
Creating Triangle Meshes for the
Finite Element Method

Shea Yonker

Host: Chris Deotte

Thursday, May 18th, 2017

11:00 AM

AP&M 2402

Abstract

When utilizing the finite element method in two dimensions, one
requires a suitable mesh of the domain they wish to solve on. In this

talk we will go over the term suitable, an in depth approach to arrive at
this goal, and strategies for programming implementations. This talk
will additionally demonstrate the workings behind the culmination of

this research: a program which allows users to create 2D triangle
meshes for any domain they desire.

Our Goal!

• We wish to construct a program that will allow a user to create a
mesh of a self chosen number triangles out of any polygon skeleton
of their choosing.

Three Steps

Fan

• From our initial skeleton we parse the shape into
triangles

Add

• We create additional triangles until our user specified
number is reached

Improve

• With the desired number of triangles how can we
make changes that will improve the overall mesh?

Programming Objects

Programming Objects

1
3

2

4

• TFan

• T

•V

• n

Add
• T

•V
Improve

User

S Vn

Fan

Fan Process Overview

-For each vertex i

-For each non adjacent vertex j

-See if a newline can be made joining point i and j

-If so save it

-Construct our T matrix

New Line Violations
Original Skeleton Other New Lines Outside the Shape

New Line Object

• Throughout this process we will wish to save all the eligible new lines
that will not violate our original shape

• This will be done with the nLine vector

• Each pair represents the vertex numbers we wish to join

Line Crossing Violations

for a=1:numV

if (a==numV)

b=1;

else

b=a+1;

end

intersection(a,b,i,j);

a = 1;

while a < (size(nLine))-1

b = a+1;

q = nLine(1,a);

r = nLine(1,b);

if ((q==i) && (r==j)
|| (q==j) && (r==i))

break;

end

intersection(q,r,i,j);

Where intersection(A,B,C,D) returns true if the lines
AB and CD intersect and false if not.

Inside or Outside?

Inside or Outside?

?

Inside or Outside?

?

Your Turn Computer

?

?

Teaching the Computer

To do this we will check to see if the clockwise angle between line

(i,i+1) and line (i,j) is less than that between line (i,i+1) and line (i,i-1).

Clockwise Angle Between

function[Angle] = angleBetween(startV,middleV,endV)

v1=startV-middleV;

v2=endV-middleV;

ang = atan2((v1(1)*v2(2)-v2(1)*v1(2)),(v1(1)*v2(1)+v1(2)*v2(2)));

Angle = mod(-180/pi * ang, 360);

end

Fan Process Overview

-For each vertex i

-For each non adjacent vertex j

-See if a newline can be made joining point i and j

-If so save it

-Construct our T matrix

Three Types of
New Triangles

1 New Line

We can accomplish this by
stepping through our new
line vector and check if any
of the pairs (A,B) are only
two away from one another
on the skeleton

A

B

for nlIndex=1:2:z

A = nLine(nlIndex);

B = nLine(nlIndex+1);

if (S(A) == (S(B)-2))

%finds the middle vertex as i

for i=1:numV

if (S(i) == S(B)-1)

break;

end

end

%create new triangle A,B,i

nT = nT+1;

T(nT,1) = A;

T(nT,2) = B;

T(nT,3) = i;

elseif ((S(A)==2) && (S(B)==numV))

%finds the middle vertex as i

for i=1:numV

if (S(i) == 1)

break;

end

end

%create new triangle A,B,i

nT = nT+1;

T(nT,1) = A;

T(nT,2) = B;

T(nT,3) = i;

elseif ((S(A)==1) && (S(B)==numV-1))

%finds the middle vertex as i

for i=1:numV

if (S(i) == numV)

break;

end

end

%create new triangle A,B,i

nT = nT+1;

T(nT,1) = A;

T(nT,2) = B;

T(nT,3) = i;

end

end

2 New Lines

We will go through each
edge (p,q) and look for any
(p,x) (q,x) pairings in the
new lines

p

q

x

3 New Lines

For each newline (A,B) we
will look through all the
other newlines for (A,x) and
(B,x) for x!=A,B

B

A

x

for AAAindex=AAindex+2:2:z

AAA=nLine(AAAindex);

BBB=nLine(AAAindex+1);

if((AAA==B) && (BBB==BB))

%save triangle

nT=nT+1;

T(nT,1)=A;

T(nT,2)=B;

T(nT,3)=BB;

end

end

end

end

for Aindex=1:2:z

A=nLine(Aindex);

B=nLine(Aindex+1);

for AAindex=Aindex+2:2:z

if(nLine(AAindex)==A)

BB=nLine(AAindex+1);

else

break;

end

Lets Fan! 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

No works

Making New
Lines 1

2

3

4

5

6

78

9

No works

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

Making New
Lines 1

2

3

4

5

6

78

9

No works

Making New
Lines 1

2

3

4

5

6

78

9

No works

Making New
Lines 1

2

3

4

5

6

78

9

No works

Making New
Lines 1

2

3

4

5

6

78

9

No works

1

2

3

4

5

6

78

9

Adding Triangles

• There are many ways to add triangles to
our mesh, however many are undesired

• For instance we could bisect the top left
triangle over and over again until we
reach the number requested

