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At second order in perturbation theory, the unstable r-mode of a rotating star includes growing
differential rotation whose form and growth rate are determined by gravitational-radiation reaction. With no
magnetic field, the angular velocity of a fluid element grows exponentially until the mode reaches its
nonlinear saturation amplitude and remains nonzero after saturation. With a background magnetic field, the
differential rotation winds up and amplifies the field, and previous work where large mode amplitudes were
considered [L. Rezzolla, F. K. Lamb, and S. L. Shapiro, Astrophys. J. 531, L139 (2000).], suggests that the
amplification may damp out the instability. A background magnetic field, however, turns the saturated
time-independent perturbations corresponding to adding differential rotation into perturbations whose
characteristic frequencies are of order the Alfvén frequency. As found in previous studies, we argue that
magnetic-field growth is sharply limited by the saturation amplitude of an unstable mode. In contrast to
previous work, however, we show that if the amplitude is small, i.e., <1074, then the limit on the magnetic-
field growth is stringent enough to prevent the loss of energy to the magnetic field from damping or
significantly altering an unstable r-mode in nascent neutron stars with normal interiors and in cold stars
whose interiors are type II superconductors. We show this result first for a toy model, and we then obtain an
analogous upper limit on magnetic-field growth using a more realistic model of a rotating neutron star. Our
analysis depends on the assumption that there are no marginally unstable perturbations, and this may not

hold when differential rotation leads to a magnetorotational instability.
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I. INTRODUCTION

Gravitational radiation drives an instability in the
r-modes of rotating relativistic stars [1,2] whose growth
time [3] may be short enough to limit the angular velocity
of old accreting neutron stars and may contribute to the
spin-down of nascent neutron stars (see Refs. [3—8] for
reviews and references). At second order in perturbation
theory, the unstable mode includes exponentially growing
differential rotation [9—14], whose form with no magnetic
field was recently obtained by Friedman, Lindblom and
Lockitch [14] (henceforth Paper I). Past work that con-
sidered r-modes saturated at large amplitudes in newly
born and highly magnetized neutron stars has suggested
that the resulting magnetic field windup could damp out
or significantly alter the instability [9-11,15-18]. The
present paper, however, which considers smaller saturation
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amplitudes, finds restrictions on the growth of differential
rotation that appear stringent enough to exclude signifi-
cant damping of the instability by magnetic fields in old
neutron stars spun up by accretion and in nascent, rapidly
rotating stars. For the stable r-mode, with no radiation
reaction, the secular drift is pure gauge [19]: it can be
removed by adding a second-order time-independent
perturbation that adds differential rotation to the unper-
turbed equilibrium star.

The growth of an unstable mode is limited by nonlinear
saturation—that is, by loss of energy to other modes at a
rate equal to the growth rate of the unstable mode. In their
studies of magnetic field windup by an unstable r-mode in
nascent neutron stars, Rezzolla et al. [9-11,16] used a
saturation amplitude a, of order 10~! or larger, as these
were the typical values estimated to be relevant in newly
born neutron stars [20]. Subsequent work in the context of
second-order perturbation theory, however, found an ampli-
tude smaller than 10~* [5,21-24], and recent papers argued
for still smaller limits based on observations of low-mass
x-ray binaries and millisecond pulsars [8,25]. Although a
small saturation amplitude in itself sharply limits the effect
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of magnetic-field windup on the r-mode instability of
young stars, Cuofano et al. [16,17] found a substantial
effect on r-mode evolution in old accreting neutron stars.
They used the formalism developed by Rezzolla et al
[9-11]. They did not include nonlinear couplings, but the
amplitude in their simulations remained below 10~*. What
these studies did not include is the backreaction of
magnetic field windup on the second-order perturbation
associated with differential rotation, and that is the focus of
the present work.

For a stationary star with no magnetic field and no
viscosity, adding differential rotation is a time-independent
perturbation: it simply changes a uniformly rotating equi-
librium to a neighboring equilibrium with a slightly differ-
ent rotation law. Still in the absence of viscosity, but with a
background magnetic field, however, a perturbation that
adds differential rotation is a sum of axisymmetric modes
with nonzero frequencies, modes restored by the magnetic
Lorentz force—by the tension of stretched field lines. The
periods of these modes are of order the Alfvén time 1,4,
which is essentially the time over which a perturbation in
the magnetic field travels across a reference length scale in
a plasma, which we take here to be the radius R of the star.

At second order in perturbation theory, differential
rotation of an unstable star with negligible magnetic field
is driven by a second-order radiation-reaction force
together with quadratic terms in the perturbed magneto-
hydrodynamics (MHD)-Euler equation (terms quadratic in
the perturbed variables of the first-order r-mode). Before
saturation, the effective driving force grows exponentially
over a gravitational radiation-reaction time scale 7gg,
driving an exponentially growing differential rotation.
After saturation, the driving force is constant, but the
differential rotation maintains a power-law growth in time.

With a magnetic field large enough that t, < 7sp
and a sufficiently small saturation amplitude, the pic-
ture is sharply altered. Now the driving force acts on a
set of axisymmetric modes with frequencies of order
w, = 2r/t4. Before saturation, the amplitudes of these
modes again grow exponentially. But after saturation, each
of the modes that comprise the differential rotation is
effectively an oscillator acted on by a constant force: its
amplitude is the sum of its amplitude at saturation and a
solution with harmonic time dependence. The combination
of the small-saturation amplitude of the first-order 7-mode
and the fact that the growth of second-order differential
rotation stops shortly after saturation, leads to a stringent
constraint on differential rotation (on the secular drift of a
fluid element) and hence on magnetic-field windup. We
find that the increase in the magnetic field prior to
saturation is smaller than the value needed to damp the
unstable r-mode by a factor of order «a; equivalently, the
rate at which the magnetic field’s energy drains energy
from the r-mode is smaller by a factor of order & than the
rate at which the radiation-reaction force drives the unstable

PHYSICAL REVIEW D 96, 124008 (2017)

mode." When a ~ O(1), as assumed in the initial inves-
tigations of the instability [20] and in Refs. [9-11], this
difference is small, but the situation changes considerably if
a~ 1074, as in the present study.

The major results of this paper can be summarized as
follows. In Sec. II we qualitatively describe the funda-
mental physical processes that contribute to this problem:
the time scales associated with the r-mode fluid oscilla-
tions, the time scales associated with magnetic field
processes, and the time scale on which gravitational
radiation drives an r-mode toward instability in neutron
stars. We summarize in Sec. II previously published
estimates of the magnetic field strength needed to suppress
the growth of the gravitational radiation-driven r-mode
instability in neutron stars. The section ends with an outline
of the argument that gives our main result.

In Sec. III, we introduce a modified version of a toy
model due to Shapiro [26] that illustrates the main features
we have just discussed. In Shapiro’s model a cylinder of
uniform-density fluid with an initial magnetic field and
initial differential rotation has a time evolution given by the
MHD-Euler system in the ideal-MHD Ilimit (i.e., in a
plasma with infinite conductivity). We add to the system
a forcing term that mimics the second-order axisymmetric
radiation-reaction force. Although the system is nonper-
turbative, the fluid displacement and magnetic field satisfy
linear equations and can be written as a superposition of
normal modes. We find an analytic solution for its
evolution and use it to obtain a first estimate of the
maximum angular displacement and magnetic field of the
r-mode.

In Sec. 1V, we develop the formalism governing the
equilibrium and first- and second-order perturbations of a
rotating star with a background magnetic field, in an ideal-
MHD framework with radiation reaction. We express
perturbations in terms of a Lagrangian displacement and
obtain the second-order MHD-Euler equation. In contrast
to the toy model, the equation involves terms with first as
well as second time derivatives, and we need a formalism
developed by Dyson and Schutz [27], based on a conserved
symplectic product [28], to express the amplitude of each
mode in terms of the effective driving force.

In Sec. V, we obtain estimates of the maximum angular
displacement of a fluid element and on the corresponding
magnetic-field amplification for the second-order unstable
r-mode itself. We assume that the perturbations are
governed by a barotropic equation of state, that axisym-
metric perturbations of the equilibrium star conserving

Tn Ref. [19], Chugunov noted an analogous relation for the
stable r-mode if one assumes that the arbitrarily chosen initial
differential rotation is of order a®>. Here, for the unstable r-mode,
the induced differential rotation is necessarily of order a?, but one
needs an additional constraint [Eq. (164) below] to keep the
secular exponential growth of the magnetic field below its critical
value.
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angular momentum and baryon number are strictly stable,
and that such axisymmetric perturbations can be written as
a sum of discrete, nondegenerate modes. A brief discussion
in Sec. VI summarizes our conclusions and considers
implications of relaxed assumptions.

We relegate to Appendices details of the Lagrangian
perturbation theory and of the formalism that obtains the
amplitude of fluid modes in terms of a driving force.

II. UNDERLYING MAGNITUDES

A. A problem with four time scales

Four time scales are involved in this problem. In order
of increasing size they are 1) the rotation period 2z/Q
of the star, 2) the oscillation period T4 = 27/w of
an r-mode, and 3) the r-mode growth time 7,,4.. Time
scale 4), the Alfvén time ¢4, may be larger or smaller than
Tmode> depending on the magnitude of the initial magnetic
field and on whether the neutron star’s interior is
superconducting.

The r-mode frequency w is proportional to the star’s
angular velocity, and for slowly rotating Newtonian stars it
has the form

(Z-1)(¢+2)

=" Q 1

for a mode associated with the £ = m angular harmonic.
The critical rotational frequency above which the 7 =
m = 2 r-mode is unstable depends sensitively on temper-
ature, but is likely to be above f = Q/(2z) = 500 Hz, and
the corresponding periods of rotation and oscillation are
then of order 1-2 ms.

We define the Alfvén velocity v, for a normal plasma by

BZ
vy = \/% (2)

Using the radius R of the star as a characteristic wavelength
gives the corresponding Alfvén angular frequency

B
[OFN :27”)A/R:§ ;7:, (3)

where p is an average rest-mass density [29-31]. In old and
accreting neutron stars, such as those in x-ray binaries, the
corresponding magnetic fields inferred from observation
are in the range 108-10° G. The interior poloidal and
toroidal fields may be higher, with the exterior poloidal
field partly suppressed by the accreting material [29-31],
and the relative size of the poloidal/toroidal magnetic-field
components remains an open question [32]. Using the
inferred values and typical sizes and densities for neutron
stars, the typical Alfven time scale for a normal plasma is
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R
fp~—= 7 X 104R6B§lw//714,6 S, (4)
VA

where B is an average magnetic field intensity, and the
subscripts refer to Gaussian-cgs units, e.g., Rg:= R/
(10 cm). This time scale is considerably shorter if the
neutron star interior is a type II superconductor, in which
case the magnetic field is confined to flux tubes carrying
fields of order H, > 10" G and the Alfvén time is of order

4mp P14.6
~T0R;, | ———s. 5
BH, "\ ByH, 5 ®)

Nascent neutron stars have normal interiors and observed
magnetic fields that range from 10'? to 10"° G.

