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Abstract This paper discusses the effects that partition-
ing has on the convergence rate of Domain Decomposition.
When Finite Elements are employed to solve a second order
elliptic partial differential equation with strong convection
and/or anisotropic diffusion, the shape and alignment of a
partition’s parts significantly affect the Domain Decompo-
sition convergence rate. Given a PDE, if b is the direction
of convection or the prominent direction of anisotropic dif-
fusion, then if one considers traversing the domain in the
direction of b, partitions having fewer parts to traverse in
this direction converge faster while partitions having more
converge slower.
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1 Introduction

Scientists are interesting in solving the second order elliptic
boundary value problem

−∇ · (a∇u)+b ·∇u+ cu− f = 0 in Ω (1)
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with boundary conditions

a∇u ·n = gN on ∂ΩN (2)

u = gD on ∂ΩD (3)

Here Ω ∈Rd is a bounded domain, n is the unit normal vec-
tor, a is a d× d spd matrix, b is a vector of length d, and
[a]i, j, [b]i, c, f , gN , and gD are scalar functions on Ω .

A typical procedure for numerically solving (1)-(3) is to
convert the PDE into its Weak Form, use a Galerkin Ap-
proximation with Finite Elements, partition the domain and
solve with a Domain Decomposition method using multi-
ple CPUs. When the underlying PDE is not self-adjoint, up-
winding terms are added to improve stability.

Before DD is employed, the domain is partitioned into
either overlapping or non-overlapping subdomains. Both
types can be created from a partition of disjoint parts with
the former having their subdomains enlarged to overlap their
neighbors.

A common class of overlapping DD methods is the
Schwarz methods [19] [20] [21]. In the case of two overlap-
ping subdomains Ω1 and Ω2 where ui is the solution on sub-
domain Ωi and Lu− f = 0 is our original PDE, the Schwarz
methods solve the two local problems

Lu1− f1 = 0 onΩ1 (4)

Lu2− f2 = 0 onΩ2 (5)

with boundary conditions (2) and (3) and interface bound-
ary conditions on one subdomain using information from
the other subdomain.

A popular class of non-overlapping DD methods are the
Lagrange Multiplier methods [19] [20] [21]. They solve the
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saddle point problem

Lu1− f1 +λ
∂G
∂u1

(u1,u2) = 0 onΩ1 (6)

Lu2− f2 +λ
∂G
∂u2

(u1,u2) = 0 onΩ2 (7)

G(u1,u2) = 0 (8)

with boundary conditions (2) and (3) and G(u1,u2) = u1|Γ −
u2|Γ = 0 enforces continuity across the interface. After
choosing initial guesses for u1,u2, and λ , an iterative DD
procedure to solve (6)-(8) alternates between solving for
{u1,u2} and updating λ .

Assume T is the triangulation of our domain Ω . Let uh
be our finite element solution belonging to the discrete space
Sh formed from a basis of the standard linear Lagrange nodal
functions having degrees of freedom at triangle vertices. A
standard partition {T1,T2, ...,TP} of disjoint parts is one that
both minimizes the number of degrees of freedom on the in-
terface (triangle edges on interface) and balances the number
of degrees of freedom per part (triangles per subdomain).

Fig. 1: METIS partitioning the unit square into 64 parts.

Domain Decomposition methods converge well using
this standard partition displayed in Figure 1 because work
is balanced between processors and dependence between
processors is minimized [14] [19]. In 2D (3D), a typi-
cal partition consists of parts shaped like circles (spheres)
which maintains subdomain area while minimizing subdo-
main boundary.

This paper is organized as follows. Sections 2, 3, and
4 discuss alternative partitioning schemes. Sections 5 and 6
describe an experimental design to test these schemes while
Sections 7 and 8 report the results. Section 9 discusses com-
putational resources. Section 10 concludes the work.

