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1 Introduction

In this work, we report on an ongoing project to implement an hp-adaptive fi-
nite element method. The inspiration of this work came from the development
of certain a posteriori error estimates for high order finite elements based on
superconvergence Bank and Xu [2003a,b], Bank et al. [2007]. We wanted to
create an environment where these estimates could be evaluated in terms of
their ability to estimate global errors for a wide range of problems, and to be
used as the basis for adaptive enrichment algorithms.

Their use in a traditional h-refinement scheme for fixed degree p is straight-
forward, as is their use for mesh smoothing, again with fixed p. What is
less clear and thus more interesting is their use in a traditional adaptive p-
refinement scheme. One issue we hope to resolve, at least empirically, is the
extent to which the superconvergence forming the foundation of these esti-
mates continues to hold on meshes of variable degree. If superconvergence
fails to hold globally (for example, in our preliminary experiments, supercon-
vergence seems to hold in the interiors of regions of constant p but fails to hold
along interfaces separating elements of different degrees), we would still like
to determine if they remain robust enough to form the basis of an adaptive
p-refinement algorithm.

As this is written, we have implemented in the pltmg package (Bank
[2007]) adaptive h-refinement/coarsening, adaptive p-refinement/coarsening,
and adaptive mesh smoothing. These three procedures can be used separately,
or mixed in arbitrary combinations. For example, one could compose an adap-
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tive algorithm consisting of alternating steps of h and p-refinement. Since this
requires that all procedures are able to process meshes with both variable h
and p, many of the internal internal data structures and existing algorithms in
the pltmg package had to be generalized and extended. However, at present
there remains open the more delicate and challenging issue of hp-refinement;
that is, how to use these error estimates to decide if it is better to refine a
given element into several child elements (h-refinement), or increase its degree
(p-refinement). We hope to be able to report progress on this point at some
time in the future.

Since pltmg is a has options for parallel adaptive enrichment, this as-
pect also needs to be addressed. Fortunately, the parallel adaptive mesh-
ing paradigm implemented in pltmg, see Bank and Holst [2000, 2003] and
Bank [2006], formally works as well for p and hp-adaptivity as it does for h-
adaptivity for which it was originally developed. As its final step, the paradigm
requires the solution of a large global set of equations. A special DD algorithm
(see Bank and Lu [2004], Bank and Vassilevski [2008]) taking advantage of the
structure of the parallel adaptive procedure was developed for this purpose.

2 A Posteriori Error Estimate

In the case of two dimensions, we consider an element t with vertices νi, and
edges ei, 1 ≤ i ≤ 3, with ei opposite νi. Let ht denote the diameter of t. The
barycentric coordinates for element t are denoted ci, 1 ≤ i ≤ 3. The restriction
of the C0 piecewise polynomial space of degree p ≥ 1 to element t consists of
the (p + 1)(p + 2)/2-dimensional space Pp of polynomials of degree p, with
degrees of freedom given by nodal values at the barycentric coordinates

(c1, c2, c3) = (j/p, k/p, (p− j − k)/p)

for 0 ≤ j ≤ p, 0 ≤ k ≤ p− j.
Superconvergent derivative recovery schemes for this family of elements

were developed in Bank and Xu [2003a,b] and Bank et al. [2007] For the
continuous piecewise polynomial space of degree p, let ∂puh denote any of
the (discontinuous piecewise constant) p-th derivatives. The recovered p-th
derivative is denoted by R(∂puh) ≡ SmQ(∂puh). Here Q is the L2 projection
from discontinuous piecewise constants into the space of continuous piecewise
linear polynomials, and S is a multigrid smoother for the Laplace operator;
m is a small integer, typically one or two. Under appropriate smoothness
assumptions, it was shown that ||∂pu − R(∂puh)|| has better than the first
order convergence of ||∂p(u− uh)||.

To describe our a posteriori estimate for the case of an element of degree
p, we write

Pp+1(t) = Pp(t)⊕ Ep+1(t)

where the hierarchical extension Ep+1(t) consists of those polynomials in
Pp+1(t) that are zero at all degrees of freedom associated with Pp(t). In the
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case of two dimensions, this is a subspace of dimension p+2, with a convenient
basis given by

ψp+1,k =

k−1∏
j=0

(c1 − j/p)
p−k∏
m=0

(c2 −m/p)

for 0 ≤ k ≤ p + 1. Using this basis, we approximate the error u − uh,p on
element t as

u− uh,p ≈ eh,p ≡ αt
p+1∑
k=0

∂kc1∂
p+1−k
c2 û

k!(p+ 1− k)!
ψp+1,k. (1)

The partial derivatives of order p + 1 appearing in (1) are formally O(hp+1
t )

when expressed in terms of ∂x and ∂y. The derivative ∂kx∂
p+1−k
y û is constant

on element t, computed by differentiating the recovered p-th derivatives of uh,
which are linear polynomials on element t.