Finally, the growth time 7,4, Of the r-mode instability is
set by a competition between gravitational radiation reac-
tion and local dissipation; the dominant contribution to
local dissipation may be shear viscosity for a normal
interior or at the core-crust interface, or mutual friction
for a dominantly superfluid interior. In the absence of
viscosity, the growth time of the instability is the gravita-
tional radiation-reaction time scale, given for an equation of
state with average polytropic index of order 0.5 by [3,33]

fasc~R

1.4 M,

Tgr ~ 2 x 10° 5§, R:*s, (6)
where, adopting 500 Hz as a fiducial rotational frequency,
we write f50 = f/500 Hz. Below a critical frequency,
viscosity damps the instability. An accreting neutron star
becomes unstable when accretion spins the star just beyond
this critical frequency, with an initial near balance between
viscosity and radiation reaction. After continued spin up,
however, the radiation-reaction time can be short compared
to the viscous damping time, and the mode will then grow
with a time scale of order 75 until energy loss to other
modes becomes important [5,6]. From Egs. (5) and (6), it
follows that old neutron stars with a dominantly super-
conducting interior have Alfvén times shorter than the
growth time of the r-mode. In contrast, stars with a
primarily normal interior have, by Eq. (4), Alfvén times
comparable to or longer than the radiation-reaction time, if

3/2
> R} G. (7)

B<5x 101°f§00<14M
: O}

B. Magnetic field needed to damp the r-mode instability

At first order in perturbation theory, the amplitude ()
of the unstable r-mode grows exponentially

a(t) = a(0)e, (8)

where f§ = 1/75x. At second order in perturbation theory,
the unstable r-mode has axisymmetric differential rotation
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driven by a force comprising gravitational radiation reac-
tion and terms in the perturbed MHD-Euler equation that
are quadratic in the first-order perturbation. The magnitude
of the radiation-reaction force per unit mass is (see, e.g.,
Paper 1)

forl ~ @®(1)BQR. ©)

Second-order contributions to viscous damping may reduce
the magnitude of this effective driving force; because our
goal is to set an upper limit on the second-order differential
rotation, we do not include them.

The growth of magnetic-field energy can stop the growth
of an unstable r-mode when the rate at which the differ-
ential rotation increases the energy of the second-order
magnetic field, (B), with (-) indicating the axisymmetric
part of a quantity, is equal to the rate of growth of energy of
the first-order r-mode.

For a normal plasma, the growth rate of the magnetic-
field energy density can be roughly estimated as

d€,,

1
4t ~ 5 BoB) (10)

while the energy density of the linear r-mode grows at the
rate

d€
%de = 2ﬁgmode Nﬁp[a(t)QR]z' (11)
The critical value of the axisymmetric part of the perturbed
magnetic field (6B);, at which the two rates are equal is
then

(0B)eris ~ a(1)QR\/27p ~ 1083 a_y fs00Rev/P1as G, (12)

where we have taken as the reference saturation amplitude
ag = 107, As noted in Sec. I, this is a conservative upper
limit on the maximum value of a found in perturbative
calculations [5,21-24]), and it is much smaller than
values ag, ~ 10~! — 1 considered prior to the perturbative
papers [9,20].

Using the induction equation in the ideal MHD limit, it is
not difficult to show that the secular drift of a fluid element
associated with differential rotation in a normal core
enhances an initial magnetic field B, by a factor of order

5B/By ~ &7, (13)

where &% is the angular displacement of the fluid element
[9]. Avalue & > 1 is then needed to amplify an initial field
of By~ 108-10'" G to the critical value (5B).; ~ 10"* G
at which it can damp or significantly alter an unstable
r-mode.
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In Sec. V, we will show for an exponentially growing r-
mode that £ has a bound of order a2, Q/w®,, which then
leads to a bound on §B. The way it does so can be
understood heuristically as follows. Using Eq. (13) and the
expression (3) for the Alfvén frequency, we can write the
perturbed magnetic field and the corresponding energy
density as

8B ~ B&? = wA\/ERf‘ﬁ,
n

1 1
(O3B)” ~ s po (REV). (14)

8z
Then using Eq. (10) written in the form,

ds, 1
S BB(E). (15)

the bound on & now gives

(0Bgu)
0B > crit

M < agat’
dgmode/ dt sat

(16)

< ars

—~

with numerical coefficients smaller than unity, where
(6Bgy) is the magnetic field generated by the fluid
displacement & when r-mode saturation occurs.

For a star with a superconducting interior, a given
angular displacement £# produces a larger magnetic energy.
However, because the Alfvén frequency is correspondingly
higher and &7 still has a bound of order a2, Q/w,, the
bound on £ is more stringent. The net result is that the two
effects cancel, and the growth rate of magnetic energy again
satisfies the bound (16).

We can define an average perturbed magnetic field,
(6Bgc), as a volume average for which 6&,, = (6Bs¢)?/8x.
The critical magnetic field for which the growth rate of
magnetic energy and of the linear -mode are equal is then
again given by Eq. (12).

III. A TOY MODEL

We begin the discussion of differential rotation and
magnetic field windup with a toy model that shows the
main features of the evolution of the differential rotation
and magnetic field that we claim for the nonlinear r-mode.
In particular, in the model, a homogeneous incompressible
rotating fluid with cylindrical symmetry has differential
rotation driven by a force that mimics the radiation-reaction
force driving the differential rotation of the unstable
r-mode: It grows exponentially until a time 7, correspond-
ing to the saturation time of the r-mode and is then constant
at its final value. This limit on the growth of the driving
force leads to our main result: a stringent upper limit on the
maximum angular displacement of a fluid element and a
corresponding upper limit on magnetic field windup.
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With a driving force per unit mass having maximum
magnitude ., we will find an upper limit on the angular

displacement éfm of a fluid element of order

o W
fmax’\’ R[Z:/% ’ (17)
where w, := 2x/t, is the Alfvén angular frequency and R
is the radius of the model fluid. For a normal (i.e., not
superconducting) fluid, the corresponding maximum mag-
netic field is of order

Biax ~ Bo&hax. (18)

The model is essentially that introduced by Shapiro [26],

differing from it only by the addition of this driving

force, and, as in Shapiro’s model, the general solution to

the MHD-Euler equation is analytic. The axisymmetric,

homogeneous, incompressible model fluid has a purely
azimuthal velocity field

v =Q(t,w)p, (19)
where ¢ is the rotational symmetry vector
¢ = w =15 — yk. (20)

A magnetic field that is initially along the cylindrical
radial vector field @, is wound up by differential rotation
driven by the exponentially growing forcing term. With no
driving force, we will see that the dynamical equation
governing the angular displacement of a fluid element is
linear, and the fluid’s displacement and angular velocity
can be written as sums of normal modes with frequencies
proportional to the Alfvén angular frequency (3).

With a driving force in the azimuthal direction, differ-
ential rotation continues to grow, and the radiation-reaction
force continues to drive a growing magnetic field. Finally,
when the driving force is time-independent (when the mode
has reached saturation), the differential rotation becomes a
sum of oscillatory modes, and the magnetic field oscillates
about its final equilibrium value. For the nonlinear r-mode,
the second-order radiation-reaction force includes a part
that spins down the star. Because we are concerned here
only with differential rotation, we will restrict consideration
in the toy model to a driving force that preserves the total
angular momentum of the fluid.

The toy model, like the stellar model, is governed by the
MHD-Euler system in the ideal-MHD limit, comprising the
source-free Maxwell equations and the Euler equation with
a Lorentz force. For the incompressible fluid of the toy
model, the source-free Maxwell equations are

V-B=0, (21)
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(0, +£,)B=0B -V x (vxB) =0, (22)
and the Lorentz force per unit mass is
Fo=tixB=" (VxB)xB (23)
m — p.] - 4ﬂ'p ’

where j is the electric current density, or, equivalently

: 1 o o

t =—B;(V/B'=V'B/), 24
Fin = 5B ) (24)
With no driving force, the MHD-Euler equation has the
form

v
E=ov+v-Wwi+-L_f —o. (25)
p

The differential rotation of the unstable r-mode is driven by
the second-order axisymmetric radiation-reaction force.
This is an azimuthal force, along ¢, and we represent it
in the toy model by a force f;x per unit mass of the form

for = (1) f (), (26)
where f(w) encodes the spatial dependence of the radi-
ation-reaction force, while the mode amplitude can be

modeled simply as given first by an exponential growth and
then by a constant after time 7,

o= {10

g = a(0) P,

t S tsat’
27
I > Iy @7)

The time evolution of the system is then determined by
Eq. (22) and the driven MHD-Euler equation,

A%
dy+v- Vv + 7}’ S (28)

with

V-y=0, (29)
because of the incompressibility assumption. Equation (29)
is identically satisfied by a velocity field of the form (19),
and the evolution equation for B, Eq. (22), keeps B
divergence free.

The w and z components of Eq. (22) are 9,B” =
0,B* =0. The model has vanishing B*, and Eq. (21)
implies that B” has the temporally constant form

R
B” = — B,
w

(30)

where R is the radius of the cylinder.
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Only the ¢ component of the magnetic field is dynami-
cal, and it is expressed in terms of £/ by a first integral of
the ¢ component of Eq. (22), namely

R
B? = — Byo,&7. (31)
w

Hence, for a stationary system in which Q(w) = 9,7 is
constant in time, B? will simply grow linearly in time;
this is the well-known magnetic-field “winding,” producing
a toroidal magnetic field out of a purely poloidal one
[9,15,34].

As the instability develops and saturates, however, the
evolution of the angular displacement & is given by the ¢
component of Eq. (28)

R4

e = 0 13— Op(w0pE) = P(O)f ¥, (32)
where w, is given by Eq. (3). Two remarks are worth
making about Eq. (32). First, it has a simple mechanical
equivalent in terms of a driven harmonic oscillator, whose
driving force first grows exponentially and then becomes
time independent after 7., Second, although it is derived
from the MHD-Euler equation, it does not involve the
pressure: the remaining @ component of the MHD-Euler
equation determines p but is not needed for the evolution of
& B or Q.

We model crust pinning of the magnetic field by the
boundary condition

B’(w=R) =0, (33)
and Eq. (31) then implies
0,E(w=R) = 0. (34)

Setting t := w?/R? allows us to write the homogeneous
MHD-Euler equation in the form of a cylindrical wave
equation 0?¢% — 77 2wir710,(v0,£?) = 0, whose solutions
are proportional to Bessel functions of order 0,

& = Jo(k,@*/R*)ein, (35)
where k, is the nth zero of J{, and
®, = wsk, /7. (36)
Writing f and &% as sums of orthogonal eigenfunctions
f£=Y" fulo(kyo?/R?),
& =>"cu(t)Jo(k,m?/R?),

we obtain the exponentially growing solution to Eq. (32)
prior to g,

(37a)

(37b)
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g = Zﬂf Jolk, @ /R2). (38)
- 4ﬂ2 2 J nJ0\*n

On the other hand, when the driving force is time
independent, representing an r-mode after nonlinear satu-
ration is reached, the term a?(0) fe*" in Eq. (32) is replaced
by the time-independent term a2, f. The solution for &7 is
now the sum of a time-independent term and harmonic
functions of angular frequency w, With a constant force,
the equilibrium value of £ is obtained by omitting 4/
from the denominator of Eq. (38), and & has the form

2
aS
=2 5 Lok /R)
+> audo(ky? /R?) cos(w,t +n,).  (39)

The amplitude of the harmonic term depends on the
transition from exponential growth to a time-independent
driving force. A gradual approach to saturation reduces the
amplitude, and we set an upper limit by adopting a driving
force whose growth stops instantaneously, as given by
Egs. (26) and (27).

