
Investigating Elasticity

in 2D



Reasons

• I thought it would be fun to see how objects 

deform under external forces.

• I wanted to practice using the techniques 

learned in this class.
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What’s The Equation? Object is at equilibrium thus forces add to zero
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Second Piola-Kirchhoff Stress Tensor. 

(a function of strain which in turn is a function of the deformation gradient.)

(for St. Venant Kirchhoff material)
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Strain (a function of the deformation gradient,       ) φ∇

I will be using linear approximations.
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How do we incorporate deformation? Well, how does the object balance external forces?

Material reacts by deforming and creating internal stress to balance external forces
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The Three Problems (using linearization approximation):

P1: Energy Minimization Problem

P2: Weak form for Stationary of energy

P3: Strong form with Differential Equations



We will solve P2.
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Since A is bilinear, bounded, and coercive and F is linear and bounded 

then by the Lax Milgram Theorem there exists a unique solution.  Also 

the solution can be shown to be continuously dependent on the data.  

Therefore this problem is well posed.
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We will use the Galerkin Method to find an approximate 
solution within a known bounded error.
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First we have to discretize our domain.  Given a region in      

,we could subdivide it into regularly sized triangles as 

arranged below.  That will simplify our calculations later.

Here I broke a

ring shaped domain 

into 140 nodes

and 178 triangles

following this regular 

pattern.

We will apply 
forces to these
special marked

areas on the
boundary.
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Dwhere number of nodes in \n = Ω ∂ Ω (for the ring domain, n=140)

Next we must pick our basis functions. (Notice I’ve chosen 2 at each node)

Define  

as pictured
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After choosing basis functions for     , all we have left to do is solve 2n linear
equations for 2n unknown scalars. (where 2n = our number of basis functions).
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approximate solution:

Next we must write down our 2n linear equations in matrix form.
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For i next to j, you have:
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In order to write down our matrix equation, we need to find the matrix A and vector F
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For i above j, you have:

For i equal to j, you have:
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With our nice choice of basis functions and uniform mesh, 

our matrix A and vector F are defined by the following:
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Here is matrix A for the sample ring domain.  A is a 280x280 matrix with 2714 non-

zero entries indicated below by blue dots.  Matrix A only depends on the basis 

functions and mesh layout.  It is independent of the initial and boundary conditions 

(the given body and surface forces). Vector F depends on everything.  It is a 280x1 

vector with 6 non-zero entries.
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Finally, we solve our matrix equation and get our approximate solution


