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Abstract

When utilizing the finite element method in two dimensions, one 
requires a suitable mesh of the domain they wish to solve on. In this 

talk we will go over the term suitable, an in depth approach to arrive at 
this goal, and strategies for programming implementations. This talk 
will additionally demonstrate the workings behind the culmination of 

this research: a program which allows users to create 2D triangle 
meshes for any domain they desire.



Our Goal!

• We wish to construct a program that will allow a user to create a 
mesh of a self chosen number triangles out of any polygon skeleton 
of their choosing.



Three Steps

Fan

• From our initial skeleton we parse the shape into 
triangles

Add

• We create additional triangles until our user specified 
number is reached

Improve

• With the desired number of triangles how can we 
make changes that will improve the overall mesh?



Programming Objects
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Fan Process Overview

-For each vertex i

-For each non adjacent vertex j 

-See if a newline can be made joining point i and j 

-If so save it

-Construct our T matrix 



New Line Violations
Original Skeleton Other New Lines Outside the Shape



New Line Object

• Throughout this process we will wish to save all the eligible new lines 
that will not violate our original shape

• This will be done with the nLine vector

• Each pair represents the vertex numbers we wish to join 



Line Crossing Violations

for a=1:numV   

if (a==numV)

b=1;            

else

b=a+1;    

end

intersection(a,b,i,j);

a = 1;

while a < (size(nLine))-1 

b = a+1;

q = nLine(1,a);

r = nLine(1,b);

if ((q==i) && (r==j) 
|| (q==j) && (r==i))

break;

end

intersection(q,r,i,j);

Where intersection(A,B,C,D) returns true if the lines 
AB and CD intersect and false if not.



Inside or Outside?



Inside or Outside?
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Your Turn Computer
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Teaching the Computer

To do this we will check to see if the clockwise angle between line

(i,i+1) and line (i,j) is less than that between line (i,i+1) and line (i,i-1).



Clockwise Angle Between

function[Angle] = angleBetween(startV,middleV,endV)

v1=startV-middleV;

v2=endV-middleV;

ang = atan2((v1(1)*v2(2)-v2(1)*v1(2)),(v1(1)*v2(1)+v1(2)*v2(2)));

Angle = mod(-180/pi * ang, 360);

end



Fan Process Overview

-For each vertex i

-For each non adjacent vertex j 

-See if a newline can be made joining point i and j 

-If so save it

-Construct our T matrix 



Three Types of 
New Triangles



1 New Line

We can accomplish this by 
stepping through our new 
line vector and check if any 
of the pairs (A,B) are only 
two away from one another 
on the skeleton

A

B



for nlIndex=1:2:z

A = nLine(nlIndex);

B = nLine(nlIndex+1);

if (S(A) == (S(B)-2))

%finds the middle vertex as i

for i=1:numV

if (S(i) == S(B)-1)

break;

end

end

%create new triangle A,B,i

nT = nT+1;

T(nT,1) = A;

T(nT,2) = B;

T(nT,3) = i;

elseif ((S(A)==2) && (S(B)==numV))

%finds the middle vertex as i

for i=1:numV

if (S(i) == 1)

break;

end

end

%create new triangle A,B,i

nT = nT+1;

T(nT,1) = A;

T(nT,2) = B;

T(nT,3) = i;



elseif ((S(A)==1) && (S(B)==numV-1))

%finds the middle vertex as i

for i=1:numV

if (S(i) == numV)

break;

end

end

%create new triangle A,B,i

nT = nT+1;

T(nT,1) = A;

T(nT,2) = B;

T(nT,3) = i;

end

end



2 New Lines

We will go through each 
edge (p,q) and look for any 
(p,x) (q,x) pairings in the 
new lines

p

q

x



3 New Lines

For each newline (A,B) we 
will look through all the 
other newlines for (A,x) and 
(B,x) for x!=A,B

B

A

x



for AAAindex=AAindex+2:2:z

AAA=nLine(AAAindex);

BBB=nLine(AAAindex+1);

if((AAA==B) && (BBB==BB))

%save triangle

nT=nT+1;

T(nT,1)=A;

T(nT,2)=B;

T(nT,3)=BB;                  

end

end

end

end

for Aindex=1:2:z

A=nLine(Aindex);

B=nLine(Aindex+1);

for AAindex=Aindex+2:2:z

if(nLine(AAindex)==A)

BB=nLine(AAindex+1);

else 

break;

end
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Adding Triangles

• There are many ways to add triangles to 
our mesh, however many are undesired

• For instance we could bisect the top left 
triangle over and over again until we 
reach the number requested

• Or we could proceed as featured on the 
right, (much better than above but still 
not ideal)



Quality

• When utilizing the finite element method in two dimensions, with 
infinite computing resources one would always choose to represent 
their domain with an infinite amount of points

