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The Time to Pass Messages Limits Scalability 

 

Project Proposal (10/21): 

 

Goal:  To determine the limiting effect that the time to pass messages poses and devise a formula for the 

optimal number of processors to employ when subdividing an iterative process.  Also I wish to 

investigate a way to surpass this limiting barrier. 

 

Hypothesis 1:  Suppose multiple processors are working on an iterative process.  When the time it takes 

to pass required information between iterations equals the time it takes to compute an iteration, then we 

are wasting current processing power and adding more processors will not speed up the process. 

 

Hypothesis 2:  Passing extra information that allows a process to complete more than one step of a 

boundary dependent iteration can speed up the process if it is operating at close to the efficiency barrier 

as defined in hypothesis 1. 

 

Motivation:  Solving a partial differential equation by an iterative finite difference method benefits 

greatly by parallelization.  Poisson’s Equation, ( )1 2
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1,2,3,...,i N= , and then calculating a new value for each point based on old values.  Here is psuedo code 

demonstrating this method: 

 

Let N be the number of points in discrete domain 

for (i=1 to N){ 

         
2

2

1

(neighbors) 2
D

NEW OLD

j

U U b h D
⋅

=

 
= − ⋅ ⋅ 
 
∑  

} //end for loop. 

 

Above, D is the dimension of the domain, and h is the distance between adjacent points.  If there are N 

points to update, one can see how M processors can be employed to solve this task.  Just give N/M 

points  to each processor to calculate their new values (special consideration is required if M doesn’t 

divide N).  It seems like we could continually speed up this serial process as M,the number of processors 

approaches N, the number of points.  This may be the case if the different processors didn’t need to pass 

information to each other.  But, since the processors need to communicate, even if a processor can 

complete its work in no time, we must still wait for the processors to communicate between iterations.  

Also, as you add more processors, you increase the surface to volume ratio thus increasing the percent of 

communication to overall runtime.  So the question arises, when does adding more processors not 

increase overall completion time?  And are there any ways around this barrier? 

 



Significance of This Question:  Using extra processors that are not required has two disadvantages.  

One, we are wasting processor time which wastes energy and money.  And second it may be the case, 

that extra processors slow down the process due to too much communication per computation. 

 

This question is of utmost importance to the Multigrid procedure.  In this procedure, the number of 

points 
0

N  is reduced to 
1

N , then 
2

N , ... down to 
k

N during runtime and the coarser mesh is solved at 

various times.  If the program began with M processors operating efficiently on 
0

N points, will M 

processors still be efficient on 
k

N points?  To answer this question, it would be nice to have some sort of 

rule to allow us to know how many processors are optimal. 

 

 

Experimental Method:  In order to answer this problem, I will write C++ code utilizing MPI to solve 

Poisson’s Equation in 2 Dimensions.  I will then run it on a parallel computer and carefully record 

performance versus different processor geometries.  I will then correlate this information with variables 

present in the problem such as mesh size, computational complexity, and amount of required boundary 

information needing to be passed.  With this data, I will come up with a rule to determine optimal 

processor geometry for a given problem’s parameters. 

 

Next I will code Multigrid again using C++ and MPI and test out the rule by using it to reduce the 

parallelism during runtime. 

 

Finally, I will experiment with passing extra boundary information between iterations and having each 

processor calculate more than one iteration.  For example, instead of just passing a square’s boundary of 

1 point width, pass a 2 point width boundary.  Then a given processor can use the bigger boundary in its 

first iteration to compute its 1 point width boundary to be used during its next iteration.  This way, 

processors need only communicate every other iteration.  I will see if this trick allows me to employ 

more processors on a given mesh size N , surpassing the previous restriction found, and obtaining faster 

performance. 

 

Project Progress (11/13): 

 

Prediction:  If an iterative process needs to compute n work units of computation per iteration, then it 

naively seems that we can achieve perfect efficiency by dividing these units over p processors.  It is true 

that p processors can do n units of work in n p time.  And if our parallel algorithm didn’t need to 

communicate, than efficiency, 
1

1.0
p p

E T P T= ⋅ = , would equal one.  However,  if one process needs 

information from another process than we need to factor in the time required for communication.  And, 

this communication will limit our efficiency. 