∂kx∂
p+1−k
y û =


∂yR(∂pyuh), k = 0,

(∂xR(∂k−1x ∂p+1−k
y uh) + ∂yR(∂kx∂

p−k
y uh))/2, 1 ≤ k ≤ p,

∂xR(∂pxuh), k = p+ 1.

The constant αt is chosen such that

p∑
k=0

||∂kx∂p−ky eh,p||2t =

p∑
k=0

||∂kx∂p−ky uh −R(∂kx∂
p−k
y uh)||2t

Normally, one should expect αt ≈ 1, except for elements where the true solu-
tion u is not smooth enough to support p derivatives.

3 Basis Functions

One aspect of our study that is a bit unconventional is our use of nodal basis
functions, rather than a hierarchical family of functions. The standard element
of degree p uses standard nodal basis functions, as illustrated in Figure 1, left.
Along edges shared by elements of different degrees, the element of lower
degree inherits the degrees of freedom of the higher degree element. This
results in elements of degree p with one or two transition edges of higher
degree. Some typical cases are illustrated in Figure 1.

To illustrate the construction of the nodal basis for transition elements,
consider the case of an element t of degree p with one transition edge of degree
p + 1. Without loss of generality take this to be edge three. We define one
special polynomial of degree p+ 1, zero at all nodes of the standard element
of degree p, and identically zero on edges one and two, by
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φ̃p+1 =


∏(p−1)/2
k=0 (c1 − k/p)(c2 − k/p), for p odd,

(c1 − c2)
∏(p−2)/2
k=0 (c1 − k/p)(c2 − k/p), for p even.

The polynomial space for the transition element is given by Pp ⊕{φ̃p+1}. We

form linear combinations of φ̃p+1 and the p+1 standard nodal basis functions
associated with edge three to form the p + 2 nodal basis functions for the
transition edge. Because each of these p+ 2 polynomials is zero on edges one
and two, and zero at all internal nodes for element t, all linear combinations
of them also satisfy these properties, so the required calculation effectively
reduces to a simple one-dimensional change of basis. If the edge is of degree
p + k, the polynomial space is given by Pp ⊕ {φ̃p+1(c1 − c2)m}k−1m=0, and a
similar construction yields the required nodal basis for the transition edge. If
a second transition edge is present, it is treated analogously. Because of our
construction, each transition edge can be treated independently. It is also easy
to see that the global finite element space constructed in this fashion is C0.

Fig. 1. A standard cubic element (left), a cubic element with one quartic edge
(middle) and a cubic element with one quartic and one quintic edge (right).
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4 Parallel Adaptive Algorithm

A general approach to parallel adaptive discretization for systems of elliptic
partial differential equations was introduced in Bank and Holst [2000, 2003].
This approach was motivated by the desire to keep communications costs
low, and to allow sequential adaptive software such as pltmg to be employed
without extensive recoding.

The original paradigm has three main components:

Step I: Load Balancing. We solve a small problem on a coarse mesh,
and use a posteriori error estimates to partition the mesh. Each subregion
has approximately the same error, although subregions may vary consid-
erably in terms of numbers of elements, or polynomial degree.
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Step II: Adaptive Meshing. Each processor is provided the complete
coarse problem and instructed to sequentially solve the entire problem,
with the stipulation that its adaptive enrichment (h or p) should be lim-
ited largely to its own partition. The target number of degrees of freedom
for each processor is the same. At the end of this step, the mesh is regu-
larized such that the global finite element space described in Step III is
conforming.
Step III: Global Solve. The final global problem consists of the union
of the refined partitions provided by each processor. A final solution is
computed using domain decomposition.

A variant of the above approach, in which the load balancing occurs on a
much finer space, was described in Bank [2006]. The motivation was to address
some possible problems arising from the use of a coarse grid in computing the
load balance. This variant also has three main components.

Step I: Load Balancing. On a single processor we adaptively create a
fine space of size NP , and use a posteriori error estimates to partition the
mesh such that each subregion has approximately equal error, similar to
Step I of the original paradigm.
Step II: Adaptive Meshing. Each processor is provided the complete
adaptive mesh and instructed to sequentially solve the entire problem.
However, in this case each processor should adaptively coarsen regions cor-
responding to other processors, and adaptively enrich its own subregion.
The size of the problem on each processor remains NP , but this adaptive
rezoning strategy concentrates the degrees of freedom in the processor’s
subregion. At the end of this step, the global space is made conforming
as in the original paradigm.
Step III: Global Solve. This step is the same as in the original
paradigm.

