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This paper shows that a certain class of Newtonian stellar models must possess a plane of mirror
symmetry. A corollary of this result is that static Newtonian stars must be spherical. The new features of
the results given here are that: (a) The assumptions about the velocity distribution of the fluid are weaker
than previous treatments and (b) the method of proof given here does not depend as strongly on the
linearity of the gravitational field equations as the previously published treatments. Therefore, this proof
may serve as a model for a general relativistic generalization of the mirror plane theorem.

1. INTRODUCTION

An interesting feature of equilibrium stellar models is
that extra symmetries are acquired from the field equa-
tions and the boundary conditions by the stationary
equilibrium configurations. Perhaps the oldest known
result of this type is Lichtenstein''? and Wavre’ s® proof
that rotating Newtonian stellar models must have a
plane of mirror symmetry which is perpendicular to the
rotation axis of the star. A related theorem by
Carleman® and Lichtenstein® shows that static
Newtonian stellar models must be spherical. A few re-
sults are also known for general relativistic models:
static black holes are spherical’®; stationary black holes
are axisymmetric®; and stationary viscous stars are
axisymmetric.’

This paper will present a new type of proof of the
mirror plane theorem for Newtonian stellar models.
The assumptions on which the present proof is based
are somewhat weaker than those used previously, It had
been assumed that the fluid motion in the star was pure-
ly azimuthal; here we assume that there is a Cartesian
coordinate system in which the 2 component of the velo-
city vanishes. (Thus, the velocity field of the fluid will
be called stratified, ) This weaker assumption allows us
to consider somewhat more complex velocity distribu-
tions such as those in the Dedekind ellipsoids, ¢ Further-
more, we do not make any assumption about stationarity
here, Thus, we are able to prove the existence of mirror
symmetry for objects which are nonaxisymmetric and
rotate with respect to the inertial frame of reference
(e.g., the Jacobi and Riemann § ellipsoids®).

The method of proof employed in the present work
may also be of some interest. This proof is based on
the maximum principles (see the Appendix) which must
be satisfied by the solutions to certain elliptic differen-
tial equations. This proof depends in a less crucial way
on the linearity of the gravitational field equations than
the Green’s function approach taken by Lichtenstein® and
Wavre.® Therefore, the present type of proof is more
likely to form the basis for a general relativistic
generalization of this theorem than the previous
approaches to this problem.
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We now give a qualitative outline of the proof which is
given in detail in the following sections. Section 2 makes
explicit the physical and mathematical assumptions on
which the proof of this theorem is based. The purpose
of Sec. 3 is to construct the plane which is shown to be
a mirror plane in Sec. 4. We begin by considering the
set of chords which are parallel to the z axis, and which
have both endpoints on the same level surface of the
gravitational potential function. Lemma 2 is used to
show that every point is the endpoint of some such
chord, Next we consider the set of midpoints of those
chords. For this purpose we define a function »,, which
maps the endpoints of chords into their midpoints. In
Lemma 3 we show that there is a chord whose midpoints
z component, z,, is larger than or equal to the z com-
ponent of the midpoint of any other chord. We will de -
compose each of the functions into even and odd parts
with respect to reflection about the plane z=z ; and we
will show that this plane is a mirror plane of the star.
In Lemma 4 we derive the important fact that the odd
part of the mass density, €, is negative for all z ex-
ceeding z,,. In Sec. 4 we prove the main theorem. We
show that the odd part of the gravitational potential,
¢, must satisfy the differential equation V,¥'¢"
= -47Ge” =0 for all z > z_; this follows from Lemma 4.
In addition we argue that ¢~ must have a maximum in
the half space z >z,. The maximum principles for this
type of differential equation are then invoked to show
that in fact ¢ =0 everywhere. It follows that the odd
parts of the mass density and pressure must vanish
also. Thus the star must have a plane of mirror
symmetry.

