then solves the Weak Form of the problem with a Galerkin approximation from a
Finite Element space. The Finite Element space consists of triangles using piece-
wise continuous polynomial functions created from the standard Lagrange basis
functions. The numerical experiments in this research and discussions use only
piecewise linear function spaces. If the underlying boundary value problem is not
self-adjoint, some upwinding terms based on the Scharfetter-Gummel discretiza-
tion scheme are added to the discretization.

PLTMG uses sparse matrix storage and solves the system of n equations in
n unknowns using Newton’s Method even if the system is linear. Therefore finding
the degrees of freedom comes from solving the Matrix Form AU = F . PLTMG
has options for solving this system which include the preconditioned Conjugate
Gradient Method. For parallel solves, PLTMG uses the Bank-Holst Paradigm DD
solver.

The numerical experiments and discussions in this research mainly use the
features above. However, PLTMG has more useful features. A few examples are
adaptive refining in both h and p based on a posterior error estimates [11] [12] and
a multilevel partitioning algorithm that uses recursive spectral bisection at the
coarse level. PLTMG can also solve four other major problem classes including
obstacle problems, continuation problems, parameter identification problems, and
optimal control problems.

9.1.1 Code Modifications

PLTMG 11.0 has its own graph partitioner, however, the numerical exper-
iments in this chapter used METIS for partitioning meshes because its properties
are more well known. You call the METIS partitioning function dynamically dur-
ing run time with the command, call METIS_ PartGraphRecursive(nvtxs, ncon,
xadj, adjncy, vwgt, vs, adjwgt, nparts, tpwgts, ubvec, options, objval, part). The

105

parameter adjwgt contains the graph edge weights and vwgt contains the graph
vertex weights. To call METIS from PLTMG, the following code changes were
made; In PLTMG’s subroutine ldbal inside the file mg2.f, the following variables
were added

real(kind=4) :: ubvec
real(kind=4), dimension(nproc) :: tpwgts
integer(kind=4) :: nvtxs,ncon,nparts,objval
integer(kind=4), dimension(ntf+1) :: xadj,vwgt,part,vs
integer(kind=4), dimension(3*ntf) :: adjncy,adjwgt
integer(kind=4), dimension(40) :: options
external METIS_METIS_SetDefaultOptions
external METIS_PartGraphRecursive
common /chris/wght(3,400000)

then in subroutine ldbal, immediately after the call to cequvt(ntf, nproc,
itnode, itedge, e, p, q, kequvc, kequv), you insert the following code

call METIS_SetDefaultOptions(options)
options(8) = 10
index = 1
nvtxs = ntf
ncon = 1
nparts = nproc
ubvec = 1.001
do i=1,nproc

tpwgts(i) = 1.0/nproc
enddo
do i=1,ntf

do j=1,3
if (itedge(j,i)/4>0) then

adjncy(index)=itedge(j,i)/4 - 1
n=itedge(j,i)/4
m=itedge(j,i)-4*n
adjwgt(index)=wght(j,i)+wght(m,n)
index=index+1

endif
enddo
xadj(i+1)=index - 1
vwgt(i)= 1

enddo

106

call METIS_PartGraphRecursive(nvtxs,ncon,xadj,adjncy,
+ vwgt,vs,adjwgt,nparts,tpwgts,ubvec,options,objval,part)

go to 50

The common variable chris/wght contains the edge and vertex weights. For
the Convection Weighting and Gradient Weighting scheme, this variable is set at
the very end of the subroutine eleasm inside the file mg1.f. The variable [ux uy]T

is a vector in either the direction of the convection or gradient corresponding to
whichever scheme you desire.

s = 2.0
xdiff=vx(itnode(2,itri))-vx(itnode(3,itri))
ydiff=vy(itnode(2,itri))-vy(itnode(3,itri))
wght(1,itri)=abs(-uy*xdiff+ux*ydiff)/sqrt(xdiff**2+ydiff**2)

+ /sqrt(ux**2+uy**2)
wght(1,itri)=(wght(1,itri)*s)**s+1.0

xdiff=vx(itnode(1,itri))-vx(itnode(3,itri))
ydiff=vy(itnode(1,itri))-vy(itnode(3,itri))
wght(2,itri)=abs(-uy*xdiff+ux*ydiff)/sqrt(xdiff**2+ydiff**2)

+ /sqrt(ux**2+uy**2)
wght(2,itri)=(wght(2,itri)*s)**s+1.0

xdiff=vx(itnode(2,itri))-vx(itnode(1,itri))
ydiff=vy(itnode(2,itri))-vy(itnode(1,itri))
wght(3,itri)=abs(-uy*xdiff+ux*ydiff)/sqrt(xdiff**2+ydiff**2)

+ /sqrt(ux**2+uy**2)
wght(3,itri)=(wght(3,itri)*s)**s+1.0

For the Stiffness Matrix weighting, the variable chris/wght is set at the
very end of the subroutine linsys but before the call to deallocate(js,jns). The
subroutine linsys is inside the file mg1.f

do i=1,ntf
i1=itdof(1,i)
i2=itdof(2,i)
i3=itdof(3,i)
alpha=100.0
beta=0.5
wght(1,i)=

+ MAX((abs(geta(i1,i2,nb,ndf,map,a,ja,jns))

107

+ + abs(geta(i1,i3,nb,ndf,map,a,ja,jns)))
+ /2.0/abs(geta(i1,i1,nb,ndf,map,a,ja,jns)),
+ abs(geta(i2,i1,nb,ndf,map,a,ja,jns))
+ /2.0/abs(geta(i2,i2,nb,ndf,map,a,ja,jns))
+ + abs(geta(i3,i1,nb,ndf,map,a,ja,jns))
+ /2.0/abs(geta(i3,i3,nb,ndf,map,a,ja,jns)))

if (wght(1,i)>1.0) wght(1,i)=1.0
wght(1,i)=alpha*wght(1,i)+beta

wght(2,i)=
+ MAX((abs(geta(i2,i1,nb,ndf,map,a,ja,jns))
+ + abs(geta(i2,i3,nb,ndf,map,a,ja,jns)))
+ /2.0/abs(geta(i2,i2,nb,ndf,map,a,ja,jns)),
+ abs(geta(i1,i2,nb,ndf,map,a,ja,jns))
+ /2.0/abs(geta(i1,i1,nb,ndf,map,a,ja,jns))
+ + abs(geta(i3,i2,nb,ndf,map,a,ja,jns))
+ /2.0/abs(geta(i3,i3,nb,ndf,map,a,ja,jns)))

if (wght(2,i)>1.0) wght(2,i)=1.0
wght(2,i)=alpha*wght(2,i)+beta

wght(3,i)=
+ MAX((abs(geta(i3,i2,nb,ndf,map,a,ja,jns))
+ + abs(geta(i3,i1,nb,ndf,map,a,ja,jns)))
+ /2.0/abs(geta(i3,i3,nb,ndf,map,a,ja,jns)),
+ abs(geta(i2,i3,nb,ndf,map,a,ja,jns))
+ /2.0/abs(geta(i2,i2,nb,ndf,map,a,ja,jns))
+ + abs(geta(i1,i3,nb,ndf,map,a,ja,jns))
+ /2.0/abs(geta(i1,i1,nb,ndf,map,a,ja,jns)))

if (wght(3,i)>1.0) wght(3,i)=1.0
wght(3,i)=alpha*wght(3,i)+beta

enddo

The function geta(i,j,...) extracts the element [A]i,j from the sparse matrix
representation of A in PLTMG. The function is

function geta(i,j,nb,ndf,map,a,ja,jap)
c

use mthdef
implicit real(kind=rknd) (a-h,o-z)
implicit integer(kind=iknd) (i-n)
integer(kind=iknd), dimension(*) :: ja,jap
integer(kind=iknd), dimension(ndf) :: map
real(kind=rknd), dimension(*) :: a

108

c
c this routine returns A(i,j)
c

nb_low = map(i)
nb_high = map(j)
if (nb_low == nb_high) then

geta = a(nb_low)
endif
l_shift = 0
if (nb_low > nb_high) then

l_shift = ja(nb+1)-ja(1)
nb_low = map(j)
nb_high = map(i)

endif
if (nb_low /= nb_high) then

n_index = -1
do k=ja(nb_low),ja(nb_low+1)-1

if (nb_high == ja(k)) n_index=k
enddo
if (n_index /= -1) then

geta = a(jap(n_index)+l_shift)
else

geta = 0.0
endif

endif
return
end

Occasionally we ran experiments using PLTMG’s graph partitioner, then
we didn’t call METIS in ldbal and we make the following changes at the end of
the subroutine mtxasm in the file mg2.f

do i=ibeg,iend
it=p(i)
do jj=1,3

jt=itedge(jj,it)/4
if(jt>0) then

j=q(jt)
if(j>=i.and.j<=iend) then

kmin=min(map(it),map(jt))
kmax=max(map(it),map(jt))
if(kmax>kmin) then

109

err=wght(jj,it)
a(kmin)=a(kmin)+err
a(kmax)=a(kmax)+err
call jamap0(kmin,kmax,ij,ji,ja,0_iknd)
a(ij)=a(ij)-err

endif
endif

endif
enddo

enddo

The four lines containing the variable err have been changed. Originally,
instead of err, this was just 1.0.

Additionally, PLTMG has preprocessing and postprocessing to the parti-
tioning procedure. Since these were not changed to incorporate the new edge
weights, we turned them off. In the beginning of the subroutine cequvt inside the
file mg1.f, change "ee = ef * ee/ real(nproc, rknd)" to "ee=0.0" to turn off prepro-
cessing. And in the subroutine ldbal, remove the line "call smth0(ntf, itedge, e,
nproc, msize, itnode)" to turn off postprocessing. And, we would set the tolerance
for the eigenvalue solve from "tol = 1.0 e-2_rknd" inside the subroutine lbev inside
the file mg1.f to "tol = 1.0 e-10".

9.2 Edge Weighting Experiments

The Edge Weighting techniques explained in Chapter 5 include Convection
Weighting, Gradient Weighting, and Stiffness Matrix Weighting. In this Chapter,
we describe the results of experiments conducted to test their performance on
various PDEs, various domains, and various problem sizes. Assume all norms
without subscripts to be L2 or `2 norms.

9.2.1 Convection

Experiment 1. Does using Convection, Gradient, and Stiffness Matrix Weighting
improve the convergence of Bank-Holst paradigm DD solver when solving convec-
tion dominated elliptic partial differential equations?

110

We solved, with and without using weighting, a convection dominated el-
liptic partial differential equation (1.1)-(1.3). Find u ∈ H2(Ω) such that

−4u− [106 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.1)

u = 0 on ∂ΩD (9.2)

n · ∇u = 0 on ∂ΩN (9.3)

∂ΩD is the left and right side of the unit square (x = 0, 1) while ∂ΩN is the
top and bottom (y = 0, 1). The solution is displayed in Figure 9.1.

Figure 9.1: Solution to (9.1)-(9.3)

For this problem, all three edge weighting schemes create the same partition
because for every (x, y) ∈ Ω, the gradient is in the direction of the convection.
They each made rectangles in the x direction with aspect ratio 4:1. Convection
and Gradient weighting used parameter s = 2.

111

(a) Convection weighting (b) Gradient weighting (c) Stiffness Matrix weighting

Figure 9.2: The three edge weighting schemes partitioning for (9.1)-(9.3)

We partitioned the domain into 64 parts starting from a uniform mesh of
2.0× 104 unknowns (4.0× 104 triangles). Afterward, each part refined their mesh
uniformly to 2.0× 105 unknowns. The total problem size was around 107 degrees
of freedom.

(a) Unweighted par-
tition

(b) DD convergence (c) DD convergence

Figure 9.3: Unweighted partitioning scheme solving (9.1)-(9.3)

112

(a) Weighted parti-
tion

(b) DD convergence (c) DD convergence

Figure 9.4: Convection, Gradient, or Stiffness Matrix weighted partitioning scheme
solving (9.1)-(9.3)

(a) Perpendicular
weighted partition

(b) DD convergence (c) DD convergence

Figure 9.5: Perpendicular convection weighted partitioning scheme solving (9.1)-
(9.3)

The values in figure parts (b) and (c) from Figures 9.3-9.5 are logs of the
relative residual, log10(||rk||/||r0||), and logs of the relative u increment, log10(||uk−
uk−1||/||u0||), for the DD iteration. In all three cases, ||r0|| = 0.66 and ||u0|| =
6.5× 10−5.

From this experiment, you can see that using parts that favor the convection
direction improves convergence. The asymptotic convergence rates of the residual
and u increment were 0.29 and 0.28 respectively when using Convection, Gradient,
or Stiffness Matrix Weighting. Without them, the asymptotic convergence rates

113

were 0.50 and 0.44 respectively. For comparison, we also partitioned the mesh
using the perpendicular to the convection. The asymptotic convergence rate of
this this partition was 0.64 and 0.51 respectively. In all three cases, the global
mesh produced a finite element solution with error ||eh|| = ||u− uh|| = 2.9× 10−9

which means that all three final global solutions have equal accuracy.
A reasonable DD Method iteration stopping criteria is when ||δuk|| = ||uk−

uk−1|| < 1
10 ||eh||. According to this criteria, it took the unweighted scheme 10

iterations to converge while it took the weighted scheme 8 iterations and the per-
pendicular weighted scheme 12 iterations. Overall, the weighted scheme found the
same final solution as the others in less time.

