
Parallel Processing,

Math and MPI

(A demonstration solving the
Discrete Poison Equation using

Jacobi’s Method and MPI)

Parallel Processing is the future.

• The increasing capabilities

of serial computer’s are

leveling out. If we wish

to continue to solve larger

problems, we must use

parallel processing.

• Parallel processing increases computational rate, but more
importantly increases memory capacity and bandwidth, the
true weak links.

CPU speeds over time

Memory speeds are the true

performance problem.

Maybe your CPU is 3GHz (3 billion cycles per

second), but how fast is data being supplied?

The following supply 64 to 128 bytes per….

(Register) 1 cpu cycle (100’s Bytes)

(Level 1 Cache) A few cycles (10’s KB)

(Level 2 Cache) 5 to 30 cycles (512 KB+)

(RAM) 100’s of cycles (multiple GB’s)

(Disk) Million’s of cycles (very large)

Example Problem:

Let’s solve Poison’s Equation using finite differences on

the unit cube in 3D with

2 1 on with 0 on u u−∇ = Ω = ∂Ω

After substituting in finite difference approximations for

all 3 second partial derivatives, we have 1 billion

equations and 1 billion unknowns!

()
2

1, , , , 1, ,

, ,2 2

2i j k i j k i j k

i j k

u u uu
u

x h

+ −− +∂
≈

∂

1 1000h =

Let’s Parallelize Basic Linear

Iteration to Solve This.

We want to solve

Basic linear iteration:

with initial guess:

with a Jacobi preconditioner:

()(1) ()k k
u I BA u Bf

+ = − +

Au f=

(0) 0u =

1, let A L D U B D
−= + + =

Disclaimer: To solve for this many variables, you wouldn’t really want to use this method which converges in

Order N2. A better method would be basic linear iteration with a multigrid preconditioner (Order N) or

Conjugate Gradient with a multigrid preconditioner (Order N?).

To calculate each new uk will require billions of multiplications

and to store uk at each iteration to double precision will require

8 Gigabytes of storage.

A typical desktop would need to store each new u on the hard

drive. Its 3GHz processor would be continually accessing the

hard drive and be working overtime to compute each iteration.

We must parallelize the algorithm. Then we will use NCSA’s

supercomputer ABE, which has 9600 GB of main memory

(RAM) and an 88,000 Gigaflops processor, to solve this.

Key parallelizing issues:
• Shared memory or not?

• Minimize serial sections (Amdahl’s Law),

• Minimize non-productive work associated with

parallel environment

i.e initialization, communication, etc.

• Minimize load imbalance.

Math programming issue:

• Optimize for cache (faster memory) use.

By analyzing

with our specific matrix A, we see:

So each processor can compute some using localized data.

()(1) 1 () 1k k
u I D A u D f

+ − −= − +

()(1) () () () () () () 21
, , , , 1 , , 1 , 1, , 1, 1, , 1, ,6

k k k k k k k

i j k i j k i j k i j k i j k i j k i j k
u u u u u u u fh

+

+ − + − + −= + + + + + +

()1

, ,
 's

k

i j k
u

+

Analyze work dependencies

and data dependencies:

Different ways to divide the work

61.7 10 sec/setup packet on ABEα −= ×

91.27 10 sec/byte transfer on ABEβ −= ×

number of processorsP =

 comm

p
T =

()()2 2 36 0.040 seccomm

p
T P N Pα β= + =

Let 128 and 1000P N= =

()()2
4 0.058 sec

comm

pT P N Pα β= + =

()2
2 0.33 sec

comm

p
T P Nα β= + =

1

2

3

1

2

3

time for every processor to send and

receive their boundaries simultaneously

(domain), affect
communication.

 where bytes of datax xα β= + =

Mpirun this Core Code

While exchanging boundary information and we’re done.