2. NEWTONIAN STELLAR MODELS

We will be considering the properties of stratified
Newtonian stellar models. These models are completely
defined by the following functions of the Cartesian
coordinates x, v, z:

¢ —gravitational potential,
¢—mass density,
p—pressure,

v, —velocity of fluid,

a,—acceleration of fluid.
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These functions are assumed to satisfy the usual differ-
ential equations which describe a Newtonian fluid stellar
model:

V\Vip=—4nGe, (1)
€a,= -V, p+ev,0, (2)
aizavi/af+vf\7jvl., (3)

In addition we make the following assumptions:

(a) The z component of the velocity of the fluid
vanishes (this defines our meaning of stratified).

(b) The density is a function of the pressure: e(p) with
de/dp =20, €20, and p= 0.

(c) The density has compact support at every instant
of time,

(d) The gravitational potential, ¢, vanishes as x*+ y?
+ 2%~ o0,

(e) The gravitational potential is C® except at the
boundary of the star, where it is C! with respect to
normal derivatives and C* with respect to tangential
derivatives.

(f) The magnitudes of the functions ¢, p, and ¢ are
bounded.

The following lemma shows that if the velocity field
of the star is stratified, then the Euler’s equation (2)
can be written in an important simplified form.

Lemma 1: The Euler’s equation for a Newtonian
stellar model which satisifes assumptions (a) and (b)
may be written in the form

Vip:eviw, (4)

where y=¢ -7T and T is some function which is inde-
pendent of z.

Pryoof: Equation (2) may be written in the form a,
= -¢'V,p+ V.. When assumption (b) is satisfied, the
right-hand side is a gradient, thus a,=V, T =-¢"V,p

+ V,¢. This can be re-arranged into the form of Eq. (4).

Also since v,=0 by assumption (a), it follows that a,=0
by Eq. (3). Therefore a,=937/3z=0, L]

We note that for the special case of an azimuthal
velocity field, »?=§, the potential T takes the familiar
form of the centrifugal potential, VT = -3Q%V,(x?+y?),

3. PRELIMINARY LEMMAS

To construct the plane, z= const, which we show in
Sec. 4 is a plane of mirror symmetry of the stellar
model, we need to classify the points in the star, based
on the nearby behavior of the gravitational potential ¢.

Definition: A point (x, y, z) will be called normal if
d¢/2z(x, , 2)#0; and a point will be called special if
a¢/oz(x, y, 2)=0.

Lemma 2: Let ¢ be the gravitational potential of a
stratified Newtonian stellar model satisfying assump-
tions (a) through (f). For every normal point (x, v, z)
there exists a unique associated point (x, v, Z) which has
the property ¢(x, v, 2)= ¢(x, y, Z) and ¢(x, y, z)
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<¢(x,y,z’) for all z’ between z and z. (A special point
is said to be associated with itself.)

Proof: Let us first show that ¢(x, y, 2z) >0 every-
where. If there is a point with ¢(x, y, 2) €0, then we
could find some point, say (x’, v’, z'), with ¢(x’, 3", 2’)
< ¢lx, v, 2z) for all points (x, v, z). By Eq. (1) and
assumption (b) we have V.Vip <0, Using Theorem 2A
(see the Appendix) one can show that if the point
(x', y', 2') exists, then ¢ =0 everywhere. If the point
(x', v', z’) lies on the boundary of the star, a slightly
different argument using Theorem 1A gives the same
result, ¢=0. Thus we can conclude that ¢ must be
positive everywhere,

We next consider the normal point (x, y, z). One can
start at (x, y, z) and proceed along the line {(x, y)
= const in the direction of increasing ¢. When one
reaches points having sufficiently large values of
x*+ 9%+ 2%, the potential ¢ will become arbitrarily
small, This guarantees that a point, say (x, y, 2), will
be reached along the line at which ¢{x, v, 2)=dlx, v, 2).
If one takes the first such point reached along the line,
say (x, v, z), then é(x, v, z") > ¢{x, v, 2) for all 2’ be-
tween z and z. Thus (x, v, Z) is associated with (x, y, z)
and the lemma is proved. =

To assist in the construction of the plane which is
shown to be a symmetry plane of the model in Sec. 4,
we will consider the following function.

Definition: The function m, maps points (x, y, z) from
the support of the mass density function into some
subset of R®, We define

me(x, v, 2)=(x, v, [z +Z)), (5)
where (x, v, Z) is the point associated with (x, v, z).