9.2.2 Convection Strength

Experiment 2. How much convection needs to be present for a PDE to be convec-
tion dominated and benefit from using a convection weighted partitioning scheme?

In Experiment 1 (section 9.2.1), the final global mesh had 75%·400000·64 =
1.92× 107 triangles. This made the average side of each triangle 3.47× 10−4 and
therefore the convection strength was ||b||h/||a|| = 106 ·3.47×10−4/1 = 347 where
b is the coefficient vector of the gradient of u and a is the matrix that scales the
Lapacian in the PDE.

We solved the same equation from Experiment 1, (9.1)-(9.3) (section 9.2.1),
while varying β where b = [β 0]T using Convection Weighted partitioning with
convection parameter s = 2. The results are summarized in Table 9.1.

Table 9.1: 64 Processors; DD convergence rate versus convection strength

||b||h ||b||
unweighted
convergence
||rk+1||/||rk||

weighted
convergence
||rk+1||/||rk||

unweighted
convergence
||δuk+1||/||δuk||

weighted
convergence
||δuk+1||/||uk||

iteration
reduction
log / log

347 106 0.50 0.29 0.44 0.28 0.64
34.7 105 0.50 0.28 0.44 0.28 0.64
3.47 104 0.45 0.24 0.39 0.24 0.66
1.10 103.5 0.29 0.21 0.25 0.19 0.83
0.347 103 0.26 0.27 0.16 0.17 1.0
0.0347 102 0.33 0.38 0.23 0.28 1.2

114

From this experiment, it appears that Convection Weighting improves con-
vergence when ||b||h/||a|| ≥ 1.0. And Convection Weighting begins to degrade
convergence when ||b||h/||a|| < 1.0. Interestingly, this coincides with when the
Stiffness Matrix Weighting scheme begins making squares in the convection direc-
tion instead of rectangles (see Section 5.3.3). More data about how much convec-
tion is needed is presented in Experiment 6 (section 9.2.6).

9.2.3 Convection Weighting Parameter

Experiment 3. What is the optimal rectangle aspect ratio when using Convec-
tion, Gradient, and Stiffness Matrix weighting? Does the ideal aspect ratio depend
on convection strength? Does it depend on problem size and/or number of proces-
sors? Questions 1 and 2 are discussed in this section. Question 3 is discussed in
Experiment 7 (section 9.2.7).

We solved the same problem repeatedly with a combination of different as-
pect ratios, different convection strengths, different numbers of degrees of freedom,
and different numbers of processors. We found u ∈ H2(Ω) such that

−4u− [β 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.4)

u = 0 on ∂Ω (9.5)

The results from using 64 processors with each processor refined to 2.0×105

unknowns is displayed in Table 9.2 and Figure 9.6. (The results from other numbers
of processors and problem sizes are reported in Section 9.2.7.) The results from
64 processors demonstrate that the ideal aspect ratio is independent of convec-
tion strength. From this data, the ideal aspect ratio is between 3 and 5 inclusive.
You want the smallest aspect ratio that produces satisfactory convergence rates.
Increasing the aspect ratio unnecessarily increases interface length and commu-
nication time. When using METIS, an aspect ratio 3 ≤ r ≤ 5 is accomplished
by setting the Convection Weighting parameter s to a value 1.5 ≤ s ≤ 2. Other
graph partitioners will require you to calibrate s differently to produce the desired
rectangle aspect ratio. For example, with PLTMG, you need 2.5 ≤ s ≤ 3.0. The

115

Stiffness Matrix Weighting scheme is naturally calibrated to produce aspect ratios
of 4:1 with METIS (see Example 5.5.1 and Section 5.3).

Table 9.2: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on ||b||h and convection weighting parameter s.

1:1 2:1 3:1 4:1 5:1 6:1 16:1 25:1 4:1||b||h ||b||
s=0.0 1.0 1.56 1.83 2.0 2.23 4.0 5.0 stiffness

3470 107 0.34 0.29 0.23 0.23 0.26 0.25 0.28 0.26 0.24
1.0 0.87 0.73 0.73 0.80 0.78 0.85 0.80 0.76

347 106 0.34 0.29 0.23 0.23 0.25 0.25 0.26 0.25 0.24
1.0 0.87 0.69 0.78 0.78 0.78 0.80 0.78 0.76

34.7 105 0.34 0.28 0.23 0.22 0.25 0.25 0.26 0.25 0.24
1.0 0.85 0.73 0.71 0.78 0.78 0.80 0.78 0.76

3.47 104 0.30 0.24 0.20 0.19 0.21 0.21 0.23 0.21 0.20
1.0 0.82 0.73 0.71 0.75 0.75 0.80 0.77 0.73

1.10 103.5 0.26 0.22 0.15 0.14 0.15 0.14 0.16 0.16 0.14
1.0 0.89 0.71 0.69 0.71 0.69 0.74 0.74 0.69

0.347 103 0.14 0.13 0.12 0.12 0.13 0.11 0.14 0.20 0.13
1.0 0.96 0.93 0.93 0.96 0.89 1.0 1.22 0.96

0.0 0.0 0.37 0.39 - - 0.51 - 0.69 - 0.37
1.0 1.06 - - 1.48 - 2.68 - 1.0

DD iteration reduction factor is calculated by log(r0)/ log(rk) where rk is
the convergence rate for s = k. Note that when s = 0, the rectangles have aspect
ratio 1:1 and the resultant partition is the same as an unweighted partition. These
reduction factors are displayed in Table 9.2 and Figure 9.6.

The ||b||h = 0 line indicates that when the PDE doesn’t have convection
nor anisotropic diffusion, using rectangle parts degrades the DD convergence rate.
Therefore when ||b||h < 1.0, the optimal parameter is s = 0 which turns convection
weighting off.

116

Figure 9.6: The factor of DD iteration reduction versus rectangle aspect ratio .
Each line represents using a different convection strength ||b||h.

(a) s = 0, aspect 1:1 (b) s = 1, aspect 2:1 (c) s = 1.56, aspect 3:1

(d) s = 1.83, aspect 4:1 (e) s = 2, aspect 5:1 (f) s = 2.23, aspect 7:1

117

(g) s = 3, aspect 10:1 (h) s = 4, aspect 16:1 (i) s = 5, aspect 25:1

Figure 9.7: Different convection parameter s values partitioning the unit square
into 64 parts.

9.2.4 Boundary Conditions

Experiment 4. Does the type of boundary condition affect the success of using
Convection, Gradient, and Stiffness Matrix weighting?

We solved the same equation as Experiments 1 and 2 (sections 9.2.1 and
9.2.2) but this time, we used all Dirichlet boundary conditions instead of using
half Neumann. Find u ∈ H2(Ω) such that

−4u− [104 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.6)

u = 0 on ∂Ω (9.7)

Both Convection Weighting and Stiffness Matrix Weighting produced the
same partitions while Gradient Weighting produced a partition that was slightly
different than the others because of the Dirichlet boundary condition on the top
and bottom of the unit square. These partitions are displayed in Figure 9.9. The
solution to this PDE is pictured in Figure 9.8.

118

Figure 9.8: Solution to equation (9.6)

(a) Gradient weighting (b) Convection and Stiffness (c) Unweighted

Figure 9.9: The three edge weighting schemes partitioning for (9.6)-(9.7)

119

(a) Unweighted par-
tition

(b) DD convergence (c) DD convergence

Figure 9.10: Unweighted partitioning scheme solving (9.6)-(9.7)

(a) Weighted parti-
tion

(b) DD convergence (c) DD convergence

Figure 9.11: Convection/ Stiffness Matrix weighted partitioning scheme solving
(9.6)-(9.7)

The values in figure parts (b) and (c) from Figures 9.10-9.11 are logs of the
relative residual, log10(||rk||/||r0||), and logs of the relative u increment log10(||uk−
uk−1||/||u0||), for the DD iteration. In both cases, ||r0|| = 8.73 and ||u0|| = 5.43×
10−3.

From this experiment, we can see that using parts that favor the convec-
tion direction improves convergence even with these new boundary conditions.
The asymptotic convergence rates of the residual and u increment were 0.23 and
0.21 respectively when using Convection or Stiffness Matrix Weighting. Gradient
Weighting produced similar results with convergence rates of 0.21 and 0.20. With-

120

out weighting, the asymptotic convergence rates are 0.31 and 0.30 respectively. In
both cases, the global mesh produced ||eh|| = ||u−uh|| = 2.47×10−7 which means
that both final global solutions have equal accuracy.

A reasonable DD Method iteration stopping criteria is when ||δuk|| = ||uk−
uk−1|| < 1

10 ||eh||. According to this criteria, it took the unweighted scheme 10
iterations to converge while it took the weighted scheme 7 iterations. Overall, the
weighted scheme found the same final solution in less time.

9.2.5 Force Functions

Experiment 5. Does the presence of a forcing function in the PDE affect the
success of using Convection, Gradient, and Stiffness Matrix weighting?

We solved the same equation as Experiment 4 (section 9.2.4) but added a
forcing function. Find u ∈ H2(Ω) such that

−4u− [104 0]T · ∇u− f(x, y) = 0 on Ω = [0, 2π]× [0, 2π] ∈ R2 (9.8)

u = 0 on ∂Ω (9.9)

f(x, y) = 2 sin(x) sin(y)− 104 cos(x) sin(y) (9.10)

The exact solution is u(x, y) = sin(x) sin(y) and is shown in Figure 9.12.

Figure 9.12: u(x, y) = sin(x) sin(y)

121

The results of this experiment are similar to Experiment 4 (section 9.2.4)
with one difference. The Gradient Weighting scheme did not improve convergence
compared to an unweighted scheme.

(a) Gradient weighting partition (b) Convection or Stiffness Matrix
weighting partition

Figure 9.13: Gradient versus Convection or Stiffness Matrix Weighting

This is expected because the final solution’s gradient is not in the direction
of convection whereas it was in the previous Experiment 4 (section 9.2.4). Figure
9.13a shows what the Gradient Weighting partition looked like for this problem.
Using Convection or Stiffness Matrix Weighting did improve convergence similar
to Experiment 4 (section 9.2.4).

When using Convection or Stiffness Matrix Weighting, the asymptotic con-
vergence rates of the residual and u increment were 0.30 and 0.29 respectively.
Without weighting, the asymptotic convergence rates are 0.48 and 0.41 respec-
tively. (Gradient weighting produced 0.50 and 0.42.) Using the Convection or
Stiffness Matrix weighting scheme found the solution in 10 DD iterations while an
unweighted scheme took 12 iterations. For both, ||r0|| = 6.5 × 104, ||u0|| = 4.5,
and ||eh|| = 8.0× 10−5.

One would expect this experiment to produce the same results as Exper-
iment 4 (section 9.2.4) because changing f(x, y) in the PDE does not affect the
stiffness matrix and asymptotic convergence relates to the stiffness matrix.

122

9.2.6 Number of Processors

Experiment 6. Does the number of processors affect the success of using Con-
vection, Gradient, and Stiffness Matrix weighting? Does the number of processors
affect how much convection is needed for Convection, Gradient, and Stiffness Ma-
trix weighting to improve convergence?

We solved the same equations as Experiment 2 (section 9.2.2) but varied
the number of processors. Find u ∈ H2(Ω) such that

−4u− [β 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.11)

u = 0 on ∂ΩD (9.12)

n · ∇u = 0 on ∂ΩN (9.13)

on 128, 256, and 512 processors using the Convection Weighted scheme
with convection parameters s = 2, 3, 3 respectively and a variety of values for
β. In Experiment 2 (section 9.2.2), we solved (9.11)-(9.13) on 64 processors with
different values for β and displayed the results in Table 9.1. Tables 9.3-9.5 show
the results for 128, 256, and 512 processors respectively. Each processor refined to
2.0 × 105 unknowns. The global problem sizes were ≈ 2.5 × 106, 5.0 × 107, and
1.0× 108 degrees of freedom respectively.

Table 9.3: 128 Processors; DD convergence rate versus convection strength

||b||h ||b||
unweighted
convergence
||rk+1||/||rk||

weighted
convergence
||rk+1||/||rk||

unweighted
convergence
||δuk+1||/||δuk||

weighted
convergence
||δuk+1||/||uk||

iteration
reduction
log / log

2450 107 0.67 0.50 0.55 0.45 0.75
245 106 0.67 0.50 0.55 0.45 0.75
24.5 105 0.67 0.50 0.55 0.45 0.75
2.45 104 0.58 0.39 0.47 0.35 0.72
0.245 103 0.26 0.30 0.18 0.19 1.0
0.0245 102 0.39 0.34 0.20 0.24 1.1

123

Table 9.4: 256 Processors; DD convergence rate versus convection strength

||b||h ||b||
unweighted
convergence
||rk+1||/||rk||

weighted
convergence
||rk+1||/||rk||

unweighted
convergence
||δuk+1||/||δuk||

weighted
convergence
||δuk+1||/||uk||

iteration
reduction
log / log

173 106 0.72 0.56 0.59 0.47 0.70
17.3 105 0.72 0.55 0.59 0.47 0.70
1.73 104 0.62 0.38 0.51 0.33 0.61
0.173 103 0.29 0.31 0.18 0.21 1.1
0.0173 102 0.36 0.59 0.26 0.43 1.3

Table 9.5: 512 Processors; DD convergence rate versus convection strength

||b||h ||b||
unweighted
convergence
||rk+1||/||rk||

weighted
convergence
||rk+1||/||rk||

unweighted
convergence
||δuk+1||/||δuk||

weighted
convergence
||δuk+1||/||uk||

iteration
reduction
log / log

123 106 0.73 0.61 0.60 0.51 0.76
12.3 105 0.73 0.61 0.59 0.50 0.76
1.23 104 0.62 0.42 0.51 0.35 0.64
0.123 103 0.30 0.33 0.19 0.25 1.2
0.0123 102 0.38 0.66 0.28 0.48 1.7

This experiment shows that using Convection, Gradient, and Stiffness Ma-
trix weighting improves convergence even when the number of processors employed
changes. And, we see again that convection strength needs to be ||b||h/||a|| ≥ 1
to gain an improvement. And when ||b||h/||a|| < 1, forcing the partition to have
rectangles degrades convergence.