The oscillation amplitude is then

a, = asz'at¢fn <
T

implying a maximum value of & less than twice its
equilibrium value. Here we have assumed that, prior to
tae €7 is dominated by the exponentially growing solution
(38) associated with the unstable r-mode.

Equations (38) and (39) give us the toy-model’s exact
expressions for the angular displacement of a fluid element.
We now consider its implications for the unstable r-mode,
assuming that the behavior of the toy model’s differential
rotation is similar to that of the r-mode. The axisymmetric
part of the r-mode’s radiation-reaction force per unit mass
is of order [cf. Eq. (11)]

(IfGrl) ~ @*(1)PQR. (41)

For a normal interior, the Alfvén frequency (3) has
magnitude

2
Osa
S fw (40)
Wy

w4 = 0.9 x 1074ByR5 7112, (42)

With f, ~BQ and hence a*(t)Rf, of order |fgg| and
decreasing for large n, the sum in Eq. (38) is dominated by
modes with k, ~1 and o, ~ ®,. Prior to saturation, we
then have a bound that is independent of S,

pQ
gsat ~ zdt4ﬂ27 a2 R
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implied by the relation
1
b =— [1 (44)

(26 - wA)2:| 1
. A TA) |
47 + 0} Ay

A4 + i | T Aoy

From Eq. (31), an angular displacement £ with character-
istic wavelength of order R gives a magnetic field
B? ~ Byé?, with a corresponding upper limit prior to
saturation

) Q 1
B?at ~ ngO < agatEBo = mangRpl/z
or
b 1
B asachriU (45)

5d1~4\/7—z_

where we have used Eq. (3) for w4 and Eq. (12) for the
critical magnetic field needed to damp the r-mode. The
corresponding inequality for the change in the magnetic
energy density at quadratic order in &% is

6 1 —— 0O crit- (46)

Sal'\» 16

Then ag, < 1 implies Bm < B, or Egyy K Eyir- This is
our main result.

After saturation, the linear r-mode is no longer growing.
Energy gained from the first-order radiation reaction is
balanced by energy loss to daughter modes and to dis-
sipation, and we now ask whether magnetic-field windup
can play a significant role at this stage. In the post-
saturation evolution of the angular displacement given
by Eq. (39), & reaches and oscillates about an equilibrium
value that can be large if @, is small. That is, from Eq. (39),
we have

pQ
gqﬁ 5 agat e (47)
2
B? < afdtﬂ > By. (48)
Wy

Now, however, the growth rate of each mode is proportional
to w,. Equation (10) is then replaced by

7 ~ w4 (6B)?, (49)

and the critical magnetic field for which the energy gained
from radiation reaction is comparable to the energy lost to
magnetic-field windup is given by

PHYSICAL REVIEW D 96, 124008 (2017)

~ asatQR pﬂ / Wy
> 1.5 x 10Ba_y"2 fsooRe 201, By /> G, (50)

(Bo/R)\/7/p.

(0B)

crit

where we have used w, > wy(By) =
Equations (48) and (50) imply
B < @ﬁ1/2R1/2p1/4B—1/2
(0B) erie ~ 2/ 0
= 1.3 x 10~*a_yB LR p1 By 2. (51)

To reach the critical magnetic field, one would need a
normal interior with B of order 20 G, more than 6 orders of
magnitude smaller than the smallest estimated external
magnetic field in an old neutron star (4.5 x 107 G, inferred
from the period and spin-down of PSR J1938 + 2012
[35]).2 Equation (51) implies that the post-saturation
growth of an initial magnetic field of 10% or 10° G will
continue to satisfy the saturation constraint (45).

The growth of a realistic initial magnetic field is then
much too small to alter the r-mode. In particular, for a
neutron star whose interior is a normal plasma, the
maximum angular displacement is of order

Ebax ~ 207 ,f_33fs00P126REBy? ad, (52)

and a corresponding maximum change in the magnetic
field is

Blax ~ E9By S 2% 10° o P35 s001a6REBs ' G, (53)

as implied by Eq. (48).

Again, two remarks are in order here. First, because
Eq. (47) refers to a time after saturation has been achieved,
the azimuthal displacement in Eq. (52) has a time-inde-
pendent equilibrium value. Using again the mechanical
equivalent discussed above, such a time-independent dis-
placement corresponds to that of a harmonic oscillator
subject to a constant and time-independent gravitational
force. Second, in this toy model, because the poloidal
component B? is constant and decoupled from the growth
of the toroidal field, the frequencies w, of the modes are
constant in time: they do not grow with the growth of the
toroidal field. As a result, the quadratic dependence on the
mode’s amplitude in Eq. (53) can increase the magnetic
field by 6 or more orders of magnitude if ag, = 0.1-1, as
was assumed in earlier work [9,20].

The exact decoupling that keeps w, constant may be an
artifact of the toy model: Sec. IV D displays the second-
order MHD-Euler equations governing differential rotation

2Although interior fields below 100 G seem highly unlikely,
field decay to that level has not, to our knowledge, been ruled out
observationally.
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generated by an unstable r-mode. In this more realistic
model, we have checked that, for a generic background
magnetic field, there is no analogous decoupling of
poloidal and toroidal fields. Nevertheless, numerical evo-
lutions of the MHD-Euler equations [36] show a poloidal
field whose magnitude remains approximately constant
while differential rotation winds up the magnetic field. We
therefore do not assume that an increasing magnetic field
produced by differential rotation results in an increased
frequency of modes associated with the field windup.

For cold neutron stars whose interior is a type II
superconductor, we find in Sec. V that an essentially
equivalent version of the constraint (45) holds both before
and after nonlinear saturation. Before encountering the
detailed calculation in Sec. V, we can understand the result
heuristically as follows. The energy density of a stellar
mode with displacement £ and frequency @ is of order
pw*E*. In particular, differential rotation drives modes
whose energy density is of order 6 ~ pw3i&?, where
&~ REP. The Alfvén frequency w, g¢ of a superconducting
interior is much larger than that of a normal plasma, and the
rate of growth of magnetic energy is thus much larger for a
given displacement £?. However, because the bound
& < a2 Q/wygc on € is more stringent by the factor
®4/wy 5, the bound on 6, remains the same:

6Em < Aup PR

~ oy (energy density of the linear r-mode). (54)
The constraint also holds after saturation because, as we
noted in Sec. I A, w, g¢c > f, implying that the equilib-
rium displacement is within about a factor of 2 of the
displacement at saturation. We conclude that, for small
saturation amplitudes (ag, < 107*), magnetic field windup
from differential rotation is too small to produce magnetic
fields that can damp or significantly alter the unstable
r-mode.

IV. EQUILIBRIUM AND PERTURBATION
EQUATIONS

We work in the approximation of Newtonian MHD with
the star described by a perfect fluid with infinite conduc-
tivity. The version of the Euler equation that we use,
Eq. (61), includes fsg, the post-Newtonian gravitational
radiation-reaction force (per unit mass). This force plays a
central role in the nonlinear evolution of the r-modes that is
the primary focus of our paper. Because the old neutron
stars we consider have spin-down times much longer than
the gravitational radiation-reaction time scale of an r-mode
(and may also be balanced by accretion), we neglect
radiation reaction associated with the magnetic field.

We denote by Q :={p,v, p,®,B,E} the collection of
fields that determine the state of the fluid. Here p is the
mass density, v' is the fluid velocity, p is the pressure, @ is
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the gravitational potential, and E and B are the electric and
magnetic fields. For a barotropic equation of state,
p = p(p), the specific enthalpy & of the fluid is

h= 92 (55)
0o P
and we define a potential U by
U=h+o, (56)
where @ satisfies the Poisson equation
V20 = 4zp. (57)

The following equations govern the evolution of the fluid
and its electromagnetic field. With the flat 3-metric g;; and
its determinant g, conservation of mass (the continuity
equation) has the equivalent forms

(0 +£)(pv9) =0=0p+ V- (pv). (58)

where we use the relation ﬁ;ﬁv\/g = V - v. The vanishing

of the electric field in a comoving frame is given by

E+vxB=0, (59)

(0,+£,)Byg) =0=0B-Vx(vxB), (60)
and by Eq. (23) for the Lorentz force per unit mass.
Recalling that f;p is the radiation-reaction force per unit
mass associated with gravitational radiation, we write the
MHD-Euler equation in the form
oy+v-VW+VU-=f, =fsr-

The radiation-reaction force per unit mass is given by
[14,37,38]

far=3 3 C

(61)

f+1Nf {V(rfyfm) d2f+11fm

7 027 Ve o dettt
_ 2rngm d2f+2Sfm B 2y X V(,,fyfm) d2f+lst’m
/f—}— 1 dt2f+2 \/?Z dt2f+1 ’
(62)

where 0(Z) denotes the real part of the complex quantity Z.
The quantities /°" and S are the complex mass and
current multiple moments of the fluid source (cf. Eqs. 5.18
(a)-5.18(b) in Ref. [39]] defined by,

Ne £ystm 3
=—= [ pr'Y*""dx, (63)
x/?/
2N
SOm = ffl priv - Yimdx, (64)
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where N, is a constant

16z

B (£ +2)(f+1)
Ne= 27 +1)!!

- (65)

The functions Y“" are the standard spherical harmonics,
while the Y4" are the magnetic-type vector harmonics
defined by

Vylm
ng = L’ (66)
NG,
with  normalization [ |Y?"[*dcos@dp =1  and

J1Y4"|*d cos 0d¢p = 1. In Cartesian coordinates, r is given
by r = (x,y,2).

A. Equilibrium equations
We consider a uniformly rotating, axisymmetric equi-
librium star with angular velocity Q. Because the magnetic
field is not in general aligned with the axis of symmetry, the
equilibrium is stationary only in a rotating frame, satisfying

(0 +£,)0 =0, (67)

where

v=2CQgp, (68)
where ¢ is the generator of rotations about the z axis. In
Cartesian coordinates, ¢ = (—y, x,0), implying

¢ : ¢ = wZ’ (69)
where w is the distance from the rotation axis.

We consider constant-mass sequences of stellar models,
ie.,, models whose exact mass perturbations, oM =
M(a) — M(a = 0) vanish identically for all values of a.
The integrals of the nth-order density perturbations there-
fore vanish identically for these models:

B ld”M(a)
n! da"

0 (70)

= / s"Wp\/gd*x.

a=0

From Eq. (61) with fsr = 0, the Euler equation gov-
erning the equilibrium is

1 1 .

mp
where we have used the relation (9, + £,)v; = 0.

B. Eulerian and Lagrangian perturbations

We denote by Q(a, t, x) a one-parameter family of stellar
models. For each value of the parameter o, Q(a,1,x)

PHYSICAL REVIEW D 96, 124008 (2017)

satisfies the full nonlinear time-dependent Eqs. (57)—
(61). The amplitude «a is time independent and can be
identified with the initial amplitude a(0) when we describe
a growing mode by a time-dependent a(7).

The exact Eulerian perturbation 5Q, defined as the
difference between Q(«) and Q(0), is defined everywhere
on the intersection of the domains where Q(a) and Q(0)
are defined as

50(a,t,x) = Q(a,t,x) — Q(0,1,x) (72a)
=adMQ(t,x) + a?6P Q(t,x) + O(a?),
(72b)
where the nth-order perturbation 6 Q is
1 0"Q(a,t,x)
sMQO(t, x) 1= — 73
0= gt (1)

Although the exact Eulerian perturbation has meaning only
on the intersection of the support of the unperturbed and
perturbed fluids, 5" Q is well defined everywhere in the
interior of the unperturbed star.