The next lemma will derive an important property of
the function wm,.

Lemma 3: There exists a point (x,, v,, z,) in the do-
main of m,, whose image (x,, v,, 2,,) =m,(x,, Vo, 2,) 18
a least upper bound of the z component of the range of
my; i.e., for every point (x, y, z) in the range of m,,
z, >z,

Pyoof: Let us first argue that the z components of the
range of m, are bounded, We can consider the total
potential ¢, defined in Lemma 1. The function m,, con-
structed using ¢ rather than ¢, is identical to the func-
tion m, because ¢ — =T is independent of z. By Eq.

(4) the level surfaces of ¥ coincide with the level sur-
faces of the functions € and p. Therefore the points which
are associated with normal points within the support of
the density will also lie within the support of the density.
Thus, the range of m, must be bounded since the domain
is bounded by assumption (c). Since the range of m, is
bounded, the z component of the range must also be
bounded and therefore must have a least upper bound,
say z,.

We will now show that z,, is the z component of some
element in the range of m,. In any case, there must be
a sequence of numbers £, each of which is the z compo-
nent of some element of the range of m,, and limg,=z,.
There must also be a corresponding sequence of points
£, in the domain of m, whose images have ¢, as z com-
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ponents: m,(£,)=(x,, ¥,, £,). The domain of m, is com-
pact, therefore, there is a subsequence £; of £, which
converges to a point in the domain, say lim¢,

= (%, Yo» 2,). It follows that limwm (&)= (x,, v,, z.). The
prime will henceforth be dropped from the name of the
sequence of points £,. If m, were a continuous function,
it would follow that m ,(x,, vo, 2o) = (%4, ¥, 2,,) and the
proof would be complete. m, is not necessarily con-
tinuous however.

Let us first consider the case where there is a sub-
sequence &, of £, which are all special points. At each
of these points we have 8¢/2z(£”)=0; and since 2¢,/32
is a continuous function, (2¢/72)(z,, v,, 2,)=0. For
special points m,(x, v, 2) = (x, v, 2), therefore
limm o (&)) = (xy, Vo, 2o) = (¥4, Vo, 2,). Therefore
(%45 Yo 2,,) must be an element of the domain of m, with
the property m ,(xo, ¥o5 2,,) = (Xy; Yo» Z,)- Thus we have
shown that the lemma follows if there exists a subse-
quence £, of special points.

The other case we need to consider is when ¢ are all
normal points when # becomes sufficiently large. To
each of the normal points £, (with z component w,} there
is an associated point £, (with z component ©_). We also
know that limw, = z, and lim3(w, + &, = z,,, thus lim®,,
=2z, -z, There are three possibilities: z,=z,, z,
>z,, and z, <z,. We will consider first the case where
zy=2,. The chord connecting each pair of points &, to
En in our sequence must contain a point £, where
2¢/fz(E7)=0. Thus, the sequence £, are all special
points. Furthermore lim¢/ =limé =MméE = (x4, Yo, Z,).
Thus, we have a sequence of special points whose limit
point is (x,, v, z,}). We have shown above that the lemma
follows in this case. We next consider the case where
z,>z,; then (v, vy, z,) must be a normal point with
associated point (x,, v, Z,). It follows that Z, <2z -z,
because z, is the least upper bound. Since ¢ is a con-
tinuous function Lim(£,) = b(x,, vo, 2,) = limd(E,)
= ¢l Vo, 22, — 2,). Therefore the point (x,, v,, 22, — 2,)
must be the point associated with (x,, ¥,, 2,) and as a
result m,(x,, Vo, Z5) = (Xg, Vo, Z,,) and the lemma follows.
The last possibility is that z, <z,. In this case the
sequence of associated points En must converge to
(x9s Vo 22,, —2,) and 2z,, — 2, > z,,. The same argument
as the one given for the case z, >z, shows that
(xgy Yo, 2,) is the point associated with (x,, v, 2z,, — 2,).
In this case m,(x,, Vo, 22,, — 25) = (X4, Vo» 2,,) and the
lemmma follows. =

We can now derive a very important inequality for the
old part of the density function, when it is taken with
respect to the plane z=2z2,,.

