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ABSTRACT

The final state of thermonuclear evolution of a star may consist of either a black hole or an
“ordinary” star such as a white dwarf or neutron star. For the case of black holes, a great deal
is known about the structure of this final stationary state; in particular, Hawking has shown
that stationary black holes are axisymmetric. An extension of this result is presented which in-
cludes the “ordinary” final state of stars. It is shown that a stationary star, consisting of a viscous
heat-conducting general-relativistic fluid, must be axisymmetric. For this proof, the star is
assumed to be embedded in an asymptotically Minkowskian spacetime manifold. The functions
which describe the geometry and the fluid of the star are assumed to satisfy certain smoothness

conditions.

Subject headings: hydrodynamics — relativity — rotation — stars: collapsed — stars: interiors

I. INTRODUCTION
What are the properties of the final state of thermo-
nuclear evolution of a star? According to our present
understanding, a star may approach, as its final
equilibrium configuration, either a black hole or an
“ordinary” star containing degenerate matter—i.e.,

a white dwarf or neutron star. At this time, a great -

deal is known about the properties of the final states
which may be described as stationary black holes.
Work has recently been concluded which shows that
the Kerr family of black-hole solutions comprises
a complete description of this possible endpoint of
stellar evolution (see Carter 1972; Robinson 1975).
In comparison, much less is known about the possible
properties of the “ordinary” final state of evolution.
These “ordinary” stationary stars present a far more
complex theoretical problem than do the black holes.
As the theorem of Carter and Robinson has shown,
a complete description of a black hole is given simply
by specifying its mass and angular momentum. In the
case of a star, however, to these parameters must be
added the chemical equation of state. The equation
of state depends on the detailed microphysics of the
system. Ordinary stars therefore present complexities
not present in the black-hole problem. Furthermore,
finding the geometrical structure of a star, once its
mass, angular momentum, and equation of state have
been specified, is a far more complicated problem
than for the case of black holes.

This paper represents a step in gaining an under-
standing of the possible geometrical configurations
allowed for the final stationary configuration of stars.
We show that stationary stars, like stationary black
holes, must be axisymmetric. This additional sym-
metry greatly reduces the complexity of the problem
of determining the structure of the star together with
its gravitational field (for reviews, see Thorne 1969
and Bardeen 1972).

873

We will consider a star composed of a viscous,
heat-conducting general-relativistic fluid. The assump-
tion of stationarity for such a system implies that any
dissipation due to viscosity, heat conduction, or
gravitational radiation has already occurred. The
physical content of the result which is presented here—
“stationary stars are axisymmetric’—is that after
the dissipative processes have acted, such a star must
be axisymmetric in its final equilibrium state. This
result has been anticipated by analogous results for
similar physical situations. The effects of viscosity and
of gravitational radiation reaction have been included
recently in the study of uniform-density Newtonian
ellipsoids (see Chandrasekhar 1969; Press and
Teukolsky 1973; Miller 1974). The result of these
analyses indicate that when the dissipative effects are
taken into account, any nonaxisymmetric ellipsoid
(e.g., the Jacobi and Dedekind families) will evolve
toward a member of the axisymmetric Maclaurin
family of ellipsoids.

In the ultrarelativistic limit, another analogous
result has been obtained by Hawking (1972). He has
shown that stationary black holes are axisymmetric.
Since the result which is presented here uses the full
formalism of the general theory of relativity, the
method of proof is far more analogous to Hawking’s
black-hole results than to the Newtonian ellipsoid
results described above. Finally, one other analogous
result should be mentioned. Pachner and Miketinac
(1972) have examined the general-relativistic equations
of perfect-fluid hydrodynamics. They conclude that
‘““stationarity implies axisymmetry.” Their definition
of stationarity is based on the constancy of certain
scalars along the flow lines of the fluid. It bears no
simple relationship with the definition which is gen-
erally used—the existence of a timelike isometry (see
Carter 1972). For this reason, the result which is
presented here differs from that of Pachner and
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Miketinac; the more standard definition of stationarity
is used in the present discussion.

The precise mathematical statement of the result
which is derived here is given by the
PROPOSITION (“ Stationary Stars are Axisymmetric’):

ASSUMPTIONS: The spacetime M is stationary (non-

static), nonsingular, and admits a Cauchy surface.
M consists of three regions My, My, and Z: the
exterior, interior, and surface of the star, respec-
tively. M, is empty and asymptotically
Minkowskian. M, is filled with a viscous heat-
conducting fluid. The coefficients of viscosity {, »,
and the heat conduction coefficient k are positive.
The surface X, which separates M, and M, is de-
fined as the surface on which the pressure vanishes.
It is assumed to be “ compatible’ with the exterior
geometry. The manifold # is C5, the components
of the timelike Killing vector field n* are C*, and
the components of the metric tensor are C® (except
on X).

