Investigating Elasticity

in 2D



Reasons

* | thought it would be fun to see how objects
deform under external forces.

| wanted to practice using the technigues
learned in this class.

Qe R?

=9 & 9: Q>R

A(x,y)=10,0,1=[x, yI+[u,,u,] =id +u

where u is displacement and id is initial location.



What's The Equation? Object is at equilibrium thus forces add to zero
Z(body forces) +Z(surface forces) =I S (xp)dx + I Yo(x,) nds = _“fR (xp)+divi, (xR)]dx =0
Q eINLY) Q

Boundary Conditions X, (x,) - n=g(x,)ond,Q  u(x,)=0o0nd,Q

How do we incorporate deformation? Well, how does the object balance external forces?
deformation = C=V@(x,) Vo(x,)#I = E#0 = X (x,) changes
Material reacts by deforming and creating internal stress to balance external forces

du,
+
ox;

1 . 1
E(—XR)i,j :5(V¢(XR) V¢(XR)_[) :E[

Strain (a function of the deformation gradient, V)

ZR ('XR) = ﬂtrace(E)I + ZIUE + O>€ﬂ) — J(XR ) (for St. Venant Kirchhoff material)

Second Piola-Kirchhoff Stress Tensor.
(a function of strain which in turn is a function of the deformation gradient.)

| will be using linear approximations.



The Three Problems (using linearization approximation):

P1: Energy Minimization Problem
Findue Bs.t. J(u)<J(v) Vve B

Energy =J () = [[1&(u): o)~ f(x)-u Jdx+ | g(x)-udx

)

P2: Weak form for Stationary of energy
Findue B st. <F(u),y>=0VYve B

< J'(u),v >= j 24V U VO AV u)(V )= f(x)v dx— j 2(x)-vdx =0

Q EIo)

P3: Strong form with Differential Equations
22UV -£(u)) —AVu = f(x)1n Q
o(u)-n=g(x)ona,Q
u=0ond,Q



We will solve P2.

Findue B s.t. A(u,v) = F(v) Vve B

where A(u,v) = [ 24Vu: Vv + AV -u)(V -v) |dx

Q

and F'(v) = .f(x)-vdx+ I g(x)-vdx
9,0

N
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f(x) = (body force) and g(x) = (surface traction) 2 and A are lame constants.
(s) 1 a”i a”j M= E =~ 8.2031 A= Ey ~10.4403
V*’u then u, =—| —+ 2(1+v) 1+v)1-2v)
2| ox; ox,
C = A: B then c; =4a; -bl.j E =21.0 is Young's Modulus and v =0.28 is Poisson ratio

Since A is bilinear, bounded, and coercive and F is linear and bounded
then by the Lax Milgram Theorem there exists a unique solution. Also
the solution can be shown to be continuously dependent on the data.
Therefore this problem is well posed.



We will use the Galerkin Method to find an approximate
solution within a known bounded error.

Findu, eV, c Bs.t. A(u,,v,)=F(v,) Vv, eV,

where A(,,v,) = [| 249w, : Vv, + AV -1, )(V -v,) | dx
Q

and F(vh):J‘f(x)'vhdx+ j g(x)-v,dx
Q 0y Q

N

M ). A(u,v) . A(u,u)
Error= ||u —U || <|— |inf |u -V || where M = sup and m =1inf
"l m ) Vi€V "l u,ve B u” ||V|| ueB ||I/l|| ’
’ B B B
f(x) = (body force) and g(x) = (surface traction) i and A are lame constants.
s 1 aui au/ = E = = Ev =
V©u then u, = 3{3}61 + o ] A= o0+ 8:2031 A= (L+v)(1-2v) 10-4403

C=A:Bthenc;=a, b, E =21.0 is Young's Modulus and v = 0.28 is poisson ratio




First we have to discretize our domain. Given a region in
R*> ,we could subdivide it into regularly sized triangles as
arranged below. That will simplify our calculations later.
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Next we must pick our basis functions. (Notice I've chosen 2 at each node)

Let V, =span{@,d,,....0, . V.. ¥,,...¥,} ¢,v. € R’

where n = number of nodes in S_Z\BDQ (for the ring domain, n=140)
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Define ¢, P //f/””’ -’ - | W ]/

as pictured

)=t0;0]
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and ¥ (i) =[0,1] and w(j #i)=[0,0]



Next we must write down our 2n linear equations in matrix form.

After choosing basis functions for V,,, all we have left to do is solve 2n linear
equations for 2n unknown scalars. (where 2n = our number of basis functions).

Alu,,v,) = A(Z oQ + Z:Bi% , v,)=F(v,) V basis function, v,
i=1

i=l1

A-x = F approximate solution:
2nx2n 2nx1  2nx1 i, = Zaﬁl +z:8i'7”i
i=1 i=1

A:{AH Au}

Ly
a,, =A9,9;)

a, =AW.v,)  aeR" F =F()
as, =A@y,  BeR'  F =FWy)
ay =AWY;.9,)



In order to write down our matrix equation, we need to find the matrix A and vector F

Alu,,v,) = I[Zﬂv(”uh ; V(s)vh +AV-u, )(V-vh)}dx
Q

s t 1 at node k = j © 1129 &
Let g =| |, and ¢, = where t = ¢ then V¥¢. =— and V- ¢, =&
0 710 0 at node k # j T2 g 0 T

Thus A(¢.,9,) = j[ 2+ A) L4 22 | d

For i next to j, you have: Inl:&£==1 3;—0, &1 g_;:_%
j[(2,u+/1)-;—21+ﬂ-0-—ﬂdx:—%(2,u+/1)
1
//Z In2: £=2l, &=t =1 2=

[[(u+2) 2+ pt-0]de=—L(2u+2)
2

A@.9)=| +| =—2u-21=-268



For i above j, you have:

A@.9)=[ +| =-u=-820

For i equal to j, you have:

A@.o)=[ +| +] +] +[ +] =6u+22=70.10

For i on diagonal from j, you have:

A9 =] +[ =0

Then you have to calculate A(y;,¥;) and A(@,,¥/;)

for the different cases. And then finally you calculate

F(¢.) and F (y;) at the interior points and border points

using the given boundary and initial conditions.



With our nice choice of basis functions and uniform mesh,
our matrix A and vector F are defined by the following:

0ifd(i, j) =2
0ifd(i, j)=2
A@.0)=Ay,. W)= 70.1=6u+24ifi=j
—26.8 =~ 24— A if [i-j =[1,0]
-8.20 = - if |i-j| =[0,1]

Vo

0ifd(, j)>2

820~ -p if d(i, ) =2 |
164 ~—2uifi= ]

| 820=pifd(i,j)=1

AB.y) =AW,.9)) =

2

F(Q):f(i)-{};} forie Q° andF(%):f(i)-{;} forie Q° ,h=1

|h , .10 .
F(Q)zg(z).{o} forie d,Q andF(wl.):g(z).LJ forie d,Q ,h=1



Here is matrix A for the sample ring domain. Ais a 280x280 matrix with 2714 non-
zero entries indicated below by blue dots. Matrix A only depends on the basis
functions and mesh layout. It is independent of the initial and boundary conditions
(the given body and surface forces). Vector F depends on everything. It is a 280x1
vector with 6 non-zero entries.

5041

100+ 1004k

1580 - 1504t

200 20k

250 2504-

nz=06



Finally, we solve our matrix equation and get our approximate solution

A en [ ap o)ttt S S e




