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It is shown that certain nonvacuum solutions of Einstein’s general relativistic field equations are analytic
space-times, i.e., an analytic atlas exists with respect to which the components of the metric tensor, and
all material fields are analytic functions. The two specific cases discussed here are interesting from an
astrophysical point of view. The first is the class of space~times containing a source free electromagnetic
field: the exterior of a charged black hole, for example. The second is the class of space-times filled with a
rigidly moving perfect fluid, often used to describe the interior of a rotating star.

1. INTRODUCTION

Miiller zum Hagen!'? has shown that every stationary
vacuum solution of the Einstein field equations is ana-
lytic, i.e., there exists an analytic atlas with respect
to which the components of the metric tensor field are
analytic functions. His result has proven to be a useful
tool for the study of space—times of astrophysical
interest, e.g., the exteriors of rotating stars or black
holes (see Refs., 3 and 4). The purpose of this paper is
to extend those results to certain nonvacuum space—
times which have possible astrophysical interpretations.
The case of a space—time which contains a source-free
electromagnetic field includes the charged black hole
solutions. Hawking,? in his proof that stationary black
holes are axisymmetric, uses the analyticity of the met-
ric tensor. The result presented here, therefore, makes
his argument rigorous for the case where electromag-
netic fields are present. The other case presented
here, space—times containing a rigidly moving barytro-
pic fluid, is often used to model the interiors of rotat-
ing stars.

2. BACKGROUND

Analyticity of these space—times is demonstrated by
showing that the functions which describe the geometry
and the configuration of the matter satisfy systems of
elliptic partial differential equations. A theorem of
Morrey® is then recalled which guarantees the analytic-
ity of such functions. Several definitions and results
implied from previous work will be required to effect
these proofs; they are simply listed in this section.
Discussion and proofs of these points may be found in
the references,!:?®

Definition: A coordinate chart in a stationary space—
time M is said to be stationary and harmonic if (a) the
components of the timelike Killing vector are given by
n*=32; and if (b) the Christoffel connection satisfies
I‘gvguvzo’ (ayﬁy o :0, 15 21 3).

Definition: A function f(x) is said to be Hélder contin-
uous of order 0< <1 (C*), on some domain D, if 3 a
constant K, such that ¥ x,veD, |f(x)~f(v)| <Kix-yl*.

Lemma 1 (Miilley zum Hagen): Assumptions: A
space—time M is C™? for integer n = 2. It contains a
globally timelike vector field, n®, which is C™!. The
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metric tensor is C". Assertions: In a neighborhood of
each point xeM there exists a stationary harmonic
coordinate chart which is C** 0<p <1, related to the
C™2 charts on M.

Lemma 2 (Mulley zum Hagen): Consider a stationary
space—time M in which the components of the metric
tensor are analytic functions of the stationary harmonic
coordinate systems at each point. The the stationary
harmonic coordinate charts form a basis for an analytic
atlas on M.

Definition: A system of second order partial differen-
tial equations, ®*(x®,f%,2,0,/%)=0(A,B=1,2..., N) is
said to be elliptic in some domain D if ¥x*¢D and v
vectors A*#0,

O#det{Z} rop8 [a 2,

a8 Vas

4 (x7, 9°, .vf,y,i)J } ,
evaluated at v? =f5, y3=0_f®, and v8,=0,0,f".

Theorem (Morrey): Assumptions: f? is a function
which is the solution of the system of elliptic differential
equations, ®4(x*,f?,3,f%,0,3,/8)=0, (4,B=1,2..., N)
on some domain D. 78 is of class C***, 0<p <1, The
functions ®4(x®, v2, y2 92} are analytic in the variables
(x*, v8, v, v5)). Assertion: The functions /¥ are analytic
on the domain D,

3. ELECTROMAGNETISM

The electromagnetic field is described by the vector
potential A%, In a source-free space—time, the field
equations which govern A® are

v,VeAs +RE A% =0, (1)

(The Lorentz gauge condition has been adopted, v A”
=0.) These fields are themselves sources for the
gravitational field, via the Einstein equations

R, =(28"16%0% — 38 ,s8" 8" )V LA, ~ VLA NV, A~ V, A
(2)

These space—times are called stationary if there exists
a globally timelike vector field n* which satisfies

L A*=1"V, A%~ A*V, 7% =0, (3)
L\8ys=Vllg+ VsNy =0. (4)
For space—times described by Egs. (1)—(3) we will
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derive the following:

Pyoposition 1: A stationary space—time M is assumed
to contain a source-free electromagnetic field, de-
scribed by Egs. (1)~(3). If M is C%, the components of
the Killing vector field n® are C®%, the metric tensor
Zas 18 C*, and the vector potential A is C?, then M
admits an analytic atlas with respect to which g, and
A® are analytic functions.