ASSERTION: .4 is axisymmetric.

The technical details of the mathematical proof will be
given in the later portions of the paper. At this time,
however, it is appropriate to outline briefly the method
of proof.

The proof of the main proposition breaks up
roughly into two separate and distinct arguments. The
first, which is contained in § II, deals with the sym-
metries of the interior region of the star. The laws of
general-relativistic viscous hydrodynamics are shown
to imply that, whenever the fluid is stationary, there
must be an additional symmetry which is tangent to
the flow lines of the fluid. This result comes about
in the following way: The stationarity assumption is
shown to imply that the fluid must be in a state of
thermodynamic equilibrium. Thermodynamic equilib-
rium is then shown to imply (@) the absence of heat
flow, and (b) the absence of expansion and shear in the
fluid flow. If the fluid motion contained shear or
expansion, the viscosity of the fluid would tend to
damp out this motion; thus, the only equilibrium
state must leave the fluid moving rigidly. A result of
Pirani and Williams (1962) is then used to show that the
rigid motion of the fluid which is derived here implies
the existence of a second symmetry of the spacetime
(which is tangent to the flow lines of the fluid).
Furthermore, it is shown that the second symmetry is
linearly independent of the globally timelike symmetry
which defines the stationarity of the spacetime.

The second major point of argument is found in
§ III. It focuses on the problem of showing that the
symmetry found to exist inside the star must also exist
in the exterior. Symmetries in general relativity theory
are equivalent to the existence of Killing vector fields.
The problem of showing that the exterior of the star
shares the symmetry of the interior, reduces then to
the problem of extending a Killing vector field, &2,
across the boundary of the star and into the exterior.
This extension is performed by applying several
theorems from the literature of partial differential
equations to the Cauchy problem for the differential
equation V*V,£# = 0, on the initial surface . This
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equation is necessarily satisfied by any Killing vector
field in the exterior region of the star; thus it is a
natural one to use for the extension of £*. The surface
of the star, Z, is used as the initial surface, on which
the Cauchy data (consisting of the values of the field
£* and their first derivatives) are defined by continuity
from the interior of the star. The existence of this
extension is guaranteed by the Cauchy-Kowalewsky
theorem. It is shown that an extension obtained in
this way is a Killing vector field which commutes
with the globally timelike Killing vector. Once ex-
tended a short way past the boundary of the star, the
field £* can be analytically continued to cover the
remainder of the exterior. In this way, the additional
symmetry found in the interior of the star is extended
to include the entire spacetime.

The remaining problem considered in § III is to
show that the additional symmetry corresponds to a
rotation, using an argument similar to Hawking’s
(1972). The spacetime near spacelike infinity behaves
asymptotically as flat Minkowski spacetime, whose
symmetries are elements of the Poincaré group. A
star is not invariant under spacelike translations or
velocity boosts. Thus, asymptotically the star admits
only time translations and space rotations. The
additional symmetry, being linearaly independent of
the time translation symmetry (defined by the sta-
tionarity of the space), must be some linear combina-
tion of a rotation and a time translation. Therefore
the star is rotationally or axially symmetric.

This concludes the outline of the proof which is
given explicitly below. Before proceeding to the proof
below, we note that most of the assumptions used
here simply state the currently accepted theoretical
descriptions of stars within the framework of general
relativity theory. Einstein’s theory of general relativity
is used throughout this discussion. However, it is
likely that analogous results could be obtained using
other relativistic theories of gravity, e. g., Brans-Dicke
theory. Certain continuity assumptions are required
of the various functions in the problem. These are
the standard minimal ones used to ensure that all
appropriate differential equations are well defined.
In addition, one assumption concerning smoothness
of the surface of the star X is made without physical
motivation. This is the “compatibility” of the surface
with the exterior geometry. A precise understanding
of this assumption can best be had only in the context
of the actual proof of the theorem; a detailed dis-
cussion of it is therefore left until then. This require-
ment is a technical point which is required to guarantee
an extension of the Killing vector beyond the boundary
of the star. It is shown that the condition is necessary,
in that if the star is axisymmetric, then the condition
is necessarily satisfied.