Exact Lagrangian perturbations can be defined by
introducing a diffeomorphism y, that maps fluid elements
in the equilibrium star Q(0,7,x) to the corresponding
elements in the solution Q(a, ¢, x). The exact Lagrangian
change in a quantity Q is defined by,

AQ(a. 1. x) = y;Q(a. 1.x) — Q(0.1,x) (74)
=aAVQ + ?APQ + O(?), (75)
where y7, is the pullback map (see Appendix A) and
10":0(a, t,x)
AW Q(1, x) 1= - XA 1Y) 76
e )

We can write AQ in terms of a Lagrangian perturbation
vector £ in the manner

1
2
- 0(0,t,x) + O(a?).

AQ(a.1.x) = (1 e+ £§> [0(0,1,%) + 50(a. 1.x)]
(77)
With

£ = otV + 2621+ O(a?),

the first- and second-order Lagrangian perturbations are
given by [see Eq. (A20) of Appendix A 1],

(78)

ANQ(t,x) = (81 + £,))0(0, 1, x), (79a)
1
A(Z)Q(L x) = 5(2) + £§<2) + £§(1)5<1> + §£§(1) Q(O, t, x).

(79b)
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The components of the vectors £ and £2) are given in
any coordinates by

. a)(i
i _ Ha 20
¢ 0a | ,_o (80)
@i _ 1% iy e
5 = 5 06(2 i _55 ajé . (81)

The commutator
A0, +£,) = (9, + £,))A

obtained as Eq. (A34) of Appendix A, gives the perturbed
mass-conservation Eq. (58) and induction Eq. (60) in the
forms

(9 +£,,)Alp/9) = 0, (82a)

(0, +£,)A(B'/5) = 0. (82b)
where v, is the unperturbed velocity field and A is the
exact Lagrangian perturbation. These equations have first
integrals

A(p+/g) =0, (83a)
A(B'\/g) =0, (83b)
correct to all orders in a, implying
B
—=0. 84
p (84)

The first- and second-order Lagrangian perturbations of
g;j and /g are given by

AWg,; =2V €W, (85a)
A(2)gij = 2V(i§<2)j) + 5(1)kvkv(i§(1)j>
+ vié(l)kvjé(l)k + vké(l)(ivj)é:(l)k’ (85b)
1
%A“)\/EZV-E(”, (86a)

1 1 1

— A Jg=V.ED 4 —(v.ED)? 4 _g) . yVy. gD

NG V9 £ +2( £ )+2§ 3
(86b)

and the corresponding perturbations of p and p are
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A
P_ _v.g0), (87a)
P
APy 1 1
— V-2 L _(v.EO2 __g) . yy. gl)
; §2) 42 (V-EW) — JEW VY £,
(87b)
A
Po_v.em, (88a)
rp
A(2)p_ v 5(2)-1-1 +010g)/ (V. D)2
o 2\ dlogp
1
_§§(1> -VV .- ED), (88b)

where y = dlog p/dlogp is the adiabatic index.

The first- and second-order Lagrangian perturbations of
the covariant and contravariant forms of the magnetic field
are then

AW = —BiV Wi (89a)
AQ B = —BiVj§(2>f

+B %(Vﬁg(‘)f)z - %§<‘>kvkvj§<‘>f . (89b)
and
AWB; = B2V ;W) — g, Vi), (90a)
A(Z)Bi =B/ [Zv(ié:(z)j) - gijvké:(z)k}

+ B/ {g(ka <V<i§(1>j) - %9;’,’%5“”)

+ VgAY 20, 4 V80V £

=2V ) Vi gk + %g,-,-(vké(“k)z} - (90b)

Finally, the expressions for the Lagrangian changes
in the contravariant and covariant velocity are (see
Appendix A 2)

ANy = 9,6M1, (91a)
| .
APyl = 9,£@) +5E 0, M1 (91b)
implying
AWy, = 9,0, 42V ;W )0, (92a)
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APy, = 9,62, 42V ;3 0] + 9,67V, ED

1 .
+ 56,(5“”%(%) + (Vv e

+ Ve é: kvt kvj§(1>k / (92b)

C. First-order perturbation equations

We now consider perturbations of the MHD-Euler
system, at first order in the amplitude a. We use the
formalism of Friedman and Schutz [28] and its extension to
the MHD-Euler system by Glampedakis and Andersson
[40]. To write the perturbed MHD-Euler Eq. (61),

pANE, .= pA) {(a, +0/V))v; +

|
—|—@BJ(V,B]—VJBJ:| —P(S fGRl’ (93)

in terms of the Lagrangian displacement &), we use the
first-order part of Eq. (84),
Bi
AN — =0, (94)
p

and obtain for the term involving the perturbed Lorentz
force the form

1

A —
P 4p

B/(V.B; - V,B;)
1 .
1 .
= EB][vi(Bkv(kfmj))

= V(B Vi )], (95)

- V(B0

where we have used Eq. (90a) and the fact that Lie and
exterior derivatives commute.
The perturbed MHD-Euler Eq. (93) has the form

A7 EWT 4 B;;0,EWT + CieMT = s fopi. (96)
where
Ajj = pgij, (97a)
Bij = 2pg,-j1)kvk, (97b)
Cij&l = p(v/V)2& = Vi(ypV,;&) + VipV,&l
-V, pV.& + pEV V@ + pV;sVd
1 .
+5.B [Vi(B*V &) = V;(B'V &i))
— V(B Vi gk = v, £FV B . (97c)
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Here 5(V® is the asymptotically vanishing solution to
the perturbed Poisson equation

V260 = 4nsVp = —4zV - (p€)).

For vectors & and 7' that vanish at the boundary of the star,
the operators A;; and C;; are self-adjoint in the sense

/ AVifCyyel — / AVEC, ), (98)

and B;; is anti-self-adjoint.
The exact perturbed gravitational radiation-reaction
force §f g is given by [14]

( 1 t’+1Nf { ( fyfm)deJrléIfm
f o = .
GR ; mz<l 327[ \/? dt2f+1

2rngm Jlf+25sfm 2Q¢ X V(rfyfm) d2f+15Sfm

- m di2+2 - \/’{z 420+
26v X V(r’fo’") drlgstm
where
SIEM = Ne SpriYmdix (100a)
Ve ’

2N
5sfm = ﬁ rf[pév + 5p(9¢ + 5‘))] : Yzfmaﬂx'

(100b)

D. Second-order axisymmetric perturbation

The second-order perturbation of the MHD-Euler
Eq. (61) has the form

APE; = (0, + £,)APv; + V,A?) (U - % 02>

1 .
—— BI(V.A®)

Here we have again used the commutation relation (A34a)
together with the commutator (also derived in Appendix A)

Bj) = AR fop;. (101)

Ad = dA, (102)

where d is the exterior derivative operator.

Equations (87a)—(90b) display the second-order pertur-
bation of each variable as a sum of two parts. One part is
linear in the second-order Lagrangian displacement &2)!
while the second part is quadratic in the first-order
displacement &, Each quantity is a sum of these two
types of terms:

2o =al)0+4 0. (103)
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The linear part, Al Q is the linear perturbatlon of O

associated with the displacement £?)'; that is, A]m 0 is
identical to A(VQ if one replaces 5“” by 2 This is
essentially the statement that, in the Taylor expansion of a
function F of &,

lin

F . )
F(af(l) 4 a25(2)) = F(0) + 3_51 (ag(l)f 4 a2§(2)1)
=0
1, 0°F W)
Z )J g(k 3
+2 rErEil e: ¢+ 0(a’),

a7’ and o?£2)7 have the same coefficient, namely the first
derivative of F.

It follows that the second-order perturbation of the
MHD-Euler equation is again the sum of a part linear in
the second-order Lagrangian displacement £2)7 and a part

quadratic in the first-order displacement EWI: similarly,
hn)% is the hnear perturbatlon A&, of Eq. (96), with

EW7 replaced by £2)7. Including the second-order radiation-
reaction term, the second-order Eq. (101) thus has the form

pADE, = Al.jagg(Z)/ + Bl,jalg(%/ + Cij§(2>

+ D;(eW, EV) = pAD f i, (104)

where the operators A;;, B;;, and C;; are given by
Eqgs. (97a)—(97¢) and the quadratic operator D; has the form

(a +£) éuady

1 2
+v Aquad (h—'_q)_i > _Af]u)adfmi'

(105)

p_lDl(g(l)’ 5(1 )

Here, with A(u) 4B; and A
(92b), we obtain

1
A = QKy—l
p

dvi displayed in Egs. (90b) and

qua

quad 2

dlogy
V- EMD)2
+OET) (9 g0)

— &V .yy. g(l)} , (106a)
A2 @ = 62 @ g . V5@ 4 LeW . v(ED . v
quad quad 2 ’
(106b)

1 1 ; : .
B gua (5 vz) =5 {0,108, + 0120,V
+20,(§VIV,E01) 4 ol (EVFV, Vg
+ vjf(l)kvk§<1>i + vif(l)kvjf(l)k)}v
(106¢)
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%adfmi = EB v] quad il (1O6d)

In Eq. (106b) 6@ and 52 @ are the potentials

uad

associated with §!)p and with 6qu>adp.

V25 = 4zsVp = —4zV,(peM)1), (107a)
V250 (@ = 4nd) p. (107b)
5gi)adp = %P[(vif(l)i)z + f(l)iviv ;W]
+ VIV Ve 4 é Vi(EDIVp),
(107c¢)

where the last expression is obtained from Egs. (79b) and
(872)—(87b).

We now restrict consideration to an axisymmetric back-
ground star. Because the components of &) have time
dependence cos(m¢ + wt)e’" and sin(mep + wt)e?" [see
Ref. [14] and Eqgs. (145a)—(145b)], the quadratic combina-
tion D (£, £) is a sum of terms of three kinds: terms with
angular and temporal dependence cos[2(m¢ + wt)]e?,
terms with dependence sin[2(m¢ + wt)]e?’, and terms
independent of ¢, with time dependence e?".