2 Alternate Domain Partitioning Schemes

Let T = {t1, ...tn} be a triangularization of domain Ω . Each
triangle ti and each edge shared by two triangles can be as-
signed a weight. Define w(ti) as the weight associated with

triangle i and define W (ti, t j) = W (t j, ti) as the weight as-
sociated with the edge shared by triangle i and j. If Tk is a
subset of T , define

|Tk| ≡
∑
tk∈Tk

w(tk)

Given two subsets Ti and Tj, we define

δt(Ti,Tj)≡
∑

{tr∈Ti,ts∈Tj}

W (tr, ts)

and given three or more subsets, we define

δt(T1, ...,TP)≡
P−1∑
i=1

P∑
j=i+1

δt(Ti,Tj)

With this language, finding a partition {T1,T2, ...,TP} of T
can be formally written as

Find a partition K̃ε such that

(1− ε)
|T |
P
≤ |Ti| ≤ (1+ ε)

|T |
P

for i = 1, ...,P (9)

δt(T1, ...,TP) = min
T̄1,...,T̄P

δt(T̄1, ..., T̄P)

where P is the desired number of parts. Since this is an
NP hard discrete problem, it is solved approximately with
heuristic algorithms.

Typically, the weights are set to value one, w(ti) = 1 for
all i and W (t j, tk) = 1 for all j,k, and algorithms produce a
partition as shown in Figure 1 or theoretically as Figure 2.

Fig. 2: Theoretical partition into 64 parts.

If the edge weights are set to different values, one can
achieve partitions with rectangular parts as pictured in Fig-
ure 3. [15]. If the triangle weights are set to different values,
one can achieve partitions having parts of varying sizes as
pictured in Figure 4. [3] [4] [15].

Do these alternate partitions affect DD convergence
rates? It has been shown in [15] that if (1)-(3) is solved with

strong convection present, namely a =

[
1 0
0 1

]
, b =

[
β 0

]T ,
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(a) Theoretical rectangles (b) METIS rectangles

Fig. 3: Unit square partitioned with edge weights into 64
parts.

(a) METIS (b) Theoretical

Fig. 4: Unit square partitioned with triangle weights into ap-
proximately 64 parts.

|βh| ≥ 1 where h is the mesh size, c = 0, f = 1, and u = 0
on ∂Ω , then the partition does affect the convergence rate.

When using Finite Differences and solving the above
PDE with the Additive Schwarz DD method, consider the
two different overlapping partitions of the unit square pic-
tured in Figure 5. When using rectangle subdomains that
align with the direction of convection, namely partition K̄(2)

0 ,
DD has an asymptotic convergence rate of

Um
2 −1

(
1+ 1+βh−2

√
βh

2 +
√

βh
(
1+ cos

( mπ

m+1

)))
Um

2

(
1+ 1+βh−2

√
βh

2 +
√

βh
(
1+ cos

( mπ

m+1

))) (10)

and when using rectangle subdomains that are perpendicular
to convection, namely partition K̄(1)

0 , DD has an asymptotic
convergence rate of

Um
2 −1

(
1+ 1+βh−2

√
βh

2
√

βh
+ 1√

βh

(
1+ cos

( mπ

m+1

)))
Um

2

(
1+ 1+βh−2

√
βh

2
√

βh
+ 1√

βh

(
1+ cos

( mπ

m+1

))) (11)

Uk(·) is the kth Chebyshev polynomial of the second kind,
h is the mesh size, m = 1

h , and [15] shows that (10) < (11).
Thus DD converges faster when the subdomains align with
strong convection.

(a) Partition K̄(1)
0

(b) Partition K̄(2)
0

Fig. 5: Different partitions of the unit square.

Similarly, it is shown in [15] that this is true for
anisotropic diffusion and Finite Elements. Solve (1)-(3) with

a =

[
α 0
0 1

]
, |α| ≥ 2, b =

[
0 0
]T , c = 0, f = 1, and u = 0 on

∂Ω , and compare partitions K̄(1)
0 and K̄(2)

0 again. And par-
titions are shown to affect DD convergence rates if Multi-
plicative Schwarz is used instead of Additive Schwarz [15].

Other techniques such as downwind numbering have
also been shown to be helpful for improving the convergence
of convection-diffusion problems [13].

3 Stiffness Matrix Weighting Scheme

When a PDE has strong convection and/or anisotropic dif-
fusion, directional dependence between degrees of freedom
exist. The Stiffness Matrix Weighting Scheme automatically
detects this and applies weights to the partitioning process
to encourage the creation of rectangular subdomains which
align with this dependence direction.