There is one assumption which is physically rather
strong. This assumption is the requirement of sta-
tionarity; it is undoubtedly the most severe physical
constraint which is used in this discussion. No one
expects any physical system to be exactly stationary;
one can only hope that the particular system of
interest approaches stationary equilibrium sufficiently
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rapidly that, after a reasonable length of time, the
nonstationary features may be ignored. For the case

of solar mass sized black holes this assumption is

quite reasonable: the time scales for approaching
stationarity are of the order of milliseconds (Carter
1972). For the case of stars, on the other hand, the
stationarity assumption is probably not as realistic.
Even after a star has evolved to its final state as a
white dwarf or neutron star, the rate at which the
star approaches complete chemical and thermal
equilibrium (or even the rate at which differential
rotation is damped out) is very slow. Kippenhahn
and Mollenhoff (1974) have shown, for example, that
in rapidly rotating white dwarf stars, the differential
rotation is damped out with a time scale of about
10° years, which they show is shorter than the time
scale of about 10° years over which the star is expected
to cool toward thermal equilibrium. Even though no
real star can be expected to behave in a stationary,
equilibrium way, it is reasonable to expect that a
large class of real stars can be described adequately
as perturbations of equilibrium models. In general
relativity theory very little is really known about the
theory of equilibrium rotating stellar models, and it
is the purpose of this paper to provide a small contri-
bution to that understanding.

II. STATIONARITY AND THERMODYNAMIC
EQUILIBRIUM

This section will derive two results that make
explicit the properties of a viscous heat conducting
fluid which is assumed to be stationary. The first
result, A, shows that stationarity implies thermo-
dynamic equilibrium. The precise statement of this
result is given by the following:

A. A relativistic fluid moving in a nonsingular
spacetime which admits a Cauchy surface, and
which is stationary, and asymptotically Min-
kowskian, must be in a state of thermodynamic
equilibrium.

A stationary spacetime admits a timelike vector
field, 7% along which all physical fields are Lie-
transported. In particular the metric tensor, g,;, and
the entropy current vector, s, have zero Lie derivatives
along 7%(%,g.; = 0, %,s* = 0). Since the spacetime
admits a Cauchy surface, there exists a surface 7,
which is globally spacelike and which intersects every
integral curve of the vector field 5* exactly once. A
family of surfaces =(¢) can be defined by letting
7(0) = 7, and then assigning to the surface =(¢) those
points which have an affine parameter ¢ from 7, along
the integral curves of %%,

The total entropy of the fluid may be defined via
an integral over one of these surfaces:

S@) = \/ —g s%d®x, . (€))
(%)

Since the entropy current is Lie-transported along 7%,
the total entropy as defined in equation (1) is inde-
pendent of which surface 7(¢) the integral is performed
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over. Now consider a region of spacetime Q whose
boundary consists of the two surfaces +(t,), 7(¢,) plus
a piece at spacelike infinity. There is no matter at
infinity, so the entropy current vanishes there. Then
the integral of the divergence of the entropy current
over Q is zero:

f v/ —g Vs, d*x
Q

= \/_g sed®x, —

(1) w(t2)

V—gsdx, =0. (2)

The second law of thermodynamics for relativistic
fluids,

Ves, > 0, 3)

implies that the integrand on the left is positive.
Therefore, by equation (2) V%, = 0; this is the con-
dition for thermodynamic equilibrium. This con-
cludes the proof of result A.

The second result, to be discussed in this section,
derives the implications of thermodynamic equilibrium
on a viscous heat conducting fluid. The precise state-
ment of this result is: ,

B. If a general-relativistic fluid, having nonzero
coefficients of viscosity and heat conduction, is in a
state of thermodynamic equilibrium, then the
equation of state of the fluid is barotropic and the
ratio of the four-velocity of the fluid to the tem-
perature is a Killing vector field.

We begin by reviewing the standard theory of
general-relativistic hydrodynamics. The stress energy
tensor for a fluid which satisfies the equations of
viscous relativistic hydrodynamics (corresponding
to the Navier-Stokes equation) is given by

T = puuf + (p — L0)p*f — 2n0*
+ q“u® + q*u” )

(see, for example, Misner, Thorne, and Wheeler
1973 or Weinberg 1972). In this expression p is the
energy density of the fluid, p is the pressure, and £ and
7 are the coefficients of viscosity, which are in general
nonnegative. The fluid moves along the integral
curves of the fluid four-velocity, u*. Heat flow is
described by the vector field ¢° The rate of shear,
expansion, and the projection operator for the vector
field u* are defined by