 

Theoretically, efficiency, 
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equally sized cubes, then ( )comm 2
6 8pT sα β= + , and comp 3

p
T s Tγ=  where 3s N P= .  The variable s is the edge 

length of a processor’s 3-D subdomain of 3
s  points. 

 

 

On Valkyrie, I have found experimentally 51.37 10α −= × seconds, 81.182 10β −= ×  seconds, and 

7
2.165 10Tγ

−= × seconds.  Therefore theoretically, ( )
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.  Below is a plot of this equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This theory implies that on Valkyrie, it would be wasteful for a single processor to process a subdomain 

smaller than number of points = 314 , otherwise it’s efficiency drops below 75%. 

 

Let’s analyze this inefficient domain of 14s = having 314 points and see where the inefficiency resides in 

hopes of improving it.  For 14s = , comp 3 3 7 4
14 2.165 10 5.941 10

p
T s Tγ

− −= = ⋅ × = ×  and comm

p
T =  comm comm

p p
T T

α β− −+  
26 48sα β= +  5 48.22 10 1.11 10− −= × + × .  Therefore on Valkyrie, the inefficiency lies about equal in the alpha 

and beta term.  If we send twice the data every other iteration, we can effectively reduce the alpha term 

by two thus improving efficiency by 5.5% 
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if we send information while we are computing, we can perhaps remove the beta term completely and 

improve efficiency by 16.5% 
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I conducted a similar analysis of Abe and found that on Abe, 61.7 10α −= × seconds, 91.27 10β −= × seconds, 

and 9
6.33 10Tγ

−= × seconds.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Theoretical results predict that 33.5s = has the undesired efficiency of 75%.  For this 33.5s = , 
comp 3 4

2.38 10
p

T s Tγ
−= = × , and comm comm comm 5 5

1.02 10 6.84 10
p p p

T T T
α β− − − −= + = × + × .  Therefore on Abe, the 

inefficiency lies over 6 times as much in the beta term as the alpha term.  Sending twice the information 

every other iteration would improve our efficiency by 1.0% while removing the beta term will improve 

our efficiency by 27.5%. 

 

The theory above suggests that for a fixed domain size 3
N , we do not want to divide the work among 

more than a certain number of processors.  For Valkyrie, the maximum number of processors to employ 

on a domain of 3
N  points while maintaining good efficiency is predicted to be ( )

3Valk

max
14P N=  , or if you 

fix P then N shouldn’t go below 3

min
14ValkN P= .  For Abe that number is ( )

3Abe

max
33.5P N=  for fixed N or 

3

min
33.5AbeN P=  for fixed P.  As I mentioned in my proposal, this has significant consequences for 

multigrid.  Multigrid repeatedly solves an original problem with a given domain size on repeatedly 

coarser domains.  Special consideration is required when 
coarse

N becomes less than or equal to 
min

N .  We 

now have two questions to investigate.  How close does theory predict reality?  And, is there a way to 

lower 
min

N ?  

 

Project Research / Results (12/05): 

 

Goal 1:  To determine the limiting effect that the time to pass messages poses and devise a formula for 

the optimal number of processors to employ when subdividing an iterative process.   

 

To determine the lower bound on processor domain size and find a prediction equation, it seems the 

experimental method is straightforward.  Write a program, run it for a variety of N values while holding 

other variables constant, and plot the efficiency.  The plot should look like the theoretical graph, and 

then our prediction equation is just the one from above. 

 

As you will see, reality didn’t follow the above simple model.  As a result, much was learned and even 

some unexpected results were discovered. 



 

After finishing my program to solve Poison’s Equation, I first ran it on a variety of different processor 

geometries with the same initial conditions and iteration counts.  Each run produced the same L-infinity 

error.  From this I concluded that the program ran accurately.  I also had it solve some real life problems 

and visibly inspected the solutions to see if they matched analytic solutions and intuition.  Again my 

code passed these tests.  Some sample pictures are presented later in this paper. 

 

I ran my first experiment on Valkyrie.  I fixed the number of processors to 8 and repeatedly solved the 

Poisson’s Equation for different values of N.  I also solved the same problem with my best serial solver.  