The finite element solution of (1)-(3) is a discrete ap-
proximation with the form

uh = uD +

n∑
k=1

Ukψk
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where uD is some function that satisfies the dirchelet bound-
ary conditions and {ψk|k = 1,2, ...,n} are the C0 piecewise
linear Lagrangian basis functions. The degrees of freedom
of uh are U ∈ Rn and are computed by solving

AU−F = 0. (12)

Here the Stiffness Matrix A∈Rn×n is [A] j,k = a(ψk,ψ j). The
Load Vector F ∈ Rn is [F ]i = b(ψi)− a(uD,ψi). The func-
tions a(u,v) and b(v) follow from the Weak Form of (1)-(3)

a(u,v) =
∫

Ω

a∇u ·∇v+(b ·∇u)v+ cuvdxdy.

b(v) =
∫

Ω

f vdxdy +

∫
∂ΩN

gNvds.

When (1)-(3) is not self-adjoint, the discretization needs
some upwinding terms added to improve stability. Therefore
a(u,v) is replaced by ah(u,v) in (12)

ah(uh,vh) = a(uh,vh)+

∫
Ω

∇uh · (wh∇vh)dxdy

When solving the partitioning equation (9) for PDE (1)-
(3), the Stiffness Matrix Weighting Scheme adds weights to
the triangle edges of the domain triangularization T as fol-
lows

W (ti, t j) = β+ (13)

α max
{
|Am+2,m|+ |Am+2,m+1|

2|Am+2,m+2|
,
|Am,m+2|
2|Am,m|

+
|Am+1,m+2|
2|Am+1,m+1|

}
+

α max
{
|Am+3,m|+ |Am+3,m+1|

2|Am+3,m+3|
,
|Am,m+3|
2|Am,m|

+
|Am+1,m+3|
2|Am+1,m+1|

}
[A]r,s is the stiffness matrix entry corresponding with the in-
teraction between degrees of freedom Us and Ur where Us
and Ur are defined by Figure 6 which displays triangle ti and
t j. Scaling factors α and β are generally set to 100 and 1
respectively but can be changed to stretch the aspect ratio of
the resultant rectangle subdomains.

Fig. 6: Diagram for equation (13)

This algorithm is described in more detail in [15]. Fig-
ure 7 shows two examples of using Stiffness Matrix Weight-
ing. Figure 7a is the result of the original PDE (1)-(3) hav-
ing anisotropic diffusion with a diagonal prominent direc-

tion, namely a = 1
2

[
1 −1
1 1

][
α 0
0 1

][
1 1
−1 1

]
, |α| ≥ 2, b = 0,

c= 0, and f = 1. And Figure 7b is the result of having circu-

lar strong convection, namely a =

[
1 0
0 1

]
, b = β

[
0.5− y
x−0.5

]
,

|βh| ≥ 1, c = 0, and f = 1.

(a) anisotropic diffusion with diago-
nal prominence

(b) circular strong convection

Fig. 7: METIS using the Stiffness Matrix Weighting
Scheme.

4 Error Weighting Scheme

When a PDE has strong convection directed into a dirich-
let boundary, an alternative to Stiffness Matrix Weighting
is Error Weighting. The PDE solution has a boundary layer
that Finite Elements using a uniform mesh with linear basis
functions has difficulty approximating. See Figure 8.

Fig. 8: PDE solution with boundary layer
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The finite elements, t ∈ T , near the boundary layer have
greater error in the form of ||∇(u− uh)||L2(t) than other el-
ements. The Error Weighting Scheme uses this information
to add weights to the partitioning process.

Without knowing the true solution u of (1)-(3), we can
not compute ||∇(u−uh)||L2(t) directly for linear Finite Ele-
ments. Bank and Xu developed an asymptotically exact esti-
mate [11] [12] which is based on a superconvergent approx-
imation of the order 2 derivatives of u. [7] [11] [12]

||∇(u−uh)||L2(t) ≈ ||∇et ||L2(t)

et(x,y) =
3∑

k=1

l2
k tT

k M̄ttkqk(x,y)

M̄t =
αt

2
(M̃t + M̃T

t )

M̃t =−
1
2

[
∂xSmQh∂xuh ∂xSmQh∂yuh
∂ySmQh∂xuh ∂ySmQh∂yuh

]

Triangle t ∈ T has 3 sides. lk is the length of side k. tk is the
unit tangent of side k. qk(x,y) is a quadratic function equal to
1 at the midpoint of side k and equal to 0 at the three vertices
and other two midpoints. Qh is the L2 projection from the
space of discontinuous piecewise constant functions into the
space of continuous piecewise linear polynomials. Sm is a
smoothing operator based on the discrete Laplace operator.