Pyoof: In a harmonic coordinate system the components
of the Ricci tensor, and the D’Alembertian of a vector
field may be expressed as,

R, =1¢""0,0,8.4 + Bos(g, 02),
VY, A®=g""3, 3,A% +R2A* + C*(4, 04, g, 9g).

(5)
(6)

The functions B,z and C* are functions only of the
metric g,4, the vector field A%, and their first deriva-
tives. Equations (1) and (2) may be rewritten in har-
monic coordinates [using Eqs. (5) and (6)] to obtain,

guvauaugaﬂ :Bc’xa(g’ ag,A, aA);
guvauavAa:C’a(g) ag’Av BA).

(7
(8)

When a stationary and harmonic coordinate system
(existence is guaranteed by Lemma 1) is assumed, Egs.

(3) and (4) may be rewritten as

9,4%=0, 3g.,=0.

In these coordinates, the operator g**3,9, may be
replaced by g'/8,8,, with i,j=1,2,3, in Egs. (7) and (8).
Since g'’ is a positive definite matrix, Egs. (7) and (8)
are elliptic systems of differential equations for A%

and g,;. Morrey’s theorem guarantees the analyticity of
A%and g,, with respect to the stationary harmonic
coordinate charts. Lemma 2 guarantees the existence

of an analytic atlas for M. ]

4. FLUIDS
Perfect fluids are described via the Einstein equations,

R, =8[(0 + P ujus + 30 - p)g 4)- (9)

The energy density of the fluid is p, the pressure is p,
and u#® (u*u,=-1) is the four-velocity, tangent to the
world lines of the fluid. The fluid under consideration
here is assumed to have an analytic barytropic equa-
tion of state, i.e. p(p) is an analytic function of the
pressure. Also, the fluid is assumed to be moving
rigidly; this condition is given by,

(85 + uu )05 + ugtt’)(V 0, + V,u,)=0. (10)

The stationarity of these space—times is expressed by
the existence of a timelike vector field n?, satisfying
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Eq. (4) and,
(11)
(12)

Lu®=0*V, u*- u“vun"‘ =0,
Lp=n"v,p=0.
For these space—times, the following proposition holds:

Proposition 2: A stationary space—time M is assumed
to contain a rigidly moving barytropic fluid (with analyt-
ic equation of state).® If M is C”, the components of the
Killing vector field n* are C°, the metric g, is C® and,
the pressure p and the four-velocity u® are C®, then M
admits an analytic atlas with respect to which g, p,
and u® are analytic functions.

Proof: Equations (9) and (10) and the fact that the fluid
is barytropic imply that the following relationships are
satisfied:

VAV, b=~ V(o + PlufVguty + (p+ PNUER o5 - ¥ 2t V°0),
(13)

Vov i = (uh V u (VPu® — Vo) — uB(V 0, W (VP u”). (14)

Equations (9), (13), and (14) form a system of second
order differential equations for the functions g5, u*,
and p. These equations may be written in a stationary
harmonic coordinate system, in analogy with Eqs. (7)
and (8),

gijaiajp :A(pv gr agr u, au)y
gijaiaju&:Ba(p7 &, aga U,y au),
gijaiajgaﬁzcaﬂ(pyg’ ag’ u)-

These equations form an elliptic system, thus the
theorem of Morrey and Muller zum Hagen’s lemma can
be applied to complete the proof. .
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61t has been shown elsewhere (Ref. 3) that a stationary, vis-
cous, heat conducting fluid is necessarily rigidly moving and
barytropic. Thus any real, truly stationary, fluid would be
expected to satisfy these criteria with the possible exception
of the analyticity of the equation of state.
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