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At second order in perturbation theory, the unstable r-mode of a rotating star includes growing
differential rotation whose form and growth rate are determined by gravitational-radiation reaction. With no
magnetic field, the angular velocity of a fluid element grows exponentially until the mode reaches its
nonlinear saturation amplitude and remains nonzero after saturation. With a background magnetic field, the
differential rotation winds up and amplifies the field, and previous work where large mode amplitudes were
considered [L. Rezzolla, F. K. Lamb, and S. L. Shapiro, Astrophys. J. 531, L139 (2000).], suggests that the
amplification may damp out the instability. A background magnetic field, however, turns the saturated
time-independent perturbations corresponding to adding differential rotation into perturbations whose
characteristic frequencies are of order the Alfvén frequency. As found in previous studies, we argue that
magnetic-field growth is sharply limited by the saturation amplitude of an unstable mode. In contrast to
previous work, however, we show that if the amplitude is small, i.e., ≲10−4, then the limit on the magnetic-
field growth is stringent enough to prevent the loss of energy to the magnetic field from damping or
significantly altering an unstable r-mode in nascent neutron stars with normal interiors and in cold stars
whose interiors are type II superconductors. We show this result first for a toy model, and we then obtain an
analogous upper limit on magnetic-field growth using a more realistic model of a rotating neutron star. Our
analysis depends on the assumption that there are no marginally unstable perturbations, and this may not
hold when differential rotation leads to a magnetorotational instability.
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I. INTRODUCTION

Gravitational radiation drives an instability in the
r-modes of rotating relativistic stars [1,2] whose growth
time [3] may be short enough to limit the angular velocity
of old accreting neutron stars and may contribute to the
spin-down of nascent neutron stars (see Refs. [3–8] for
reviews and references). At second order in perturbation
theory, the unstable mode includes exponentially growing
differential rotation [9–14], whose form with no magnetic
field was recently obtained by Friedman, Lindblom and
Lockitch [14] (henceforth Paper I). Past work that con-
sidered r-modes saturated at large amplitudes in newly
born and highly magnetized neutron stars has suggested
that the resulting magnetic field windup could damp out
or significantly alter the instability [9–11,15–18]. The
present paper, however, which considers smaller saturation

amplitudes, finds restrictions on the growth of differential
rotation that appear stringent enough to exclude signifi-
cant damping of the instability by magnetic fields in old
neutron stars spun up by accretion and in nascent, rapidly
rotating stars. For the stable r-mode, with no radiation
reaction, the secular drift is pure gauge [19]: it can be
removed by adding a second-order time-independent
perturbation that adds differential rotation to the unper-
turbed equilibrium star.
The growth of an unstable mode is limited by nonlinear

saturation—that is, by loss of energy to other modes at a
rate equal to the growth rate of the unstable mode. In their
studies of magnetic field windup by an unstable r-mode in
nascent neutron stars, Rezzolla et al. [9–11,16] used a
saturation amplitude αsat of order 10−1 or larger, as these
were the typical values estimated to be relevant in newly
born neutron stars [20]. Subsequent work in the context of
second-order perturbation theory, however, found an ampli-
tude smaller than 10−4 [5,21–24], and recent papers argued
for still smaller limits based on observations of low-mass
x-ray binaries and millisecond pulsars [8,25]. Although a
small saturation amplitude in itself sharply limits the effect

*friedman@uwm.edu
†llindblom@ucsd.edu
‡rezzolla@itp.uni-frankfurt.de
§andr.astro@mail.ioffe.ru

PHYSICAL REVIEW D 96, 124008 (2017)