Using the variant, the initial mesh can be of any size. Indeed, our choice
of NP is mainly for convenience and to simplify notation; any combination of
coarsening and refinement could be allowed in Step II.

5 DD Solver

Let Ω = ∪Pi=1Ωi ⊂ R2 denote the domain, decomposed into P geometrically
conforming subdomains. Let Γ denote the interface system. The degree of a
vertex x lying on Γ is the number of subregions for which x ∈ Ω̄i. A cross
point is a vertex x ∈ Γ with degree(x) ≥ 3. We assume that the maximal
degree at cross points is bounded by the constant δ0. The connectivity of Ωi
is the number of other regions Ωj for which Ω̄i ∩ Ω̄j 6= ∅. We assume the
connectivity of Ωi is bounded by the constant δ1.

In our algorithm, we employ several triangulations. The mesh T is a glob-
ally refined, shape regular, and conforming mesh of size h. We assume that
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the fine mesh T is aligned with the interface system Γ . The triangulations
T i ⊂ T , 1 ≤ i ≤ P are partially refined triangulations; they coincide with
the fine triangulation T within Ωi, but are generally much coarser elsewhere,
although as in the case for the variant paradigm, along the interface system
Γ , T i may have some intermediate level of refinement.

Let S denote the hp space of piecewise polynomials, associated with the
triangulation T , that are continuous in each of the Ωi, but can be discontin-
uous along the interface system Γ . Let S̄ ⊂ S denote the subspace of globally
continuous piecewise polynomials. The usual basis for S is just the union of
the nodal basis functions corresponding to each of the subdomains Ωi; such
basis functions have their support in Ω̄i and those associated with nodes on Γ
will have a jump at the interface. In our discussion, we will have occasion to
consider another basis, allowing us to write S = S̄ ⊕X , where X is a subspace
associated exclusively with jumps on Γ . In particular, we will use the global
conforming nodal basis for the space S̄, and construct a basis for X as follows.
Let zk be a node lying on Γ shared by two regions Ωi and Ωj (for now, zk
is not a crosspoint). Let φi,k and φj,k denote the usual nodal basis functions
corresponding to zk in Ωi and Ωj , respectively. The continuous nodal basis
function for zk in S̄ is φk ≡ φi,k +φj,k, and the “jump” basis function in X is

φ̂k ≡ φi,k − φj,k. The direction of the jump is arbitrary at each zk, but once
chosen, will be used consistently. In this example, at point zk we will refer to
i and the “master” index and j as the “slave” index. At a cross point where
` > 2 subregions meet, there will be one nodal basis function corresponding
to S̄ and ` − 1 jump basis functions. These are constructed by choosing one
master index for the point, and making the other `− 1 indices slaves. We can
construct `−1 basis functions for X as φi,k−φj,k, where i is the master index
and j is one of the slave indices.

For each of the triangulations T i, 1 ≤ i ≤ P we have a global nonconform-
ing subspace Si ⊂ S, and global conforming subspace S̄i ⊂ S̄. In a fashion
similar to S, we have Si = S̄i ⊕X i.

For simplicity, let the continuous variational problem be: find u ∈ H1(Ω)
such that

a(u, v) = (f, v) (2)

for all v ∈ H1(Ω), where a(u, v) is a self-adjoint, positive definite bilinear form
corresponding to the weak form of an elliptic partial differential equation, and
|||u|||2Ω = a(u, u) is comparable to the usual H1(Ω) norm.

To deal with the nonconforming nature of S, for u, v ∈ S, we decompose
a(u, v) =

∑P
i=1 aΩi

(u, v). For each node z lying on Γ there is one master index
and `−1 > 0 slave indices. The total number of slave indices is denoted by K,
so the total number of constraint equations in our nonconforming method isK.
To simplify notation, for each 1 ≤ j ≤ K, let m(j) denote the corresponding
master index, and zj the corresponding node. We define the bilinear form
b(v, λ) by
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b(v, λ) =

K∑
j=1

{vm(j) − vj}λj (3)

where λ ∈ RK . In words, b(·, ·) measures the jump between the master value
and each of the slave values at each node on Γ . The nonconforming variational
formulation of (2) is: find uh ∈ S such that

a(uh, v) + b(v, λ) = (f, v)

b(uh, ξ) = 0 (4)

for all v ∈ S and ξ ∈ RK . Although this is formally a saddle point problem,
the constraints are very simple; in particular, (4) simply imposes continuity
at each of the nodes lying on Γ , which in turn, implies that uh ∈ S̄. Thus uh
also solves the reduced and conforming variational problem: find uh ∈ S̄ such
that

a(uh, v) = (f, v)

for all v ∈ S̄.
Let Ki denote the index set of constraint equations in (3) that correspond

to nodes present in T i. Then

bi(v, λ) =
∑
j∈Ki

{vm(j) − vj}λj .

