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Inertial dragging effects of slowly rotating masses in asymptotically flat spaces are well known
for the case of a stationary distribution of matter. In the present work we investigate a more
general example in which angular acceleration of the matter is present. We solve the Einstein
field equation for the case.of the free-fall collapse of a rotating dust shell. The solution is
exact, through terms of first order in w (the angular velocity of the shell), for shells of
arbitrary rest mass and radial velocity. The inertial properties of the flat interior region
of this solution are discussed. Among the problems elucidated by this solution is the question
of whether the inertial effects are instantaneous or retarded as viewed from infinity.

I. INTRODUCTION

The analysis of inertial-frame behavior near ro-
tating bodies has been motivated by two closely re-
lated considerations. One is the desire to under-
stand in a qualitative and physical way the effects
of rotation in general relativity. The second is
that such configurations appear well suited to test
to what extent the elusive Mach’s principle is con-
tained in general relativity.

In the past, discussions of rotating configurations
of mass m and angular momentum J have confined
their attention to (a) “slow rotation,” J/m? <1
(Refs. 1-3), and (b) stationary or adiabatically
collapsing configurations.? In the present paper
we retain restriction (a) but allow rapid collapse.
We consider a particular idealized case of col-
lapsing, slowly rotating matter, which contains.
some features of the more complicated problem of
the gravitational field of a rotating collapsing star.
The relevance of this example to Mach’s principle
is less apparent and deserves some explanation.

Although today there are still different and in-
compatible views of Mach’s principle,® there is
considerable agreement on what constitutes Mach-
ian effects. Such effects are usually found in their
purest form in a region of flat space, where gravi-
tational waves are guaranteed to be absent. We
therefore consider the flat region inside a slowly
rotating, collapsing shell of matter. In this region
there is no question of what we mean by inertial
frames; they are the Lorentz frames of special
relativity.

Mach proposed that the relative rotation of such
inertial frames should be measured with respect
to directions defined by the light received from
the “fixed stars,” i.e., objects at rest in inertial
frames of some asymptotic regions. In the pres-
ent discussion we assume that the asymptotic re-
gion is also flat; more realistically, one could in
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principle replace it by a Friedmann-like cosmolo-
gy joined smoothly onto the external field of the
shell at some finite radius.® One would expect
then, on the basis of Mach’s ideas, that the iner-
tial frames within the shell would be affected both
by the rotation of the nearby shell and by the dis-
tant matter of the universe.

The discussions in the literature have shown that
according to general relativity the inertial frames
inside the shell are affected by the motion of the
shell, and in fact rotate with respect to the iner-
tial frames at infinity. Some communication with
infinity, typically via light signals from the fixed
stars, is necessary to define the rotation of the
inertial frames within the shell.®* The Machian ro-
tation of local inertial frames is therefore a highly
nonlocal effect. It makes sense, therefore, to ask
whether the inertial-frame rotation is related to
matter in the usual retarded “causal” way,”*® or in
the “instantaneous” fashion?'® suggested by the
spacelike formulation used in some versions of
Mach’s principle.

The stationary or quasistationary examples dis-
cussed in the literature cannot, however, easily
distinguish the causality character of different for-
mulations of Mach’s principle. Therefore, we
consider here a case where the frame dragging
changes quickly with time: the free-fall expansion
or collapse of a slowly rotating spherical shell of
matter. We solve Einstein’s equations, to first
order in the angular velocity of the shell, for the
corresponding metric, assuming asymptotic flat-
ness and no incoming waves. We can then deter-
mine which view of inertia gives the simplest ac-
count of the inertial dragging exhibited by this so-
lution in the interior of the shell.

II. SPACE-TIME INSIDE AND OUTSIDE THE SHELL

The slowly rotating, nearly spherical, collapsing
shells to be considered here are first-order per-
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turbations of nonrotating, spherical, collapsing
shells. The unperturbed geometry can therefore
be taken to be spherically symmetric, and by
Birkhoff’s theorem it must be the Schwarzschild
geometry in the vacuum exterior region. Regular-
ity at the origin requires flat space-time in the
vacuum interior of the shell.