9.2.7 Convection Scalability

Experiment 7. What is the optimal rectangle aspect ratio when using Convection,
Gradient, and Stiffness Matrix weighting? Does the ideal aspect ratio depend on
convection strength? Does it depend on problem size and/or number of processors?
Questions 1 and 2 were discussed in Experiment 3 (section 9.2.3). Question 3 is
discussed in this section.

We solved the same problem repeatedly with a combination of different
aspect ratios, different numbers of degrees of freedom, and different numbers of

124

processors while keeping ||b||h = 34.2 constant. For the base cases of 2.0× 105 in
Table 9.6 and 64 processors in Table 9.2.7 this is accomplished by letting β = 105.
Then as you double the number of unknowns or double the number of processors,
you increase β by a factor of

√
2.

We found u ∈ H2(Ω) such that

−4u− [β 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.14)

u = 0 on ∂Ω (9.15)

Table 9.6: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on the number of unknowns per processor and convection
weighting parameter s.

unknowns per proc 1:1 2:1 3:1 4:1 5:1 6:1 16:1 25:1
s=0.0 1.0 1.56 1.83 2.0 2.23 4.0 5.0

2.0× 105 0.34 0.28 0.23 0.22 0.25 0.25 0.26 0.25
1.0 0.85 0.73 0.71 0.78 0.78 0.80 0.78

4.0× 105 0.37 0.31 0.25 0.24 0.27 0.27 0.29 0.29
1.0 0.85 0.72 0.70 0.76 0.76 0.80 0.80

8.0× 105 0.38 0.31 0.25 0.25 0.28 - 0.29 -
1.0 0.83 0.70 0.70 0.76 - 0.78 -

When s = 0, aspect ratio is 1 : 1 which is the same as using no weighting.
Therefore the factor of DD iteration reduction equals log(r0)/ log(rk) where rk is
the convergence rate for s = k. These factors are displayed in Figure 9.14 and
Table 9.6.

125

Figure 9.14: The factor of DD iteration reduction versus rectangle aspect ratio.
Each line represents using a different number of unknowns per processor.

From this experiment, it appears that the number of degrees of freedom per
processor does not affect the optimal rectangle aspect ratio of 2 ≤ r ≤ 5 that we
concluded in Experiment 3 (section 9.2.3).

Table 9.7: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD itera-
tions reduction factor based on number of processors and convection weighting
parameter s.

processors 1:1 2:1 3:1 4:1 5:1 6:1 10:1 13:1 16:1 25:1
s=0.0 1.0 1.56 1.83 2.0 2.23 3.0 3.5 4.0 5.0

64 0.34 0.28 0.23 0.22 0.25 0.25 - - 0.26 0.25
1.0 0.85 0.73 0.71 0.78 0.78 - - 0.80 0.78

128 0.52 0.37 0.34 0.31 0.34 0.35 - - 0.34 0.35
1.0 0.66 0.61 0.56 0.61 0.62 - - 0.61 0.62

256 0.64 0.62 0.58 0.42 0.41 0.41 - - 0.37 0.39
1.0 0.93 0.82 0.51 0.50 0.50 - - 0.45 0.47

512 0.70 - 0.68 - 0.66 0.65 0.45 - .41 0.41
1.0 - 0.92 - 0.86 0.83 0.45 - 0.40 0.40

900 0.71 - - - 0.70 - 0.54 0.42 0.43 0.46
1.0 - - - 0.96 - 0.56 0.39 0.40 0.40

126

Figure 9.15: The factor of DD iteration reduction versus rectangle aspect ratio.
Each line represents using a different number of processors.

From these experiments, it appears that the optimal rectangle aspect ratio
is dependent on the number of processors. If you set the convection weighting
parameter s to 1.5 ≤ s ≤ 2 as was previously discussed to create rectangles of
aspect ratio 3 ≤ r ≤ 5, you will not get optimal convergence when using 512 or
900 processors. The smallest choice for s to achieve optimal convergence with 512
processors appears to be s = 3 and for 900 processors, s = 3.5. Figure 9.7 displays
what different s partitions look like when dividing the unit square into 64 parts.
Figure 9.16 pictures some s partitions of 512 parts.

(a) s = 2, aspect 5:1 (b) s = 3, aspect 10:1 (c) s = 4, aspect 16:1

Figure 9.16: Different s values partitioning the unit square into 512 parts.

127

9.2.8 Diffusion

Experiment 8. Do Edge Weighting schemes improve the convergence of Bank-
Holst paradigm DD solver when solving anisotropic diffusion elliptic partial differ-
ential equations?

We solve find u ∈ H2(Ω) such that

−∇ ·

 102 0
0 1

∇u+ 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.16)

u = 0 on ∂Ω (9.17)

Figure 9.17: Solution to equation (9.16)

Using Stiffness Matrix Weighting or Gradient Weighting detects the aniso-
tropic diffusion and when partitioning both create rectangle parts in the prominent
diffusion direction. Convection Weighting performed identical to the unweighted
scheme since there is no Convection. Below are the results using Stiffness Matrix
Weighting. Gradient Weighting is similar.

128

(a) Unweighted par-
tition

(b) DD convergence (c) DD convergence

Figure 9.18: Unweighted partitioning scheme solving (9.16)-(9.17)

(a) Weighted parti-
tion

(b) DD convergence (c) DD convergence

Figure 9.19: Stiffness Matrix weighted partitioning scheme solving (9.16)-(9.17)

The values in figure parts (b) and (c) from Figures 9.18-9.19 are logs of the
relative residual, log10(||rk||/||r0||), and logs of the relative u increment, log10(||uk−
uk−1||/||u0||), for the DD iteration. In both experiments, ||r0|| = 87.7 and ||u0|| =
5.81× 10−3.

From these experiments, you can see that using parts that favor the diffusion
direction improves convergence. The asymptotic convergence rates of the resid-
ual and u increment were 0.49 and 0.39 respectively when using Stiffness Matrix
Weighting. Gradient Weighting produced similar results. Without weighting, the
asymptotic convergence rates are 0.60 and 0.50 respectively. Using Stiffness Matrix
Weighting found the solution in 12 iterations while an unweighted scheme took 17

129

iterations. In both cases, the global mesh produced ||eh|| = ||u− uh|| = 2.5× 10−9

which means that both final global solutions have equal accuracy. Overall, using
weighting found the solution in less time.

Next we solved find u ∈ H2(Ω) such that

−∇ ·

 50.5 49.5
49.5 50.5

∇u+ 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.18)

u = 0 on ∂Ω (9.19)

Figure 9.20: Solution to equation (9.18)

Here, a = 1
2

 1 −1
1 1

 102 0
0 1

  1 1
−1 1

. This is equation (9.16) with

the diffusion rotated π/4 radians. Again we solved it with and without Stiffness
Matrix Weighting and witnessed similar results. This time Gradient Weighting did
not produce a similar partition to Stiffness Matrix weighting and therefore didn’t
improve convergence.

130

(a) Unweighted par-
tition

(b) DD convergence (c) DD convergence

Figure 9.21: Unweighted partitioning scheme solving (9.18)-(9.19)

(a) Weighted parti-
tion

(b) DD convergence (c) DD convergence

Figure 9.22: Stiffness Matrix weighted partitioning scheme solving (9.18)-(9.19)

The values in figure parts (b) and (c) from Figures 9.21-9.22 are logs of the
relative residual, log10(||rk||/||r0||), and logs of the relative u increment, log10(||uk−
uk−1||/||u0||) for the DD iteration. In both experiments, ||r0|| = 119 and ||u0|| =
5.12× 10−3.

From these experiments, you can see that using parts that favor the diffusion
direction improves convergence even when the direction isn’t aligned with the x or
y axis. The asymptotic convergence rates of the residual and u increment were 0.52
and 0.50 respectively when using Stiffness Matrix Weighting. Neither Convection
Weighting nor Gradient Weighting produced similar results. Without weighting,
the asymptotic convergence rates are 0.65 and 0.58 respectively. Using Stiffness

131

Matrix Weighting found the solution in 15 iterations while an unweighted scheme
took 19 iterations. In both cases, the global mesh produced ||eh|| = ||u − uh|| =
5.25 × 10−9 which means that both final global solutions have equal accuracy.
Overall, using Stiffness Matrix weighting found the solution in less time.

9.2.9 Diffusion Strength

Experiment 9. Do Edge Weighting schemes improve convergence for different
strengths of anisotropic diffusion?

We solved the same problem from Experiment 8 (section 9.2.8) with and
without Stiffness Matrix weighting four more times using α = 1, 1.75, 2, 10 and

a = 1
2

 1 −1
1 1

 α 0
0 1

 1 1
−1 1

. Find u ∈ H2(Ω) such −∇ · a∇u− 1 = 0 on

Ω and u = 0 on ∂Ω.
In these four new cases and in the original case of (9.18)-(9.19), a has

the same eigenvectors. The difference is that λ1/λ2 = 1, 1.75, 2, 10, 100. This
is the ratio of the diffusion in the direction 1√

2 [1 1]T versus the diffusion in the
perpendicular direction. Table 9.8 shows the results.

Table 9.8: DD convergence rate versus diffusion strength

λ1/λ2

unweighted
convergence
||rk||/||r0||

weighted
convergence
||rk||/||r0||

unweighted
convergence
||δk||/||u0||

weighted
convergence
||δk||/||u0||

iteration
reduction
log/log

102 0.65 0.52 0.58 0.50 0.79
101 0.57 0.47 0.53 0.47 0.85
2 0.48 0.40 0.45 0.36 0.78

1.75 0.44 0.42 0.40 0.37 0.92
1 0.43 0.43 0.37 0.37 1.0

This shows that when the diffusion in one direction is 2 or more times more
prominent than the diffusion in another, convergence rate improves by partitioning
the domain with rectangle parts in the direction of the stronger diffusion. Stiffness
Matrix Weighting does this automatically.

132

9.2.10 Diffusion Rectangle Aspect Ratio

Experiment 10. What is the optimal rectangle aspect ratio when partitioning
a mesh for an anisotropic diffusion PDE? Does the ideal aspect ratio depend on
the strength of directionality? Does it depend on problem size and/or number of
processors? Questions 1 and 2 are discussed in this section. Question 3 is discussed
in Experiment 11 (section 9.2.11).

We solved the same problem repeatedly with a combination of different
aspect ratios, different diffusion strengths, different numbers of degrees of freedom,
and different numbers of processors. We found u ∈ H2(Ω) such that

−∇ ·

 α 0
0 1

∇u+ 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.20)

u = 0 on ∂Ω (9.21)

The results from using 64 processors with each processor refined to 2.0×105

unknowns is displayed in Table 9.9 and Figure 9.23. (The results from other
numbers of processors and problem sizes are reported in Section 9.2.5.) The results
from 64 processors demonstrate that the ideal aspect ratio is dependent on diffusion
directionality strength, α/1. This data implies that the ideal aspect ratio is 2:1
when α = 2 and 4:1 when α = 10 or 100. When α = 1 the diffusion is equal in
all directions and the data shows that you should use squares and not rectangles
(aspect ratio 1:1). The Stiffness Matrix Weighting scheme adjusts its aspect ratio
to achieve the optimum each time. It produces 1:1,2:1, and 4:1 rectangles for each
case as shown by the last column of Table 9.9.

133

Table 9.9: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on ||a|| and rectangle aspect ratio.

||a|| 1:1 2:1 3:1 4:1 5:1 6:1 16:1 25:1 stiffness

100 0.49 0.48 0.41 0.38 0.39 0.40 0.38 0.42 0.38
1.0 0.97 0.80 0.74 0.76 0.78 0.76 0.82 0.74

10 0.48 0.40 0.37 0.35 0.36 0.39 0.46 0.57 0.36
1.0 0.80 0.74 0.70 0.72 0.78 0.95 1.3 0.72

2 0.40 0.35 0.39 0.45 0.46 0.48 0.59 0.67 0.37
1.0 0.87 0.97 1.15 1.18 1.25 1.74 2.29 0.92

1 0.37 0.39 - - 0.51 - 0.69 - 0.37
1.0 1.06 - - 1.48 - 2.68 - 1.0

DD iteration reduction factor is calculated by log(r1)/ log(rk) where rk is
the convergence rate for aspect ratio k. Note that when k = 1, the rectangles have
aspect ratio 1:1 and the resultant partition is the same as an unweighted partition.
Therefore r1 is the convergence rate of an unweighted partition.