When solving the partitioning equation (9) for PDE (1)-
(3), the Error Weighting Scheme adds weights to the trian-
gles of the domain triangularization ∀t ∈ T as follows

w(t) = ||∇(u−uh)||L2(t)

This encourages the creation of a partition with subdomains
of varying sizes that decrease from large to small in the di-
rection of convection. Since each subdomain originally con-
tains a different number of degrees of freedom (triangles),
each processor will refine its subdomain to an agreed upon
number of degrees of freedom thus balancing the load and
adding degrees of freedom to regions where they are needed
to improve the final finite element solution’s accuracy.

This algorithm is the main component of the Bank-Holst
Paradigm and is described in more detail in [3] [4] [15].
Figure 9 shows an example of using Error Weighting to

solve (1)-(3) with dirichlet boundary conditions, a=
[

1 0
0 1

]
,

b =
[

β 0
]T , βh≥ 1, c = 0, f = 1, and u = 0 on ∂Ω .

Fig. 9: METIS using the Error Weighting Scheme

5 Numerical Experiment Design

For very simple cases, Section 2 demonstrates mathemat-
ically that partition design affects the convergence rate of
DD. In order to test the influence of more complicated par-
titions on DD convergence, we conduct numerical experi-
ments.

Our numerical experiments are performed using
PLTMG 11.0, METIS 5.1.0, and SG running on CCoM’s
computing resource BOOM. PLTMG 11.0 is a package
for solving elliptic partial differential equations in gen-
eral regions of the plane created by Randolph Bank [2].
BOOM is a resource of the Center for Computational Math-
ematics at the University of California San Diego. BOOM
is a ROCKS-based 720-core/1440-GB (60 dual-cpu/six-
core/24GB nodes) 64-bit Xeon Cluster (from Dell). METIS
5.1.0 is a serial software package for partitioning large ir-
regular graphs, partitioning large meshes, and computing
fill-reduced ordering of sparse matrices created by George
Karypis [17]. SG is a visualization tool created by Michael
Holst which provides most of the visualizations for this pa-
per [16].

6 Bank-Holst Paradigm DD Solver

PLTMG 11.0 solves elliptic PDEs by the methods described
in Section 1 and uses a unique Domain Decomposition
solver that has properties of both overlapping and non-
overlapping methods. Every processor maintains a mesh
of the entire domain giving it the benefits of overlapping
schemes. And, similar to non-overlapping methods, each
processor owns a unique disjoint portion of the domain
known as its subdomain. When a processor refines its mesh,
it places the majority of the new degrees of freedom within
its subdomain. Therefore on a specific processor, the domain
has a fine mesh within its subdomain and a coarse mesh out-
side its subdomain. Figure 10 illustrates this for 4 proces-
sors. The entire domain is the unit circle. Processor 1’s sub-
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domain is quadrant 1 and processor k’s subdomain is quad-
rant k.

(a) processor 1 (b) processor 2

(c) processor 3 (d) processor 4

Fig. 10: Local meshes of four processors.

The Bank-Holst paradigm DD solver enforces the trans-
mission conditions between the disjoint subdomains with
Lagrange Multipliers as in (6)- (8). But because each proces-
sor has information about the entire domain, the Bank-Holst
paradigm DD solver method doesn’t need to explicitly solve
for the multipliers.

Each processor creates their own discrete saddle point
problem from (6)-(8) and then solves only for the unknowns
they need.

