
Single CPU Optimizations of SCEC AWP-Olsen Application

Hieu Nguyen (UCSD), Yifeng Cui (SDSC), Kim Olsen (SDSU), Kwangyoon Lee (SDSC)

Reducing application’s time-to-solution has been one of the grand
challenges for scientific computing, especially at large-scale. This also
applies to simulating earthquake using the Southern California
Earthquake Center (SCEC) AWP-Olsen code. The SCEC 100-m resolution
ShakeOut-D wave propagation simulations, conducted on Kraken at
NICS using 64k cores with 14.4 billion mesh points for southern California
region, consume hundreds of thousands of allocation hours per
simulation. There has been an urgent need of reducing time spent on
each individual processor since saving 1% execution time on each
processor can save thousands of allocation hours per simulation. This
work introduces single CPU optimization as a very effective solution.

In the analysis of large-scale application in modern HPC environments,
utilization of performance tool is essential as complexity often hinders
information about program’s “hot spots” where most of time is spent
during execution, and critical hardware performance data. In our
study, Cray Performance Analysis Tool (CrayPat) is used for
performance profiling. The profiling results show that there are seven
subroutines which account for about 40% of the execution time (see
Figure 2) . These subroutines are our objects for optimizing.

Cost to execute floating operations vary from microprocessor to
microprocessor, however floating point division is always far more
expensive than floating point addition and floating point multiplication
(see table 1). Thus it can be our great advantage to reduce the use of
division in frequently used formulas.

Opera&on Addi&on Mul&plica&on Division

Cost 3‐6 4‐8 32‐45

In the four most expensive subroutines xyzq, xyq, xzq, and yzq, media
parameters stored in two 3D arrays lam and mu are averaged using one
of the two formulas below (only formulas for mu are shown, indices vary
for different subroutines):

All of the critical subroutines in the code share the same structure of three
nested loop, looping over all nodes in the local mesh of each processor.
CrayPat hardware counter performance ported on these loops
demonstrate they have good memory access in general. However,
cache utilization is very low. This is mainly due to the requirement of
assessing values of multiple 3D arrays with the second or last indices
varied. When one of these values is needed the whole cache line, which
contain the value, is fetched in to L1 cache. Since the numbers of
variables in the inner loops are large the cache line is usually evicted just
after one reference. To improve cache utilization we need to use as
many values per one fetch as possible.

Formula 1: 1 addi7on, 3 divisions
xmu = 2./(1./mu(i,j,k)+1./mu(i,j,k-1))
Formula 2: 7 addi7ons, 9 divisions
xl = 8./(1./mu(i,j,k)+1./mu(i+1,j,k)
 + 1./mu(i,j-1,k)+1./mu(i+1,j-1,k)
 + 1./mu(i,j,k-1)+1./mu(i+1,j,k-1)
 + 1./mu(i,j-1,k-1)+1./mu(i+1,j-1,k-1))

Figure 2: Time distribu7on of tasks and important subrou7nes
for test problem on 200x200x40 km domain, resolu7on 100m
using 1600 processors.

Table 1: Cost of opera7ons in clock cycle

These formulas are considered expensive not only because of the cost of
the multiple divisions but also because of the large difference in
execution time between addition and division that degrade on-chip
parallelism (additions have to wait long time for results from divisions).

(To save spaces elements from array mu are replaced by a,b,c,…)
Revised Formula 1: 1 addi7on, 2 mul7plica7ons, 1 division
 xmu = 2.*a*b/(a+b)
Revised Formula 2: 7 addi7ons, 11 mul7plica7ons, 4 divisions
 xl = 8./((b*c+a*c+a*b)/(a*b*c)
 + (e*f+d*f+d*e)/(d*e*f)
 + (g+h)/(g*h))

Further study shows media parameter arrays mu and lam are computed
once and remain unchanged during the whole simulation. In addition,
even thought elements in the arrays mu and lam are used in both forms
mu(i,j,k) and 1./mu(i,j,k) only the later one is used in frequently called
subroutines. This suggests that the code should store the reciprocals of mu
and lam original values. This way, we use costly operations (divisions to
compute reciprocal values), however it is one-time calculation only. The
results can be used in every time step. Improvement is significant since the
number of time step in real simulation is usually larger than 40k .