0% = 1p®V uf + LpfV u* — p*P0 , (52)
0 =Vu, (5b)
pB = g% 4 yyp (5¢)

The equations of motion for the fluid are obtained by
using the equations of conservation of stress energy,

V7% =0. (6)
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These equations must be supplemented by the first
law of thermodynamics:

p+p=Ts+ pn, (7a)
Vep =TVs + pVon. (7b)

The temperature T, entropy density s, chemical
potential x, and the particle number density » have
been introduced in these equations. The particle

‘number density satisfies the additional conservation

law:
Vo(nu®) =0. ®

One more equation, the heat flow equation, is needed
to complete the system of equations governing the
motions of the fluid. For the purposes of this dis-
cussion, the general-relativistic version of the Fourier
law of heat conduction, first proposed by Eckart
(1940), will be used,

qa = —KpaB(VBT + Tu“Vuu,g) N (9)

where « is the coefficient of thermal conductivity
which is in general nonnegative. The divergence of
the entropy current,

s* = su* + q%T, (10)
can be computed using equations (6)—(9):

TV,s% = (0% + 2q0,50% + kq°q./T . (11)

The vector g* is purely spacelike, and ¢*# has nonzero
components only orthogonal to »®. Since ¢, %, and «
are positive definite, the right-hand side of equation
(11) is the sum of nonnegative definite terms. Thermal
equilibrium (V,s* = 0) therefore implies that

6=0. (12)

When the rate of shear and expansion of a congruence
of curves vanishes, then the curves are said to re-
present rigid motion (see Pirani and Williams 1962).
Thus, we see that in thermal equilibrium the fluid
moves rigidly.

The condition that the heat flow ¢* vanish is
equivalent to :

o =0, q* =0, and

u'Vu* = —p*V,(logT). (13)

The expansion of the fluid vanishes so that the con-
servation of particle number (eq. [8]) and the con-
servation of energy derived from equations (6) and
(12) imply that » and p are constants along the integral
curves of u*. Together with the first law of thermo-
dynamics (eq. [7]) this implies that all of the thermo-
dynamic scalars—in particular the temperature—are
constant along u*: u*V,T = 0. This means that
equation (13) becomes

uVu* =—-Ve(logT). (149
This nearly completes the proof of the result. Pirani
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and Williams (1962) have shown that a shear-free,
expansion-free vector field, whose acceleration is the
gradient of a scalar, is proportional to a Killing vector
field. The proportionality constant is in this case the
temperature,

u* =T¢  with Lg,, = 0. (15)

Euler’s equation for a fluid satisfying equation (12)
is needed to show that in equilibrium the fluid has a
barotropic equation of state. This can be derived
from equation (6), if it is recalled that for an ex-
pansion-free fluid, u*V,p = 0. The resulting form of
Euler’s equation is given by

(p +puVu®=—-Vop, - (16)

The fact that the fluid is barotropic (V,pVsp —
VspV,p = 0) follows directly from equations (14)
and (16). This concludes the proof of result B.
Before proceeding further, it is appropriate to
mention the relationship between the way in which the
thermodynamics is handled in the preceding results
and the other approaches which have been taken in
the literature. Result B implies that thermodynamic
equilibrium of a viscous fluid exists only if the fluid

" velocity is proportional to a Killing vector field, and

the temperature (and chemical potential) is propor-
tional to the “redshift factor” (see Thorne 1969 for
definition). These implications of equilibrium are
identical with those derived by Katz and Manor
(1975). Their analysis assumes stationarity and
axisymmetry from the start; however, it assumes the
fluid to be a nonviscous perfect fluid. They define
equilibrium via a global variational principle, de-
manding the total entropy of the star (as in eq. [1])
to be extremized. Another analogous result is obtained
by Stewart (1971). He considers collision-dominated
equilibrium in a gas which satisfies the relativistic
Boltzmann equation. He shows that in equilibrium,
the four-velocity of the gas is equal to the temperature
multiplied by a Killing vector field. Therefore, starting
from rather different mathematical assumptions, we
see that the symmetry condition implied byequilibrium
is the same as the one found here.

II. STATIONARITY IMPLIES AXISYMMETRY
a) Preliminaries

The precise statement of the proposition to be
demonstrated in this section can be found in § I.
The Killing vector field &= derived in § II represents
a symmetry of the spacetime within the star. The
discussion of this section concentrates on showing
that £ must also exist in the exterior of the star. This
work will proceed in four steps. Subsection (z) shows
that under the assumptions of the proposition, &% is
linearly independent of the globally timelike Killing
vector field »*. The junction conditions for the gravi-
tational field at the surface of the star are also re-
viewed here. Subsection (b) proves the existence of an
extension of £* into the exterior of the star. Sub-
section (c) shows that the extension obtained in (b) -
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is in fact a Killing vector field which commutes with
the globally timelike Killing vector field. Subsection
(d) completes the proof by showing that the symmetry
represented by £* is a rotational symmetry of the star.