Lemma 4: Let € be the mass density of a stratified
Newtonian stellar model satisfying assumptions (a)
through (f), Then,

e(x, v, 2)=3elx, v, 2) —3elx, v, 22, —2)<0V z>2z .

Proof: Consider a point (x, y, z) with z >z,. If
(x, ¥, 2) is not in the support of ¢, then e’(x, y, z)
= —z¢(x, y, 2z, — 2z) < 0 by assumption (b). Next suppose
that {x, ¥, 2) is in the support of ¢, Since z,, is the least
upper bound of the midpoints, (x, y, z) must be a normal
point and the associated point (x, v, z) must satisfy
z<2z, —z<z. Lemma 2 implies ¢(x, v, 22, — 2)

2354 J. Math. Phys., Vol. 18, No. 12, December 1977

= d)(x; ¥, 2) so that ¢ (x, », Z):%d)(x, v, 2)

-3d(x, v, 2z —z) <0, The total potential y, defined in
Lemma 1 satisfies "= ¢, because T is independent of
z; consequently ¢ (x, v, z) <0. From Eq. (4) it follows
that the level surfaces of €, p, and ¢ all coincide. This
fact and the requirement that e> 0, p >0 and de/dp=0
from assumption (b) imply that ¢(x, v, z) <0 for all

2. L

4. THE MAIN THEOREM

We can now prove that these stratified Newtonian
stellar models have a plane of mirror symmetry.

Theovem: Consider a stratified Newtonian stellar
model which satisfies assumptions (a) through (f). There
exists a plane z =z,, such that the odd parts of the
functions ¢, € and p vanish when taken with respect to
the plane 2 =z,, Thus, the star has a plane of mirror
symmetry for these functions

Proof: From Lemma 3 we know that there is a point
(%5, ¥o, 2 SUCh that m (X, Vo, Zo) = (Xg Yoy 2,,). We will
consider two separate cases. In the first case
(x4, ¥os 2,) 1S assumed to be a normal point, in the
second case it is assumed to be a special point.

Case 1: Associated with the point (x,, v, 2,) is the
point (xg, Vo, Z,) With Z,=22z,_ —z,. Since ¢ (x,, V4, 2,)
=3d(x,, Vo, o) —30(x,, Vo, Z,) =0, there exists a point
leither (x,, v,, 2,) OF (g, Vo, 25| SaY (%4, ¥4, 2,) With
2, > 2,, where ¢~ vanishes. The function ¢ vanishes
on the boundary of the half space z >z_,. In the interior
of this region ¢~ is bounded due to assumption (f);
therefore there must exist a point (x, y, z) in this half
space where ¢~ is maximal. The odd part of Eq. (1) is
given by V,Vi¢ = —47Ge". From Lemma 4 we have
V., Vid =0 for all z >z,. This inequality, the existence
of a point where ¢~ is maximal and Theorem 2A (see
the Appendix) guarantee that ¢~ =0 everywhere, That
e =p =0 follows trivially.

The argument given above is not strictly correct for
the case where the maximum of ¢~ lies on the boundary
of the star. The density € need not be continuous at the
surface of the star, and consequently the potential ¢
need not be sufficiently differentiable there to apply
Theorem 2A. Consider now the case where the maximum
of ¢7, (x, 9, 2) lies on the boundary of the star. Find
an open ball B which has (%, ¥, z) as a point on its
boundary, which is tangent to the surface of the star at
(x, ¥, 2) and which is sufficiently small that all of the
points of B lie in the exterior of the star. Within B, ¢~
will be C?, and ¢~ is C* at (x, y, z). Furthermore
¢~ < ¢ (%, ¥, 2) at all points in B and V,¢°(x, ¥, 2)=0,
since ¢~ is a maximum at (x, ¥, Z). From Theorem 1A
if follows that ¢~ has the constant value ¢7(%, 3, 2)
everywhere in B and consequently everywhere. This
constant value must be zero since ¢~ vanishes on the
boundary of the half-space z >z .