The perturbations, due to the shell’s rotation, of
the stress-energy and metric tensors can be ex-
panded in tensor spherical harmonics. We use
here the stress-energy tensor of a shell of dust
[ T+ =p(r, t)u*«’] . When this stress-energy tensor
is expanded to include only the first-order terms
in the angular velocity of the shell, w, we find that
this perturbation contains only /=1, » =0 magnetic
parity components (for a discussion of spherical
tensor harmonics see Zerilli''), Since the per-
turbed Einstein equations decouple various I, m
and parity modes, one obtains for this problem on-
ly =1, m=0 magnetic parity contributions to the
perturbed metric in the absence of external gravi-
tational radiation from infinity. Zerilli'! has
shown that all perturbations of order /=0 or 1 are
stationary. (However, to describe the stationary
interior region we shall choose a nonstationary
rotating coordinate system as described below.)
Thus, in the entire vacuum region the geometry
has the familiar® form appropriate to stationary
slowly rotating configurations,

ds®=%g,,dx"dx"
=-V?2dt®

+ [ dr? +72d6? +r2sin®0(d¢ - Qdt)?]. (1)
Here the functions V and y contain no perturbation
terms, because the perturbed metric can be cast
in a gauge in which *g,, contains the only nonzero
perturbation to this order.'’ Thus V and ¢ are the
Schwarzschild metric functions. For Q we choose
the solution of the first-order perturbation equa-
tions which is regular at the origin inside the shell,
and the solution which falls to zero at infinity out-

side the shell. Thus we have (with » = total shell
mass, J =total shell angular momentum?*)

inside the shell:
Y =y_=constant,
V=v_(), (2a)
Q=0_(t);

outside the shell:
v=9¢,=1+m/2r,
V=V,=@r-m)/(2r +m), (2b)
Q=Q,=2J/r%".

The arbitrary functions V_(¢) and 2 _(¢) appearing

in the inside solution allow description of this flat
space in terms of arbitrarily rotating coordinates.
To fix these coordinates, and hence these func-
tions, we demand that the ¢, 6, and ¢ coordinates
be continuous across the shell. Thus §2_ measures
the rotation of the interior inertial frame as seen
from infinity.

III. MATCHING CONDITIONS ACROSS THE SHELL

Our aim is to determine the interior geometry,
i.e., V_(¢), Q_(t), in terms of the behavior of the
shell. Let the shell’s angular velocity (as mea-
sured from infinity) be w(¢), its density be o(¢),
and its radius be R(¢). These functions can be de-
termined by matching the inside and outside solu-
tion across the shell, if the initial values (in the
outside coordinates) R(t,) =R,, (dR/dt)(t,)=0, o(t,)
=0, and w(t,) =w,are given. In addition we as-
sume ¥, (R,)=¢_(R,), i.e., that the » coordinate be
continuous at ¢=1#,. (Note that in general the » co-
ordinate will not be continuous.) The matching
conditions are most easily expressed in the for-
malism developed by Israel': Let g;; and K;; be
the intrinsic and extrinsic geometry, respectively,
of the timelike hypersurface ¥ which represents
the shell [7=R(¢) in “outside” coordinates], and
let S;; be the surface energy tensor of Israel™ de-
fined on . For the dust shells considered here,

S =gu'u’, where u' are the components of the
four-velocity of the dust projected into the coor-
dinate system of =, u’=(-g,,)"?(1,0, w). Then the
matching conditions and the coordinate continuity
conditions of Sec. II demand that the intrinsic ge-
ometry be continuous, and that the discontinuity in
the extrinsic curvature be determined by

Ki; =Ki; =8m(S;; = 384;S). (3)

The unperturbed case of a nonrotating collapsing
shell has been treated via this formalism by Isra-
el.’? In the slowly rotating case we therefore ex-
pect to rederive his results, expressed in our co-
ordinates, from the diagonal components of the
equations; new results will come from the off-di-
agonal components. Because of the spherical sym-
metry, the diagonal components reduce to two in-
trinsic equations, and one of the extrinsic equa-
tions can be replaced by the conservation law with-
in the surface

Si..=0. (4)
The equations then become

8t =8rts

£00=860; (5)

Kto=Kgo=4m0R%(1 +m /2R)*.
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Detailed expressions for the quantities considered
here in terms of the metric functions of Eq. (1) are
found in the Appendix, as well as a few words
about the notation used here. To write their solu-
tions we define

r)=1+m /27,

Vr)=(2r = m)/(2r +m), (6)

and find
o =URy),
e (1. PR\ m 3R\
V"V(R)<“2R wz(R)><1 2R ¢z(R)> ’

- (7)
o= V(RIRZY™(R) .

The radial equation of motion of the shell is also
derived from these equations and is given by

This solution agrees with that of Israel,? trans-
formed to our isotropic coordinates.