From the results of § II, it is known that .#Z, admits
a Killing vector field £&* which is proportional to the
four-velocity of the fluid. A theorem due to Lich-
nerowicz (see Carter 1972, p. 151) guarantees that &~
will be linearly independent of #* whenever the time-
like Killing vector field 5* is nonstatic. Therefore, the
interior of a stationary (nonstatic) star is invariant
under two isometries.

Before proceeding with the extension of &% the
junction conditions which match the exterior gravi-
tational field to the interior field at the surface of the
star £ must be discussed. X is the surface on which
the pressure of the fluid vanishes. It is not customary
to demand that the equation of state be one for which
the density necessarily also vanishes on this surface;
therefore, there may be a jump discontinuity in the
stress energy tensor, and in the Ricci tensor at this
surface. The junction conditions of Synge (see Synge
1966, p. 39) are the appropriate ones to describe the
resulting discontinuities in the metric tensor in this
situation. In a neighborhood of some point r € X, an
adapted coordinate system is constructed: i.e., a
system in which X is a level surface of one of the
coordinate functions, say x*. Synge has shown that the
discontinuities in the stress energy tensor come from
the second derivatives of the metric along x!; thus
0,0,8,; may be discontinuous. In the adapted co-
ordinates discussed above, however, g.s, 0.8;,, and
all second derivatives except 8,0, g, Will be continuous.
The metric tensor is therefore C' in any open set
which contains part of the boundary of the star, and
C8 elsewhere.

b) Extending the Killing Vector Field

To propagate ¢ off the surface X, the differential
equation

V,Vegh =0 17

will be used. This equation is chosen to define the
extension of &7 since it is satisfied by any Killing vector
field in ;. The initial values of the field, £* and
0,.£8, will be specified on X by taking the limits of the
corresponding quantities from the star’s interior ..
These initial values plus the differential equation (17)
form a Cauchy initial value problem for £* on the
surface . The mathematical tool which is used to
show the existence of this extension of &% is the
Cauchy-Kowalewsky theorem (see Courant and
Hilbert 1962, p. 39). This theorem guarantees the
existence of a solution of the Cauchy problem in a
small neighborhood of the initial surface if (a)
the differential equation depends analytically on the
unknown functions, their derivatives, and on the
coordinates; and if (b) the Cauchy data are analytic
functions of the coordinates on the initial surface.
A theorem of Miiller zum Hagen (1970b) proves
that the components of the metric tensm;, 8ap, are
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analytic functions in the region .4 ; therefore, con-
dition (a@) of the Cauchy-Kowalewsky theorem is
satisfied by the equation (17). The next task is to show
that the condition (b), the analyticity of £* and
0,£%, is also satisfied on the initial surface X. To
accomplish this, certain constraints must first be
placed on the surface .

The surface Z forms the boundary between the
external, analytic vacuum spacetime .#; and the
interior of the star .#,. Therefore, in general, the ex-
terior geometry may be analytically continued
past the surface of the star 2, to form some spacetime
A,' which is everywhere vacuum.® Whenever this
analytic continuation is possible, the surface of the
star can be viewed as a hypersurface embedded in
the manifold .#,’. It will be useful to view the surface
2 in this way. Furthermore, it is natural to suppose
that the surface of the star shares the smoothness of
the geometry in which it is embedded. Hence, the
surface X is assumed to be “compatible” with the
exterior geometry of the star. This condition is defined
precisely as follows:

DEFINITION : The surface of the star, X, will be called

“compatible” with the external geometry if:

1) there is some open subset U < X of the surface
of the star across which the external geometry
can be analytically continued;

2) the surface U in the extended vacuum spacetime
A, is the level surface of an analytic function:
f(r) =0,df(r) # 0,re U.

Briefly, this condition requires that some (possibly
small) portion of the surface of the star be the level
surface of an analytic function. This makes the sur-
face “compatible” with the analyticity of the external
geometry of the star. The condition (2) may at first
seem to be a rather strong one. However, it is easy
to see that it is in fact a necessary condition; this
necessity is demonstrated in Appendix A. Further-
more, it is not stronger than the smoothness conditions
which are generally adopted to describe physical
situations. In order for a surface to violate the com-
patibility condition, it must fail to be analytic every-
where. Such a situation is rather pathological, and
probably not physical.