With the term D;(£1), 1) moved to its right side,
Eq. (104) has the form

A;;02@) + Bijo,& =AOF,,

@i + ¢, (108)

where

A(Z)Fi = /)A(z)fGRi - Di(f(l), 5(1))-

Recalling that we use brackets (-) to denote the axisym-
metric part of a perturbation, we can write the axisymmetric
part of the second-order MHD-Euler equation as

(109)

(pAE;) = A, 52<§( )i >+Bijat<§(2)

= <A(2)Fi>'

i)+ Ciyle)
(110)

Axisymmetry of the background star implies axisymmetry
of the operators A;;, B;;, and C;;, allowing us to move the
operators outside the brackets. Acting on axisymmetric
perturbations, the operator B;; has the form

BU = —2p€iijk, (111)
where Q! is the angular velocity vector. With the first-order
perturbation £ known, Eq. (110) is the equation for an

axisymmetric linear perturbation of the star with a forcing
term
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<A(2)Fi> = p<A<2)fGRi> - <Di(5(l>’ 5<1))>- (1 12)

At second order in the perturbation, the star loses angular
momentum to gravitational waves. We can decompose the
second-order axisymmetric perturbation into two parts:
one representing the spin down of the star, and the other
conserving total angular momentum. The first part, 5<L?I)€Q’
is a perturbation that adds uniform rotation 5%9 <0 to
the star and has total (negative) angular momentum equal to

the angular momentum lost in gravitational waves; the
second part, 5532,)6 0, is the remaining, angular-momentum-
conserving part of the second-order axisymmetric pertur-
bation that describes the addition of differential rotation
with zero total angular momentum. We write the corre-
sponding decomposition of the Lagrangian displacement in
the form

(ED7) = EGF + k- (113)
Finally, we can decompose the effective driving force
(AP F,) into an angular-momentum-reducing part that
drives the change in uniform rotation and an angular-
momentum-conserving part,

(AQF) = AGYF; + AGLF, (114)

where

2)

AYF; = (Ayy02 + Byjo, + CEN.  (115)

E. Symplectic product and the growth of driven modes

We need an equation for the growth of the displacement
E@) with a driving force and a background magnetic field.
The simplicity of the toy model comes from fact that
Eq. (32) governing the homogeneous solutions has the
form

02 + CEP =0, (116)
where the operator C is self-adjoint. This allows one to
write the solution to the inhomogeneous equation as a sum
[Eq. (38)] of orthogonal eigenfunctions of the operator C;
and in the exponentially growing solution, the coefficient of
each eigenfunction of C is proportional to the inner product
of f with the normalized eigenfunction. In contrast, the
dynamical Eq. (108) governing the r-mode includes a first-
time derivative term with an operator B’ j that is anti-self-
adjoint and does not commute with the self-adjoint operator
C';. If that first-time derivative were not present, solutions
to the homogeneous equation could again be written as a
superposition of eigenfunctions of C'; and eigenfunctions
&and &7 with distinct eigenvalues would be orthogonal
with respect to the inner product [dVEAR = [dVpéin'.
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The presence of the first-time derivative term means that
solutions to the homogeneous equation,
are not orthogonal in this sense. There is nevertheless a
conserved symplectic product with respect to which modes
of the homogeneous equation with distinct eigenvalues are
orthogonal. We summarize the results here and relegate to
Appendix B a detailed derivation based on Refs. [27,28]
and a summary by Schenk et al. [41].

Following Friedman and Schutz [28], we define the
symplectic product of two complex solutions to the
homogeneous equation Ad?¢ + Bo,E + CE =0 by

W(E &) = (&7) — (n]¢), (118)
where 7; is the momentum conjugate to &,
1 A
7 = po;é; +§Bij§]’ (119)
and (|) is the usual inner product
o) = [ aven. (120)

We use boldface angle brackets to distinguish the symbol
for inner product from the ordinary typeface brackets in the
expression (Q) for the axisymmetric part of Q.

We will restrict consideration to perturbations that
conserve total angular momentum, mass and entropy; in
particular, we use only the part (Ag}eF ;) of the driving force
in the decomposition (114) because the addition of uniform
rotation does not enhance the magnetic field. We also
assume that the linear axisymmetric modes of the axisym-
metric background star with a magnetic field are stable,
discrete and nondegenerate. Because the operators A, B and
C are real, if ¢ satisfies the homogeneous equation so does
&*. For a stable system with a complete set of discrete
normal modes, the modes therefore come in pairs

‘gn(t’ X) - gn(x)eiw”t7 $n = Z::(x)e—iw,,t’ (121)
and we will write frequencies as +w,, with w, > 0.
Because we are assuming a stable Newtonian system,
the frequencies are real. The fact that W is conserved
implies that modes with different frequencies are symplec-
tically orthogonal:
W(,, &) =0, ®, # 0,, W(&LE,) =0. (122)

The proof is immediate: if W(&,, ,/) does not vanish, it
has time dependence ¢!(®~ =), contradicting dW/dt = 0.

With our assumption that the spectrum has no continu-
ous part, work by Dyson and Schutz [27], using symplectic
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orthogonality, showed that the modes are complete. For a
driving term of the form

Fi(t,x) = Fi(x)e", (123)
their work implies [see Eq. (B25) of Appendix B] that the
exponentially growing solution to the inhomogeneous
equation,

(A;j0} 4+ B;jo, + Cyj)& = Fi(1,x), (124)

is
, . 1 A

where the modes %n are normalized by

<2n‘pgn> =1, (126)

and

Q _ [dVpE™E
5, @ JaVpETE

2 _Sn 127
@y [dVplE,|? (127)

K,=1-—

We have adopted the convention w, > 0; taking the real
part of the bracketed expression in Eq. (125) accounts for
modes with frequency —w,. After saturation, the driving
force is constant, and the displacement oscillates about a
constant equilibrium value given by Eq. (125) with =0
[Eq. (B26) of Appendix B],

Zﬂt [

where F is the value of the driving force at saturation.
Note that the canonical energy of the nth normalized
mode is [28]

2 |F) fs,,] (128)

}’l

1 PO
Ecn = E W(atgn’ ‘:&n)

1 PN n A
= _Eiwnw(gnv gn) = Kn<§n|p§n>' (129)
If the unperturbed star is strictly stable against axisym-
metric perturbations (having neither unstable nor
zero-frequency axisymmetric perturbations that conserve
angular momentum, baryon mass, and entropy), then
E., > 0, implying «, > 0.

Finally, we break 2’,1 into its real and imaginary parts,

& =Er iy,

to elucidate the dependence of different contributions to the
sum on f, ®,, and Q. A short calculation, beginning with the
right side of Eq. (125) gives

(130)
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. 1
&= ZW [<§nR|F>5nR + (&l F)E

2p

2 () - <%,,R|F>$:;,>] . (131)

n

After saturation, Eq. (128) gives the equilibrium value

. 1
=2

n

[<§nR|F>$sz + <%n1|F>3::21]- (132)

V. GROWTH OF DIFFERENTIAL ROTATION
AND MAGNETIC FIELD WINDUP

To estimate the growth of the differential rotation of an
unstable r-mode, we use Eq. (131) to write the solution
(E2)9) to Eq. (110) at saturation in the form,

1
Z,;Kn(4ﬂ2 + 03?)
x [<EHR|<A<2>F>>2‘,€R n
2ﬂ

Eul(ADF))E],

(<§an< JF)E,

- Cul(ADFNER) [s (133)

after saturation, we use Eq. (132) to write the equilibrium
value of (£®?) in the form
IF)EN]. (134)

3 el (A2 FE + Bl

We estimate the value of the inner product (£,|A?)F) for
modes &, whose B = 0 limits are zero-frequency axisym-
metric perturbations associated with differential rotation.
Primary differences between Eq. (133) for the Lagrangian
perturbation of the stellar model and Eq. (38) for the toy
model are 1) the effective driving force A F includes the
nonlinear terms D; as well as the radiation-reaction force,
and 2) the coefficient of the mode expression for the
Lagrangian displacement has the factor 1/x,,.

Although Eq. (133) involves a sum over all axisymmetric
modes, modes with wavelengths much smaller than R
should give negligible contributions, because the character-
istic length of p(A)F) is of order R for the £ = m =2
r-mode. (For smooth vector fields f and g, the inner product
(g|f) falls off exponentially as the wavelength of the
Fourier components of g approach zero.) Of the axisym-
metric modes with wavelengths of order R, the Alfvén
modes have the lowest frequencies, with magnitudes for
normal and superconducting interiors given by Egs. (42)
and (154). In particular, normal-fluid g¢g-modes have
frequencies of order the Brunt-Viisild frequency of about
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150 Hz (see, e.g., Refs. [42,43]), and a class of superfluid
g-modes has a higher frequency [44,45]; inertial modes
have frequencies of order €2, and the frequencies of p- and
f-modes are much higher. Because the coefficient of the
mode sum is proportional to @~ for @ > f3, we assume that
the estimate is dominated by modes with frequencies of
order wy.

We will find that the inner products of these axisym-
metric Alfvén-frequency modes with the two terms,
pA@) fop and —D;(EW D)) that comprise AF; are of
order

<§n|ﬂ|A(2>fGR|>§f Nﬁgezﬁta <§nID>%§i’ ~ COAgezﬂt- (135)

As in the toy model, we set an upper limit on the maximum
angular displacement by adopting a driving force whose
growth stops instantaneously at ¢ = 7. Setting # = 0 and
t =ty in Eq. (135) gives the equilibrium values reached
after saturation.

The estimates (135) then imply (for f,wy < Q) a
maximum value of the angular displacement at saturation
given by

) max(wy, f)Q

fg)at = agatg(zw ~ Qgat 4,62 + wi (136)
and a maximum value after saturation
b max(wy, )
hax ~%M- (137)
A

As in the toy model, a larger post-saturation value of the
displacement that arises when w, < f is mitigated by a
larger critical magnetic field needed to alter the linear
r-mode; that is, after saturation, the critical magnetic field is
given by Eq. (50) instead of Eq. (12).

We first outline the main ingredients that enter the
estimates (136) and (137), and then show how they are
obtained. We assume the linear r-mode grows exponen-
tially until a time fy and subsequently has constant
amplitude.

(1) Prior to and at saturation, the radiation-reaction force

per unit mass, A(z)fGRi is of order

8O gl ~ pORE. (138)

This immediately gives the first estimate in
Eq. (135).

(2) With no magnetic field the quadratic contribution
D, (M, ED ) from the linear Newtonian r-mode
& has no ¢ component. With a generic magnetic
field, (D) is small compared to (D) and (D.):
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P D) ~ p [(D.)] ~ Q2ReX,
p~I(D;)| ~ max(w?, fQ)Re i

(139)

(3) For the first-order axisymmetric modes &, associated
with differential rotation, the part of &}, orthogonal to

¢' is small compared to &7

[53}

.
&l ~ g 16l (140)
This comes from the fact that, with no magnetic
field, a perturbation associated with adding differ-
ential rotation has the form A(Vy! = 9,£1)7, along
¢'; Eq. (140) estimates the nonzero values of the
components of & orthogonal to ¢ for a magnetic field
with w, < Q.
(4) A consequence of the relations (140) is that the ratio
of integrals that appears in the definition (127) of k,,
has an upper bound of order

| JdVpET'E| _wa
[avple,r — @

and this in turn gives an upper bound of order unity
on K,

k| < 1. (141)

The estimates (139) and (140) imply that the quantity

(2,ID)(£7) has an upper bound of order w,Q, giving the
second estimate in Eq. (135). Finally, using the estimate
(141) for «,, we obtain our main result, Eq. (136).

To obtain the estimates (138) and (139) for the two
contributions to the effective driving force AQGF =
|A®F|, we will use the slow-rotation forms of the
radiation-reaction force and the first-order Lagrangian
displacement. Corrections are of order Q/Q,, where Q; =

VM /R*. We use the slow-rotation forms not because the
corrections are negligible—for nascent stars with angular
velocities near the Keplerian (mass-shedding) limit Qg,
they could change the quantities we consider by factors of
order unity—but because these corrections do not alter our
order-of-magnitude estimates. We also neglect corrections
to the linear r-mode and radiation-reaction force due to the
background magnetic field; here the corrections are neg-
ligible for fields weaker than 10'#~10'5 G [19,40,46-52].

We consider first the second-order radiation-reaction
force, (A@)fL.). Because the radiation-reaction force
vanishes for the background star, Eq. (79b) gives as its
second-order Lagrangian change

A fp =89 flp + £ fizp. (142)
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For the # = m angular harmonic, the axisymmetric part of
8@ fi. is given by [see Eq. (112) of Paper I]

(€ +1)?