I ran each trial 3 times and selected the minimum run time.  I repeated this procedure for 3 different  

geometries, 1 4 2× × ,  8 1 1× × , and 2 4 1× × .  Here is a plot of the  

results: 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whoa!  This isn’t what should happen!  Where is the nice gently rising curve?  I see two things that are 

unexpected.  First there is a bump in the actual data around 15s = , and second the efficiency is real low 

after the bump, 0.60 for 25
p

E s≈ ≥ .  Thinking and hoping these results may be a fluke with Valkyrie, I ran 

the same experiment on Abe only to get the same results: 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

After seeing this graph a second time on a different machine, I figured my program exhibits this 

behavior.  Now I need to figure out what is causing this bump before I can come up with my predictive 

model.   

 

I decided to plot the efficiency with communication turned off.  I figured that this plot should be a 

straight line at efficiency = 1.  I ran my code on Valkyrie’s best 8 processor geometry, 1 4 2× × , for each 

of the same N values that I used above.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Well this is interesting.  We’re getting to the cause of the bump.  The multiple processors are 

accomplishing super efficiency when an individual processor has domain edge dimension s with 

10 20s≤ ≤ corresponding to a processor’s number of domain points of 3 31000 10 8000 20dp= ≤ ≤ = .  When a 

processor’s domain is under 64kb 8 8000= ⋅ , it runs much faster than the serial algorithm which is working 

on a domain size 8 times as large, maybe 512kb .  I suspect this is because each of the eight processors 

are working out of cache memory while the serial process works from RAM. 

 

This is a big discovery.  This gives me an idea to write a better serial algorithm for the Poisson solver.  

Instead of storing the original N N N× × data structure in a single variable residing as a continuous block 

of memory, we should sub divide this domain into smaller cubes each with total size less than cache 

memory.  Then store each cube in its own variable.  This will preserve better locality in memory for the 

computation loop which requires info from 6 neighbors in different 3-D directions.  Since I don’t have 

time to code this better algorithm now, I will solve for the varying grind time of my current algorithm 

and normalize it out. 

 

 

 

 

 

 

 

 



Here is a plot of the normalized efficiency: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now it looks closer to theory.  The normalization fixed two things; first, it lowered the bump and 

second, it raised the low efficiency region after the bump.  Why is the unnormalized efficiency with 

communication turned off only around 60% after the bump, 25s ≥ ?  Why isn’t it 100%?  This low 

efficiency will also interfere with our predictive model. 

 

The theoritical graph is a function of the time to update one point (grind time), beta, and alpha.  To plot 

the theory graph above, I fixed , ,Tγ α β to a constant value corresponding to the actual value at one 

instance of N.  If I use the variable calculated Tγ , the new theory line becomes the dotted one above. 

 

We’ve nearly explained everything now.  The only deviation of reality from our developed theory is a 

small bump where the old large bump used to be.  Using measured values of efficiency, we can solve for 

what beat needs to be in the theory to cause this small bump.  It turns out beta would need to be 

negative.  This means the small bump is caused by beta and alpha being lowered for 10 20s≤ ≤ .  We’ve 

discovered that these cache optimal s values obtain an alpha and beta better than the ring program!  

 

Goal 1’s Conclusion: 

 

In conclusion, our original predictive model is alright if the original algorithm has been optimized for 

cache use.  Otherwise, you need to factor in an increase of efficiency proportional to the ratio of RAM 

access times to cache access times for 
L H

s s s≤ ≤  where 3 cache size
H

s = and 
L

s seems to be the value 

where 0.50
p

E = in our theory equation above (I don’t know why it just seems like that).  Furthermore 

you need to divide the predictive model by the leveling off efficiency of your algorithm when N is large. 
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Goal 2:  Also I wish to investigate a way to surpass this limiting barrier. 

 

After seeing the data collected and reading a recommendation and paper from Professor Baden, I have 

decided to exceed the limit rule if a different way than proposed in the beginning of this report.  

Communication time equals alpha plus beta times x.  Alpha is the message start up time, beta is the time 

needed to pass one byte of data, and x and the length of the data.  Instead of trying to reduce the alpha 

term by passing extra boundary information and doing multiple computation iterations between 

communications, I will attempt to reduce the beta term by passing information while at the same time 

doing computation. 