2470-0010=2017=96(12)=124008(26) 124008-1 © 2017 American Physical Society

https://doi.org/10.1086/312539
https://doi.org/10.1103/PhysRevD.96.124008
https://doi.org/10.1103/PhysRevD.96.124008
https://doi.org/10.1103/PhysRevD.96.124008
https://doi.org/10.1103/PhysRevD.96.124008


of magnetic-field windup on the r-mode instability of
young stars, Cuofano et al. [16,17] found a substantial
effect on r-mode evolution in old accreting neutron stars.
They used the formalism developed by Rezzolla et al.
[9–11]. They did not include nonlinear couplings, but the
amplitude in their simulations remained below 10−4. What
these studies did not include is the backreaction of
magnetic field windup on the second-order perturbation
associated with differential rotation, and that is the focus of
the present work.
For a stationary star with no magnetic field and no

viscosity, adding differential rotation is a time-independent
perturbation: it simply changes a uniformly rotating equi-
librium to a neighboring equilibrium with a slightly differ-
ent rotation law. Still in the absence of viscosity, but with a
background magnetic field, however, a perturbation that
adds differential rotation is a sum of axisymmetric modes
with nonzero frequencies, modes restored by the magnetic
Lorentz force—by the tension of stretched field lines. The
periods of these modes are of order the Alfvén time tA,
which is essentially the time over which a perturbation in
the magnetic field travels across a reference length scale in
a plasma, which we take here to be the radius R of the star.
At second order in perturbation theory, differential

rotation of an unstable star with negligible magnetic field
is driven by a second-order radiation-reaction force
together with quadratic terms in the perturbed magneto-
hydrodynamics (MHD)-Euler equation (terms quadratic in
the perturbed variables of the first-order r-mode). Before
saturation, the effective driving force grows exponentially
over a gravitational radiation-reaction time scale τGR,
driving an exponentially growing differential rotation.
After saturation, the driving force is constant, but the
differential rotation maintains a power-law growth in time.
With a magnetic field large enough that tA ≲ τGR

and a sufficiently small saturation amplitude, the pic-
ture is sharply altered. Now the driving force acts on a
set of axisymmetric modes with frequencies of order
ωA ¼ 2π=tA. Before saturation, the amplitudes of these
modes again grow exponentially. But after saturation, each
of the modes that comprise the differential rotation is
effectively an oscillator acted on by a constant force: its
amplitude is the sum of its amplitude at saturation and a
solution with harmonic time dependence. The combination
of the small-saturation amplitude of the first-order r-mode
and the fact that the growth of second-order differential
rotation stops shortly after saturation, leads to a stringent
constraint on differential rotation (on the secular drift of a
fluid element) and hence on magnetic-field windup. We
find that the increase in the magnetic field prior to
saturation is smaller than the value needed to damp the
unstable r-mode by a factor of order α; equivalently, the
rate at which the magnetic field’s energy drains energy
from the r-mode is smaller by a factor of order α2 than the
rate at which the radiation-reaction force drives the unstable

mode.1 When α ∼Oð1Þ, as assumed in the initial inves-
tigations of the instability [20] and in Refs. [9–11], this
difference is small, but the situation changes considerably if
α ∼ 10−4, as in the present study.
The major results of this paper can be summarized as

follows. In Sec. II we qualitatively describe the funda-
mental physical processes that contribute to this problem:
the time scales associated with the r-mode fluid oscilla-
tions, the time scales associated with magnetic field
processes, and the time scale on which gravitational
radiation drives an r-mode toward instability in neutron
stars. We summarize in Sec. II previously published
estimates of the magnetic field strength needed to suppress
the growth of the gravitational radiation-driven r-mode
instability in neutron stars. The section ends with an outline
of the argument that gives our main result.
In Sec. III, we introduce a modified version of a toy

model due to Shapiro [26] that illustrates the main features
we have just discussed. In Shapiro’s model a cylinder of
uniform-density fluid with an initial magnetic field and
initial differential rotation has a time evolution given by the
MHD-Euler system in the ideal-MHD limit (i.e., in a
plasma with infinite conductivity). We add to the system
a forcing term that mimics the second-order axisymmetric
radiation-reaction force. Although the system is nonper-
turbative, the fluid displacement and magnetic field satisfy
linear equations and can be written as a superposition of
normal modes. We find an analytic solution for its
evolution and use it to obtain a first estimate of the
maximum angular displacement and magnetic field of the
r-mode.
In Sec. IV, we develop the formalism governing the

equilibrium and first- and second-order perturbations of a
rotating star with a background magnetic field, in an ideal-
MHD framework with radiation reaction. We express
perturbations in terms of a Lagrangian displacement and
obtain the second-order MHD-Euler equation. In contrast
to the toy model, the equation involves terms with first as
well as second time derivatives, and we need a formalism
developed by Dyson and Schutz [27], based on a conserved
symplectic product [28], to express the amplitude of each
mode in terms of the effective driving force.
In Sec. V, we obtain estimates of the maximum angular

displacement of a fluid element and on the corresponding
magnetic-field amplification for the second-order unstable
r-mode itself. We assume that the perturbations are
governed by a barotropic equation of state, that axisym-
metric perturbations of the equilibrium star conserving