Figure 9.23: The factor of DD iteration reduction versus rectangle aspect ratio.
Each line represents using a different diffusion strength ||a||

134

(a) α = 0 (b) α = 2 (c) α = 10, 100

Figure 9.24: Stiffness Matrix weighting scheme adjusting based on uxx/uyy in PDE.

9.2.11 Diffusion Scalability

Experiment 11. What is the optimal rectangle aspect ratio when partitioning
a mesh for an anisotropic diffusion PDE? Does the ideal aspect ratio depend on
the strength of directionality? Does it depend on problem size and/or number of
processors? Questions 1 and 2 are discussed in Experiment 10 (section 9.2.10).
Question 3 is discussed in this section.

We solved the same problem repeatedly with a combination of different
aspect ratios, different numbers of degrees of freedom, and different numbers of
processors. We found u ∈ H2(Ω) such that

−∇ ·

 10 0
0 1

∇u+ 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.22)

u = 0 on ∂Ω (9.23)

The results are presented in Tables 9.10 and 9.11 and Figures 9.25 and 9.26.
DD iteration reduction factor equals log(r1)/ log(rk) where rk is the convergence
rate for aspect ratio k : 1. Note that 1:1 becomes an unweighted partition.

135

Table 9.10: (1st row:) DD convergence rate of ||δuk|| and (2nd row) DD iterations
reduction factor based on number of unknowns per processor and rectangle aspect
ratio. All use 64 processors.

unknowns per proc 1:1 2:1 3:1 4:1 5:1 6:1 10:1 16:1 4:1
s=0.0 1.0 1.56 1.83 2.0 2.23 3.0 4.0 stiffness

2.0× 105 0.48 0.40 0.37 0.35 0.36 0.39 0.46 0.57 0.36
1.0 0.80 0.74 0.70 0.72 0.78 0.95 1.3 0.72

8.0× 105 0.48 0.41 0.37 0.35 0.36 0.39 0.46 - 0.36
1.0 0.82 0.74 0.70 0.72 0.78 0.95 - 0.72

Figure 9.25: The factor of DD iteration reduction versus rectangle aspect ratio.
Each line represents using a different number of unknowns per processor.

Table 9.11: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on number of processors and rectangle aspect ratio. All use
2.0× 105 unknowns per processor.

processors 1:1 2:1 3:1 4:1 5:1 6:1 10:1 16:1 4:1
s=0.0 1.0 1.56 1.83 2.0 2.23 3.0 4.0 stiffness

64 0.48 0.40 0.37 0.35 0.36 0.39 0.46 0.57 0.36
1.0 0.80 0.74 0.70 0.72 0.78 0.95 1.3 0.72

512 0.56 0.47 0.43 0.42 0.42 0.43 0.53 - 0.42
1.0 0.77 0.69 0.67 0.67 0.69 0.91 - 0.67

136

Figure 9.26: The factor of DD iteration reduction versus rectangle aspect ratio.
Each line represents using a different number of processors.

From these experiments, it appears that the optimal rectangle aspect ratio
that should be used when partitioning for anisotropic diffusion is independent of
the number of unknowns per processor and mostly independent (perhaps slightly
dependent) of the number of processors.

9.2.12 Domain Shape

Experiment 12. Does the shape of the domain affect the success of using Con-
vection, Gradient, and Stiffness Matrix weighting?

We solved a convection dominated PDE on the domain pictured in Figure
9.28a. Find u ∈ H2(Ω) such that

−4u+ 104
[
− y√

x2 + y2
x√

x2 + y2

]T
· ∇u− 1 = 0 on Ω (9.24)

u = 0 on ∂Ω (9.25)

137

Figure 9.27: Solution to equation (9.24)-(9.25)

(a) Unweighted partition (b) DD convergence (c) DD convergence

Figure 9.28: Unweighted partitioning scheme solving (9.24)-(9.25)

138

(a) Weighted partition (b) DD convergence (c) DD convergence

Figure 9.29: Convection/ Stiffness Matrix weighted partitioning scheme solving
(9.25)-(9.25)

The values in figure parts (b) and (c) from Figures 9.27-9.29 are logs of the
relative residual, log10(||rk||/||r0||), and logs of the relative u increment, log10(||uk−
uk−1||/||u0||), for the DD iteration. In both cases, ||r0|| = 96.2 and ||u0|| = 2.44×
10−2.

From this experiment, you can see that using parts that favor the convec-
tion direction improves convergence even when the domain isn’t a square. The
asymptotic convergence rates of the residual and u increment were 0.36 and 0.36
respectively when using Convection or Stiffness Matrix Weighting with a con-
vection parameter of s = 3. Without weighting, the asymptotic convergence
rates are 0.77 and 0.63 respectively. In both cases, the global mesh produced
||eh|| = ||u− uh|| = 4.18× 10−6 which means that both final global solutions have
equal accuracy.

A reasonable DD Method iteration stopping criteria is when ||δuk|| = ||uk−
uk−1|| < 1

10 ||eh||. According to this criteria, it took the unweighted scheme 25
iterations to converge while it took the weighted scheme 10 iterations. Overall, the
weighted scheme found the same final solution in less time.

Next, we solved a convection dominated PDE on the domain pictured in
Figure 9.30a. Find u ∈ H2(Ω) such that

−4u+ 104
[

1√
2
− 1√

2

]T
· ∇u− 1 = 0 on Ω (9.26)

u = 0 on ∂Ω (9.27)

139

(a) Unweighted par-
tition

(b) DD convergence (c) DD convergence

Figure 9.30: Unweighted partitioning scheme solving (9.26)-(9.27)

(a) Weighted parti-
tion

(b) DD convergence (c) DD convergence

Figure 9.31: Convection/ Stiffness Matrix weighted partitioning scheme solving
(9.26)-(9.27)

The values in figure parts (b) and (c) from Figures 9.27-9.29 are logs of the
relative residual, log10(||rk||/||r0||), and logs of the relative u increment, log10(||uk−
uk−1||/||u0||), for the DD iteration. In both cases, ||r0|| = 8.19 and ||u0|| = 2.06×
10−3.

From this experiment, you can see that using parts that favor the convection
direction improves convergence even when the domain isn’t a square. The asymp-

140

totic convergence rates of the residual and u increment were 0.26 and 0.30 respec-
tively when using Convection or Stiffness Matrix Weighting. Without weighting,
the asymptotic convergence rates are 0.63 and 0.63 respectively. In both cases, the
global mesh produced ||eh|| = ||u−uh|| = 1.68× 10−8 which means that both final
global solutions have equal accuracy.

A reasonable DD Method iteration stopping criteria is when ||δuk|| = ||uk−
uk−1|| < 1

10 ||eh||. According to this criteria, it took the unweighted scheme 24
iterations to converge while it took the weighted scheme 10 iterations. Overall, the
weighted scheme found the same final solution in less time.

9.2.13 Domain Scalability

Experiment 13. When partitioning a mesh for convection dominated or anisotropic
diffusion PDEs, does the optimal subdomain rectangle aspect ratio depend on the
aspect ratio of the domain?

We solved a convection dominated PDE repeatedly on a variety of rectangle
domains with different aspect ratios. We found u ∈ H2(Ω) such that

−4u− [105 0]T · ∇u− 1 = 0 on Ω = [0, κ]× [0, 1] ∈ R2 (9.28)

u = 0 on ∂Ω (9.29)

We altered the domain by varying κ = 0.25, 1, 2, 4, 8. All solves use 2.0×105

unknowns per processor and 64 processors. The results are presented in Table 9.12
and Figure 9.32. DD iteration reduction factor equals log(r0)/ log(rk) where rk is
the convergence rate for s = k. Note that s = 0 has an aspect ratio of 1:1 and
becomes an unweighted partition.

141

Table 9.12: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on domain and subdomain aspect ratio.

κ
1:1 2:1 3:1 4:1 5:1 6:1 10:1 16:1 25:1
s=0.0 1.0 1.56 1.83 2.0 2.23 3.0 4.0 5.0

0.25 0.18 0.13 0.08 0.10 0.09 - 0.09 - -
1.0 0.84 0.68 0.74 0.71 - 0.71 - -

1 0.34 0.28 0.23 0.22 0.25 0.25 - 0.26 0.25
1.0 0.85 0.73 0.71 0.78 0.78 - 0.80 0.78

2 0.52 0.33 0.31 0.29 0.27 0.28 0.21 0.22 0.24
1.0 0.59 0.56 0.53 0.50 0.51 0.42 0.43 0.46

4 0.61 0.56 0.50 0.45 0.39 0.36 0.31 0.25 0.28
1.0 0.85 0.71 0.62 0.52 0.48 0.42 0.36 0.39

8 0.63 - 0.59 - 0.57 0.51 0.43 0.42 -
1.0 - 0.88 - 0.82 0.69 0.55 0.53 -

Figure 9.32: The factor of DD iteration reduction versus rectangle aspect ratio.
Each line represents a different domain aspect ratio for convection dominated PDE.

Next, we solved an anisotropic diffusion problem repeatedly on a variety of
rectangle domains with different aspect ratios. We found u ∈ H2(Ω) such that

−∇ ·

 10 0
0 1

∇u+ 1 = 0 on Ω = [0, κ]× [0, 1] ∈ R2 (9.30)

u = 0 on ∂Ω (9.31)

142

We altered the domain by varying κ = 0.25, 1, 2, 4. All solves use 2.0× 105

unknowns per processor and 64 processors. The results are presented in Table 9.13
and Figure 9.33. DD iteration reduction factor equals log(r0)/ log(rk) where rk is
the convergence rate for s = k. Note that s = 0 has an aspect ratio of 1:1 and
becomes an unweighted partition.

Table 9.13: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on domain and subdomain aspect ratio.

κ
1:1 2:1 3:1 4:1 5:1 6:1 10:1 16:1
s=0.0 1.0 1.56 1.83 2.0 2.23 3.0 4.0

0.25 0.37 0.31 0.29 0.30 0.29 - - 0.36
1.0 0.85 0.80 0.83 0.80 - - 0.93

1 0.48 0.40 0.37 0.35 0.36 0.39 0.46 0.57
1.0 0.80 0.74 0.70 0.72 0.78 0.95 1.3

4 0.47 0.41 - 0.35 0.34 - - 0.53
1.0 0.85 - 0.72 0.70 - - 1.19

Figure 9.33: The factor of DD iteration reduction versus rectangle aspect ratio.
Each line represents different domain aspect ratio for anisotropic diffusion PDE.

From these experiments, it appears that the optimal rectangle aspect ratio
that should be used when partitioning for anisotropic diffusion is mostly inde-
pendent (slightly dependent) of domain aspect ratio. And, the optimal rectangle
aspect ratio that should be used when partitioning for convection dominated PDEs
is notably dependent on domain aspect ratio.

143

If you keep the rectangle aspect constant at our previously determined opti-
mum of 4:1, then the DD iteration reduction factor would approach 1 as you solve
PDEs with increasingly elongated domains. These dependencies appear to be the
same dependencies we saw in Experiment 7 and Experiment 11 (sections 9.2.7 and
9.2.11). If fact, Figure 9.32 looks very much like Figure 9.15 and Figure 9.33 looks
very much like Figure 9.26.

For convection dominated PDEs, It appears that rectangle aspect ratio is
dependent on the number of subdomains that must be traversed to move across the
domain in the direction of convection. Both using more processors and/or having
a domain with a large aspect ratio in the direction of convection increases this
number and degrades the DD convergence rate. For the Edge Weighting schemes
presented in this thesis to be most effective in improving the convergence rate,
larger subdomain rectangle aspect ratios need to be used in these situations.

It also appears that Error and Flow Weighting do not suffer this dependence
(to be seen in Experiment 18 in Section 9.3.5). This is probably because Error
and Flow Weighting reduce the number of subdomains that need to be crossed
logarithmically while Convection, Gradient, and Stiffness Matrix weighting only
reduce the number linearly. This is explored more in Experiment 20 (section 9.5).

9.3 Vertex Weighting Experiments

The Vertex Weighting techniques explained in Chapter 7 include Error
Weighting and Flow Weighting. In this Section, we describe the results of ex-
periments conducted to test their performance on various PDEs, various domains,
and various problem sizes. Assume all norms without subscripts to be L2 or `2

norms.

9.3.1 Convection with Boundary Layer

Experiment 14. Does using Error and Flow Weighting improve the convergence of
Bank-Holst paradigm DD solver when solving convection dominated elliptic partial
differential equations?

144

For our first vertex weighting test, we solve the same first problem that we
tested the Edge Weighting schemes with in Experiment 1 (section 9.2.1). Therefore
you can compare these results to those. Find u ∈ H2(Ω) such that

−4u− [106 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.32)

u = 0 on ∂ΩD (9.33)

n · ∇u = 0 on ∂ΩN (9.34)

∂ΩD is the left and right side of the unit square (x = 0, 1) while ∂ΩN is the
top and bottom (y = 0, 1).

Because the solution has a boundary layer along the y axis, the finite element
solution on a uniform mesh has much error located there in the form ||u − uh||.
Therefore, when partitioning for this problem, both Error Weighting and Flow
Weighting create the same partition when the Flow Weighting parameters are set
to z(x, y) = x + 10−3, s = 2, α = 1, and β = 0. Each weighting scheme made
small parts near the y axis and bigger parts as you move in the x direction. We
partitioned this domain into 64 parts starting from a uniform mesh of 2.0 × 104

unknowns (4.0× 104 triangles). Afterward, each part refined their mesh uniformly
to 2.0× 105 unknowns. The total problem size was around 107 degrees of freedom.