 

Currently each processor performs the following sequence of computation and communication: 

  

For i = 1 to number of iterations desired 

  Compute new points 

             Transmit boundary to neighbor processors 

             Receive boundary from neighbor processors 

            Repeat 

 

An alternative approach is to transmit data while computing: 

 

For i = 1 to number of iterations desired 

  Begin transmission of boundary points. 

                        Compute new points excluding boundary points (transmission in progress) 

             Receive boundary from neighbor processors 

                        Compute new boundary points using data from neighbors 

            Repeat 

 

This will lower the beta constant which hopefully will allow us to use more processors for a given 

iterative task.  After coding the above psuedo code, I tested it for numerical accuracy against our old 

non-asynchronous algorithm.  Given the same problem, it solved it exactly the same as the other 

algorithm.  You can turn off this new feature at the command line with the ‘–noasy’ option.  Next I 

plotted and normalized the efficiency of this new algorithm for 0 40s≤ ≤ where s is a single processors 

domain edge corresponding to a sub domain size of 3
s .  I ran it on the same 8,  1 4 2P = × × .  Again, this 

geometry was chosen since it is the best performer for 8 processors. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As you can see, it does increases the efficiency by about 15% in the bump region as was predicted by 

the theory in the beginning of this paper.  The change in the shape of the graph is what one would 

expect.  When you decrease beta, the graph rises faster (making the graph to appear to shift left sort of) 

as you see here.  To demonstrate this, I also plotted another theory line with a decreased beta so you can 

see how changing beta changes the graph.  It doesn’t appear to allow us to employ more processors 

though.  I guess this is to be expected.  We can’t begin rising beta before 10s ≈  for 0 10s≤ ≤ .  Before this 

s value, we are communicating more than computing so we can’t overlap all our communication on top 

of our computation.  Since we begin rising beta so far right on the s axis, we don’t move the graph too 

much to the left.  Maybe we could shift the graph left a little by lowering alpha.  That is something to 

try.  The only other way to modify the shape of the graph is to change the grind time, but it would 

require a lower grind time to shift the graph to the left and that is undesirable. 

 

Goal 2’s Conclusion: 

 

In conclusion we can not really increase 
max

P (lower 
k

s ) by altering the beta term in the above manner.  

We are stuck with our original upper bound on the number of processors to use.  All is not a loss though.  

I discovered that using a communication and computation overlap has great results when the efficiency 

is higher and the computation time is greater than the communication time.  That is when we can effect 

beta the most since we can completely overlap transmission with computation.  Here is the continuation 

of the above plot to 100s = .  As you can see efficiency is greatly increased in this region. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 the above graph, I’ve also plotted two theoretical plots the first one has a beta value calculated from 

actual communication when 100N = .  This beta is much lower than the one calculated above by the ring 

program which describes the behavior of the code running with domains that fit into cache memory.  For 

100N = ,  I experimentally found 71.69 10β −= × .  This was derived from running 100N = , 1000i = , 8P = , 

1 8 1× ×  , non – asynchronously and getting a run time of 40 seconds, then turning off communication and 

getting 17.5 sec, then running 900i = and getting a run time of 36.3 seconds, and turning off 

communication and getting 15.8.  Therefore 2(40 17.5) (36.6 15.8) 100 8 100 β− − − = ⋅ ⋅  implies 71.69 10β −= × . 

 

The asynchronous version can solve the same 100N = , 1000i = problem in 24 seconds!  That’s nearly half 

the time.  But it makes sense because the non-asynch process in running at 50% efficiency which means 

it spends half its time communicating.  The asynchronous version essentially removes all this 

communication time.  Amazing!   

 

 

Application and Further Investigation: 

 

Now let’s incorporate our results into a multigrid algorithm.  Multigrid is a method that is used to 

accelerate an interactive process convergeing upon a solution.  For most iterative algorithms updating a 

mesh of domain points, the N domain points are the discretization of some space.  In our Poisson solver, 

our points are the discretization of three dimensional space. 

 

You can think of solving a differential equation with an iterative solver as two parts.  One part is to 

bring the intial guess into the ballpark of the solution and the second part is the fine tune this solution.  