1In Ref. [19], Chugunov noted an analogous relation for the
stable r-mode if one assumes that the arbitrarily chosen initial
differential rotation is of order α2. Here, for the unstable r-mode,
the induced differential rotation is necessarily of order α2, but one
needs an additional constraint [Eq. (164) below] to keep the
secular exponential growth of the magnetic field below its critical
value.
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angular momentum and baryon number are strictly stable,
and that such axisymmetric perturbations can be written as
a sum of discrete, nondegenerate modes. A brief discussion
in Sec. VI summarizes our conclusions and considers
implications of relaxed assumptions.
We relegate to Appendices details of the Lagrangian

perturbation theory and of the formalism that obtains the
amplitude of fluid modes in terms of a driving force.

II. UNDERLYING MAGNITUDES

A. A problem with four time scales

Four time scales are involved in this problem. In order
of increasing size they are 1) the rotation period 2π=Ω
of the star, 2) the oscillation period Tmode ¼ 2π=ω of
an r-mode, and 3) the r-mode growth time τmode. Time
scale 4), the Alfvén time tA, may be larger or smaller than
τmode, depending on the magnitude of the initial magnetic
field and on whether the neutron star’s interior is
superconducting.
The r-mode frequency ω is proportional to the star’s

angular velocity, and for slowly rotating Newtonian stars it
has the form

ω ¼ −
ðl − 1Þðlþ 2Þ

lþ 1
Ω; ð1Þ

for a mode associated with the l ¼ m angular harmonic.
The critical rotational frequency above which the l ¼
m ¼ 2 r-mode is unstable depends sensitively on temper-
ature, but is likely to be above f ¼ Ω=ð2πÞ≃ 500 Hz, and
the corresponding periods of rotation and oscillation are
then of order 1–2 ms.
We define the Alfvén velocity vA for a normal plasma by

vA ¼
ffiffiffiffiffiffiffiffi
B2

4πρ

s
: ð2Þ

Using the radius R of the star as a characteristic wavelength
gives the corresponding Alfvén angular frequency

ωA ¼ 2πvA=R ¼ B
R

ffiffiffi
π

ρ

r
; ð3Þ

where ρ is an average rest-mass density [29–31]. In old and
accreting neutron stars, such as those in x-ray binaries, the
corresponding magnetic fields inferred from observation
are in the range 108–109 G. The interior poloidal and
toroidal fields may be higher, with the exterior poloidal
field partly suppressed by the accreting material [29–31],
and the relative size of the poloidal/toroidal magnetic-field
components remains an open question [32]. Using the
inferred values and typical sizes and densities for neutron
stars, the typical Alfveń time scale for a normal plasma is

tA ∼
R
vA

¼ 7 × 104R6B−1
9

ffiffiffiffiffiffiffiffiffi
ρ14.6

p
s; ð4Þ

where B is an average magnetic field intensity, and the
subscripts refer to Gaussian-cgs units, e.g., R6 ≔ R=
ð106 cmÞ. This time scale is considerably shorter if the
neutron star interior is a type II superconductor, in which
case the magnetic field is confined to flux tubes carrying
fields of order Hc ≳ 1015 G and the Alfvén time is of order

tA;SC ∼ R

ffiffiffiffiffiffiffiffiffi
4πρ

BHc

s
∼ 70R6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ14.6

B9Hc;15

r
s: ð5Þ

Nascent neutron stars have normal interiors and observed
magnetic fields that range from 1012 to 1015 G.
Finally, the growth time τmode of the r-mode instability is

set by a competition between gravitational radiation reac-
tion and local dissipation; the dominant contribution to
local dissipation may be shear viscosity for a normal
interior or at the core-crust interface, or mutual friction
for a dominantly superfluid interior. In the absence of
viscosity, the growth time of the instability is the gravita-
tional radiation-reaction time scale, given for an equation of
state with average polytropic index of order 0.5 by [3,33]