• Or we could proceed as featured on the
right, (much better than above but still
not ideal)

Quality

• When utilizing the finite element method in two dimensions, with
infinite computing resources one would always choose to represent
their domain with an infinite amount of points

• However in reality we solve on a domain using a finite amount of
points, and these points will interpolate the area of the domain which
does not have a point

Quality

• Therefore when utilizing a triangular
mesh to cover such a region we
want as little skewness as possible

• We also want smooth changes in
cell size

• And finally the ratio of the longest
to shortest side in a cell should be
as close to 1 as possible

Goal: Equilateral Triangles

• Therefore the quality of each cell will be measured in its likeness to an
equilateral triangle

• This can be done with the ratio: Area

Sum of the Sides Squared

• Because out of all triangles an equilateral will maximize this

• So if we set the quality of each triangle to be this we now have an
ordering that we can use to prioritize bisecting

• But it turns out we can do a little better than this

Avoiding Telescoping

• If we strictly rank and bisect the triangles based on this measure we
could end up bisecting one worst quality triangle over and over,
getting smaller and smaller in one portion of the polygon

• To avoid this we factor in the size of the triangles to prioritize them
higher based on a larger area as well

• The result of the two approaches combined gives us a ranking of
triangles to bisect based on: 1 Area

Area Sum of the Sides Squared

• Or: 1

Sum of the Sides Squared

Add
Larger

Adding Process Overview

-While numT < n

-Sort triangles from worst to best quality

-Start with worst quality and bisect it

-Check neighbors for eligible flips and bisections

-Remove the triangles that were changed, add new ones,
and add new vertices

Bisecting and Flipping

• First we take the triangle with
the worst quality (designated in
red) and bisect it

Bisecting and Flipping

• So now we have two new
triangles and .

• But is this the best we can do?

• Using our quality function we will compare the total quality of
with and the total quality of with .

• And then select the best out of these to include

vs

Bisecting Adjacent Triangle

• If there is a neighboring triangle
to the one with the worst quality
we will consider bisecting it as
well

• Giving us the new triangles
and .

• Similarly our quality function will compare the total quality of
with and the total quality of with .

• And then select the best out of these to include

vs

Bisecting and Flipping

• Finally with the all the triangles chosen with the highest quality we
save our new triangles and new vertex

• This process continues until we have at least as many triangles as the
user requested

Original

Fan

Add Triangles

Vertex Shifting

• We still need a way to
improve the mesh as we
increase the number of
triangles

• By shifting interior vertices
in a way that improves the
overall quality of all the
triangles they are
connected to we can
accomplish this

Vertex Shifting

• For this example it is rather obvious where the best point would be, however rarely will any of our interior
polygons have all sides of the same length

Vertex Shifting

• For instance where exactly would the perfect point be for this shape?

Vertex Shifting

• It turns out finding this exact point is an NP Complete problem

• So for our purposes we will try to come up with a point that improves
the triangles even though it may not be the optimal one

• I found that the point which visually resembles that which we would
guess as being the perfect point typically turns out to be the Centroid

Centroid of a Polygon
• Same as center of mass as each point has the same weight

• So the Centroid = with

• Where gives the signed area.

• Note: In this formula the vertices are in clockwise order around the perimeter

Clockwise to a Computer

• By looping through our V and T matrix we can get each interior vertex
and all the triangles it is a part of. This will give us all the vertices that
make up the polygon around it however they will not be in order

• Again we arrive at something simple for us but that requires inventive
thinking to teach to a computer

Clockwise to a Computer
• We can organize these by extending a horizontal vector out to the

right of our inner vertex

• Then we can use our angle between method from before to order the
outer vertices based on the size of their clockwise angles

1 12

etc...

Vertex Shifting

Before

Vertex Shifting

After

Measure our Improvement

• To get a quantitative measure for how well this has improved our
mesh we return to how we defined Quality = Area/Sum Sides Squared
for each triangle

• For an ideal equilateral triangle this comes out to be

Measure our Improvement

• So to represent our meshes average quality on a scale for 0 to 1 we
set Overall Quality to be

Average Triangle
Quality
.90049

Average Triangle
Quality
.94010

After just one time!

Combining Methods

• As you can see this form of vertex shifting is quite powerful

• We are only doing it currently as a separate step after we have our
desired number of triangles to demonstrate its effectiveness

• In practice one would have this run around 3 times for each sixth of
the way to our total number goal

• In this way it would become a part of our adding program and the
final result from fan and add would be ideal meshes

Future Goals/Ideas

• Speed:
• I would love to program the methods up in C instead of Matlab, and spend

some more time optimizing my algorithms

• First thing that comes to mind is the quality sort of the triangles. Although in
the beginning it is effective to target the single triangle with the absolute
worst quality, as the number of triangles increase we do not by any means
have to always operate on the extreme worst one

• 3D:
• Once the speed is optimized an extension to three dimensions would not be

that different!

