
 

Examples of different types of differentiability. 

 
 

(iv) Frechet Differentiable ⇒ (iii) Gateaux Differentiable ⇒ (ii) All Directional Derivatives Exist ⇒ (i) Partial Derivatives Exist 

However, the converses of the above three implications are not true.  Below are counterexamples to disprove all three. 

 

 

Example 1.  To disprove (i) (ii)⇒ .  Consider 
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Example 2.  To disprove (ii) (iii)⇒ .  Consider 
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Example 3.  To disprove ( ) ( )iii iv⇒ .  Consider 
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However the Frechet derivative does not exist at ( )0,0  since 
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On the next page, you will find functions described that extend continuity to these three counterexamples. 
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At the origin, this function 

has all of its partial derivatives  

but no other directional derivatives  

for the same reasons as example 1. 
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                   At the origin, this function                  

                 has all of its directional derivatives  

                  but is not Gateaux Differentiable  

                  for reasons similar to example 2. 
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At the origin, this function 

is Gateaux Differentiable  

and continuous but is  

not Frechet Differentiable for 

the same reasons as example 3. 