AII
1 AIB

1 0 0 0
ABI

1 ABB
1 0 0 I

0 0 ĀII
2 ĀIB

2 0
0 0 ĀBI

2 ĀBB
2 −I

0 I 0 −I 0




δU I
1

δUB
1

δŪ I
2

δŪB
2

λ

=


RI

1
RB

1
RI

2
RB

2
UB

2 −UB
1

 (14)

In the case of two processors, Equation (14) is the
saddle point problem that processor 1 forms. In place of
AII

2 ,A
IB
2 ,ABI

2 , and ABB
2 it substitutes its own stiffness matrices

created from the coarse mesh that it has located in proces-
sor 2’s subdomain and denoted above as ĀII

2 , Ā
IB
2 , ĀBI

2 , and
ĀBB

2 . Processor 1 receives RB
2 and UB

2 from processor 2 and it
sets RI

2 = 0. Processor 2 creates a similar saddle point prob-
lem substituting its coarse stiffness matrices for A1’s and re-
ceives RB

1 and UB
1 from processor 1.

Since processor 1 doesn’t need the quantities δŪB
2 and

λ , it reorders (14) and eliminates these sets of equations by
block elimination

0 −I 0 I 0
−I ĀBB

2 0 0 ĀBI
2

0 0 AII
1 AIB

1 0
I 0 ABI

1 ABB
1 0

0 ĀIB
2 0 0 ĀII

2




λ

δŪB
2

δU I
1

δUB
1

δŪ I
2

=


UB

2 −UB
1

RB
2

RI
1

RB
1

RI
2


The 3×3 Schur complement system is AII

1 AIB
1 0

ABI
1 ABB

1 + ĀBB
2 ĀBI

2
0 ĀIB

2 ĀII
2

 δU I
1

δUB
1

δŪ I
2

=

 RI
1

RB
1 +RB

2 + ĀBB
2 (UB

2 −UB
1 )

ĀIB
2 (UB

2 −UB
1 )


(15)

Algorithm 1 Bank-Holst paradigm DD solver
Initialize U1 and U2 to an initial guess

1: for k = 0,1,2, ... until convergence do
2: Compute residuals R1 and R2
3: Communicate RB

i and UB
i from Γ to neighbor processors

4: Simultaneously for i=1,2
Solve (15) A∗i δUi = R∗i for δUi.

5: end for

Each processor solves its system (15) using the Con-
jugate Gradient method with an incomplete LU precondi-
tioner.

This algorithm is described in more detail in [8] [1] [18]
[10]. It is motivated by and similar to domain decomposition
algorithms described in [5] [6]. The Bank-Holst paradigm is
described in [3] [4] with an additional contribution described
in [9].

7 Stiffness Matrix Weighting Experiments

7.1 Isotropic Diffusion

When PDE (1)-(3) is mostly isotropic diffusion, namely
λ1(a)
λ2(a)

< 2 and ||b||h < 1, then the Stiffness Matrix Weighting
Scheme detects no favored directional dependences. The re-
sultant partition is the same as the standard partition created
by setting all the weights equal to 1.

In this case, we can force the partitioner to create
rectangle subdomains by applying a Directional Weighting
Scheme [15]. If v is a given direction vector and ni, j is the
unit normal vector to the edge between triangles i and j,
then we can add weights to the triangle edges of the domain
triangularization T as follows

W (ti, t j) = 4(v ·ni, j)
2 +1
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This encourages the partitioner to create rectangle subdo-
mains of aspect ratio 4 : 1 in the direction of v.

Now, using 64 processors, we solve (1)-(3) with a =[
1 0
0 1

]
, b = 0, c = 0, f = 1, and u = 0 on ∂Ω for the three

cases of v = 0, î, ĵ. Note that when v = 0, then W (ti, t j) =

1∀i, j and creates the standard partition. The three resultant
partitions are displayed in Figure 11 and the details of the
DD convergence are listed in Table 1.

(a) v = 0 (b) v = î

(c) v = ĵ

Fig. 11: Directional Weighting with v = 0, î, ĵ .