τGR ∼ 2 × 103f−6500
1.4 M⊙

M
R−4
6 s; ð6Þ

where, adopting 500 Hz as a fiducial rotational frequency,
we write f500 ≔ f=500 Hz. Below a critical frequency,
viscosity damps the instability. An accreting neutron star
becomes unstable when accretion spins the star just beyond
this critical frequency, with an initial near balance between
viscosity and radiation reaction. After continued spin up,
however, the radiation-reaction time can be short compared
to the viscous damping time, and the mode will then grow
with a time scale of order τGR until energy loss to other
modes becomes important [5,6]. From Eqs. (5) and (6), it
follows that old neutron stars with a dominantly super-
conducting interior have Alfvén times shorter than the
growth time of the r-mode. In contrast, stars with a
primarily normal interior have, by Eq. (4), Alfvén times
comparable to or longer than the radiation-reaction time, if

B≲ 5 × 1010f6500

�
M

1.4 M⊙

�
3=2

R7=2
6 G: ð7Þ

B. Magnetic field needed to damp the r-mode instability

At first order in perturbation theory, the amplitude αðtÞ
of the unstable r-mode grows exponentially

αðtÞ ¼ αð0Þeβt; ð8Þ
where β ¼ 1=τGR. At second order in perturbation theory,
the unstable r-mode has axisymmetric differential rotation
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driven by a force comprising gravitational radiation reac-
tion and terms in the perturbed MHD-Euler equation that
are quadratic in the first-order perturbation. The magnitude
of the radiation-reaction force per unit mass is (see, e.g.,
Paper I)

jfGRj ∼ α2ðtÞβΩR: ð9Þ

Second-order contributions to viscous damping may reduce
the magnitude of this effective driving force; because our
goal is to set an upper limit on the second-order differential
rotation, we do not include them.
The growth of magnetic-field energy can stop the growth

of an unstable r-mode when the rate at which the differ-
ential rotation increases the energy of the second-order
magnetic field, hδBi, with h·i indicating the axisymmetric
part of a quantity, is equal to the rate of growth of energy of
the first-order r-mode.
For a normal plasma, the growth rate of the magnetic-

field energy density can be roughly estimated as

dEm

dt
¼ 4βEm ∼

1

2π
βhδBi2; ð10Þ

while the energy density of the linear r-mode grows at the
rate

dEmode

dt
¼ 2βEmode ∼ βρ½αðtÞΩR�2: ð11Þ

The critical value of the axisymmetric part of the perturbed
magnetic field hδBicrit at which the two rates are equal is
then

hδBicrit ∼ αðtÞΩR
ffiffiffiffiffiffiffiffi
2πρ

p
∼ 1013α−4f500R6

ffiffiffiffiffiffiffiffiffi
ρ14.6

p
G; ð12Þ

where we have taken as the reference saturation amplitude
αsat ¼ 10−4. As noted in Sec. I, this is a conservative upper
limit on the maximum value of α found in perturbative
calculations [5,21–24]), and it is much smaller than
values αsat ∼ 10−1 − 1 considered prior to the perturbative
papers [9,20].
Using the induction equation in the ideal MHD limit, it is

not difficult to show that the secular drift of a fluid element
associated with differential rotation in a normal core
enhances an initial magnetic field B0 by a factor of order

δB=B0 ∼ ξϕ; ð13Þ

where ξϕ is the angular displacement of the fluid element
[9]. Avalue ξϕ ≫ 1 is then needed to amplify an initial field
of B0 ∼ 108–1010 G to the critical value hδBicrit ∼ 1013 G
at which it can damp or significantly alter an unstable
r-mode.