1. procedure Solve (Array3D<double>A, h, f)
// A is a (n+2)-by-(n+2)-by-(n+2) array

2. begin
3. for i = 1 to n do
4. for j = 1 to n do
5. for k = 1 to n do
6. A’[i,j,k] = (1/6) * (A[i,j,k+1] + A[i,j,k-1] + A[i,j+1,k]
 + A[i,j-1,k] + A[i+1,j,k] + A[i-1,j,k] - f * h^2);
7. end for
8. end for
9. end for
10. A[:,:,:]=A’[:,:,:];
11. end procedure

MPI (Message Passing Interface)

the basic routines

• MPI_Init Initializes MPI

• MPI_Finalize Terminates MPI

• MPI_Comm_size Determines number of

processors

• MPI_Comm_rank Determines the label of the

calling process

• MPI_Send Sends a message

• MPI_Recv Receives a message

Advanced Functions: Collective Communication and Global Reduction

Sample MPI program
#include <stdio.h>
#include "mpi.h"

int rank,size,i;
char name[30];
MPI_Status status;
const int tag=99;

int main(int argc,char **argv)
{
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 MPI_Comm_size(MPI_COMM_WORLD,&size);

 if (rank==0) {
 printf("Processor 0 would like to know your name: ");
 scanf("%s",name);
 for (i=1;i<size;i++)
 MPI_Send(name, 30, MPI_CHAR, i, tag, MPI_COMM_WORLD);
 }
 else{
 MPI_Recv(name, 30, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status);
 printf("Hello %s from Processor %d of %d\r\n",name,rank,size);
 }

 MPI_Finalize();
 return(0);
}

Compile by typing “mpicc HelloWorld.c –o HelloWorld”

Run on 10 processors by typing “mpirun –np 10 ./HelloWorld”

, , memory []i j k x x yu i N j N N k→ + +3D Subdomain to 1D Memory
(Be Careful !)

Optimize for Cache Use

Best Case

Worse Case

Actual running times on ABE

for N = 1000 and P = 128.

Times are in seconds for

20 iterations with and without

communication for comparison.

 processors

with domain divided like this:

px py pz P⋅ ⋅ =

We Can Do Better

Reducing communication percentage increases efficiency and speedup.

Speed Up = Sp = best serial time / parallel time

Efficiency = Ep = speed up / number of processors

()
1 1

1
1

comp comp comm

p p p p

p comp comm total comm compcomp comm
p p p p p pp p

S P T T TT
E

P P T T T T T TP T T

⋅
= = ≈ = = − =

⋅ + +⋅ +

We can transmit boundary information while

we are computing effectively lowering

comp

p
T

comm

p
T = time for one processor

to retrieve its boundary
= time for one processor to

update its domain once.

comm

p
T

Efficiency Increases

Increase in efficiency depends on

the size of each processor’s

subdomain size because the ratio of

surface area to volume does.

3

3

subdomain unknowns

S

N P

=

=

Unexpected Discovery:

Serial processes can be accelerated by mimicking

parallel processes.

The data on the right shows that with smaller domains, a

processor can compute 4 multiplications as fast as 1!

The Solution Converging
(Actually N = 128, P = 10, on UCSD’s Valkyrie)

10,000 iterations (err = 0.02796)1,000 iterations (err =0.4729)

100 iterations (err = 0.8127)

Future Work
• Change serial algorithm code to mimic a parallel

algorithm resulting in better cache use and performance

• Reduce communication by lowering the alpha term
using double boundary passing every other iteration.

• Allow users to view the converging solution on the
cluster from a local machine using Mike’s SG (Socket
Graphics) OpenGL tool.

• Finish debugging my second algorithm that uses a
multigrid preconditioner.

References:

Scott Baden’s (UCSD) CSE260 Parallel Computation

Introduction to Parallel Computing 2nd Ed Grama, Gupta, Karypis, Kumar

This power point presentation can be downloaded off my website: math.ucsd.edu/~cdeotte/