(a) Weighted parti-
tion

(b) DD convergence (c) DD convergence

Figure 9.34: Error and Flow weighted partitioning scheme solving (9.32)-(9.34)

145

(a) Unweighted par-
tition

(b) DD convergence (c) DD convergence

Figure 9.35: Unweighted partitioning scheme solving (9.32)-(9.34)

The values in figure parts (b) and (c) from Figures 9.3-9.5 are logs of the
relative residual, log10(||rk||/||r0||), and logs of the relative u increment, log10(||uk−
uk−1||/||u0||), for the DD iteration. For the unweighted partition, ||r0|| = 0.66 and
||u0|| = 6.5× 10−5. For the weighted partition, ||r0|| = 0.37 and ||u0|| = 1.5× 10−4

From these experiments, you can see that using parts that facilitate infor-
mation travel in the convection direction improves convergence. The asymptotic
convergence rates of the residual and u increment were 0.34 and 0.20 respectively
when using Error or Flow Weighting. Using Error or Flow Weighting speeds up
convergence in the same fashion as using Convection, Gradient, or Stiffness Matrix
Weighting did. See Experiment 1 (section 9.2.1). This is what we expected.

Without weighting, the asymptotic convergence rates are 0.50 and 0.44
respectively. The global mesh from the unweighted partition produced ||eh|| =
||u− uh|| = 2.9× 10−9 and the global mesh from the weighted partition produced
||eh|| = ||u− uh|| = 1.17× 10−9. Since there was a boundary layer in the solution
of this convection-diffusion equation, using Error or Flow Weighting reduced the
error of the final solution by a factor of 2.5 compared to an unweighted scheme.

A reasonable DD Method iteration stopping criteria is when ||δuk|| = ||uk−
uk−1|| < 1

10 ||eh||. According to this criteria, it took the unweighted scheme 10
iterations to converge while it took the weighted scheme 6 iterations. Overall, the
weighted scheme found a solution in less time that had an error 2.5 times less also.

146

9.3.2 Convection without Boundary Layer

Experiment 15. Does using Error and Flow Weighting improve the convergence of
Bank-Holst paradigm DD solver when solving convection dominated elliptic partial
differential equations whose solutions don’t have a boundary layer?

We solve the same problem that we tested in Experiment 14 (section 9.3.1)
but add a forcing function that removes the boundary layer in the solution. We
use the same flow function, z(x, y) = x + 10−3 and parameters s = 2, α = 1, and
β = 0. Find u ∈ H2(Ω) such that

−4u− [104 0]T · ∇u− f(x, y) = 0 on Ω = [0, 2π]× [0, 2π] ∈ R2 (9.35)

u = 0 on ∂Ω (9.36)

f(x, y) = −2 sin(x) sin(y) + 104 cos(x) sin(y) (9.37)

The exact solution is u(x, y) = sin(x) sin(y) and is shown in Figure 9.12.
The results of this experiment are very similar to those in Experiment 14 (section
9.3.1) with one difference. The Error Weighting scheme did not improve conver-
gence compared to an unweighted scheme. This is expected because the final finite
element solution has uniform error on a uniform mesh as a result of not having
a boundary layer. Thus, the Error Weighting scheme behaves the same as the
unweighted scheme.

(a) Error weighting partition (b) Flow weighting partition

Figure 9.36: Error versus Flow Weighting without boundary layer.

147

Using Flow Weighting improved convergence similar to Experiment 14 (sec-
tion 9.3.1). Using the Flow Weighting scheme found the solution in 7 iterations
while the unweighted scheme took 12 iterations. However, the accuracy of the final
solution is less.

For both partitions, ||r0|| = 6.5 × 104 and ||u0|| = 4.5. The asymptotic
convergence rates of the residual and u increment were 0.20 and 0.14 respectively
when using Flow Weighting. The Error Weighting or unweighted scheme had
convergent rates of 0.48 and 0.41. The weighted partition’s final solution had error
||eh|| = ||u− uh|| = 1.1× 10−4 while the unweighted partition’s solution had error
||eh|| = 8.0 × 10−5. The Flow weighted scheme achieved 2.2× faster convergence
but also suffered 33% more error.

9.3.3 Flow Function Placement

Experiment 16. Do the Flow and Error Weighting schemes need to be aligned
with convection and/or anisotropic diffusion to achieve improved convergence?

From the previous experiments, we see that Error Weighting and Flow
Weighting improve the convergence of convection dominated problems. We spec-
ulate that these methods do this by helping information travel similar to how
rectangle parts helped in the Edge Weighting schemes because the improved con-
vergence of the Vertex Weighting schemes are similar to those of the Edge Weight-
ing schemes. But the improved convergence can also be a result of another reason
such as the presence of small parts or the presence of many parts on the boundary
of our domain or something we didn’t think about.

To test this, we will move the Flow function around. We will solve (9.32)-
(9.34) with various Flow functions. Each test uses parameters s = 1, α = 1, β = 0,
and ε = 10−3.

148

Table 9.14: DD convergence rates for different flow functions

flow function
convergence
||rk||/||r0||

convergence
||δk||/||u0|| figure

z(x, y) = x+ ε 0.36 0.21 9.37a
z(x, y) = |x− 0.5|+ ε 0.35 0.29 9.37b
z(x, y) = |x− 1|+ ε 0.42 0.26 9.37c

z(x, y) = 1 0.50 0.44 9.35
z(x, y) = y + ε 0.70 0.51 9.38a

z(x, y) = |y − 0.5|+ ε 0.68 0.53 9.38b
z(x, y) = |y − 1|+ ε 0.70 0.51 9.38c

(a) z(x, y) = x+ ε (b) z(x, y) = |x− 0.5|+ ε (c) z(x, y) = |x− 1|+ ε

Figure 9.37: Flow Weighting with z(x, y) = |x− c|+ ε solving (9.32)-(9.34)

(a) z(x, y) = y + ε (b) z(x, y) = |y − 0.5|+ ε (c) z(x, y) = |y − 1|+ ε

Figure 9.38: Flow Weighting with z(x, y) = |y − c|+ ε solving (9.32)-(9.34)

When you compare the results in Table 9.14 to the Edge Weighting schemes
in Experiment 1 (section 9.2.1) solving the same problem, you notice that Flow
Weighting with z(x, y) = |x − c| + ε is behaving like Convection Weighting (see
Figure 9.4) and Flow Weighting with z(x, y) = |y− c|+ ε is behaving like Perpen-
dicular Convection Weighting (see Figure 9.5). This confirms that Flow Weighting

149

and Error Weighting have a direction in which they help information to travel.
Additionally, Table 9.15 from the Experiment 17 (section 9.3.4), shows that Flow
and Error Weighting don’t improve convergence in the absence of both convection
and anisotropic diffusion.

9.3.4 Flow Function Parameter

Experiment 17. What is the optimal Flow Function parameter s in z−s(x, y)
when using Flow Weighting? Does the optimal value depend on convection strength?
Does it depend on problem size and/or number of processors? Does it depend on
domain aspect ratio? Questions 1 and 2 are discussed in this section. Questions 3
and 4 are discussed in Experiment 18 (section 9.3.5).

We solved the same problem repeatedly with a combination of different flow
parameters, different convection strengths, different numbers of degrees of freedom,
and different numbers of processors. We found u ∈ H2(Ω) such that

−4u− [β 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.38)

u = 0 on ∂Ω (9.39)

We used flow function z(x, y) = x+10−3. The results from using 64 proces-
sors with each processor refined to 2.0 × 105 unknowns is displayed in Table 9.15
and Figure 9.39. (The results from other numbers of processors and problem sizes
are reported in Section 9.3.5.) The results from 64 processors demonstrate that
the ideal flow parameter is independent of convection strength.

From this data, I would say that the ideal flow parameter is between 1.5
and 2.0 inclusive. You want the smallest flow parameter that produces satisfactory
convergence rates. When using flow weighting on a problem whose finite element
solution has uniform error ||u − uh||L2(tk) ≈ c ∀tk on a uniform mesh, increasing
the flow parameter decreases final solution accuracy. Theorem 7.2.2 describes this
and Table 7.3 displays the ratio of error increase for common s values.

It is interesting to note that when ||b||h = 0 corresponding to a pure diffusion
PDE, using Flow Weighting does not degrade DD convergence. This differs from
Convection Weighting which does degrade convergence when convection is absent.

150

Table 9.15: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on ||b||h and flow weighting parameter s.

||b||h ||b|| s=0.0 0.5 0.75 1.0 1.5 2.0 2.25 2.5 3.0

347 106 0.34 0.31 0.27 0.25 0.19 0.15 0.18 0.25 0.24
1.0 0.92 0.82 0.78 0.65 0.57 0.63 0.78 0.76

34.7 105 0.34 0.31 0.28 0.20 0.09 0.09 0.08 0.12 0.08
1.0 0.92 0.85 0.67 0.45 0.45 0.43 0.51 0.43

3.47 104 0.30 0.27 0.25 0.19 0.09 0.07 - 0.05 0.06
1.0 0.92 0.87 0.72 0.5 0.45 - 0.4 0.43

0.347 103 0.14 - - 0.12 0.12 0.13 - - -
1.0 - - 0.93 0.93 0.96 - - -

0.0 0.0 0.37 - 0.38 - - 0.33 - 0.35 -
1.0 - 1.03 - - 0.90 - 0.95 -

Figure 9.39: The factor of DD iteration reduction versus flow parameter. Each
line represents using a different convection strength ||b||h

(a) s = 0.0 (b) s = 0.5 (c) s = 0.75

151

(d) s = 1.0 (e) s = 1.5 (f) s = 2.0

Figure 9.40: Different flow parameter s values partitioning the unit square into 64
parts.

9.3.5 Vertex Weighting Scalability

Experiment 18. What is the optimal flow function parameter s in z−s(x, y) when
using Convection, Gradient, and Stiffness Matrix weighting? Does the ideal aspect
ratio depend on convection strength? Does it depend on problem size and/or num-
ber of processors? Does it depend on domain aspect ratio? Questions 1 and 2 were
discussed in section 9.3.4. Questions 3 and 4 are discussed in this section.

We solved the same problem repeatedly with a combination of different
flow parameters, different numbers of degrees of freedom, and different numbers of
processors while keeping ||b||h = 34.2 constant. For the base cases of 2.0× 105 in
Table 9.16 and 64 processors in Table 9.3.5 this is accomplished by letting β = 105.
Then as you double the number of unknowns or double the number of processors,
you increase β by a factor of

√
2. We used flow function z(x, y) = x+ 10−3

We found u ∈ H2(Ω) such that

−4u− [β 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.40)

u = 0 on ∂Ω (9.41)

152

Table 9.16: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on number of unknowns per processor and flow weighting
parameter s. All use 64 processors.

unknowns per proc s=0.0 0.5 0.75 1.0 1.5 2.0 2.5

2.0× 105 0.34 0.31 0.28 0.20 0.09 0.09 0.12
1.0 0.92 0.85 0.67 0.45 0.45 0.51

4.0× 105 0.37 0.33 0.29 0.22 0.10 0.07 0.07
1.0 0.90 0.80 0.66 0.43 0.37 0.37

8.0× 105 0.38 0.36 - 0.23 0.10 0.07 0.07
1.0 0.95 - 0.66 0.42 0.36 0.36

When s = 0, the partition is the same as using no weighting. Therefore the
factor of DD iteration reduction equals log(r0)/ log(rk) where rk is the convergence
for s = k. These factors are displayed in Figure 9.41 and Table 9.16 beneath the
convergence rates.

Figure 9.41: The factor of DD iteration reduction versus flow weighting parameter.
Each line represents using a different number of unknowns per processor.

From this experiment, it appears that the number of degrees of freedom
per processor does not affect the optimal flow parameter of 1.5 ≤ s ≤ 2.0 that we
concluded in Experiment 17 (section 9.3.4).

153

Table 9.17: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on number of processors and flow weighting parameter s.
All use 2.0× 105 unknowns per processor.

processors s=0.0 0.5 0.75 1.0 1.5 2.0 2.5

64 0.34 0.31 0.28 0.20 0.09 0.09 0.12
1.0 0.92 0.85 0.67 0.45 0.45 0.51

128 0.52 0.49 0.43 0.30 0.14 0.14 -
1.0 0.92 0.77 0.54 0.33 0.38 -

256 0.64 0.64 0.60 0.51 0.20 0.24 -
1.0 1.0 0.87 0.66 0.28 0.31 -

512 0.70 0.68 0.66 0.63 0.37 0.18 -
1.0 0.92 0.86 0.77 0.36 0.21 -

Figure 9.42: The factor of DD iteration reduction versus rectangle aspect ratio.
Each line represents using a different number of processors.

From this experiment, it appears that the number of processors does not
affect the optimal flow parameter of 1.5 ≤ s ≤ 2.0 that we concluded in Exper-
iment 17 (section 9.3.4). This differs from the Convection Weighting parameter
which seemed to be dependent on number of processors. Figure 9.40 displays what
different s partitions look like when dividing the unit square into 64 parts. Figure
9.43 pictures some s partitions into 256 parts.

154

(a) s = 1 (b) s = 1.5 (c) s = 2

Figure 9.43: Different s values partitioning the unit square into 256 parts.