(2) £i
S fig) = —
O flar) = =

e C?) 2f_2e2ﬂf¢i, (143)

at leading order in the star’s angular velocity. The first-
order radiation-reaction force &V)fL, appearing in
Eq. (142) has the form

) fiog = P50 + 8 fip. (144)
where (1), 6$ )fGR> = 0 [see Eq. (86) of Paper I]. Because
of this orthogonality, 5" v*, determines the growth rate of

the linear mode &V,
At leading order in Q, 6v" and & are orthogonal to 7, and

their components along unit vectors & and ¢ are

W = 50 cos(£p + wt)el

¢
= —-QR (%) sin”~'0 cos(£g + wt) e, (145a)
Wyt = 52 sin(£¢p + wi) e
¢
= QR (%) sin”~'@ cos @ sin(Z¢ + wt)ef', (145b)
go = 2 sin(Z¢p + wt)el!
Q (r\? . ..
=——R(~— | sin”'9sin(¢p + wt)e”, (146a)
o, \R
b — F cos(Z¢ + wt)e
Qo (r\ s 3
=——R|( =) sin®20cosOcos(Zp + wt)e’,
w, \R
(146b)
where, to leading order in Q, w = —%Q and w, =

%Q is the frequency in a rotating frame. From

Eqs. (145a)—(146b), the vectors &1/ and 61 v' are of order

W) ~ Ret, sWv ~ QRe. (147)

The divergence V - 5(1) vanishes at lowest order in €, and is
nonzero only at order Q> [53], with

2
v.ED L2
0

(148)

where
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GM v
Q) = —N_S’
°= VR TR

where v, is an average speed of sound in the star.

Prior to saturation, from Egs. (143) and (144), 62 fi and
8 £ are of order fQRe*" and PQRe”, respectively. Then
Eq. (147) implies the term £,1)5(")f g is of order

(149)

£ 8Uf G| ~ PRV,

and we obtain the estimate (138), |A@)f x| ~ PQRe?".

We turn next to Eq. (139) for (D;(£11), &), where £()
is the Lagrangian displacement of the first-order unstable r-
mode. To estimate (D;), we use Egs. (147) and (148),
together with the estimate VQ ~ Q/R. From Eq. (148), we
have

ADp Alp Q2 )
e

~

(150)
P p 9

Equation (105) gives (D; (&1, &1)) as a sum of three terms
which we consider in order. The angle average removes
both the ¢ dependence and the harmonic dependence on f,
leaving only the dependence e¢*'. We then have

|(af + £v)<A(2)Ui>quad| = 2ﬁ| <A(2)vi>quad| ~ ﬂQRezﬂt'
(151)

The ¢ component of the second term on the right of
Eq. (105) vanishes by axisymmetry: d, (U — 1 v?) = 0; the
components orthogonal to ¢’ have magnitudes of order

V(AR U = V(A (7 + ®))| ~ Q2Re",

quad
(152a)
a1
‘V<Af}u)ad 3 v2> ‘ ~ Q2Re¥". (152b)
The last, magnetic term of Eq. (105) is of order
1 iV (AP 2 p 2t
%B ( [i<AquadBj]>) NO)ARe . (153)

From Eq. (5), the Alfvén frequency for a type II super-
conductor has the form

1 [zBoH, BoH,
Wrse = Bo0Te — 0.09 R[22t (154)
p P46

This and Eq. (3) for a normal fluid each imply w, < Q
unless By > 10'7 G. Then for both nascent neutron stars
and old accreting neutron stars, rotating fast enough to be
unstable to an r-mode, we have w, < , and we recover
Eq. (139),
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P D, (ED, EON | ~ p= 1 [(D,(ED), ED)Y| ~ Q2R
(155a)
p! |<D$(§<1>, 5(1))>| ~ max(wﬁ’ﬁQ)ReZﬂt. (155b)

Finally, we justify the estimate (140). That is, we show
that &7 and & are of order (w, /Q)&? for an axisymmetric
solution & to the perturbed MHD-Euler equation whose
B = 0 limit is a perturbation that describes a change in the
rotation law—the addition of differential rotation to a
uniformly rotating star. Like the vanishing of D, the
estimate is related to the form of the Euler equation for
axisymmetric perturbations. Writing &; for a general fluid
with no magnetic field in the form

Vip 1 >
+= +V,-<c1> 21)), (156)

& = (0, +£)v;

we have

%4’ = (dt —I— £V)1J¢, (157)
with &, = 0 expressing angular momentum conservation
of each fluid ring. The commutator in Eq. (A34a) implies
A&, = 0,Avy. (158)
The fact that only the time-derivative term survives
means, for a first-order axisymmetric perturbation
described by a Lagrangian displacement &(1)
P AVE; = ¢'o,AVv; = ¢ (0761, + 2¢, 9,6 "),
(159)

implying that the operator C;; has no component along ¢'.
When a background magnenc field is present, C;; acquires
anonzero ¢ component given by the last line on the right of
Eq. (97¢), with magnitude

B2

piCy eI ~ R w’Re. (160)

The corresponding magnitude of (£(7) can be seen
from the (;1\5 component of the second-order Newtonian
Euler equation:

0H(EP ) +2Q0, (D7) + p7' Cy, (€2

= —p~ Dy (g1, EM)) (161)
The first-order axisymmetric modes satisfy
07E, +2Q0,E7 + p7'Cy 8, = 0. (162)
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We approximate the frequencies of the dominant modes by
Wy, Writing 0,&, ~ wp&,, 02&, ~ @i &,, and use Eq. (160) to
write p~' Cy.& ~ w3&,. We then have

o (@)
e~ ()

Finally, in the expression (127) for «,,,

or-o2)

the ratio of integrals is of order w,/Q, giving a bound
on k, of order unity. This completes our justification of
the estimates (139), (140), and (141); and the argument
following Eq. (141) then gives our main result, Eq. (136)
for the angular displacement of a fluid element.

(163)

L JavpErE
JdvplE, >’

A. Normal interior

We turn now to the implications of this estimate. We first
find bounds on magnetic field growth for a normal interior
and then obtain equivalent bounds for an interior that is a
type II superconductor. We obtain as follows a bound on the
maximum growth of 6B similar to Eq. (53) of the toy
model. In Eq. (136),

max (@, ff) ~ max Wy p
45 + 42 + @ AP + k]

By inspection and, using the inequality (44),

’ 4ﬁ2+w Wy’
we have

max(wy,f) 1

4 + 0k wy

Then the angular displacement and corresponding change
in the magnetic field have upper limits

Q QR
<§sal> 9at a)_A <a %atB_O - (164)
) 2 P
o8) s om 2 (165)
with the small numerical values
< sat> <0. 4a—4f500R6Bg /)14 6>
<6B?at> <4 x10% 4f500R6P1z/16 G, (166)

Recalling Eq. (12) for the critical magnetic field and using
Eq. (165), we obtain our main inequality,
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(6BL) _
, 167
<5B>Cm ~ asal ( )
or, equivalently,
d&,,/dt
T <52 168
dgmode/ dt™ i ( )

When ag, ~ O(1), as assumed in the initial investiga-
tions of the instability [20] and in Refs. [9-11], then

(5BL,) ~ (5B)» and the magnetic field at saturation is
similar to the critical field needed to damp or substantially
alter the linear r-mode. However, for more realistic values
of the saturation amplitude, and even for an unexpectedly
large saturation amplitude, g, ~ 1073, the change in the
magnetic field at saturation is 3 orders of magnitude below
the critical field. R

After nonlinear saturation, the constraint on (5B?)
corresponding to the limit (137) on the angular displace-
ment is

Q/a}A’ Q7)) >ﬁ’

sBY.) < o2.B
) < o 07

(169)

With the critical magnetic field now given by Eq. (50),

Ay -1/2
(9B)cic ~ @RV pf [0, 2 375 1 PQRYp B3 2,

(170)
we have
(6B%) o
< — f >
OBy~ g TP
< 2.4 x 105a_yf YR 2ol BY?, (171a)
5B
< max> S Tsat i for Wy < :B
<5B>crit Tty
< 1.3x 10~ a4l Ry 1By 2. (171b)

The second case (w4 < ) is Eq. (51) of the toy model.
For w, > S, the present bound differs from that of the toy
model because of the contribution to the effective driving
force from the quadratic D term, but not by enough to alter
our conclusion.

In particular, after saturation, the oscillation may allow

tfg,)f to grow to about twice its equilibrium value, with a
smaller value for a more gradual approach to saturation.
Even with ag, ~ 1073, the initial magnetic field would need
to be well below 100 G or above 10'® G before magnetic
field windup could significantly alter the linear r-mode.
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B. Superconducting interior

The r-mode instability has been studied most in the
context of old neutron stars spun up by accretion.
The interior of these stars is likely to be a type II super-
conductor, and we now turn to the corresponding limits on
magnetic-field windup for such stars.

For a superconducting interior, the total energy of the
magnetic field is given by

1
Em,SC = g(pSCHcff’ (172)

where ¢ is the average length of a flux tube, and @ is the
total magnetic flux. Differential rotation stretches the flux
tubes but leaves the flux in each tube and the number of
tubes unchanged. Then ¢y is constant, and the change in
energy E,, sc is determined by the change in flux tube
length Z;. For a tube deformed by a small angular
displacement (£7), the change in length at quadratic order
in &% is of order

o~ E(E0) (173)

With 7, ~ R, the stretching rate at quadratic order is then

d¢; d(e?)

LRSS apriety. (174)
We define a field B, for which the total flux is
@sc = TR’B,. (175)
The total magnetic energy is then
E,sc= %BOchffRz, (176)

which is larger than its value for a normal plasma by a
factor of order H,./ B, and the corresponding growth rate of
magnetic energy density is

dgm.SC

1

— BH By(&7)?, 177
2SC S BH By (&) (177)
for a superconducting core of approximate radius R. A
detailed calculation by Rezzolla et al. [9-11] for an initial
dipole poloidal magnetic field B, gives the same relation

with a somewhat smaller numerical coefficient,

dgm,SC

1
~B—BoH . (&%)%. 178
2SC i BoH(E) (178)
We define an average perturbed magnetic field, (5Bg¢),
as a volume average for which (6Bg¢)?/87 := 6€,,. The

critical magnetic field for which the growth rate of
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magnetic energy and of the linear r-mode are equal is then
again given by Eq. (12).

To obtain an approximate bound on d€,,/dt and (5B¢),
we first write Eq. (178) in the form

dgm,SC

1
T~ Peg-p@isc(RED)). (179)

The bound on (£%) is given by Eq. (164) with w, replaced

by w4 sc,
P
<atQR, | ——, 180
Hsa3elty | 7BoH, (180)

with the small numerical value

<§Z)at> 5 agat
Wp sC

<6 x 1042 Pias 181
(&) < a4 f 500 BoH, 11 (181)
We then have

d€,sc _ 1

i < @agatﬂPQZRz' (182)

Recognizing that the right side is proportional to the
energy of the linear r-mode, as in Eq. (11), we obtain
the inequalities

<5Bsat,SC> 1
< Asats
(0Bsc)erie ~ /607

We are not entitled to claim bounds this stringent,
however, because in deriving the bound (&%) < aZ,Q/
w4 sc, we used the rough approximation w, ~ w4 sc,
while the coefficient 1/60x in the expression for d&,,/dt
is consistent with the somewhat smaller frequency of
long-wavelength Alfvén modes. What our estimates show
are then the approximate bounds previewed in Sec. II,

(0Bsc)sat d€,sc/dt _ »
<5BSC>crit dgmode/dt ~ o

After saturation, because wjgc > f, the maximum
displacement and magnetic field are within a factor of
about 2 of their values at saturation.

d&,, sc/dt I,
; S Asat-
dE oge/dt ~ 607

(183)

< asat ’ (1 84)

C. Caveats: Continuous spectrum, zero-frequency
modes, and MRI instability

The claim that magnetic field windup cannot damp or
significantly alter the first-order -mode comes with some
caveats. The estimates of this section rely on two
principal assumptions: that linear axisymmetric perturba-
tions of the background star can be written in terms of a
discrete nondegenerate spectrum, and that the background
star has no unstable axisymmetric modes—or at least
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no unstable axisymmetric modes that wind up the
magnetic field.

