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Reducing application’s time-to-solution has been one of the grand 
challenges for scientific computing, especially at large-scale. This also 
applies to simulating earthquake using the Southern California 
Earthquake Center (SCEC) AWP-Olsen code. The SCEC 100-m resolution 
ShakeOut-D wave propagation simulations, conducted on Kraken at 
NICS using 64k cores with 14.4 billion mesh points for southern California 
region, consume hundreds of thousands of allocation hours per 
simulation. There has been an urgent need of reducing time spent on 
each individual processor since saving 1% execution time on each 
processor can save thousands of allocation hours per simulation. This 
work introduces single CPU optimization as a very effective solution. 

In the analysis of large-scale application in modern HPC environments, 
utilization of performance tool is essential as complexity often hinders 
information about program’s “hot spots” where most of time is spent 
during execution, and critical hardware performance data.  In our 
study, Cray Performance Analysis Tool (CrayPat) is used for 
performance profiling. The profiling results show that there are seven 
subroutines which account for about 40% of the execution time (see 
Figure 2) . These subroutines are our objects for optimizing. 

Cost to execute floating operations vary from  microprocessor to 
microprocessor, however floating point division is always far more 
expensive than floating point addition and floating point multiplication 
(see table 1). Thus it can be our great advantage to reduce the use of 
division in frequently used formulas.  

Opera&on  Addi&on  Mul&plica&on  Division 

Cost  3‐6  4‐8  32‐45 

In the four most expensive subroutines xyzq, xyq, xzq, and yzq, media 
parameters stored in two 3D arrays lam and mu are averaged using one 
of the two formulas below (only formulas for mu are shown, indices vary 
for different subroutines):  

All of the critical subroutines in the code share the same structure of  three 
nested loop, looping over all nodes in the local mesh of each processor. 
CrayPat hardware counter performance ported on these loops 
demonstrate they have good memory access in general. However, 
cache utilization is very low. This is mainly due to the requirement of 
assessing values of multiple 3D arrays with the second or last indices 
varied. When one of these values is needed the whole cache line, which 
contain the value, is fetched in to L1 cache.  Since the numbers of 
variables in the inner loops are large the cache line is usually evicted just 
after one reference. To improve cache utilization  we need to use as 
many values per one fetch as possible. 

Formula 1: 1 addi7on, 3 divisions 
xmu = 2./(1./mu(i,j,k)+1./mu(i,j,k-1)) 
Formula 2: 7 addi7ons, 9 divisions 
xl = 8./(1./mu(i,j,k)+1./mu(i+1,j,k)  
      + 1./mu(i,j-1,k)+1./mu(i+1,j-1,k)  
      + 1./mu(i,j,k-1)+1./mu(i+1,j,k-1) 
      + 1./mu(i,j-1,k-1)+1./mu(i+1,j-1,k-1)) 

Figure  2:  Time distribu7on of  tasks  and  important  subrou7nes 
for  test  problem  on  200x200x40  km  domain,  resolu7on  100m 
using 1600 processors. 

Table 1: Cost of opera7ons in clock cycle 

These formulas are considered expensive not only because of the cost of 
the multiple divisions but also because of the large difference in 
execution time between addition and division that degrade on-chip 
parallelism (additions have to wait long time for results from divisions). 

(To save spaces elements from array mu are replaced by a,b,c,…) 
Revised Formula 1: 1 addi7on, 2 mul7plica7ons, 1 division 
      xmu = 2.*a*b/(a+b) 
Revised Formula 2: 7 addi7ons, 11 mul7plica7ons, 4 divisions 
      xl = 8./((b*c+a*c+a*b)/(a*b*c)  
           +  (e*f+d*f+d*e)/(d*e*f)  
           +  (g+h)/(g*h))       

Further study shows media parameter arrays mu and lam are computed 
once and remain unchanged during the whole simulation. In addition, 
even thought elements in the arrays mu and lam are used in both forms 
mu(i,j,k) and 1./mu(i,j,k) only the later one is used in frequently called 
subroutines.  This suggests that the code should store the reciprocals of mu 
and lam original values. This way, we use costly operations (divisions to 
compute reciprocal values), however it is one-time calculation only. The 
results can be used in every time step. Improvement is significant since the 
number of time step in real simulation is usually larger than 40k . 