We are now in a position to formulate our domain decomposition algo-
rithm. Our initial guess u0 ∈ S is generated as follows: for 1 ≤ i ≤ P , we find
(in parallel) u0,i ∈ S̄i satisfying

a(u0,i, v) = (f, v) (5)

for all v ∈ S̄i. Here we assume exact solution of these local problems; in
practice, these are often solved approximately using iteration. The initial guess
u0 ∈ S is composed by taking the part of u0,i corresponding to the fine
subregion Ωi for each i. In particular, let χi be the characteristic function for
the subregion Ωi. Then

u0 =

P∑
i=1

χiu0,i

To compute uk+1 ∈ S from uk ∈ S, we solve (in parallel): for 1 ≤ i ≤ P ,
find ek,i ∈ Si and λk,i ∈ RK such that

a(ek,i, v) + bi(v, λk,i) = (f, v)− a(uk, v)

bi(ek,i, ξ) = −bi(uk, ξ) (6)

for all v ∈ Si and ξ ∈ RK . We then form
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uk+1 = uk +

P∑
i=1

χiek,i.

Although the iterates uk are elements of the nonconforming space S, the limit
function u∞ = uh ∈ S̄. In some sense, the purpose of the iteration is to drive
the jumps in the approximate solution uk to zero. Also, although (6) suggests
a saddle point problem needs to be solved, by recognizing that only χiek,i is
actually used, one can reduce (6) to a positive definite problem of the form (5).
In particular, the Lagrange multipliers λk,i need not be computed or updated.

The information required to be communicated among the processors is
only the solution values and the residuals for nodes lying on Γ , which is
necessary to compute the right hand sides of (6). This requires one all-to-all
communication step at the beginning of each DD iteration.

6 Numerical Results

In this section, we present some numerical results. Our examples were run on
a linux-based Beowulf cluster, consisting of 38 nodes, each with two quad
core Xeon processors (2.33GHz) and 16GB of memory. The communication
network is a gigabit Ethernet switch. This cluster runs the npaci rocks
version of linux and employs mpich2 as its mpi implementation. The com-
putational kernels of pltmg Bank [2007] are written in fortran; the gfortran
compiler was used in these experiments, invoked using the script mpif90 and
optimization flag -O.

In these experiments, we used pltmg to solve the boundary value problem

−∆u = 1 in Ω,

u = 0 on ∂Ω,

where Ω is a domain shaped like Lake Superior.
In our first experiment, the variant strategy was employed. A mesh of NP

degrees of freedom was created on a single processor using h-adaptive and
p-adaptive refinement. Elements on this mesh had different sizes and degrees.
This mesh was then broadcast to P processors, where a strategy of combined
coarsening and refinement in both h and p was used to transfer approximately
NP /2 degrees of freedom from outside Ωi to inside Ωi. The global fine mesh
was then made h-conforming (geometrically conforming) as described in Bank
and Holst [2000, 2003] and p-conforming (degrees agree on shared edges along
the interface Γ ). Note that the adaptive strategies implemented in pltmg
allow mesh moving and other modifications that yield meshes Ti that generally
are not submeshes of the global conforming mesh T (by definition they are
identical on Ωi and ∂Ωi). However, pltmg does insure that the partitions
remain geometrically conforming, even in the coarse parts of the domain, and
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in particular, that the vertices on the interface system in each Ti are a subset
of the vertices of interface system of the global mesh T .

In this experiment, three values of NP (400K, 600K, and 800K), and eight
values of P (2k, 1 ≤ k ≤ 8) were used, yielding global fine meshes ranging in
size from about 626K to 96.5M unknowns. Because our cluster had only 38
nodes, for larger values of P , we simulated the behavior of a larger cluster in
the usual way, by allowing nodes to have multiple processes.

In these experiments, the convergence criterion was

||δUk||G
||Uk||G

≤ ||δU
0||G

||U0||G
× 10−3. (7)

This is more stringent than necessary for purposes of computing an approxi-
mation to the solution of the partial differential equation, but it allows us to
illustrate the behavior of the solver as an iterative method for solving linear
systems of equations.

