(iv) Frechet Differentiable \Rightarrow (iii) Gateaux Differentiable \Rightarrow (ii) All Directional Derivatives Exist \Rightarrow (i) Partial Derivatives Exist However, the converses of the above three implications are not true. Below are counterexamples to disprove all three.

Example 1. To disprove (i) \Rightarrow (ii). Consider $f_2 = \begin{cases} \frac{1}{2} & \text{for } x_1 + x_2 = 0 \text{ and } (x_1, x_2) \neq 0 \\ 0 & \text{for } x_1 + x_2 \neq 0 \text{ or } (x_1, x_2) = 0 \end{cases}$.

 $D_1 f_2 = D_2 f_2 = 0$. Therefore we have all the partial derivatives at (0,0)

However, we don't have all the directional derivatives at (0,0). $D_u f_2(0,0)$ doesn't exist for $u = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \end{bmatrix}^T \in \mathbb{R}^2$

Example 2. To disprove (ii) \Rightarrow (iii). Consider $f_3 = \begin{cases} \frac{1}{2}x_1 & x_1 - x_2 = 0 \\ 0 & x_1 - x_2 \neq 0 \end{cases}$.

 $D_u f_3 = 0$ for $u \neq v = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \end{bmatrix}^T \in \mathbb{R}^2$ and $D_v f_3 = \frac{1}{\sqrt{2}}$. Therefore we have all the directional derivatives. However the Gateaux derivative does not exist at (0,0) since there exists no $g \in L(\mathbb{R}^2, \mathbb{R})$ such that $g(w) = D_w f_3(0,0) \quad \forall w \in \mathbb{R}^2$.

Example 3. To disprove (*iii*) \Rightarrow (*iv*). Consider $f_4 = \begin{cases} \frac{1}{2} |x_1| & \text{for } x_2 - x_1^2 = 0 \\ 0 & \text{for } x_2 - x_1^2 \neq 0 \end{cases}$.

 $D_u f_4 = 0 \ \forall w \in \mathbb{R}^2$. Therefore the Gateaux derivative exists, $f_4'(0,0) = 0 \in L(\mathbb{R}^2,\mathbb{R})$.

However the Frechet derivative does not exist at (0,0) since $\lim_{|h|\to 0} \frac{\left|f\left((0,0)+h\right)-f\left(0,0\right)\right|}{|h|} = \frac{1}{2} \neq 0 \text{ for } h(t) = (t,t^2) \text{ with } t \to 0 + \frac{1}{2} = 0$

On the next page, you will find functions described that extend continuity to these three counterexamples.

$$f(x) = \begin{cases} \frac{xy}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

At the origin, this function has all of its partial derivatives but no other directional derivatives for the same reasons as example 1.

$$g(x, y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & xy > 0 \\ 0 & xy \le 0 \end{cases}$$

At the origin, this function has all of its directional derivatives but is not Gateaux Differentiable for reasons similar to example 2.

$$h(x, y) = \begin{cases} \frac{|x^3|y}{x^4 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

At the origin, this function is Gateaux Differentiable and continuous but is not Frechet Differentiable for the same reasons as example 3.