Next, we solved a convection dominated PDE repeatedly on a variety of rect-
angle domains with different aspect ratios using Flow Weighting and flow function
z(x, y) = x+ 10−3. We found u ∈ H2(Ω) such that

−4u− [105 0]T · ∇u− 1 = 0 on Ω = [0, κ]× [0, 1] ∈ R2 (9.42)

u = 0 on ∂Ω (9.43)

We altered the domain by varying κ = 0.25, 1, 2, 4, 8. All solves use 2.0×105

unknowns per processor and 64 processors. The results are presented in Table 9.18
and Figure 9.44. DD iteration reduction factor equals log(r0)/ log(rk) where rk is
the convergence rate for s = k. Note that s = 0 has an aspect ratio of 1:1 and
becomes an unweighted partition.

Table 9.18: (1st row:) DD convergence rate of ||δuk|| and (2nd row:) DD iterations
reduction factor based on domain and flow weighting parameter s.

κ s=0.0 0.75 1.0 1.5 2.0 2.5

0.25 0.18 0.13 0.12 0.06 0.13 0.11
1.0 0.84 0.81 0.61 0.84 0.78

1 0.34 0.28 0.20 0.09 0.09 0.12
1.0 0.85 0.67 0.45 0.45 0.51

2 0.52 0.48 0.28 0.20 0.08 0.08
1.0 0.89 0.51 0.41 0.26 0.26

4 0.61 0.59 0.43 0.17 0.10 0.10
1.0 0.94 0.59 0.28 0.21 0.21

8 0.63 0.62 0.54 0.22 0.12 0.07
1.0 0.97 0.75 0.31 0.22 0.17

155

Figure 9.44: The factor of DD iteration reduction versus flow weighting parameter.
Each line represents a different domain aspect ratio for convection dominated PDE.

From this experiment, it appears that the aspect ratio of the domain does
not affect the optimal flow parameter of 1.5 ≤ s ≤ 2.0 that we concluded in Ex-
periment 17 (section 9.3.4). This differs from the Convection Weighting parameter
which seemed to be dependent on domain aspect ratio (as seen in Experiment 13
in Section 9.2.13).

It is interesting to note that Figure 9.44 looks very similar to Figure 9.42
which suggests that increasing the number of processors used to solve a convection
dominated PDE has a similar effect as increasing the domain aspect ratio in the
direction of convection. We also saw this correspondence in Experiment 13 (section
9.2.13) when using Convection Weighting. This is explored further in Experiment
20 (section 9.5).

9.4 Mixed Weighting Experiments

Experiment 19. What are the effects are using Edge Weighting and Vertex Weight-
ing together? If we apply the best cases of both do we get a result better than each
individually?

We solved the same problem repeatedly using Convection Weighting (on the

156

graph edges) combined with Flow Weighting (on the graph vertices). We tested
a combination of different convection parameters sc combined with different flow
parameters sf which is like performing Experiments 3 and 17 simultaneously.

We found u ∈ H2(Ω) such that

−4u− [105 0]T · ∇u− 1 = 0 on Ω = [0, 1]× [0, 1] ∈ R2 (9.44)

u = 0 on ∂Ω (9.45)

Flow function z(x, y) = x + 10−3 and 64 processors refined to 2.0 × 105

unknowns each were used. The results are displayed in Tables 9.19 and 9.20.
The first column of data is the convergence rates of ||δuk|| using only convection
weighting. These are the same rates that we saw in Experiment 3 (section 9.2.3)
when β = 105 in Table 9.2. The first row of data is the convergence rates using
only flow weighting. These are the same rates that we saw in Experiment 17
(section 9.3.4) when β = 105 in Table 9.15. The values across the top row are the
flow weighting parameters and the values down the first column are the convection
weighting parameters.

Table 9.19: DD convergence rates of ||δuk|| for combinations of convection weight-
ing and flow weighting.

sc sf = 0.0 0.5 0.75 1.0 1.5 2.0
0.0 0.34 0.31 0.28 0.20 0.09 0.09
1.0 0.28 0.25 0.22 0.19 0.12 0.13
1.56 0.23 0.21 0.16 0.16 0.13 0.11
1.83 0.22 0.21 0.17 0.15 0.15 0.12
2.0 0.25 0.21 0.18 0.17 0.15 0.13
2.23 0.25 0.21 0.18 0.15 0.18 0.15

In Table 9.19, the convergence rate for the unweighted partition is the top
left data entry 0.34. For each convergence rate in the table, log(0.34)/ log(rk)
equals the number of DD iterations reduction factor. These factors are displayed
in Table 9.20.

157

Table 9.20: DD iteration reduction factors for combinations of convection weighting
and flow weighting.

sc sf = 0.0 0.5 0.75 1.0 1.5 2.0
0.0 1.0 0.92 0.85 0.67 0.45 0.45
1.0 0.85 0.78 0.71 0.65 0.51 0.53
1.56 0.73 0.69 0.59 0.59 0.53 0.49
1.83 0.71 0.69 0.61 0.57 0.57 0.51
2.0 0.78 0.69 0.63 0.61 0.57 0.53
2.23 0.78 0.69 0.63 0.57 0.63 0.57

How these two weighting schemes combine is interesting. If you restrict flow
weighting to sf ≤ 1 and allow convection weighting all possibilities 0 ≤ sc ≤ 4.0,
then using both methods together is better than using either individually. However,
when flow weighting is applied with parameter sf > 1.0, it is better by itself
and adding convection weighting degrades its performance. The performance of
convection weighting is always improved by adding flow weighting.

When you apply Error Weighting to −4u+ [β 0]T · ∇u− 1 = 0, it creates
a partition similar to Flow Weighting with sf = 2 because of the boundary layer.
Therefore if you are using Error Weighting on this problem, then adding Convection
Weighting degrades the convergence.

(a) sf = 0.0 (b) sf = 0.5 (c) sf = 0.75

158

(d) sf = 1.0 (e) sf = 1.5 (f) sf = 2.0

Figure 9.45: Each partition has Convection parameter sc = 2.0 and 64 parts. Flow
parameter sf varies.

9.5 DD Convergence Dependence

Experiment 20. When solving convection dominated PDEs or anisotropic diffu-
sion PDEs with an unweighted scheme, does the Bank-Holst paradigm DD solver
convergence rate of ||δuk|| depend on the number of processors and/or domain
aspect ratio?

Using an unweighted scheme, we solved the same convection dominated
problem repeatedly with different numbers of processors and different domain as-
pect ratios while keeping ||b||h = 34.2 constant. For the base cases of 64 processors
in Table 9.21 and domain aspect ratio 1:1 in Table 9.22, this is accomplished by
letting β = 105. Then as you double the number of processors, you increase β by
a factor of

√
2 and when you double the domain aspect ratio, you decrease β by a

factor of
√

2. We found u ∈ H2(Ω) such that

−4u− [β 0]T · ∇u− 1 = 0 on Ω = [0, κ]× [0, 1] ∈ R2 (9.46)

u = 0 on ∂Ω (9.47)

The results are shown in Tables 9.21 and 9.22 and Figure 9.46.

159

Table 9.21: DD convergence rate of ||δuk|| based on the number of processors and
κ = 1 for convection dominated PDE.

processors 9 16 25 36 49 64 128 256 512 900
hops = √proc 3 4 5 6 7 8 11.3 16 22.6 30

convergence rate 0.07 0.15 0.22 0.28 0.31 0.34 0.52 0.64 0.70 0.71

Table 9.22: DD convergence rate of ||δuk|| based on κ and the number of processors
equal 64 for convection dominated PDE.

κ 7.11−1 4−1 2.56−1 1.78−1 1.31−1 1 2 4 8 14
hops = 8

√
κ 3 4 5 6 7 8 11.3 16 22.6 30

convergence rate 0.13 0.18 0.19 0.23 0.29 0.34 0.52 0.61 0.63 0.65

Next, using an unweighted scheme, we solved the same anisotropic diffu-
sion problem repeatedly with different numbers of processors and different domain
aspect ratios. We found u ∈ H2(Ω) such that

−∇ ·

 10 0
0 1

∇u− 1 = 0 on Ω = [0, κ]× [0, 1] ∈ R2 (9.48)

u = 0 on ∂Ω (9.49)

The results are shown in Tables 9.23 and 9.24 and Figure 9.46.

Table 9.23: DD convergence rate of ||δuk|| based on the number of processors and
κ = 1 for anisotopic diffusion PDE.

processors 9 16 25 36 49 64 128 256 512 900
hops = √proc 3 4 5 6 7 8 11.3 16 22.6 30

convergence rate - 0.41 0.43 0.43 0.47 0.48 0.52 0.54 0.56 0.57

Table 9.24: DD convergence rate of ||δuk|| based on κ and the number of processors
equal 64 for anisotopic diffusion PDE.

κ 7.11−1 4−1 2.56−1 1.78−1 1.31−1 1 2 4 8 14
hops = 8

√
κ 3 4 5 6 7 8 11.3 16 22.6 30

convergence rate - 0.38 0.41 0.45 0.45 0.48 0.51 0.51 0.50 0.44

160

Figure 9.46: DD convergence rate of ||δuk|| based on number of processors or
domain aspect ratio.

Regarding convection dominated PDEs, it appears that the DD convergence
rate of ||δuk|| has a strong dependence on the number of subdomains that must be
crossed when traversing the entire domain in the direction of convection (hereafter
referred to as hops). Regarding anisotropic diffusion PDEs, there appears to be
only a slight dependence on hops.

Each processor in the Bank-Holst paradigm maintains a fine mesh in its
own subdomain and a coarse mesh of the entire domain. Information from all of
these degrees of freedom is utilized in the Bank-Holst paradigm DD solver. This
has been shown to reduce this method’s dependence on the number of processors
[15]. In all of the experiments in this dissertation including the previous ones in
this subsection, each processor has had approximately 1

4 of its degrees of freedom
outside its own subdomain and 3

4 of its degrees of freedom inside its subdomain.
(An original coarse mesh of 2.0 × 104 unknowns gets partitioned and then each
processor refines to 2.0× 105.)

To test if the dependence that we have just observed is a result of each
processor not placing enough of its degrees of freedom outside its own subdomain,

161

we repeated the experiments and had each processor place approximately 3
5 of its

degrees of freedom outside of its subdomain and 2
5 inside. (An original coarse mesh

of 1.0×105 unknowns gets partitioned and then each processor refines to 2.0×105.)
The results are displayed in Tables 9.25 and 9.26 and Figure 9.47.

Table 9.25: DD convergence rate of ||δuk|| based on the number of processors and
κ = 1 for convection dominated PDE and 100k/200k refinement.

processors 9 16 25 36 49 64 128 256 512 900
hops = √proc 3 4 5 6 7 8 11.3 16 22.6 30

convergence rate 0.05 0.09 0.11 0.25 0.21 0.23 0.45 0.59 0.65 0.65

Table 9.26: DD convergence rate of ||δuk|| based on the number of processors for
anisotropic diffusion PDE and 100k/200k refinement.

processors 9 16 25 36 49 64 128 256 512 900
hops = √proc 3 4 5 6 7 8 11.3 16 22.6 30

convergence rate 0.28 0.31 0.34 0.39 0.41 0.41 0.45 0.49 0.50 0.50

Figure 9.47: DD convergence rate of ||δuk|| based on the number of processors. The
solid lines represent 20k/200k refinement and the dashed lines represent 100k/200k
refinement.

162

This new experiment suggests that the dependencies we are seeing are a
feature of the Bank-Holst paradigm DD solver and are not a result of each processor
failing to put enough degrees of freedom outside its own subdomain.

The experiments in this subsection help us understand the dependancies we
saw in Experiment 7 (section 9.2.7), Experiment 11 (section 9.2.11), Experiment
13 (section 9.2.13), and Experiment 18 (section 9.3.5). With convection dominated
PDEs, the DD convergence rate of ||δuk|| appears to be roughly proportional to
the log of the number of hops (convergence ≈ 0.3051 ln(hops) − 0.2659). This
suggests that you need to reduce the number of hops in a logarithmic fashion in
order to achieve a significant improvement in the DD convergence rate of ||δuk||.
When holding the flow weighting parameter constant and varying the starting
number of hops, Error Weighting and Flow Weighting do this but when holding the
convection weighting parameter constant and varying the starting number of hops,
Convection Weighting and Stiffness Matrix Weighting only reduce the number of
hops in a linear fashion.

With anisotropic diffusion PDEs, the DD convergence rate of ||δuk|| ap-
pears to be roughly linearly proportional to the number of hops (convergence ≈
0.0061(hops)−0.4155). Therefore both the FlowWeighting and ConvectionWeight-
ing schemes achieve significant improvement in the DD convergence rate of ||δuk||
when their respective parameters are held constant and the starting number of
hops is varied.

9.6 DD Communication Time

Experiment 21. What is the ratio of communication time to computation time
during one iteration of the Bank-Holst paradigm DD solver?

Lemmas 5.0.11 and 5.0.12 discuss the relevance of the ratio of computation
time to communication time. To summarize, it is advantageous to use a certain
partitioning scheme even if it increases communication time per DD iteration as
long as it decreases the total number of iterations sufficiently. The reduction
necessary depends on α, the ratio of computation time to communication time.