It will now be shown that the components of the
Killing vector ¢% and its first derivatives must be
analytic functions on the surface Z. Begin by noting
that the vector field £* within the star is a Killing
vector not only of the four-geometry of .#,, but also
of the three-geometry intrinsic to each surface of
constant pressure. To see this, let n* represent the
unit normal to the surfaces of constant pressure. (Note
that %n® = 0.) The metric tensor intrinsic to these
surfaces is given by y,5 = g5 — o, Its Lie derivative
along £ vanishes: %y,; = 0. Equivalently, £* satisfies

1 An example of this extendability is given by static
spherical stars. The interior regions of these stars satisfy the
Oppenheimer-Volkoff equations; the exterior geometry is
simply a piece of the vacuum Schwarzschild geometry. For
such stars, the external region .#; can always be continued past
the surface £ to form .#,’, the complete Schwarzschild
solution.
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Killing’s equation within the surface: D;¢; + D¢, =
0,i,j = 0, 2, 3. D, represents the covariant derivative
related to the intrinsic geometry. Furthermore, since
¢; is a Killing vector field, it must satisfy

D{Diéj = 3.Rji§t . (18)

Equation (18) must hold on each surface of constant
pressure within the star. In particular, then, it must
hold on the surface of the star .

It has been assumed that the surface of the star,
Z, is “compatible” with the exterior geometry. This
requires that an analytic function f exists, one of
whose level surfaces is the surface Z. Miiller zum
Hagen (1970b) has shown that the metric tensor is
analytic in suitable coordinates on the manifold .4,’.
Since the function fis assumed to be analytic, it may
be used to replace one of the analytic coordinates
constructed by Miiller zum Hagen. The components
of the metric in the resulting adapted analytic co-
ordinate system will be analytic functions. Further-
more, the intrinsic metrics, which describe the
geometry of the surfaces of constant f, will have
analytic components. In particular, the intrinsic
geometry of the surface 2 must be analytic. Therefore,
on X, equation (18) is an analytic equation for ¢,
Using an argument presented in Appendix B, it
follows that solutions of equation (18) must be

" analytic functions, since equation (18) forms an

elliptic system of analytic partial differential equations.
Thus the functions £&* must be analytic functions on
the surface of the star Z.

All that remains to establish condition (b) of the
Cauchy-Kowalewsky theorem is to show that the
first derivatives 0,£? are also analytic functions on Z.
Let n* be the components of the unit normal vector
to X, and e® be the components of an arbitrary analytic
vector field which is tangent to 2. Since £¢* are analytic
functions, it follows that e%9,£? will also be analytic.
To learn about the derivatives of £* in the direction
normal to the surface, the four-dimensional Killing’s
equation is used:

0 = £40,84 + 8un0p€* + 8pu0,E" .

The inner products of this equation with the vectors
n® and e give expressions for the normal derivatives:

nnPogE® = —In°nféro,g,, , (19a)
e NP0, = —nePEro,g,, — n,ef0,€%. (19b)

The left-hand side of equation (19) gives all possible
components of the normal derivatives of &% The
right-hand side is composed entirely of functions
which are known to be analytic. Thus, we conclude
that the Cauchy data ¢%, 0,£° are analytic functions
on the initial surface X. The Cauchy-Kowalewsky
theorem therefore guarantees the existence of a
solution of equation (17) with the initial data given

- above. The vector field £* is thereby extended at least

a small distance into the exterior of the star, .#;.

Vol. 208

¢) Properties of the Extension

The vector field £* has been extended a small way
into .#; in the previous section. It is now shown that
this extension is a Killing vector field which commutes
with the globally timelike Killing vector field % The
following identity is satisfied by any vector field in a
vacuum spacetime:

Vo VE(V,E, + V,E) — 2(V,és + ViE)RYE,
=V, V, V¢, + V,V, Ve, . (20)

When ¢* is extended using equation (17), the right-
hand side of equation (20) vanishes. The left-hand
side then becomes an equation for #,, = V,&; +
V€., the Killing tester (which vanishes if and only if
£* is a Killing vector):

V.V, — 2R, %Pt = 0. 21

To prove that £* is a Killing vector field, it must be
shown that the only solution to equation (21) which
is consistent with the boundary conditions is #,; = 0.
The boundary conditions, on X must therefore be
examined so that the values of #,; and 0,t;, may be
evaluated on 2.