• However in reality we solve on a domain using a finite amount of 
points, and these points will interpolate the area of the domain which 
does not have a point



Quality

• Therefore when utilizing a triangular 
mesh to cover such a region we 
want as little skewness as possible

• We also want smooth changes in 
cell size

• And finally the ratio of the longest 
to shortest side in a cell should be 
as close to 1 as possible



Goal: Equilateral Triangles

• Therefore the quality of each cell will be measured in its likeness to an 
equilateral triangle

• This can be done with the ratio: Area

Sum of the Sides Squared

• Because out of all triangles an equilateral will maximize this

• So if we set the quality of each triangle to be this we now have an 
ordering that we can use to prioritize bisecting

• But it turns out we can do a little better than this



Avoiding Telescoping

• If we strictly rank and bisect the triangles based on this measure we 
could end up bisecting one worst quality triangle over and over, 
getting smaller and smaller in one portion of the polygon

• To avoid this we factor in the size of the triangles to prioritize them 
higher based on a larger area as well

• The result of the two approaches combined gives us a ranking of 
triangles to bisect based on: 1 Area

Area Sum of the Sides Squared

• Or: 1

Sum of the Sides Squared



Add
Larger



Adding Process Overview

-While numT < n

-Sort triangles from worst to best quality

-Start with worst quality and bisect it

-Check neighbors for eligible flips and bisections

-Remove the triangles that were changed, add new ones, 
and add new vertices



Bisecting and Flipping

• First we take the triangle with 
the worst quality (designated in 
red) and bisect it



Bisecting and Flipping

• So now we have two new 
triangles        and        . 

• But is this the best we can do?



• Using our quality function we will compare the total quality of 
with                     and the total quality of                 with                 .

• And then select the best out of these to include

vs



Bisecting Adjacent Triangle

• If there is a neighboring triangle 
to the one with the worst quality 
we will consider bisecting it as 
well

• Giving us the new triangles
and        . 



• Similarly our quality function will compare the total quality of 
with                     and the total quality of                 with                 .

• And then select the best out of these to include

vs



Bisecting and Flipping

• Finally with the all the triangles chosen with the highest quality we 
save our new triangles and new vertex

• This process continues until we have at least as many triangles as the 
user requested



Original



Fan



Add Triangles



Vertex Shifting

• We still need a way to 
improve the mesh as we 
increase the number of 
triangles

• By shifting interior vertices 
in a way that improves the 
overall quality of all the 
triangles they are 
connected to we can 
accomplish this 



Vertex Shifting

• For this example it is rather obvious where the best point would be, however rarely will any of our interior 
polygons have all sides of the same length



Vertex Shifting

• For instance where exactly would the perfect point be for this shape?



Vertex Shifting

• It turns out finding this exact point is an NP Complete problem

• So for our purposes we will try to come up with a point that improves 
the triangles even though it may not be the optimal one

• I found that the point which visually resembles that which we would 
guess as being the perfect point typically turns out to be the Centroid



Centroid of a Polygon
• Same as center of mass as each point has the same weight

• So the Centroid =                     with

• Where                                                    gives the signed area.

• Note: In this formula the vertices are in clockwise order around the perimeter



Clockwise to a Computer

• By looping through our V and T matrix we can get each interior vertex 
and all the triangles it is a part of. This will give us all the vertices that 
make up the polygon around it however they will not be in order

• Again we arrive at something simple for us but that requires inventive 
thinking to teach to a computer



Clockwise to a Computer
• We can organize these by extending a horizontal vector out to the 

right of our inner vertex

• Then we can use our angle between method from before to order the 
outer vertices based on the size of their clockwise angles

1 12

etc...



Vertex Shifting

Before



Vertex Shifting

After



Measure our Improvement

• To get a quantitative measure for how well this has improved our 
mesh we return to how we defined Quality = Area/Sum Sides Squared 
for each triangle

• For an ideal equilateral triangle this comes out to be



Measure our Improvement

• So to represent our meshes average quality on a scale for 0 to 1 we 
set Overall Quality to be



Average Triangle
Quality
.90049



Average Triangle
Quality
.94010

After just one time!



Combining Methods

• As you can see this form of vertex shifting is quite powerful

• We are only doing it currently as a separate step after we have our 
desired number of triangles to demonstrate its effectiveness

• In practice one would have this run around 3 times for each sixth of 
the way to our total number goal

• In this way it would become a part of our adding program and the 
final result from fan and add would be ideal meshes



Future Goals/Ideas

• Speed:
• I would love to program the methods up in C instead of Matlab, and spend 

some more time optimizing my algorithms

• First thing that comes to mind is the quality sort of the triangles. Although in 
the beginning it is effective to target the single triangle with the absolute 
worst quality, as the number of triangles increase we do not by any means 
have to always operate on the extreme worst one

• 3D: 
• Once the speed is optimized an extension to three dimensions would not be 

that different!