Table 1: DD convergence details

v = 0 v = î v = ĵ

k−1

√
||δuk ||
||δu1||

0.37 0.51 0.51

||u0|| 4.13×10−2 4.13×10−2 4.13×10−2

k−1
√
||rk ||
||r1||

0.43 0.57 0.60
||r0|| 5.01 4.96 5.12

||eh|| ≈ ||u−uh|| 1.71×10−8 1.87×10−8 1.83×10−8

iterations 8 12 12

With regard to the L2(Ω) norm, the first five rows of Ta-
ble 1 show the convergence rate of the solution increment
||δuk||, the initial solution ||u0||, the convergence rate of the
residual ||rk||, the initial residual, and the error of the finite
element solution respectively. The last row lists the num-
ber of required DD iterations. DD iterations are terminated

when

||δuk||= ||uk−uk−1||<
1
10
||u−uh|| ≈

1
10
||eh|| (16)

This experiment demonstrates that when no favored di-
rectional dependence exists, the standard partition which
minimizes the number of degrees of freedom on the inter-
face achieves fastest convergence.

7.2 Anisotropic Diffusion

Next, using 64 processors, we solve (1)-(3) with anisotropic

diffusion, a = 1
2

[
1 −1
1 1

][
α 0
0 1

][
1 1
−1 1

]
, b = 0, c = 0, f =

1, and u = 0 on ∂Ω . We solve with α = 2,10,100 and com-
pare the three partitioning schemes, Standard Weighting,
Stiffness Matrix Weighting, and Orthogonal Stiffness Ma-
trix Weighting. The finite element solution for α = 100 is
pictured in Figure 13. The three resultant partitions are dis-
played in Figure 12. The choice of partitioning scheme does
not significantly affect ||u0||, ||r0||, and ||eh||. The other DD
convergence details are listed in Tables 2-4.

(a) Standard Weigting (b) Stiffness Matrix Weighting

(c) Orthogonal Stiffness Ma-
trix Weighting. (Directional
Weighting v = [1,−1])

Fig. 12: Different partitioning schemes
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Table 2: DD k−1
√
||δuk||
||δu1||

α Standard Stiffness Orthogonal Stiffness
2 0.41 0.36 0.50
10 0.56 0.45 0.63
100 0.61 0.54 0.64

Table 3: DD k−1
√
||rk||
||r1||

α Standard Stiffness Orthogonal Stiffness
2 0.45 0.41 0.57
10 0.58 0.47 0.69
100 0.67 0.58 0.76

Table 4: DD iterations

α Standard Stiffness Orthogonal Stiffness
2 10 8 12
10 14 11 18
100 16 13 18

This experiment demonstrates that when a favored direc-
tional dependence exists because of anisotropic diffusion,
a partition which aligns with this direction achieves fastest
convergence with the same level of accuracy as compared to
other partitions.

Fig. 13: PDE solution with anisotropic diffusion

7.3 Strong Convection

Next, using 64 processors, we solve (1)-(3) with strong

convection, a =

[
1 0
0 1

]
, b =

[
β 0

]T , c = 0, f = 1, and

u = 0 on ∂Ω . We solve with βh = 1,10,100 where h is the

mesh size and compare the three partitioning schemes, Stan-
dard Weighting, Stiffness Matrix Weighting, and Orthogo-
nal Stiffness Matrix Weighting. The finite element solution
for βh = 100 is pictured in Figure 8. The three resultant
partitions are the same as those displayed in Figure 11. The
choice of partitioning scheme does not significantly affect
||u0||, ||r0||, and ||eh||. The other DD convergence details are
listed in Tables 5-7.

Table 5: DD k−1
√
||δuk||
||δu1||

βh Standard Stiffness Orthogonal Stiffness
1 0.23 0.14 0.28
10 0.33 0.21 0.44
100 0.34 0.24 0.44

Table 6: DD k−1
√
||rk||
||r1||

βh Standard Stiffness Orthogonal Stiffness
1 0.23 0.16 0.30
10 0.36 0.23 0.46
100 0.37 0.25 0.47

Table 7: DD iterations

βh Standard Stiffness Orthogonal Stiffness
1 6 4 6
10 7 4 8
100 7 4 8

This experiment demonstrates that when a favored di-
rectional dependence exists because of strong convection,
a partition which aligns with this direction achieves fastest
convergence with the same level of accuracy as compared to
other partitions.

Additionally, it is shown in [15] that all the results in
Sections 7.1–7.3 hold when varying the number of proces-
sors, the boundary conditions, the domain shape, and the
forcing function f in the PDE.