Basically multigrid allows you to converge into the ball park in no time.  Imagine you are solving for an 

object’s position between times 0 and 1 seconds.  If you break this interval into one million or so pieces, 

you will need to solve for the solution on a domain of 1,048,576N = .  If you initial guess is zero 



everywhere but the true solution is 10 everywhere, it may take a while to converge.  Multigrid solves the 

problem on coarser domains to find the ball park.  In the above example, multigrid will attempt to find 

the solution for the domain broken into 
2

524,288N = and then to find that it looks at 
3

262,144N = .  It 

continues this reduction recursively until it only needs to solve on a very small domain like 
19

4N = or 

something.  Now it find the position for at time equals 0, 0.25, 0.50, 0.75, and 1.0 seconds instead of 

finding it at one million time moments.  It solves this in no time and finds the solution to be around 10.  

It then begins to fill in the details between these 8 domain points until it has the final answer on the 

original 1,048,576N = .  This is analogous to a painter sketching an outline of a drawing and then filling 

in the details versus working in one corner and beginning in high detail.  The first method is much easier 

and faster because you have the big picture to work with. 

 

Of course multigrid in practice can become much more complicated than this.  An algorithm can 

continually cycle in and out of high and low resolution, varying the time spent solving at different 

levels.  Again, this is what a painter may do. 

 

Let’s solve ( )
3

1

0
i i

u
b x

x=

∂
+ =

∂
∑ with ( ) 1b x = and ( ) 0x∂Ω = .  The last equation says that our solution u has 

value zero on the boundary.  Let’s solve this on the unit cube subdividing this domain into 
3

128 2,097,152=  points.  In order to solve this, I coded multigrid into our Poisson solver and then tested it 

for accuracy.  On the command line of Jacobi3D_mpi, add the switch –mg <x> <y> to make the 

program begins with a multigrid v-cycle.  Once Jacobi3D begins, it runs two initial iterations of Jacobi’s 

method, then the v-cycle will descend x levels pausing for 2 iterations at each.  At the coarsest level, it 

will run for y Jacobi iterations before climbing back to the original N.  On its way up, it will stop at each 

level to run one Jacobi iteration. 

 

In addition to the multigrid switch, I also added a new feature to allow us to visualize results.  By adding 

a command line option of ‘-o’, then after a solution is found a cross section of the solution slicing the z-

plane in the middle is saved to a text file.  We can then plot this slice with matlab.  This will help us see 

the difference between using and not using multigrid.  The final solution to the above partial differential 

equation is an upside down parabolic bowl of height 1000.  We will start with an intial guess of ( ) 0u x =  

which is way off. 

 

Multigrid will repeatedly solve on a coarser domain, 3 3 3
64 ,32 ,16 , etc.  If we start with 8 processors on 

Valkyrie and would like to stay operating above 75%, our research work above tells us that we shouldn’t 

let N go below 328 14 8= ⋅ .  That means we will cycle down two levels spend some time there and then 

cycle up.  Here is a plot without multigrid on the left and with multigrid on the right. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

You can see, multigrid is accelerating our approach to the solution.  As described above this is because 

one iteration on the coarser mesh brings the big picture of our solution much closer to the actual solution 

than one iteration on the finer mesh.  If that is the case, then wouldn’t it be better if we descended into 

an even coarser mesh, ignoring our inefficiency restriction?  Below on the left is our 2 level descent and 

on the right is a 4 level descent down to 8N = with each processors getting 4s = , 16 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yes, our previous research and theory says that we are operating inefficiency on the coarse mesh when 

obtaining the above solution on the right.  But, our time on the coarsest mesh is such a small proportion 

of our overall run time because most of our time is spent on the fine mesh.  Therefore inefficiency on the 

coarsest level doesn’t really make a difference.  Furthermore, you can see from the plots that we don’t 

want to avoid using the coarsest levels.   It is also worth noting that the upper right picture took 0.45 

seconds as opposed to the upper left of 0.71 and the non multigrid plot of 4.3 seconds.  

 



If your application requires you to spend the majority of your time on coarser meshes, and, if those 

meshes will have 3

min
N s P<  where 

min
s is the minimum edge dimension of a processors subdomain as 

described in the above paper, then you will benefit from reduced parallelism.  Once you arrive at the 

coarser mesh, you can reduce parallelism by turning off some of your processors and passing their 

domain points to another processor, thus increasing the remaining processor’s s dimension and 

increasing efficiency.  