The essentially new information in the rotating
case comes from the ¢, ¢ components of the match-
ing conditions:

g:(b =gt-¢ 3
+ - (2 9)
Ky =K;, =4710,(Q - 2w)sin®g.
These equations determine (a) the value of the con-

stant J (total angular momentum) in terms of the
initial values,

3(2R0—m)}-1, (10)

J =50 Ry 2(R,)] 3[ 1+ rm

(b) the time dependence of w(¢) necessary to keep
J constant,

27
= R

% ( 1+ 3RV2(R)¢2(R) 1:1 _m ¥2(Ro) :|-1l

4m

and (c) the “induced rotation” of the interior iner-
tial frames,

Q_(t)=2J[Ry2R)] 3. (12)

Equations (10)-(12) represent the exact solution,
for the case of a shell, of the slow-rotation dynam-
ic problem which was considered in the limit of
adiabatically slow collapse by Cohen.*

IV. DISCUSSION

This solution allows us to trace the history of a
slowly rotating collapsing dust shell down to the
vicinity of the horizon, where strong gravitational
fields are present. Since we have neglected terms
of order Q2 in comparison with all diagonal metric
components, our solution ceases to be valid when
V2 ~m?®Q? i.e., near the “ergosphere.” The new
features of this solution, the effects of collapse on
rotation, are expressed in terms of the quantities
w(#) and Q(r, t) from Egs. (11), (12), and (2b).
These quantities can be related to physical mea-
surements as follows: We place an isotropic light
source in the center of the collapsing rotating
sphere. Its emitted light has zero conserved an-
gular momentum. We use this light to project a
marker on the sphere (such as a small hole) to in-
finity. If the sphere were not collapsing, an ob-
server at infinity could measure the rotation rate
w(t) by simply counting flashes coming from the
shell, much as we measure pulsar rotation rates.
In the stationary case, we could similarly mea-
sure Q_(¢), the inertial frame dragging inside the
shell: We place a searchlight at rest in the inertial
frame at the center of the shell. We project its
light beam in the equatorial plane. If the shell
were transparent, the observer at infinity could
observe this light beam, and measure Q _(t) by
counting flashes.

When the shell is collapsing, in addition to ro-
tating, the situation is not as simple. The coordi-
nate system which we have used here employs a
¢ coordinate which is analogous to the ¢ coordinate
used in the Boyer-Lindquist form of the Kerr met-
ric. It is well known'® that, in this coordinate sys-
tem, photons with vanishing angular momentum
will loop around the origin many times if they orig-
inate near the ergosphere. Nevertheless,. even in
the collapsing case the Q. observed at infinity as
described above equals the _ of the solution; the
wgs differs from the coordinate angular velocity w
only by an amount which vanishes when the shell
reaches its maximum radius R, and when it nears
the horizon 3m. To show this, we consider two
light geodesics which cross the shell at ¢ and ¢ +6¢,
when the marker is at position R, ¢ and R +0R, ¢
+0¢, respectively. The difference in angle A¢ (as
observed at infinity) between the geodesics consists
of (a) the angle &¢ through which the shell has ro-
tated, and (b) the additional angle 6¢, through
which the second light beam must rotate in travel-
ing from R +6Rto R. The difference in time of re-
ception (at infinity) consists of (a) the time &¢ be-
tween the geodesics crossing the shell, and (b) the
additional time &6¢, needed by the second light beam
to travel from R +3R to R. The observed angular
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velocity at infinity is therefore given by

w0 = 0p +0¢,
obs TSt + 6,
s PE(R)Q ][ 5 2(R) T

= -RLt———=I|1-R—"-4| . 13

[“’ R 5w V(R) (13)

The observed dragging of inertial frames ©,, can

be shown in the same manner to be given by
Qops =2_ . (14)

From Eq. (13) we see that, after the time /, of
maximum expansion, w . (#) continually increases,
as expected from angular momentum conservation,
reaching the finite value w(R =3m ) as the shell ap-
proaches the horizon. The inertial-frame rotation
Q s (1) follows a similar behavior, staying always
less than wg,, but approaching the latter near the
horizon. In particular, Q. (¢) is determined by
the “instantaneous” radius of the shell R(¢). That
is, as seen from infinity, the inertial frames
within the shell rigidly rotate at the angular veloc~
ity Q. ¢ There are no retardation effects between
the shell and the inertia of a gyroscope at its cen-
ter. This of course does not contradict any physi-
cal causality principle, since Q_ can be considered
to be merely the angular velocity of a coordinate
system for the interior flat region. However, it is
this coordinate system which is most directly re-
lated to effects observable from infinity, as ex-
plained above. Thus another view, more closely
related to Machian ideas, is equally consistent,
in which Q _(¢) is observable but highly nonlocal,
so that a local causality principle does not apply
to it.