8 Error Weighting Experiments

8.1 Isotropic Diffusion

When the finite element solution of (1)-(3) has equal error
on each element of a uniform global mesh, ||∇(u−uh)||L2(t),
then the partition created from Error Weighting is the same
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as the standard partition created by setting all weights equal

to 1. Therefore if (1)- (3) is solved with a =

[
1 0
0 1

]
, b = 0,

c= 0, f = 1 with and without Error Weighting, the partitions
are basically the same.

In this case, the partitioner can be forced to create subdo-
mains of varying sizes that decrease from large to small in a
direction v of choice by applying a Flow Weighting Scheme
[15]. To apply Flow Weighting on the unit square in the di-
rection v =−î, we could add weights to the triangles of the
domain triangularization ∀t ∈ T as follows:

w(t) =
(

px(t)+10−3)−1.5

where px(t) is the x coordinate of the center of triangle t. To
apply Flow Weighting on the unit square in the direction of
v =− ĵ, we could use:

w(t) =
(

py(t)+10−3)−1.5

Figure 14 shows the resultant partitions from using Flow
Weighting and v = 0,−î,− ĵ. When v = 0, we define w(t) =
1∀t.

(a) v = 0 (b) v =−î

(c) v =− ĵ

Fig. 14: Flow Weighting with v = 0,−î,− ĵ.

If (1)-(3) is solved with a =

[
1 0
0 1

]
, b = 0, c = 0, f = 1,

and u = 0 on ∂Ω using the three partitions from Flow
Weighting with v = 0,−î,− ĵ, there is no significant differ-
ence between the DD convergence rates of each.

8.2 Strong Convection

Next, using 64 processors, we solve (1)-(3) with strong con-

vection and a dirichlet boundary, a =

[
1 0
0 1

]
, b =

[
β 0

]T ,

c = 0, f = 1, and u = 0 on ∂Ω . We solve with βh =

1,10,100 where h is the mesh size and compare the three
partitioning schemes, Standard Weighting, Error Weighting,
and Orthogonal Error Weighting. The finite element solu-
tion for βh = 100 is pictured in Figure 8. The three resultant
partitions are the same as those displayed in Figure 14. The
DD convergence details are listed in Tables 8-11.

Table 11 lists the number of iterations before DD is ter-
minated by the stopping criteria of (16). The numbers in
parenthesis are how many iterations are required to obtain
the same ||δuk|| accuracy as the standard partition. From
Table 8, we see that using a partition created from Er-
ror Weighting allows the finite element solution to achieve
greater accuracy than using the standard partition. And us-
ing an Orthogonal Error Weighted partition produces a less
accurate solution.

Table 8: DD ||eh|| ≈ ||u−uh||

βh Standard Error Orthogonal Error
1 3.1×10−7 1.64×10−7 1.25×10−6

10 9.31×10−8 2.78×10−8 1.34×10−7

100 9.33×10−9 3.52×10−9 1.38×10−8

Table 9: DD k−1
√
||δuk||
||δu1||

βh Standard Error Orthogonal Error
1 0.23 0.09 0.29
10 0.33 0.07 0.66
100 0.34 0.07 0.72

Table 10: DD k−1
√
||rk||
||r1||

βh Standard Error Orthogonal Error
1 0.23 0.13 0.35
10 0.36 0.13 0.75
100 0.37 0.16 0.82
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Table 11: DD iterations

βh Standard Error Orthogonal Error
1 6 3 (3) 4 (5)
10 7 4 (3) 10 (12)
100 7 3 (3) 13 (14)

This experiment demonstrates that when a favored direc-
tional dependence exists because of strong convection, a par-
tition which aligns with this direction achieves fastest con-
vergence. Furthermore, Error Weighting produces a more
accurate finite element solution when a boundary layer is
present.

Additionally, it is shown in [15] that all the results in
Sections 8.1-8.2 hold when varying the number of proces-
sors, the boundary conditions, the domain shape, and the
forcing function f in the PDE.

8.3 Singularities

The Error Weighting Scheme does not detect anisotropic dif-
fusion in general, but Error Weighting has the additional
advantage of detecting singularities. Singularities can be
present in the solution of (1)-(3) when singularities are
present in a,b,c, f , or the boundary conditions. When the so-
lution u has a singularity, Error Weighting produces a more
accurate finite element solution than Standard Weighting be-
cause it adds degrees of freedom where they are needed.