Mathematically equivalent formulas are introduced to eliminate these 
problems. Terms in the denominators of the formulas are collected in 
groups of 2 , 3 or 4 (see Figure 3). Multiple experiments shows that  for 
formula 2, two groups of 4 gives the best performance. However, since 
values of the parameter arrays can be as large as 1010 , it is unsafe, in 
single precision, to have product of  four of such values. The optimal   
choice is two groups of 3 and  one group of 2. This ways, not only the 
number of divisions is reduced in both formulas but the on-chip parallelism 
is also improved as the execution time of two operands in each operator 
are more balanced. 

Figure 3: Formulas for collec7ng group of 2 and group of 3 

do i= nxb,nxe 
       … 
  vyz=c1*(v1(i,j,k+1)-v1(i,j,k))+c2*(v1(i,j,k+2)-v1(i,j,k-1)) 
       … 
enddo 

do i= nxb,nxe,2 
       … 
  vyz=c1*(v1(i,j,k+1)-v1(i,j,k))+c2*(v1(i,j,k+2)-v1(i,j,k-1)) 
  vyz1=c1*(v1(i+1,j,k+1)-v1(i+1,j,k))+c2*(v1(i+1,j,k+2)-v1(i+1,j,k-1)) 
       … 
enddo 

Original Version   Op&mized Version 

Time  4.279909 secs   2.330380 secs 

REQUESTS_TO_L2:DATA  13.540M/sec  25.170M/sec 

DATA_CACHE_REFILLS   4.430M/sec   8.197M/sec 

PAPI_L1_DCA  507.742M/sec   1577.473M/sec 

 D1 cache hit ra7o  97.4% hits   98.4% hits 

D2 cache hit ra7o  33.4%  33.9% 

 D1+D2 cache u7liza7on  56.29 refs/miss  94.84 refs/miss 

System to D1 refill    9.019M/sec  16.633M/sec 

System to D1 bandwidth  550.495MB/sec   1015.198MB/sec 

Table 2: CrayPat API profiling results of subrou7ne xzq 
before and acer loop unrolling to depth 2 

Figure 1. Peak dynamic Coulomb failure stress changes in Shakeout 
simulation of an Mw7.8 earthquake on the southern San Andreas Fault; 
600 x 300 x 80 km domain, 100m resolution, 14.4 billion grids, 50k time 
steps. The latest kind of simulation has been performed in NICS Kraken 
with 64,000 processors. 

Loop unrolling is introduced as a very effective way to improve cache 
utilization. In loop unrolling of depth k, the loop counter is reduce by k 
times and the amount of work inside the loop is k times bigger. Above is 
an example of loop unrolling to depth 2. In this example, at least 2 values 
are referenced for every fetch of a cache line for values of array v1. 

Loop unrolling clearly improve the cache utilization (see table 2) however 
it might also increase the calculation complexity in both number of 
variables and number of operations. As the number of registers on a 
machine is limited over unrolling could degrade loop performance.  
Empirical study prove that unrolling to depth 2 give the best performance 
for subroutines xyq and xzq. 

Improvements are measured by comparing  the average computing time 
per step (this includes both communication, which is untouched, and 
calculation time ) of modified code and the original one. With all the 
changes discussed in this work and some other small changes, we was 
able to gain a speed up of up to 31.25%. 

Number of 
Processors 

Compu&ng Time per Step  Elapsed Time 

Original  Op7mized  Improvement  Original  Op7mized   Improvement 

2K  3.148s  2.174s  30.94%  3162.784s  2182.335s  30.99% 

4K  1.584s  1.089s  31.25%  1596.44s  1123.424s  29.63% 

8K  0.820s  0.571s  30.37%  832.936s  583.69s  29.92% 

16K  0.432s  0.305s  28.47%  453.642s  334.518s  26.26% 

Table 3: Improvements from op7mized version of problem of 
600 x 300 x 80 km domain, 100m resolu7on, 1k 7me step. 