Table 1 summarizes this computation. The columns labeled DD indicate
the number of domain decomposition iterations required to satisfy the conver-
gence criteria (7). For comparison, the number of iterations needed to satisfy
the actual convergence criterion used in pltmg, based reducing the error in
the the solution of the linear system to the level of the underlying approxi-
mation error, is given in parentheses. From these results it is clear that the
number of iterations is stable and largely independent of N and P over this
range of values. The size of the global mesh for the variant strategy can be
estimated from the formula

N ≈ θPNP +NP (8)

where θ = 1/2. Equation (8) predicts an upper bound, as it does not account
for refinement outside of Ωi and coarsening inside Ωi, needed to keep the mesh
conforming and for other reasons. For NP = 800K, P = 256, (8) predicts
N ≈ 103200000, where the observed N = 96490683.

In our second experiment we solved the same problem using the original
paradigm. On one processor, an adaptive mesh of size Nc = 50K was created.
All elements on this mesh were linear elements. This mesh was then parti-
tioned into P subregions, P = 2k, 1 ≤ k ≤ 8. This coarse mesh was broadcast
to P processors (simulated as needed) and each processor continued the adap-
tive process in both h and p, creating a mesh of size NP . In this experiment,
NP was chosen to be 400K, 600K, and 800K. This resulted in global meshes
varying in size from approximately 750K to 189M . These global meshes were
regularized to be h-conforming and p-conforming, and a global DD solve was
made as in the first experiment. As in the first experiment, the usual conver-
gence criteria was replaced by (7) in order to illustrate the dependence of the
convergence rate on N and P . The results are summarized in Table 2.

For the original paradigm the size of the global mesh is predicted by

N ≈ PNP − (P − 1)Nc. (9)
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Fig. 2. The load balance (left) and solution (right) in the case NP = 800K, P = 32.

Fig. 3. The mesh density for the global mesh (left) and for one of the local meshes
(right) in the case NP = 800K, P = 32.

Fig. 4. The degree density for the global mesh (left) and for one of the local meshes
(right) in the case NP = 800K, P = 32.
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Table 1. Convergence Results for Variant Algorithm. Numbers of iterations needed
to satisfy (7) are given in the column labeled DD. The numbers in parentheses are
the number of iterations required to satisfy the actual convergence criterion used by
pltmg.

NP = 400K NP = 600K NP = 800K

P N DD N DD N DD

2 625949 10 (3) 776381 8 (3) 1390124 12 (4)
4 1189527 13 (4) 1790918 11 (4) 2288587 9 (3)
8 1996139 10 (4) 2990807 13 (4) 3993126 10 (3)

16 3569375 14 (4) 5220706 13 (4) 6920269 12 (3)
32 6723697 13 (3) 9736798 16 (4) 13142670 11 (3)
64 12978568 11 (4) 18905909 14 (4) 25326662 11 (3)

128 25155124 12 (3) 37148571 10 (4) 48841965 10 (3)
256 48874991 11 (3) 72902698 14 (4) 96490683 11 (3)

Table 2. Convergence Results for Original Algorithm. Numbers of iterations needed
to satisfy (7) are given in the column labeled DD. The numbers in parentheses are
the number of iterations required to satisfy the actual convergence criterion used by
pltmg.

NP = 400K NP = 600K NP = 800K

P N DD N DD N DD

2 750225 13 (4) 1150106 13 (4) 1549915 13 (4)
4 1450054 13 (4) 2248841 13 (4) 3047906 13 (4)
8 2846963 9 (3) 4442665 9 (4) 6039743 9 (3)

16 5635327 11 (4) 8821463 10 (4) 12010188 11 (4)
32 11204214 12 (4) 17564640 10 (4) 23930867 11 (4)
64 22301910 14 (4) 34983543 13 (4) 47693190 13 (4)

128 44408605 11 (4) 69696605 12 (4) 95026759 11 (4)
256 88369503 11 (3) 138790801 11 (3) 189363322 11 (4)

Similar to equation (8), equation (9) only predicts an upper bound, as it does
not account for refinement outside of Ωi, needed to keep the mesh conforming
and for other reasons. For example, for Nc=50K, NP=800K, P = 256, (9)
predicts N ≈ 192050000 when actually N = 189363322. For the case NP =
800K, P = 32, the solution and the load balance is shown in Figure 2. The
mesh density and degree density of the global mesh and one local mesh are
shown in Figure 3 and Figure 4. As expected, both the mesh density and the
degree density are high in the local region and much lower elsewhere in the
local mesh.
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