Furthermore, the partition created from Error Weight-
ing maintains the same DD convergence rate as the stan-
dard partition. Using 64 processors, we solved (1)-(3) with

a =

[
1 0
0 1

]
, b = 0, c = 0, f = 0. We created a singularity in

the boundary conditions by solving over the unit circle with
a crack down the x axis. Homogenous Dirichlet boundary
conditions are imposed on the top of the crack, and homoge-
nous Neumann boundary conditions are imposed below the
crack with gD = 0 and gN = 0. The remainder of the bound-
ary has u = sin 1

4 θ .

We compared the two partitioning schemes, Standard
Weighting and Error Weighting. The finite element solution
is pictured in Figure 15. The two resultant partitions are dis-
played in Figure 16 and the details of the DD convergence
are listed in Table 12.

Fig. 15: PDE solution with singularity

(a) Error Weighting (b) Standard Weighting

Fig. 16: Partitions on the unit circle.

Even though Standard Weighting has a smaller ini-
tial residual, Error Weighting computed a better initial
guess ||u − u0||. Both partitions have approximately the
same ||δuk|| convergence rate and Error Weighting achieves
||δuk|| < ( 1

10 )3.88× 10−5 in 7 iterations while Standard
Weighting needs 11 iterations. The better global mesh from
the Error Weighting partition allows its finite element solu-
tion to achieve greater accuracy. Error Weighting achieves
||δuk||< ( 1

10 )2.18×10−7 after 14 iterations. DD iteration is
terminated by the stopping criteria of (16).

Table 12: DD convergence details

Standard Error

k−1

√
||δuk ||
||δu1||

0.46 0.49

||u0|| 1.12 1.12
k−1
√
||rk ||
||r1||

0.49 0.48
||r0|| 9.72×103 1.9×107

||eh|| ≈ ||u−uh|| 3.88×10−5 2.18×10−7

iterations 11 14 (7)

This experiment demonstrates that when the solution u
has a singularity caused by boundary conditions, using a par-
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tition created from Error Weighting produces a more accu-
rate finite element solution while maintaining the DD con-
vergence rate. Additionally these results hold for the other
types of singularity problems listed in the beginning of Sec-
tion 8.3.

9 Computational Resources

In each of these experiments, we monitored the CPU, mem-
ory, and communication usage. We observed that the choice
of partition did not significantly affect the time needed to
complete one iteration.

Specifically, we found that the communication time re-
quired between processors was proportional to the length
of the interface between subdomains. When using Stiffness
Matrix Weighting with rectangle parts of aspect ratio 4:1, the
interface was 25% longer than the standard unweighted par-
tition. Error Weighting did not significantly affect the length
of the interface.

The Bank-Holst paradigm DD solver spent approxi-
mately 1/500 of the time needed for each iteration in com-
munication. Therefore a small percentage change in com-
munication did not significantly change the time needed to
complete one iteration.

The majority of each iteration’s time was spent in com-
putation, specifically computing the ILU preconditioner for
the Conjugate Gradient method. We found that the compu-
tation time needed to complete one iteration was not sig-
nificantly affected by the choice of partition. And memory
usage was not significantly affected either. These results are
shown in [15].

Therefore, among these experiments, the overall solve
time to complete DD was proportional to the number of iter-
ations needed and improving the convergence rate lowered
the overall solve time.

10 Conclusion

In conclusion, when Finite Elements are employed to solve
a second order elliptic partial differential equation with
strong convection and/or anisotropic diffusion, the shape
and alignment of a partition’s parts significantly affect the
Domain Decomposition convergence rate. Given a PDE, if
b is the direction of convection or the prominent direction
of anisotropic diffusion, then if one considers traversing the
domain in the direction of b, partitions having fewer parts
to traverse in this direction converge faster while partitions
having more converge slower.

Furthermore, partitioning with Stiffness Matrix Weight-
ing (rectangular subdomains aligned in a specific direction)
maintains the accuracy of the global finite element solu-
tion while improving the DD convergence rate and Error

Weighting (subdomain sizes decrease in a specific direction)
improves the accuracy of the global finite element solution
while improving or maintaining the DD convergence rate.
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