163

In order to measure α, we added code to PLTMG that measures communi-
cation time and computation time. Then we solved a variety of different problems
using PLTMG’s normal partitioning scheme when our computer cluster BOOMwas
free from other jobs. Table 9.27 shows the results of solving −4u− 105ux− 1 = 0
on the unit square with the dirichlet boundary condition u = 0. The times in
Table 9.27 are in seconds and refer to one iteration of the Bank-Holst paradigm
DD solver.

Table 9.27: Ratio of computation to communication time for convection-diffusion

number of
processors

unknowns per
processor

communication
time

computation
time α

64 2.0× 105 0.051 32.7 641
64 3.0× 105 0.072 56.7 788
128 2.0× 105 0.132 36.5 277
128 3.0× 105 0.186 69.2 372
256 2.0× 105 0.318 44.1 139
256 3.0× 105 0.420 89.9 214

Table 9.28 shows the results of solving −10uxx − uyy − 1 = 0 on the unit
square with the dirichlet boundary condition u = 0. The times in Table 9.28 are
in seconds and refer to one iteration of the Bank-Holst paradigm DD solver.

Table 9.28: Ratio of computation to communication to time for diffusion

number of
processors

unknowns per
processor

communication
time

computation
time α

64 2.0× 105 0.051 32.0 627
64 3.0× 105 0.072 61.6 856
128 2.0× 105 0.132 30.4 230
128 3.0× 105 0.170 67.7 398
256 2.0× 105 0.327 35.2 108
256 3.0× 105 0.420 69.4 165

By Lemma 5.0.12, these large α > 100 values together with the fact that our
weighting schemes achieve DD iteration reduction factors 0.25 < r < 0.75 imply
that we could increase the interface length up to a factor of 34 which by Corollary
5.0.14 means that we could use rectangles with aspect ratios up to 4622! Our

164

preference of using rectangles with aspect ratios of 4:1 or 8:1 increase the interface
length by a factor of only 1.2 or 1.6 respectively and surely are safe to use.

More important than the ratio of computation time to communication time
is the ratio of the iteration time portion which is independent of interface length
versus the iteration time portion which grows with interface length. Section 5.4
explains this. By analyzing all of our experiments, we found that communica-
tion time is indeed proportional to interface length. Each iteration of Bank-Holst
paradigm DD solver makes 3 or more calls to MPI_ALLGATHERV to exchange
boundary information. Communication time is the sum of all these calls and the
associated overhead such as some interpolation procedures. We found that if you
double the interface size, you double the communication time.

(a) 64 parts (b) 128 parts (c) 256 parts

Figure 9.48: Partitions of the unit square into 64, 128, and 256 processors.

Next we studied whether there was a correlation with slope 6= 1 between
computation time and interface size. During each DD iteration, the Bank-Holst
paradigm DD solver solves a system of equations as described in Algorithm 7 (sec-
tion 3.3). Modifying the interface and varying the partition affects the matrix A∗.
This in turn affects the time needed to compute the incomplete LU preconditioner
for the Conjugate Gradient method which is used to solve A∗δU = R∗. Computing
ILU is the majority of the computation time.

Table 9.29 lists the times in seconds to complete the computation of one
iteration of Bank-Holst paradigm DD solver for experiments 1-12. The time it
took the weighted and unweighted partition to solve the same problem are paired
together. The pairs in the range [20, 60]× [20, 60] are plotted in Figure 9.49. The

165

best fit line through all 26 data points is y = 1.03x − 2.34. Since the slope is
essentially equal to 1, we conclude that the computation time is independent of
whether we use our weighted scheme or not.

Table 9.29: Time to complete the computation of one iteration of DD in seconds
listed by experiment number.

1 2a 2b 2c 2d 3a 3b 3c 4 5
unweighted 33.3 38.0 38.5 42.0 29.9 32.0 38.6 28.3 38.6 49.2
weighted 39.2 36.3 42.3 45.0 31.5 36.1 34.2 26.8 34.2 43.4

6a 6b 6c 7a 7b 7c 7d 7e 7f 10a
unweighted 38.9 35.4 50.4 41.7 42.0 63.1 186 127 334 39.2
weighted 39.0 33.6 48.3 42.0 54.0 64.7 151 118 364 40.1

10b 10c 11a 11b 12a 12b - - - -
unweighted 35.4 28.6 76.5 404 48.3 47.2 - - - -
weighted 38.5 27.4 60.9 413 45.3 44.2 - - - -

Figure 9.49: Time in seconds for an unweighted and weighted partition to complete
the computation of one iteration of DD.

166

9.7 Summary and Conclusions

In conclusion, the theory of Chapter 8 and the numerical experiments of
Chapter 9 demonstrate that domain decomposition methods converge faster if
whenever the elliptic PDE being solved has strong convection or anisotropic dif-
fusion, then this information is incorporated into the partitioning process. Re-
gardless of boundary conditions, domain shape, force functions, or reaction terms,
these directional PDEs experience a reduction factor in the number of DD itera-
tions required between 0.25 and 0.75. Also, we solved problems with up to 900
processors and with up to 8.0 × 105 unknowns per processor and these problems
experienced the same reduction factors between 0.25 and 0.75.

A specific and notable example was when 512 processors solved for 1
4 billion

unknowns. The PDE −4u− [104.5 0]T · ∇u− 1 = 0 was solved on the unit square
with u = 0 Dirichlet boundary conditions. Without using any weighting schemes
to help partition the domain, it took our 1 teraflop cluster 2.8 hours to find the
solution with a ||δuk|| DD convergence rate of 0.68. When we used our stiffness
matrix weighting scheme, it took only 1.3 hours! It had a ||δuk|| DD convergence
rate of 0.40.

Five novel graph partitioning weighting schemes were presented in this dis-
sertation; Convection weighting, Gradient weighting, Stiffness Matrix weighting,
Error weighting, and Flow weighting. The first three use graph edge weighting to
create rectangle shaped subdomains parallel to convection or anisotropic diffusion.
The last two use vertex weighting to create increasingly sized subdomains that go
from small to large when you move in the direction of convection or diffusion.

9.7.1 Edge Weighting schemes

With the correct choice of parameters, the first three schemes create essen-
tially the same partition and therefore perform the same. One major difference
is that Convection and Gradient weighting require the user to manually modify
parameters to control the rectangle aspect ratios while the Stiffness Matrix weight-
ing does this automatically. Another major difference is that Gradient weighting

167

needs the solution’s gradient to be parallel to convection or anisotropic diffusion
to work well. Note that Convection weighting can be used on anisotropic diffu-
sion problems by using the prominent diffusion direction in the weighting formula
instead of the usual convection direction vector.

When using Convection or Gradient weighting, the convection parameter
s needs to be set to zero when both ||b||h/||a|| < 1 and λ1(a)/λ2(a) < 2. When
||b||h/||a|| ≥ 1 and

√
rP ≤ 20 where P is the number of processors and r is the

domain aspect ratio in the direction of convection, then s must be set to create
subdomain rectangles with aspect ratios of at least 4:1 (with METIS, use s ≥ 2).
When ||b||h/||a|| ≥ 1 and

√
rP > 20, then s must be set to create rectangles with

aspect ratios of at least 8:1 (with METIS, use s ≥ 3). Our experiments suggest
that when

√
rP > 30, the rectangle aspect ratio needs to be increased again. Data

suggests that the rectangle subdomain aspect ratio needed for optimal convergence
is proportional to

√
rP , the square root of the product between the number of

processors and the domain aspect ratio in the direction of convection. (See section
9.5 for more details.)

For anisotropic diffusion problems, when 4 ≥ λ1(a)/λ2(a) ≥ 1, then s must
be set to create rectangles with aspect ratio equal λ1(a)/λ2(a) : 1 and when
λ1(a)/λ2(a) > 4, then s must be set to create rectangles with aspect ratio of
4:1.

The Stiffness Matrix Weighting scheme automatically adjusts itself in ac-
cordance with the description in the previous two paragraphs with one exception.
It automatically does 4 of the 5 adjustments listed, but when solving convection
dominated problems with

√
rP ≥ 20, it doesn’t automatically increase the rect-

angle aspect ratio. In these situations, Stiffness Matrix Weighting needs α = 100
and β = −15 to create rectangles with aspect ratio 8:1.

The Edge Weighting schemes do not affect the accuracy of the final finite
element solution. The final global mesh is the same whether you use an edge
weighting scheme or not.

Overall, the Edge Weighting schemes enable DD to finish faster because
they have a faster convergence rate than unweighted schemes and one iteration of

168

either weighted or unweighted takes the same time as shown in Section 9.6.

9.7.2 Vertex Weighting schemes

The vertex weighting schemes are powerful in that they can both improve
DD convergence and affect the accuracy of the final finite element solution. Using
Error Weighting will never degrade the accuracy and when it’s possible to improve
accuracy, it will accomplish that. Flow Weighting can both improve and degrade
the final solution’s accuracy. Therefore the user needs to be especially careful when
using it.

For the most part, Flow Weighting is a theoretical idea to help us study
the behavior of Error Weighting and shouldn’t be employed. If a PDE has a finite
element solution that has uniform error on a uniform mesh then Error Weighting
performs exactly like unweighting and accomplishes nothing. But in this situation,
Flow Weighting could be used to improve the convergence of the DD method if
the PDE has strong convection or anisotropic diffusion. However, using Flow
Weighting will also reduce the accuracy of the final solution as compared to using
an unweighted scheme. Furthermore, one could use an unweighted scheme with
fewer degrees of freedom to compute both a more accurate finite element solution
and in less time than Flow Weighting. Therefore when Error Weighting cannot be
used, Flow Weighting isn’t desirable either.

When both vertex weighting and edge weighting can be applied, our data
shows that vertex weighting achieves the fastest convergence. And, vertex weight-
ing doesn’t need to be adjusted as

√
rP increases.

9.7.3 Application

From Experiment 19 (section 9.4), we see that edge weighting and vertex
weighting don’t combine well when they are both calibrated to perform their best.
So, which scheme should be used when? The simple answer is; use Error Weighting
when it works well and use Stiffness Matrix Weighting otherwise. And don’t try
to combine them.

169

When Error Weighting performs well, it outperforms the edge weighting
schemes because it both achieves faster convergence and simultaneously improves
the accuracy of the final solution. Error Weighting is successful when strong con-
vection or anisotropic diffusion is present and the finite element solution has error
||∇(u−uh)||L2(tk) that gets larger as you move in the convection direction or promi-
nent diffusion direction. From our experiments, we observed that this occurs in
PDEs with strong convection whose solutions have a boundary layer. We did
not observe this in convection problems without a boundary layer and we did not
observe this in anisotropic diffusion problems.

For anisotropic diffusion problems and convection problems without a bound-
ary layer, we observed that Stiffness Matrix weighting worked best.

Alternatively, one can use Flow Weighting in place of Error Weighting (in
situations when Error Weighting would work well) to gain more control over the
partition. And one could use Convection or Gradient Weighting in place of Stiffness
Matrix Weighting to gain more control over the partition. Flow, Convection, and
Gradient Weighting have parameters the user can change, however, our data shows
that Error Weighting and Stiffness Matrix Weighting already perform like Flow
Weighting and Convection Weighting with optimally set parameters.

Chapter 10

Future Research

This section presents ideas for further research.

10.1 Singularities

When there are singularities involved in (1.1) - (1.3), how can the domain
be partitioned differently to speed up convergence and/or improve the accuracy
of the final solution? Singularities can be present in the stiffness matrix when
singularities exist in coefficients a, b, and c or singularities can be present in the
load vector when singularities are present in f , or singularities can be present in
the boundary conditions affecting both the load vector and stiffness matrix. All
three of these can create singularities in the final solution u or just make solving
for u difficult.

170

171

(a) Load vector singularity (b) Boundary singularity

Figure 10.1: Singularity examples

Figures 10.1 shows two examples of singularities present in (1.1) - (1.3). The
PDE causing Figure 10.1a has a load vector which forces the function (x2 + y2)− 1

2

to show up in the solution creating a singularity at the origin. Figure 10.1b’s
underlying PDE has a domain of the unit circle with a crack on the x axis. There
are dirichet boundary conditions on one side of the crack and neumann boundary
conditions on the other. This creates a singularity at the origin.

During the research for this thesis, many experiments were conducted on
singular problems with mixed results. One positive result was that numerical
experiments indicated that the Error Weighting Scheme helps these problems to
converge versus not converging. That scheme places many small parts near the
singularity which helps resolve the solution there.

In the future, we would like to continue studying how weighting schemes can
improve convergence and/or accuracy in the different types of singular problems
mentioned above.

172

(a) Error and Contour (b) Error Weighting (c) Error and Gradient

Figure 10.2: Different partitions using different weighting schemes to address a
singularity.

Gradient Weighting Schemes produced the three different partitions in Fig-
ure 10.2 and 10.3. Each partition has 128 parts and each domain has a singularity
in the middle. Figure 10.2a and 10.3a encourage contour (perpendicular to gra-
dient) cutting in addition to error weighting. Figure 10.2c and 10.3c encourage
gradient cutting in addition to error weighting. Some numerical experiments were
done to see which partition is better, but the results were inconclusive. Further
research is needed to determine the effects.

(a) Error and Contour (b) Error Weighting (c) Error and Gradient

Figure 10.3: Different partitions using different weighting schemes to address a
singularity with METIS.

