
Parallel Processing, 

Math and MPI

(A demonstration solving the 
Discrete Poison Equation using 

Jacobi’s Method and MPI)



Parallel Processing is the future.

• The increasing capabilities

of serial computer’s are 

leveling out.  If we wish 

to continue to solve larger 

problems, we must use 

parallel processing.

• Parallel processing increases computational rate, but more 
importantly increases memory capacity and bandwidth, the 
true weak links.

CPU speeds over time



Memory speeds are the true

performance problem.

Maybe your CPU is 3GHz (3 billion cycles per 

second), but how fast is data being supplied?

The following supply 64 to 128 bytes per….

(Register) 1 cpu cycle (100’s Bytes)

(Level 1 Cache)  A few cycles (10’s KB)

(Level 2 Cache)  5 to 30 cycles (512 KB+)

(RAM)  100’s of cycles (multiple GB’s)

(Disk) Million’s of cycles (very large)



Example Problem:

Let’s solve Poison’s Equation using finite differences on 

the unit cube in 3D with

2 1   on   with  0 on u u−∇ = Ω = ∂Ω

After substituting in finite difference approximations for 

all 3 second partial derivatives, we have 1 billion 

equations and 1 billion unknowns!
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Let’s Parallelize Basic Linear 

Iteration to Solve This.

We want to solve 

Basic linear iteration:

with initial guess:

with a Jacobi preconditioner:
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Disclaimer:  To solve for this many variables, you wouldn’t really want to use this method which converges in 

Order N2.  A better method would be basic linear iteration with a multigrid preconditioner (Order N) or 

Conjugate Gradient with a multigrid preconditioner (Order N?).



To calculate each new uk will require billions of multiplications 

and to store uk at each iteration to double precision will require 

8 Gigabytes of storage.  

A typical desktop would need to store each new u on the hard 

drive.  Its 3GHz processor would be continually accessing the 

hard drive and be working overtime to compute each iteration.

We must parallelize the algorithm.  Then we will use NCSA’s 

supercomputer ABE, which has 9600 GB of main memory 

(RAM) and an 88,000 Gigaflops processor, to solve this.



Key parallelizing issues:
• Shared memory or not?

• Minimize serial sections (Amdahl’s Law),

• Minimize non-productive work associated with 

parallel environment 

i.e initialization, communication, etc.

• Minimize load imbalance.

Math programming issue:

• Optimize for cache (faster memory) use.



By analyzing                                 

with our specific matrix A,  we see:

So each processor can compute some               using localized data.
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Analyze work dependencies 

and data dependencies:



Different ways to divide the work

61.7 10  sec/setup packet on ABEα −= ×

91.27 10  sec/byte transfer on ABEβ −= ×
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time for every processor to send and 

receive their boundaries simultaneously

(domain), affect 
communication.

   where  bytes of datax xα β= + =



Mpirun this Core Code

While exchanging boundary information and we’re done.

1.  procedure Solve (Array3D<double>A, h, f)  
// A is a (n+2)-by-(n+2)-by-(n+2) array 

2.  begin 
3. for i = 1 to n do 
4.  for j = 1 to n do 
5.   for k = 1 to n do 
6.    A’[i,j,k] = (1/6) * ( A[i,j,k+1] + A[i,j,k-1] + A[i,j+1,k] 
       + A[i,j-1,k] + A[i+1,j,k] + A[i-1,j,k] - f * h^2); 
7.   end for 
8.  end for 
9. end for 
10. A[:,:,:]=A’[:,:,:]; 
11. end procedure 



MPI (Message Passing Interface)

the basic routines

• MPI_Init Initializes MPI

• MPI_Finalize Terminates MPI

• MPI_Comm_size Determines number of 

processors

• MPI_Comm_rank Determines the label of the 

calling process

• MPI_Send Sends a message

• MPI_Recv Receives a message

Advanced Functions:  Collective Communication and Global Reduction



Sample MPI program
#include <stdio.h> 
#include "mpi.h" 
 
int rank,size,i; 
char name[30]; 
MPI_Status status; 
const int tag=99; 
 
int main(int argc,char **argv) 
{ 
   MPI_Init(&argc, &argv); 
   MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
   MPI_Comm_size(MPI_COMM_WORLD,&size); 
 
   if (rank==0)  { 
     printf("Processor 0 would like to know your name: "); 
     scanf("%s",name); 
     for (i=1;i<size;i++)  
       MPI_Send(name, 30, MPI_CHAR, i, tag, MPI_COMM_WORLD); 
   } 
   else{ 
     MPI_Recv(name, 30, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status); 
     printf("Hello %s from Processor %d of %d\r\n",name,rank,size); 
   } 
 
   MPI_Finalize(); 
   return(0); 
} 

Compile by typing “mpicc HelloWorld.c –o HelloWorld”

Run on 10 processors by typing “mpirun –np 10 ./HelloWorld”



, , memory [ ]i j k x x yu i N j N N k→ + +3D Subdomain to 1D Memory 
(Be Careful !)

Optimize for Cache Use

Best Case

Worse Case



Actual running times on ABE

for N = 1000 and P = 128.

Times are in seconds for 

20 iterations with and without

communication for comparison.

 processors

with domain divided like this:

px py pz P⋅ ⋅ =



We Can Do Better

Reducing communication percentage increases efficiency and speedup.

Speed Up = Sp = best serial time / parallel time

Efficiency = Ep = speed up / number of processors
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we are computing effectively lowering  
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Efficiency Increases

Increase in efficiency depends on 

the size of each processor’s 

subdomain size because the ratio of 

surface area to volume does.
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Unexpected Discovery:

Serial processes can be accelerated by mimicking 

parallel processes.

The data on the right shows that with smaller domains, a 

processor can compute 4 multiplications as fast as 1!



The Solution Converging
(Actually N = 128, P = 10, on UCSD’s Valkyrie)

10,000 iterations (err = 0.02796)1,000 iterations (err =0.4729)

100 iterations  (err = 0.8127)



Future Work
• Change serial algorithm code to mimic a parallel 

algorithm resulting in better cache use and performance

• Reduce communication by lowering the alpha term  
using double boundary passing every other iteration.

• Allow users to view the converging solution on the 
cluster from a local machine using Mike’s SG (Socket 
Graphics) OpenGL tool.

• Finish debugging my second algorithm that uses a 
multigrid preconditioner.
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