It may be that neither assumption is correct: there is no
proof that discrete modes are complete for uniformly
rotating stars, and, once differential rotation is established,
the star is likely to encounter a magnetorotational insta-
bility (MRI). We briefly discuss the implications of
relaxing the assumptions, beginning with a possible con-
tinuous part of the spectrum of linear modes.

Because the effective driving force A?F is a quadratic
function of the linear r-mode, its value is unrelated to
assumptions about the spectrum of linear axisymmetric
perturbations. With a continuous spectrum, the estimates
(138) and (139) of its two parts are unchanged, and AQF
retains its form, with magnitude

APDFy ~max(w3, Q)R (185)
Were we able to replace a sum over discrete modes by an
integral over a continuous spectrum, we could regain our
estimates for £/, We have no formal justification for this,
because the time evolution of the system is described by an
operator that is not self-adjoint. Simply discretizing the
spatial operators, however, gives a system whose modes
are discrete and for which the estimates hold. Because the
estimates are independent of the discretization, they should
hold in the continuum limit.

The assumption of a stable system is in question once
differential rotation is established by a growing r-mode.
That is, there appears to be an MRI instability when the
magnetic field is smaller than about 10" G [54,55] and the
drift angular velocity 0Qg;; satisfies

d(6QG 1)

dw <0,

(186)

in some region of the star. The instability is present only
for perturbations that are not restored by negative buoy-
ancy or by pressure. Buoyancy is governed by the Brunt-
Viisila frequency, which, for a neutron star, is of order
50-150 Hz (see, e.g., Refs. [42,43]), much larger than
RdQ/dw ~ a(t)*>Q. In the Balbus-Hawley analysis [55],
this removes the instability for most modes, but leaves at
least a set of unstable perturbations whose wave vector k
is quasiradial, along the Brunt-Viisédld vector N, and
there may also be modes with zero or near zero
frequency. Because MRI-unstable perturbations cannot
acquire more energy than is present in the small available
differential rotation, we suspect that the presence of
MRI-unstable or marginally unstable perturbations will
not substantially alter our analysis. We should point out,
however, that after saturation, the constant effective
radiation-reaction force A)F¢ will drive the growth of
any zero-frequency modes.
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VI. CONCLUSIONS

Almost 20 years ago, r-mode oscillations in rotating
neutron stars were shown to be unstable to the emission of
gravitational waves [1,2]. The impact of this finding on
newly born neutron stars and in old neutron stars in X-ray
binaries was soon discussed in a long list of works starting
with Ref. [20]. Among the many features of the nonlinear
development of the stability, the development of differential
rotation was pointed out early on, heuristically [15] and via
perturbation theory [9], as was the amplification of strong
magnetic fields and the possibility that this growth sup-
presses the instability [10,11].

Building on a more realistic estimate of the saturation
amplitude of the instability [5,6] and on a more rigorous
mathematical description of the development of differential
rotation in unstable stars [14], we have here reconsidered the
impact of differential rotation and magnetic field amplifi-
cation on the growth of unstable r-modes. The instability
may be present in nascent neutron stars and in old stars in
x-ray binaries; in each case, nonlinear coupling to other
modes limits the 7-mode amplitude to a saturation amplitude
ag < 107*. And in each case we find that the maximum
enhancement of the average magnetic field is smaller by the
factor g, than the critical field needed to damp or
significantly alter the r-mode. We have obtained this result
following two different routes: first, using a simplified but
exact toy model where the star is treated as an incompress-
ible and homogeneous cylinder in the ideal-MHD limit;
second, using a formalism governing the equilibrium and
first- and second-order perturbations of a rotating star with a
background magnetic field and radiation reaction.

In old neutron stars whose interior is a type Il super-
conductor, we find that magnetic-field growth stops soon
after the mode reaches its saturation amplitude. In nascent
neutron stars, before the interior has cooled below the
superconducting transition temperature, continued mag-
netic-field growth can follow nonlinear saturation. If the
saturation amplitude is unexpectedly large, with ag, ~ 1073,
an initial small magnetic field of about 10® G could be
amplified to 10!" G, before the remaining secular drift of a
fluid element (that winds up the magnetic field) is restricted
to less than a radian. Although still too small to damp the
growth of the linear r-mode, this might be a contribution to
magnetic-field generation in nascent stars.

Although mathematically robust, our findings rest on the
assumptions noted at the end of the last section. In
particular, we assume that there are no marginally unstable
perturbations, and this may not hold when differential
rotation leads to a magnetorotational instability.
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APPENDIX A: LAGRANGIAN PERTURBATIONS

At first order in a the Lagrangian displacement vector
& = afV can be viewed in two ways. & is a connecting
vector from the position x of a fluid element in the
unperturbed fluid to its position y,(x) in the perturbed
fluid; and €V is the vector field tangent to the trajectories
a = y4(x) of the family of diffeomorphisms y,. At higher
order the two viewpoints diverge and we have chosen the
second approach, defining a Lagrangian displacement that
depends only on the family of diffeomorphisms, not on the
metric of flat space or on a choice of coordinates. The
second-order formalism using the first approach was
developed in Ref. [28].

1. First- and second-order Lagrangian perturbations

We derive here relations used in Sec. IV B to obtain
first- and second-order Lagrangian perturbations, defined
by Eq. (75).

Recall that the pullback map y* associated with a
diffeomorphism y is defined on scalars f by

X f (1, x) = f (2.2, x]).

On covariant and contravariant vectors w; and w' its action
is given in any coordinate system by

(A1)

xwilt.x) = oyt x[t. x]), (A2a)
xw(t.x) = 0,7 w (2. [t x]).

Acting on forms (antisymmetric covariant tensors) @, _,,
it satisfies

(A2b)

¥, dlw=0, (A3)

where d is the exterior derivative.

Given a family of diffeomorphisms y,(x) of the unper-
turbed fluid to the perturbed fluid at a fixed time ¢, we can
define a family of Lagrangian displacements &(a, x) in a
way that is analogous to defining the velocity field (¢, x)
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from the family of diffeomorphisms y, that describe the
fluid flow: in the fluid case the family of diffeomorphisms
acts on both the spatial coordinates x and the time
coordinate ¢, while in our analogous case the parameter
a plays the same role as the time coordinate in the fluid
case. In the time-dependent fluid case y, maps a fluid
element at x at a time 7 to its position y (7, x) at time 7 + 7.
The velocity field »'(z,x) is tangent to the curve

c(r) = w.(t.x),

=4 i) (Ad)

. d .
vl(t’ X) - E CI(T) =0 dr =0

More concisely, the four-dimensional diffeomorphism ¥,

Vo1 x) = (14 7.y.(1. %)), (A5)
moves the point (#,x) a parameter distance 7z along an
integral curve of the Newtonian 4-velocity
u(t,x) = (1,0'(t,x)). (A6)
We now repeat the construction for the family of
diffeomorphisms y,(x). In this case, we include the
parameter a as a coordinate and denote by (a, x) a point
in the support of the perturbed fluid: the fluid element at
(0, x) in the unperturbed fluid is at the corresponding point
(@, yq(x)) in the perturbed fluid. As initially defined, y,
maps a point x occupied by a fluid element in the
unperturbed fluid to the location y,(x) of that fluid element
in the perturbed fluid. We extend y, to a family y, of
diffeomorphisms that act on points in the perturbed fluid
by writing

)?n(aJ(a(x)) ::)(r]+a(x)' <A7)

We define the vector field &(a, x) as the tangent to the curve
c(n) = Jy(a.x),
(A8)

d . d ..
—c'(n =—yr(a,x ,

and to maintain a Lagrangian displacement € that is
proportional to a at lowest order, we write

(A9)

Again our construction has a more concise form in terms
of the four-dimensional diffeomorphism X, (the analog
of V),

X, (@.x) = (a+n.7,(a.x): (A10)
X, moves the point (a, x) a parameter distance # along an
integral curve of the vector field
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E(a.x) = (1,E(a, x)). (A11)

This is the statement that Z generates the family of
diffeomorphisms X,, and it leads to a simple expression
[Eq. (A17) below] for the Lagrangian perturbation in the
fluid variables Q at nth order in a. We begin by noting that
the relation

d d
%XZ (x) = %f(xa(x)) = (£=/)lx, () (A12)
for a scalar f, implies
dn
)| =g, (@A)

The action of an analytic family of diffeomorphisms X, on
an analytic function is then given by a convergent Taylor
series in a, namely

Xif = e=f. (A14)
In our case, we have only a smooth family of diffeo-

morphisms acting on a smooth function, and the Taylor
series at finite order in a gives the relation

1
Xof = 1+a£5+~~-+ﬁ(a£5)”+o(a”) f. (A15)

It is straightforward to check that the same relation holds
for the action of X}, on arbitrary smooth tensors.

From the definition (74) of the exact Lagrangian change
in the fluid variables Q(a, x), we have

X50(0,x) = Qa. x4(x)), (A16)
implying
g 1
__ Yy _ _ k _— ¢k n
AQ = X:0(0,x) — 0(0,x) = lea k0| +ol@).
(A17)
In particular, writing
5(1) = aa§|a:0 - é|a:0’ (Alga)
2 L £
6% =08l =0klo  (AI8D)
and &g = E|,_,, we obtain
AVQ =£:0|,
= (0 +£9)0| _, = (6" +£0)0,  (A19)
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A@Q:<%ﬁQ+%%¢Q

a=0

1
= |:£0aé + 5 (0 + £§(”)2Q:|

a=0

1 1
= (E 5,21 + £0a§ + £§<1)0a + §£§(1)> 0

a=0

1
= <5<2> + £ + £4080) + S £2 ) 0. (A20)

2 5(1)
In these last two equations, we have used the definition (73)
of 6" Q.

2. Perturbed fluid velocity
We will next find the expression for the Lagrangian
change in the fluid velocity in terms of the Lagrangian
displacement of the fluid, obtaining the form

‘ 1
Av' = 0,8 + 280 + Oa). (A21)

Expanding this result in powers of @ immediately gives

AWyl = 9,61, (A22)

APyt = 9,1 4 %%magmi. (A23)
Equation (A21) can be derived by noting that the diffeo-
morphism y maps trajectories in the unperturbed fluid to
trajectories in the perturbed fluid. Denote by 7 + ¢y (t + 7)
the path of the fluid element in the unperturbed fluid that
passes through the point x = ¢((¢) at time ¢. Then 7
Yot +7,¢0(t+ 7)) is the path of the fluid element in the
perturbed flow, and it passes through y,(z,x) at time ¢.
The perturbed velocity is then given by

. d .
(1 xat ) = LA+ et + )]
(A24)

The exact Lagrangian change in the fluid velocity is
given by

= 0 + VGOt

AV (t,x) = yivi(t, yq(t, x)) — vi(t,x), (A25)
= aj()(f;l)i|(,,la([,x))vé(t’)(a(t’ x)) = Ué(t’ x).