It will now be shown that the tensor #,5 and its
first derivatives, 0,¢4,, vanish on the surface X. This
fact follows from the continuity required by the
junction conditions at X. The tensor #,; is a function
of the vector £%, the metric g,,, and their first deriva-
tives:

tyg = fuauguﬁ + gauaﬂfu + gﬂuaagu .

The metric and its first derivatives are required to be
continuous by Synge’s junction conditions. The
components of the vector field £* and its first deriva-
tives 0,£% were required to be continuous in the ex-
tension of ¢*. Therefore, ¢,, must be continuous across
the surface X. Since it vanishes in 4, it must vanish
on X. The derivatives 9,t;, must also be continuous;
this is not as easily seen. These derivatives depend on
the metric, the vector field, plus their first and second
derivatives:

Outpy = 0u(£"0,8py + 8pu0rvE" + 84y056") . (22)

The only term in equation (22) involving second
derivatives of the metric is £*0,0,8;,. (The vector
field £ is tangent to the surface . This follows from
the fact that £* is a Killing vector field within ./,
which implies that the gradient of the pressure is
orthogonal to £%: £*V,p = 0; therefore, £* must be
tangent to X.) The Synge junction conditions require
that only the second derivatives of the form n*n%0,0,g,,
have discontinuities. None of these terms are present
in equation (22) since £* is tangent to Z.

It must also be shown that the second derivatives
of the form 0,0,6” are continuous. The second
derivatives of the form ¢*9,0,£% will be continuous
whenever e* is tangent to the surface Z. Only the second
derivatives of the form n®nf0,0,6" need to be con-
sidered. These derivatives are determined not by the
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junction conditions, but by the differential equations
governing &% In /#,, & satisfies equation (17) by
construction; in .#, (since £¢ is a Killing vector field)
it must satisfy

Vo Vgl = RP,£% . (23)

Since the region ., is vacuum, equation (23) is
satisfied by £* everywhere. The left-hand side of
equation (23) can be expanded out in terms of co-
ordinates to obtain

VaVafB = guvauavfﬁ + Rﬂugu + fua”(ng]_"Bw)
+ B(¢, 06, g, 98) (24)

The term B? is a function of only the quantities £%,
Zqs, and their first derivatives; therefore, it is con-
tinuous across 2. Using equations (23) and (24)
together, the second derivatives of £* may be ex-
pressed as

guvauavgﬁ = _fuau(gav]_"ﬂav) - BB({':’ 35’ 8 ag) .
(25)

The right-hand side of equation (25) is continuous
across X: The first term contains only second deriva-
tives of the metric of the form £*0,0,8;,, which have
been shown to be continuous. The second term B* is
continuous by construction. Thus, g*'0,0,£# are
continuous functions at 2. This implies that all of the
second derivatives &,0;£ must be continuous. This
completes the argument showing that the functions
t,s and 9,1, are continuous across X; therefore, since
each vanishes in .#,, they must vanish on X.

The functions ¢,; and 9,¢;, form Cauchy data for
the linear differential equation (21). In stationary
vacuum spacetimes such as .#;, the components of
the metric tensor are analytic functions when ex-
pressed in suitable coordinates. Therefore, equation
(21) forms a linear system of partial differential
equations with analytic coefficients, for the quantities
tys. A theorem due to Holmgrem (see Courant and
Hilbert 1962, p. 237) guarantees the uniqueness of
the solutions of this Cauchy problem. Since #,; = 0
is a solution, it must be the unique solution. Thus,
we finally conclude that when £ is extended according
Eo le(;luation (17), the extension must be a Killing vector

eld.

It is also useful to show that the extension of £* via
equation (17) commutes with the timelike Killing
vector n”. Let us define [* = %,£% the commutator
of £* and 7® Since 7% is a Killing vector field, it is
straightforward to show that

V,Vels = Z(V,Vegh) . (26)
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The right-hand side vanishes whenever equation (17)
is satisfied. It is therefore possible to use equation
(26) and the initial values of /* and its derivatives as a
Cauchy problem on X. The initial-value data /* and
0,1% are functions of £% 7% and their first and second
derivatives. It has already been shown that £* and its
first two derivatives are continuous at . The vector
field n* is assumed to be C%. Thus both /* and 9,/ must
be continuous functions at . Each vanishes within
the star; therefore each must vanish on X. As before,
the theorem of Holmgren guarantees that /% = 0 is
the unique solution of this problem. Thus, the ex-
tension of £* commutes with 7

d) Axisymmetry

The remainder of the proof of this proposition—
‘““stationary stars are axisymmetric”—follows exactly
the final steps of Hawking’s (1972) theorem—
‘“stationary black holes are axisymmetric.” It is
appropriate briefly to summarize those steps here. The
Killing vector £ has been shown to exist inside the
star, and in at least a small open neighborhood in
the exterior. Since the exterior geometry of the star
is analytic, the components £ must also be analytic
functions (see Appendix B). These can be extended
to cover the entire exterior spacetime by analytic
continuation.