Case 2: We now consider the case where (x,, ¥,, 2,)
is a special point. We have shown that ¢ <0 and € <0
for all z>z,. Similarly ¢">0ande =20forall zsz,.
It follows that there is a neighborhood U of the plane
z= 2z, in which the following inequalities must hold:
Ap/Rz=0, 2¢7/22<0. From Eq. (1) it follows that
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V., V(29 /82)= -4nGde™/dz, hence V,Vi(agp /92)=0in

U. At a special point 86/92=0=23¢"/62+ 8¢ /92, but

at z=z,, d6*/9z vanishes, therefore 3¢ /3z(xy, vy, 2,)
=0=293¢ /dz for all points in U. By Theorem 2A it
follows that 3¢"/2z2=0 everywhere in U, and consequent-
ly ¢"=0 everywhere in U, and as a result ¢ =0
everywhere,

As in Case 1 special consideration must be given to
the case that (x,, v,, z,) is on the boundary of the star.
From assumption (e) we know that ¢ must be at least C*
in the normal direction, and C? in the tangential direc-
tion at the surface of the star, Therefore Theorem 2A
cannot be applied and Theorem 1A must be used, Since
(9, ¥4, 2, is a special point, it follows that 3p/8z =
=3y/3z=0., There 3/9z is a tangential derivative to the
surface at this point; it follows that 3¢ /3z is C* at
(%05 Vo5 2,,). We have argued that 3¢™/9z <0 in the set U.
Thus, 3¢~/9z will be a maximum at (x,,y,,2,,) so that
V. (3¢ /3z) =0 there also. Construct an open ball B
which contains (xg, v, 2,) as one of its boundary points,
which is tangent to the surface of the star at (xg,yq,2,),
and which is sufficiently small that B lies completely
within U and completely within the exterior of the star,
Within B, v,v'(8¢~/82)=0 and 3¢~/8z is C%. Thus by
Theorem 1A, 3¢~/8z =0 in B, and therefore ¢~=0 in B
(the plane z =z,, intersects the center of B), It follows
that ¢™ =0 everywhere since it vanishes at an interior
point of the half space z>z,,. n

5. DISCUSSION

In the special case of static stellar models (v,=0)
there is no orientation picked out by the velocity stratifi-
cation, Therefore, the Theorem proved in the last sec-
tion shows that a mirror plane must exist for any choice
of orientation. As a result, one can show that the star
must be spherical.?* We also note that the mirror plane
theorem in the last section is in a sense incomplete, We
have shown that the functions ¢, p, and ¢ must all have
mirror symmetry. However, it appears that no simple
analogous result exists for the velocity field of the fluid,
vi. For example, consider a stationary axisymmetric
star with azimuthal velocity field. An infinite number of
related stellar models may be constructed by keeping
the functions ¢, p, and ¢ fixed while defining a new
velocity field v'*=hv', where & is an arbitrary function
which is independent of azimuthal angle and #®*=1. Note
that 2 may be discontinuous, so that parts of the fluid
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may rotate one direction while other parts rotate the
other way. These related stellar models need not have
simple mirror symmetry in the velocity field. A final
point to note is that asumption (a), that the velocity field
is stratified, is only used to prove Lemma 1. This
assumption could be replaced by the weaker (but physi-
cally less transparent) assumption 0=a,=3v,/5¢
+vivp,.
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APPENDIX

We reproduce here the version of the maximum
principle on which the proof of the mirror plane theorem
is based. Reference 9 may be consulted for discussions
of these results, and also for stronger versions of the
theorems than are needed here.

Theovem 1A: Let B be an open ball, and x, a point on
its boundary. Assume that f is a C® function everywhere
in B, and C° in the closure of B, Let V,Vif>0 and
S <flx,) everywhere in B, Then the outward normal
derivative df/dn >0 at x,, or f= f(x,) everywhere in B,

Theovem 2A: Assume that f is a C® function every-
where in a bounded open neighborhood U, and that
ViVifZ 0 everywhere in U. If there is a point x, in U
such that f(x,) > f(x) for all x in U, then f(x,) = f(x) for
all x in U,
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