The observed relative angular velocity of the in-
terior inertial frame and the matter of the shell
Wops = ops approaches zero as the shell crosses
the horizon. Nothing unusual, however, is seen by
an observer inside, or falling with, the shell. The
relative angular velocity as measured by an ob-
server in the shell is given by

V. QRR) - w(t) = —< 2%) PER)_(R)

m_ ¥2(Ro)
><<1+2R sz(R)>. (15)

This quantity is finite at the horizon. In a Machian
interpretation, the inside observer would have to
attribute the inertia seen by him as determined
both by the presence of the shell and by the distant
matter in the universe (or spacelike infinity in our
example here). Again, the measured rotation
rates are determined by the instantaneous parame-
ters of the shell. We emphasize again that our re-
sults may need modification in the region V?2~m?w?
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where our perturbation expansion breaks down.

It is interesting to note that the results for the
relative angular velocity @ = w which we have de-
rived here for the collapsing case differ qualita-
tively from those derived by Brill and Cohen? for
the stationary case. In the solution reported here,
Q —w measured by an observer within the shell is
shown to approach a finite nonzero value, as the
shell approaches the horizon. In the stationary
case it was shown that if one considers a sequence
of stationary solutions with constant mass and an-
gular momentum, - w vanishes as seen by an
observer inside the shell as the radius of the shell
is reduced to the “Schwarzschild” radius. This
difference was anticipated and discussed by Cohen.*
The difference lies in the fact that the stresses in
the stationary sequence of shells become very
large for shells near the horizon. These stresses
affect the coupling between w and  and force
Q —w to go to zero in this limit.

These results fit most simply with the “space-
like” formulation of Mach’s principle. In this for-
mulation it is, in general, the coordinate func-
tions, N, and N' that are to be determined in a
Machian fashion from the dynamical variables on
a spacelike hypersurface. The constraint equa-
tions determining N and N are purely spacelike
equations, and in this sense all Machian effects
will be related to the instantaneous values of the
dynamical variables.®
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APPENDIX

A word about notation: The 4-space indices u, v
run over the values ¢, 7, 6, and ¢. As coordinates
in the 3-space ~ we use the coordinates ¢, 6, and
¢ restricted to Z; the indices i, j run over these
values. Since the 4-vector 3/8¢ is not tangent to
¥, care must be taken to distinguish components
of 4-tensors, like %g,,, from components of 3-ten-
sors on Z, like g;,. The only 4-tensor occurring
in the text is ‘g, ; all the rest are 3-tensors. The
4-coordinates ¢, », 6, and ¢ are used both for the
interior and exterior region, since it is clear from
context which coordinate patch is meant. However,
the inner and outer coordinates yield two different
sets of coordinates when restricted to = as de~-
scribed above. We distinguish the corresponding
components by superscript +. For compactness of
notation we have left the coordinate » in some 3~
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tensor expressions in cases when some 7 differen-
tiations, denoted by primes, are still to be carried
out. After such differentiation, all 3-tensor com-
ponents are to be evaluated on the surface %,
v,=R(t) or v_=Ryp*(R))»~%(R,). Weuse the notation of
an overdot in a similar fashion to denote differen-
tiation with respect to the 4-space time coordinate.
Detailed expressions for the 3-tensor components
used in the text are given below:

gh=lRy*-v2]*,

gho=[R",

gis =—[R*p*Q sin*e]*,

Ko ==3 Vo 202"y (2 =R H7]"

Kio =3[V 2(v? = R2y) ™
Xsin’o(V2(r 297 Q) =72 "R * .
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We demonstrate that there exist unstable, spacelike, circular orbits in the Schwarzschild field for all
radii in the range O < r < 3m. The conditions under which spacelike trajectories bend toward or away
from the source of the field are derived for the entire r-¢ plane. We show that any nonradial
spacelike geodesic with turning point less than 2m will appear spacelike over the entire u-v plane.
The scattering and capture cross sections for a particle on a spacelike trajectory are evaluated. Finally,
we suggest that there are compelling reasons for rejecting the usual assumption of a global past-future

relation in the extended Schwarzschild manifold.

I. INTRODUCTION

In a recent paper Raychaudhuri! has found that
a tachyon moving radially in a Schwarzschild field
experiences an “inverse force of repulsion” and
has claimed that a tachyon moving radially in-
wards “turns back after penetrating inside the
Schwarzschild singularity.” He has also found
that circular orbits with ¥ <3m exist for tachyons,

in agreement with Hettel and Helliwell,? who found
that circular tachyon orbits in the Schwarzschild
field were unstable and restricted to the range
2m < ¥ <3m. Moreover, they have found thatinthe ap-
proximation m /7 < 1 tachyons are deflected to-
ward the source of the gravitational field.

Here we shall be concerned with clarifying the
properties of spacelike geodesics in the extended
Schwarzschild manifold. In particular, we find