Mathematically equivalent formulas are introduced to eliminate these
problems. Terms in the denominators of the formulas are collected in
groups of 2 , 3 or 4 (see Figure 3). Multiple experiments shows that for
formula 2, two groups of 4 gives the best performance. However, since
values of the parameter arrays can be as large as 1010 , it is unsafe, in
single precision, to have product of four of such values. The optimal
choice is two groups of 3 and one group of 2. This ways, not only the
number of divisions is reduced in both formulas but the on-chip parallelism
is also improved as the execution time of two operands in each operator
are more balanced.

Figure 3: Formulas for collec7ng group of 2 and group of 3

do i= nxb,nxe
 …
 vyz=c1*(v1(i,j,k+1)-v1(i,j,k))+c2*(v1(i,j,k+2)-v1(i,j,k-1))
 …
enddo

do i= nxb,nxe,2
 …
 vyz=c1*(v1(i,j,k+1)-v1(i,j,k))+c2*(v1(i,j,k+2)-v1(i,j,k-1))
 vyz1=c1*(v1(i+1,j,k+1)-v1(i+1,j,k))+c2*(v1(i+1,j,k+2)-v1(i+1,j,k-1))
 …
enddo

Original Version Op&mized Version

Time 4.279909 secs 2.330380 secs

REQUESTS_TO_L2:DATA 13.540M/sec 25.170M/sec

DATA_CACHE_REFILLS 4.430M/sec 8.197M/sec

PAPI_L1_DCA 507.742M/sec 1577.473M/sec

 D1 cache hit ra7o 97.4% hits 98.4% hits

D2 cache hit ra7o 33.4% 33.9%

 D1+D2 cache u7liza7on 56.29 refs/miss 94.84 refs/miss

System to D1 refill 9.019M/sec 16.633M/sec

System to D1 bandwidth 550.495MB/sec 1015.198MB/sec

Table 2: CrayPat API profiling results of subrou7ne xzq
before and acer loop unrolling to depth 2

Figure 1. Peak dynamic Coulomb failure stress changes in Shakeout
simulation of an Mw7.8 earthquake on the southern San Andreas Fault;
600 x 300 x 80 km domain, 100m resolution, 14.4 billion grids, 50k time
steps. The latest kind of simulation has been performed in NICS Kraken
with 64,000 processors.

Loop unrolling is introduced as a very effective way to improve cache
utilization. In loop unrolling of depth k, the loop counter is reduce by k
times and the amount of work inside the loop is k times bigger. Above is
an example of loop unrolling to depth 2. In this example, at least 2 values
are referenced for every fetch of a cache line for values of array v1.

Loop unrolling clearly improve the cache utilization (see table 2) however
it might also increase the calculation complexity in both number of
variables and number of operations. As the number of registers on a
machine is limited over unrolling could degrade loop performance.
Empirical study prove that unrolling to depth 2 give the best performance
for subroutines xyq and xzq.

Improvements are measured by comparing the average computing time
per step (this includes both communication, which is untouched, and
calculation time) of modified code and the original one. With all the
changes discussed in this work and some other small changes, we was
able to gain a speed up of up to 31.25%.

Number of
Processors

Compu&ng Time per Step Elapsed Time

Original Op7mized Improvement Original Op7mized Improvement

2K 3.148s 2.174s 30.94% 3162.784s 2182.335s 30.99%

4K 1.584s 1.089s 31.25% 1596.44s 1123.424s 29.63%

8K 0.820s 0.571s 30.37% 832.936s 583.69s 29.92%

16K 0.432s 0.305s 28.47% 453.642s 334.518s 26.26%

Table 3: Improvements from op7mized version of problem of
600 x 300 x 80 km domain, 100m resolu7on, 1k 7me step.