A sixth type of weighting scheme that was not presented in Chapters 5 and 7
is Solution Weighting. If you increase the edge weights of the representative graph
where the solution u approaches infinity, the partitioner will avoid cutting there.
This will place the entire singularity in one subdomain as shown in Figure 10.4. Is
it better for one processor to deal with the singularity and then communicate the

173

information to other processors during the DD Method, or is it better for multiple
processors to each have a portion of the singularity in their subdomain? This is a
question for future research.

Figure 10.4: Singularity isolated to one processor

10.2 Adaptive Refinement

Most of the experiments and discussion in this thesis were done using uni-
form refinement. When individual processors refined their parts uniformly to dif-
ferent sized elements than other processors, we saw global meshes that were not
overall uniform, but they were uniform in each partition part.

Using adaptive refinement before partitioning was discussed briefly in Sec-
tion 7.4 and a few other features of adaptive refinement were discussed elsewhere.
More work can be done on the effects of adaptive refinement in conjunction with
the weighting schemes presented in this thesis. After using each of the different
weighting schemes to partition a mesh, what is the difference between the final
global meshes if each partition refines their part adaptively instead of uniformly
during the DD Method iteration?

We investigated this during the research of this thesis but were met with
inconclusive results in most cases. To be more specific, start with a uniform mesh

174

of the unit square and consider partitioning it two different ways. Partition into
squares like Figure 5.2 and rectangles like Figure 5.3a. Rectangles are created by
using an edge weighting scheme from Chapter 5. Call these partitions 1 and 2
respectively.

After partitioning, if you refine each part of each partition uniformly and
then combine the parts, you will have two global meshes. Both global meshes will
be identical. However, if after partitioning, you refine each part of each partition
adaptively and then combine the parts, you will have two different global meshes.
This will affect the accuracy of the final global finite element solution as discussed in
Chapter 6. Which solution is more accurate? When we investigated this question,
we had trouble removing the variance to make a conclusive determination.

Five weighting schemes were presented in this thesis with a sixth mentioned
in the preceding section. Future research can study the effects of these schemes
and combinations of these schemes on final solution accuracy when mixed with
adaptive refinement.

Also when singularity problems are studied, adaptive refinement study
should be mixed into that too. It may be the case, that there are no weight-
ing schemes which will improve the convergence rate of singular problems. The
only benefit may be that certain partitions improve the accuracy of the final finite
element solution when used in conjunction with adaptive refinement.

10.3 Preconditioned Conjugate Gradient

Preconditioned Conjugate Gradient is a type of Krylov Subspace Method.
In Section 8.1, preconditioned Richardson Iteration was introduced for solving
Ax = f . Algorithm 9 showed that finding x(k) only used information about x(k−1)

and none of the other previous iterates {x(k−2), ..., x(0)}. Techniques that use in-
formation about more than one previous iterate are called accelerator techniques.
Examples of accelerator techniques are the Chebyshev method, the preconditioned
conjugate gradient method (PCG), GMRES, and BiCG-stab [43].

175

Algorithm 12 Preconditioned Conjugate Gradient
1: Initialize x0 to an initial guess.
2: Calculate r0 = f − Ax0, z0 = Br0, p0 = z0

3: for k = 0, 1, 2, ... until convergence do
4: αk = (rTk zk)/(pTkApk)
5: xk+1 = xk + αkpk

6: rk+1 = rk − αkApk
7: zk+1 = Brk+1

8: pk+1 = zk+1 +
(
(zTk+1rk+1)/(zTk rk)

)
pk

9: end for

In Section 8.4, we saw that the Stiffness Matrix edge weighting scheme pre-
sented in this thesis made a good preconditioner for solving Ax = f with Richard-
son’s Method. The Stiffness Matrix Weighting Scheme creates a preconditioner for
A using A. Therefore, this weighting scheme can be used for solving Ax = f even
without an associated PDE.

For future study, we would like to create and test the properties of pre-
conditioners for Krylov Subspace Methods made from incorporating the Stiffness
Matrix Weighting Scheme.

The Stiffness Matrix Weighting Scheme will partition the unknowns in the
vector x from Ax = f into many small groups of dependent degrees of freedom.
Next you could use these groups to create a block Jacobi preconditioner or block
Gauss Seidel preconditioner. Or you could create multilevel preconditioners by only
dividing x into a small number of groups and then creating a block preconditioner
by using standard preconditioners on the blocks of A corresponding to the groups
of x.

10.4 More Domain Decomposition

In this work we analyzed the effect of new partitioning techniques using
the Schwarz Domain Decomposition Methods and the Bank-Holst paradigm DD
solver. One would suspect that the same results hold true with other Domain

176

Decomposition Methods. In the future, we would like to test these techniques
on other Domain Decomposition Methods. In addition to confirming that the
techniques presented here benefit more DD schemes, what we find may also help
us understand and improve our methods.

10.5 Mathematical Model

Experiment 20 (section 9.5) is the beginning of a model that could explain
how the weighting schemes presented in this research achieve faster DD convergence
on convection dominated PDEs. Successfully discovering a model could help us
improve the schemes presented here and/or formulate new techniques.

Assume we have a PDE with strong convection in the x direction. Exper-
iment 20 discusses the relationship between x hops and the DD convergence rate
of ||δuk||. The next step in developing a model of DD convergence is to analyze
the y direction. When using Convection Weighting, as we increase the elongation
of the rectangle subdomains, you reduce the number of x direction hops and im-
prove convergence. But at some point, reducing the hops further does not improve
convergence. Most likely this is because as you elongate the rectangles, you in-
crease the number of y hops which slows down convergence of the diffusion in the
y direction.

(a) aspect 1:1 (b) aspect 4:1 (c) aspect 16:1

Figure 10.5: When increasing the aspect ratio of subdomain rectangles, x hops
decrease and y hops increase.

Even if the original convection dominated PDE doesn’t have much diffusion

177

in the y direction, when you solve −4u−[β 0]T ·∇u−1 = 0 with Finite Elements, it
requires the application of upwinding for stability. Scharfetter Gummel Upwinding
adds artificial diffusion in both the x and y directions when using a triangle mesh.
And, the magnitude of the added diffusion in the y direction is roughly one half
the magnitude of the added diffusion in the x direction. So, the diffusion in the y
direction becomes significant.

The fact that using x direction rectangle subdomains of any aspect ratio
slows down the convergence of −4u − 1 = 0 versus using square subdomains
supports the idea that increasing y hops degrades the DD convergence rate. (Ex-
periment 3 section 9.2.3 showed this.)

Another interesting observation that needs to be incorporated into the
model is that Flow Weighting with flow function z(x, y) = x + 10−3, s = 2, and
Ω = [0, 1] × [0, 1] does not slow down the convergence of −4u − 1 = 0. (Ex-
periement 17 section 9.3.4 showed this.) So although both Flow Weighting and
Convection Weighting facilitate information travel in the x direction, only Flow
Weighting simultaneously preserves the y direction convergence.

A complete model may also explain why EdgeWeighting and VertexWeight-
ing did not work well together (as seen in Experiment 19 section 9.4) and perhaps
a model could propose a way to combine Edge Weighting and Vertex Weighting
successfully.

Bibliography

[1] A.K. Aziz and I. Babuska. The mathematical foundations of the finite element
method with applications to partial differential equations. Academic Press,
New York, 1972.

[2] R. E. Bank. A domain decomposition solver for a parallel adaptive mesh-
ing paradigm. Domain Decomposition Methods in Science and Engineering,
XVI:3–14, 2006.

[3] R. E. Bank, J. F. Burgler, W. Fichtner, and R. K. Smith. Some upwinding
techniques for finite element approximations of convection-diffusion equations.
Numerical Math, 58:158–202, 1990.

[4] R. E. Bank, W. M. Coughran, and L. C. Cowsar. Analysis of the finite
volume scharfetter-gummel method for steady convection diffusion equations.
Computing and Visualization in Science, 1:123–136, 1998.

[5] R. E. Bank and M. J. Holst. A new paradigm for parallel adaptive meshing
algorithms. SIAM J. on Scientific Computing, 22:1411–1443, 2000.

[6] R. E. Bank and M. J. Holst. A new paradigm for parallel adaptive meshing
algorithms. SIAM Review, 45:292–323, 2003.

[7] R. E. Bank and P. K. Jimack. A new parallel domain decomposition method
for the adaptive finite element solution of elliptic partial differential equations.
Concurrency and Computation: Practice and Experience, 13:327–350, 2001.

[8] R. E. Bank, P.K. Jimack, S. A. Nadeem, and S. V. Nepomnyaschikh. A weakly
overlapping domain decomposition preconditioner for the finite element solu-
tion of elliptic partial differential equations. SIAM J. on Scientific Computing,
23:1817–1841, 2002.

[9] R. E. Bank and J. Lu. Asymptotically exact a posteriori error estimators, part
i: Grids with superconvergence. SIAM J. Numerical Analysis, 41:2294–2312,
2003.

178

179

[10] R. E. Bank and S. Lu. A domain decomposition solver for parallel adaptive
meshing paradigm. SIAM J. on Scientific Computing, 45:292–323, 2003.

[11] R. E. Bank and H. Nguyen. Domain decomposition and hp-adaptive finite
elements. Lecture Notes in Computational Science and Engineering, 78:3–13,
2011.

[12] R. E. Bank and H. Nguyen. hp adaptive finite elements based on deriva-
tive recovery and superconvergence. Computing and Visualization in Science,
submitted.

[13] R. E. Bank and J. S. Ovall. Dual functions for a parallel adaptive method.
SIAM J. on Scientific Computing, 29:1511–1524, 2007.

[14] R. E. Bank and D. J. Rose. Marching algorithms for elliptic boundary value
problems. i: The constant coefficient case. SIAM J. Numerical Analysis,
14(5):792–829, 1977.

[15] R. E. Bank and P. S. Vassilevski. Convergence analysis of a domain decompo-
sition paradigm. Computing and Visualization in Science, 11:333–350, 2008.

[16] R. E. Bank and J. Xu. Asymptotically exact a posteriori error estimators,
part ii: General unstructer grids. SIAM J. Numerical Analysis, 41:2313–2332,
2003.

[17] R. E. Bank, J. Xu, and B. Zheng. Superconvergent derivative recovery for
lagrange triangular elements of degree p on unstructured grids. SIAM J.
Numerical Analysis, 45:2032–2046, 2007.

[18] Randolph E. Bank. PLTMG: A software Package for Solving Elliptic Partial
Differential Equations Users’ Guide 11.0. 2012.

[19] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency and
Computation: Practice and Experience, 6:101–117, 1994.

[20] Charles-Edmond Bichot and Patrick Siarry. Graph Partitioning. Wiley, 2011.

[21] Dietrich Braess. Finite Elements: Theory, fast solvers, and applications in
solid mechanics. University Press, Cambridge, second edition, 2001.

[22] A Brandt. Multilevel adaptive solutions to boundary value problems. Math.
Comp., 31:333–390, 1977.

[23] M Fiedler. Algebraic connectivity of graphs. Czech. Math. J, 23:298–305,
1973.

180

[24] M Fiedler. A property of eigenvectors of nonnegative symmetric matrices and
its applications to graph theory. Czech. Math. J, 25:619–633, 1975.

[25] C. M. Da Fonseca and J. Petronilho. Explicit inverse of a tridiagonal k-toeplitz
matrix. 2002.

[26] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The John
Hopkins University Press, third edition, 1996.

[27] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Intro-
duction to parallel computing. Pearson Education Limited, second edition,
2007.

[28] W. HackBusch. Multigrid methods and applications. Springer-Verlag, 1985.

[29] B. Hendrickson and R Leland. The chaco user’s guide. Technical Report, 1993.

[30] M. J. Holst. Sg user’s guide. http://www.fetk.org/codes/sg/index.html, 2014.

[31] Thomas J.R. Hughes. The Finite Element Method: Linear static and dynamic
Finite Element analysis. Dover Publications, Inc. Mineola, NY, 2000.

[32] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph
partitioning. Proceedings of Supercomputing, 1998.

[33] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Journal of parallel and distributed computing, 48:96–129, 1998.

[34] George Karypis. METIS: A Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-Reduced Orderings
of Sparse Matrices Version 5.1.0. 2013.

[35] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. on Scientific Computing, 20(1):359–
392, 1999.

[36] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49(1):291–307, 1970.

[37] Stig Larsson and Vidar Thomee. Partial Differential Equations with Numer-
ical Methods. Springer, 2009.

[38] S. Lu. Parallel adaptive multigrid algorithms. PhD thesis, Dept of Math,
UCSD, 2004.

[39] Tarek P.A. Mathew. Domain decomposition methods for the numerical solu-
tion of partial differential equations. Springer, 2008.

181

[40] A. Pothen. Graph partioning algorithms with applications to scientific com-
puting. Kluwer Academic Press, 1996.

[41] Alfio Quarteroni and Alberto Valli. Domain decomposition methods for patial
differential equations. Oxford University Press, 1999.

[42] H. D. Simon. Partitioning of unstructured problems for parallel processing.
Comp. Sys. Engrg, 2(2/3):135–148, 1991.

[43] Barry F. Smith, Petter E. Bjørstad, and William D. Gropp. Domain Decom-
position: Parallel multilevel methods for elliptic partial differential equations.
Cambridge University Press, 1996.

[44] A. Toselli and O. Widlund. Domain Decomposition Methods. Springer, 2005.