 

Increasing efficiency has two benefits.  One, you save money by getting more performance from the 

money you spend on processor time, and two you actually decrease running time under certain 

circumstances.  If ( )p
E x represents the efficiency as a function of x, the number of processor domain 

points, then whenever 
( )

( )0

0 0

p

p

E x
x E x

x

∂
⋅ >

∂
, then removing processors actually speeds up the process!   

 

From our collected data above, you can see that on Valkyrie, 
( )

( ) 0.26
p

p

E x
x E x

x

∂
⋅ − =

∂
for 10 14x≤ ≤  

therefore if we are ever operating with 10 14s≤ ≤ then we can speed up our process by removing 

processors.  For example if we are employing 8 processors with 1000 domain points each, then this 

10s = is causing us to run at 0.2 efficiency (from the data above).  If we drop down to 4 processors with 

2000 domain points each or 12.5s = and a new efficiency of 0.66.  We first decrease our speed by 2 and 

then increase it by 3.  We would gain a net speed increase of 50%.   

 

To prove this is true I ran the above example on Valkyrie, it takes 8 processors 1.29 seconds to compute 

10,000 iterations of 20N = and it takes 4 processors 0.981 seconds to complete the same iterations.  The 

four processors finished 31.5% faster.  

 

Final Conclusions: 

 

In the first part of the paper we came up with a formula for the maximum number of processors to 

deploy when running a parallel process to solve an iterative computation.  Specifically we found  

( )
3Valk

max
14P N= to be the maximum for Valkyrie and ( )

3Abe

max
33.5P N= for Abe.  We also came up with a 

general formula, ( )
3

max k
P N s=  where � ( )

1

0.75pk
s E

−

=  where � ( ) ( ) ( )p p L
E s E s B s E= ⋅ .   

 

The derivation of this general formula demonstrated the complicated nature of efficiency for processors 

running very small subdomains.  When we analyzed Valkyrie we discovered a bunch of peculiar 

behaviors which we then identified.  These behaviors were the result of our specific code and Valkyrie’s 

memory architecture, and networking properties.  The complexity and dependency suggest that it is 

probably more reliable when approaching a new machine and new code to run some tests and 

experimentally determine efficiency versus processor edge dimension instead of using theory before 

deciding how and when to reduce parallelism. 

 

Another big discovery resulting from investigating the behavior of small processor subdomains is the 

importance of cache use.  Everyone knows about cache use but the data above really demonstrates its 

importance.  I learned how to best optimize a serial algorithm that has heavy reliance on memory data 

representing a multidimensional domain.  The code should essentially behave like a parallel 



implementation.  An optimal serial algorithm should repeatedly solve the problem on data structures that 

have less than cache size and piece the overall domain together. 

 

In an effort to increase 
max

P , we learned that asynchronous communication with computation doesn’t 

help much to shift a graph left where the beginning of that graph represents a process that is mostly 

communication and not much computation, i.e. 0.5
p

E ≤ .  We did discover however that asynchronous 

communication radically increases efficiency when a process is doing computation and communication 

nearly equal, i.e. 0.5
p

E = .  This was the case in our original program when 10 14s≤ ≤ and 40s ≥ , and we 

witnessed the amazing results. 

 

Finally, we learned that you need to be careful when interpreting and applying the theory developed 

from this research.  It was exciting to see everything come together in our multigrid implementation.  

We had our faster asynchronous code working together with the accelerating power of multigrid 

resulting in truly powerful computation!  We identified the lower levels of multigrid as processor 

inefficient but experimentally learned that they shouldn’t be avoided.  They are the heart and secret to 

the power of multigrid.  Analyzing run times at this coarser levels, we also saw how little time multigrid 

actually spends there as a fraction of overall runtime.  Regarding the multigrid process, theory may 

suggest to avoid the coarsest levels or redistribute the domain when a processor’s responsibility drops 

below ( )
3

min
s points.  However, experiments demonstrate that we should use the lowest levels anyway 

and it isn’t necessary to spend time and money on developing code to reduce parallelism (unless px, py, 

or pz is less than the coarsest N ) 

 

 

 

 

 

 