The integral curves of the now globally defined
Killing vector field ¢ are the orbits of an isometry
of the spacetime .#. What is this symmetry? Near
spacelike infinity, the spacetime .# is assumed to
behave . asymptotically like Minkowski spacetime.
Minkowski spacetime is isometric under trans-
formations of the Poincaré group. Therefore, the
symmetry represented by the Killing vector £ must
behave near infinity as a Poincaré transformation. The
spacetime containing the star is clearly not invariant
under spacelike translations, or velocity boosts. The
only remaining symmetries are time translations or
rotations. The globally timelike Killing vector field »*
represents the time translations. Therefore the vector
field ¢€* must represent some linear combination of a
rotation and time translation. The spacetime . is
therefore invariant under a rotation; it is axisym-
metric. '
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APPENDIX A

In this Appendix it is shown that the surface of a rigidly rotating axisymmetric star must be the level surface
of an analytic function. If a Killing vector £ exists in the region .#;, then the argument presented in Appendix
B shows that the components £ will be analytic functions. This fact, together with Miiller zum Hagen’s (1970b)
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result, shows that the function A2 = —g,,£%¢# is analytic in 4. This Killing vector is proportional to the fluid
velocity within the star, £* = —hu®. This fact, and Euler’s equation (16), imply that

Vi(log ) = —(Vup)/(p + p) -

Therefore, the surfaces of constant 4 correspond to the surfaces of constant pressure. This means that the surface
X of the star is the level surface of the analytic function /4 in the region ;. If dh = 0 on the surface, then dp = 0
also. This would correspond to the Poincaré limit on the rotation of the star, and any such star would be unstable
to mass shedding. Thus, we have shown that the “compatibility” condition is a necessary one for a rotating
axisymmetric star.

APPENDIX B

The purpose of this Appendix is to show that the solutions of the equation,

VoVegf = RFE, (26)

must be analytic functions if (a) they are at least of class C3, (b) they commute with the globally timelike Killing
vector field 9%, Z,£* = 0, and (c) the metric tensor is analytic. Miiller zum Hagen (1970a, b) has shown that in a
neighborhood of every point in a stationary spacetime, coordinates may be chosen which are both stationary and
harmonic. In stationary coordinates the components of the timelike Killing vector are % = §,% In harmonic

coordinates the Christoffel connection must satisfy g#'T'*,, = 0. In such a coordinate system equation (26) may be
expanded as

8"70,0,6" + B*(§, 0¢,8,08) = 0. @7

The function B* depends algebraically on its arguments, the vector field £%, the metric g,,, and their first derivatives.
The metric tensor is assumed to be analytic; thus, this equation forms an analytic system of differential equations
for £, The timelike Killing vector commutes with £%, so that 8,6 = 0. In this case the equation (27) may be
rewritten as :

80,0, + B*(£,0¢,8,08) =0 (1,j=1,2,3). (28)

The matrix g* is positive definite. Therefore, equation (28) forms an elliptic system of differential equations.

It can now be demonstrated that £ are analytic functions by recalling a theorem of Morrey (see Morrey 1958,
or Miiller zum Hagen 1970a). The specific case of that theorem which is applicable here states:

MOoRrReY’s THEOREM: Consider an elliptic system of second-order partial differential equations:

D4(x, [, 8,15, 0,05f%) =0 (4, B =1,...,N). \ (29)

If f2 is a function of class C® which is a solution of equation (29) in some domain D, and if the
gunction D4(x%, ¥B, y,5, yo5°) is analytic in the variables (x%, ¥, y,2, y,,%), then the function f2 is analytic in the
omain D.
It has been shown that the equation (28) forms an elliptic system of analytic partial differential equations. The
vector field £* has been assumed to be of at least class C°. Therefore by Morrey’s theorem, the components ¢* are
analytic functions. The argument in this Appendix assumes that the geometry is four-dimensional; however,
essentially the same argument applies to the three-dimensional equation (18).
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