(A26)

In all the remaining equations, each variable is evaluated at

the point (z,x) unless the argument is explicitly shown.

Note first that, by its definition (A7), y,(a.y,(x)) =
Xn+a(x). From Eq. (A8), we then have

Fi d i d i
¢ (a’)(a(x)) = d_n)(n—&-a(x) 1o = %)(a(x)’
. d .
(1i = i
£ =L po)| (a27)
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Similarly,

d .
WZ&(X)

= ¥ 1)

a=0 a=0

d - S d
- [ 8 o0 ]|

=2£@1 4 5(1)1()]5(1)1'. (A28)
The expansion of the diffeomorphism y,,
. . . 1 .
)(tlx(x) =x'+ aaa)(la|a:0 + Eazagz)(laLz:O + 0(03), (A29)
now gives
: A
Ho=x 4842808+ 0@, (A30)
, A
2a't =X =8 42808+ O(@). (A31)

Using these expressions, we obtain

. . . o1 .
51_()(;1)1‘([%([’)()) =08 -0;¢' —&00;¢ + Eaj(étkakfl),

(A32)
and
Vh(t. 2a(t. %)) = Otk + vk,
= 0,8 +30,ENE) + )+ 1,8
ooy ro@).  (an)

2

Substituting in Eq. (A26) the expressions from Eqgs. (A32)
and (A33) and keeping terms up to quadratic order in &
yields the desired expression (A21) for Av.

3. Commutation relations

We now derive the commutation relations used in
Sec. IV D, namely3

SAt first order, Eq. (A34a) can be obtained by using the
relation

[£{j’ £v] = £[E.v]’
to write
AW, (9, + £,)] = —£,, + Lewy =£ 5,16, = 0.
This algebraic derivation can be extended to the more compli-
cated second-order commutator, but it hides the simpler con-

nection between the commutator (A34) and the commutation
relation of the diffeomorphisms, Eq. (A40).
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A0, +£,) = (0, + £,))A, (A34a)

Ad = dA, (A34b)
where the second relation is restricted to an action
on forms.

We first show that Eq. (A34a) follows from a commu-
tation relation between the diffeomorphism y, and the
diffeomorphism generating the fluid flow. It is simplest to
write the relation in terms of the corresponding four-
dimensional diffeomorphisms. Let X, be the spacetime
diffeomorphism associated with y,,

Xo(t,%) = (1. 24(1, %)), (A35)

and let

1> Cy(t) = (1. cq(1)). (A36)
be the trajectory of a fluid element in the perturbed fluid,
with Newtonian 4-velocity (1,v), where vi(t) = ¢i ().
Then

Colt) = XooCo(1). (A37)
Asin Eq. (AS5), let ¥, , be the spacetime diffeomorphism

that maps a fluid element at time ¢ in the perturbed fluid to
its position at time ¢ + 7:

W, 00C,(1) = Cu(t + 7). (A38)
Then
W qoXq0Co (1) = Cot + 1) = XgoW, 00Co (1),  (A39)
implying
¥, o, = Xo¥, . (A40)

The Lie derivative of a tensor 7 with respect to the
4-velocity (1,v) is

d
(0, +£)T =Y, T .

A41
2| (A41)

where W, is the pullback map. By Eq. (A40) the

corresponding pullbacks satisfy
XoWr, = WX (A42)

Finally, taking the derivative of this relation with respect to

7 at 7 =0, we obtain Eq. (A34a) for tensors T that are
functions of « and x:
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d
(at + £v0)AQ = ET;O(XZQa - QO)

7=0
d A\ *
= (X{I‘PT,(IQH - qu,o QO)
T =0
= A(9, +£,)0. (A43)

The second commutation relation, Eq. (A34b), is imme-
diate from the vanishing commutator of the exterior
derivative and pullback (acting on forms)

[d,xi] = 0. (A44)

APPENDIX B: SYMPLECTIC PRODUCT AND
THE GROWTH OF DRIVEN MODES

We derive here Eq. (125) for the growth of a system

satisfying an equation of the form

(A;j0} 4 B;jo, + Cyj)& = Fi(1,x). (B1)
This is essentially a summary of results due to Dyson and
Schutz [27], and are included here because their work and
the summary given by Schenk et al. [41] are more
elaborate, including in particular the Jordan chains that
arise when there are degenerate modes. The treatment
here is self-contained if one assumes that the discrete
normal modes are a complete set for arbitrary initial
data. Schutz and Dyson have a lengthy characterization
of the spectrum that implies completeness of the discrete
modes if one assumes only that the spectrum has no
continuous part.

As noted in Sec. IV E, the orthogonality of nondegen-
erate modes follows from the fact that the symplectic
product W of Eq. (118) is conserved. This is a property of
any Hamiltonian system. Here, a quick computation, using
only the self-adjointness properties of the operators, the
homogeneous equation, and the definition (119) of z;, gives
a direct check that d/dtW(&,&) = 0.

For a nonrotating star, the quantity iW(¢,, &,) is real and
is, for each mode with nonzero frequency, proportional to
the usual norm || - [, given by [|€]12 = (£[A&) = [ dVp|e[
Because the constant of proportionality involves w,,, and,
even for spherical stars, iW(&,, £,) has no definite sign, we
will use W itself to normalize &,, writing

1 = W(gn’ Eﬂ)

1 1
= <§n|Aat€n + §B§n> - <Aat€n + §B§11‘5n>

= (&:|2iw, AL, + BE,). (B2)
We now assume that the modes are nondegenerate,
w, #w,, forn#n, (B3)
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implying the orthogonality relation (122),

W(gn’ gn’) =0, Wy # @y, W(fﬁ, ‘fn) =0,
and we assume that there are no zero-frequency modes. We
adopt the convention @, > 0 and write a general solution to

the homogeneous equation in the form
E=) (Coréu+CiE)

= (Cp&e +C, Eet), (B4

where &,(z, x) = &,(x)e. The coefficients C,, are then
given by

CnJr = W(f,,, 5)’ Cn— = W( :;”5) (BS)
For a real solution, we have C,_ = C;,, .

The familiarity of an expansion in terms of orthonormal
eigenfunctions belies a subtlety of the system: complete-
ness of the modes means completeness of the pairs of initial
data

(én:t’ atfni)ltzo = (Z:n’ ii(‘)ngzn)'

That is, arbitrary initial data (&, 9,£),_ in the domain of the
operators has a spectral decomposition of the form

¢ & ) < , )
=C - C,_ - ). (B7
<at§> =0 n+<i0)n§n " _iwné:; ( )

The coefficients C,, in the expansion of £ appear to
determine the coefficients +iw,C,. in the expansion of
0,£. How is this possible, when & and 9, are each arbitrary?
The explanation is that the two sets of eigenfunctions {E”}

and {&;} are not linearly independent; thus in Eq. (B7) the
equation for & (or for 9,£) alone does not determine C,,, and
C,_. Each set {&,} and {&,} is separately a basis for the
configuration space H of the system, and using both gives a
basis {(&,. i@,&,). (&, —iw, &)} for the set Hx H of
pairs (&, 0,€). ~

This behavior—the fact that the set {£,} of vectors
associated with {w, } and the set {£:} of vectors associated
with {-w,} are each a basis for H—is clear for the
homogeneous equation of a spherical star. Here a mode
satisfies

(B6)

—w2AE, + CE, = 0. (B8)
If the eigenvalue w? is nondegenerate, then the normalized
eigenvectors associated with @, and —w,, differ only by a
constant phase; they coincide as rays in a Hilbert space. In
the more general case of a stable rotating star with a discrete

PHYSICAL REVIEW D 96, 124008 (2017)

spectrum, the fact that the sets {&,} and {&;} are each a
basis for H was shown by Dyson and Schutz.

Consider now a solution £(¢) to the inhomogeneous
Eq. (108). Completeness of the normal modes for data on
each constant-¢ hypersurface means that, at each time ¢, we
can find coefficients ¢, (¢) that satisfy

() =Tl )+ (Lo )]

(B9)

By inserting the eigenfunction expansion into this equation
and using the symplectic product W to project onto each

mode &,, we will find for ¢, (¢) the dynamical equations

C.'nJr - iwnanr = <En|F>’ (BlOa)

Ene + iwyc, = (E1]F). (B10b)

The derivation is as follows. From its definition (118), W
can be regarded as acting on pairs (¢, 0,€) and (n, d,n7) of
data at a time ¢, with

WI(E. 0,£); (n.9m)] = W(&.n)

1
= (¢l40n + 5 Bn)

~(A0E+ 3Bl (BI)

For mode data (En ia)n;fn), the relations A" = A, Bf = —B
give

WI(E,. i®,&,): (n.0m)] = (£,|Adm + iw,An + B),

(B12)
and Eq. (B9) then implies
Cup (1) = W[(&,. im,E,); (£(1). 0,6(1))]
= (&,|A0,¢ + iw,AE + BE). (B13)

Taking the time derivative of this equation and using
Eq. (108) to replace Ad?¢ by —Bo,& — CE + F, we obtain

Ens(1) = (=C&|8) + (&iliw,AdE, + F).  (BI4)
The homogeneous equation for the mode &, implies
Cén = a)%lAZ:n - iwntn’ (BIS)

whence
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<_Cén|‘§> <_wr1A£n +iw B§n|§>
Finally, from Egs. (B16) and (B14), we have
Eny (1) = i, (8,|A0E + iw, AZ + BE) + (§,|F)
= iwncz1+(t) + <%n|F>7 (B17)

where Eq. (B13) was used to obtain the last equality. The
same steps with ¢, , &, and o, replaced by c,_, &, and
—w,,, respectively, yield the corresponding equation for
¢,—(t). To summarize, the driven system is governed by the
equations

én+ - ia)nanr = <En|F>’ (Blga)

For an exponentially growing driving force F;(t,x) =
F;(x)e?", the mode amplitudes of the particular solution &

to Eq. (B1) with time dependence e?' are given by

1

(1) = €5-(0) = g G IF). (B9
and we have
Ry

To estimate the magnitude of &?) in Sec. V, it is helpful to

rewrite this expression in terms of mode functions &,
normalized by

(Ealoén) = (B21)

PHYSICAL REVIEW D 96, 124008 (2017)
We first find the symplectic norm of the mode functions &,.
From Egs. (97a), (111) and (B2), we have
= W(E,. &)
= (&:[2iw,AZ, + BE,)
= (Gul2io.pE, - 2pQ &)

—2i<a)n/de|§|2—ZQS/CIVP;CTE;%>

= 2ia)n’¢n<gzn |pén>’ (B22)

where

Q _ [dVpETE
5 @ JdVpeT e

Lon B23
@, [dVplE,|? (B2

K, =1-—
The mode functions ;3,, are then given in terms of the 2,,
of Eq. (B21) by

~ 1 N
én = mgm (B24)

and we obtain Eq. (125) for the exponentially growing
solution prior to saturation,

. 1 I
(2)i - !
o L

After saturation, the displacement oscillates about an
equilibrium position given by

@

where F' is the value of the forcing term at saturation.

&P f] (B26)
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