In Sec. V, we will show for an exponentially growing r-
mode that ξϕ has a bound of order α2satΩ=ωA, which then
leads to a bound on δB. The way it does so can be
understood heuristically as follows. Using Eq. (13) and the
expression (3) for the Alfvén frequency, we can write the
perturbed magnetic field and the corresponding energy
density as

δB ∼ B0ξ
ϕ ¼ ωA

ffiffiffi
ρ

π

r
Rξϕ;

1

8π
ðδBÞ2 ∼ 1

8π2
ρω2

AðRξϕÞ2: ð14Þ

Then using Eq. (10) written in the form,

dEm

dt
∼

1

2π
βB2

0ðξϕÞ2; ð15Þ

the bound on ξϕ now gives

hδBsati
hδBicrit

≲ αsat;
dEm=dt

dEmode=dt

����
sat

≲ α2sat; ð16Þ

with numerical coefficients smaller than unity, where
hδBsati is the magnetic field generated by the fluid
displacement ξϕ when r-mode saturation occurs.
For a star with a superconducting interior, a given

angular displacement ξϕ produces a larger magnetic energy.
However, because the Alfvén frequency is correspondingly
higher and ξϕ still has a bound of order α2satΩ=ωA, the
bound on ξϕ is more stringent. The net result is that the two
effects cancel, and the growth rate of magnetic energy again
satisfies the bound (16).
We can define an average perturbed magnetic field,

hδBSCi, as a volume average for which δEm ¼ hδBSCi2=8π.
The critical magnetic field for which the growth rate of
magnetic energy and of the linear r-mode are equal is then
again given by Eq. (12).

III. A TOY MODEL

We begin the discussion of differential rotation and
magnetic field windup with a toy model that shows the
main features of the evolution of the differential rotation
and magnetic field that we claim for the nonlinear r-mode.
In particular, in the model, a homogeneous incompressible
rotating fluid with cylindrical symmetry has differential
rotation driven by a force that mimics the radiation-reaction
force driving the differential rotation of the unstable
r-mode: It grows exponentially until a time tsat correspond-
ing to the saturation time of the r-mode and is then constant
at its final value. This limit on the growth of the driving
force leads to our main result: a stringent upper limit on the
maximum angular displacement of a fluid element and a
corresponding upper limit on magnetic field windup.
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With a driving force per unit mass having maximum
magnitude fmax, we will find an upper limit on the angular
displacement ξϕmax of a fluid element of order

ξϕmax ∼
jfmaxj
Rω2

A
; ð17Þ

where ωA ≔ 2π=tA is the Alfvén angular frequency and R
is the radius of the model fluid. For a normal (i.e., not
superconducting) fluid, the corresponding maximum mag-
netic field is of order

Bmax ∼ B0ξ
ϕ
max: ð18Þ

The model is essentially that introduced by Shapiro [26],
differing from it only by the addition of this driving
force, and, as in Shapiro’s model, the general solution to
the MHD-Euler equation is analytic. The axisymmetric,
homogeneous, incompressible model fluid has a purely
azimuthal velocity field

v ¼ Ωðt;ϖÞϕ; ð19Þ

where ϕ is the rotational symmetry vector

ϕ ¼ ϖϕ̂ ¼ xŷ − yx̂: ð20Þ

A magnetic field that is initially along the cylindrical
radial vector field ϖ̂, is wound up by differential rotation
driven by the exponentially growing forcing term. With no
driving force, we will see that the dynamical equation
governing the angular displacement of a fluid element is
linear, and the fluid’s displacement and angular velocity
can be written as sums of normal modes with frequencies
proportional to the Alfvén angular frequency (3).
With a driving force in the azimuthal direction, differ-

ential rotation continues to grow, and the radiation-reaction
force continues to drive a growing magnetic field. Finally,
when the driving force is time-independent (when the mode
has reached saturation), the differential rotation becomes a
sum of oscillatory modes, and the magnetic field oscillates
about its final equilibrium value. For the nonlinear r-mode,
the second-order radiation-reaction force includes a part
that spins down the star. Because we are concerned here
only with differential rotation, we will restrict consideration
in the toy model to a driving force that preserves the total
angular momentum of the fluid.
The toy model, like the stellar model, is governed by the

MHD-Euler system in the ideal-MHD limit, comprising the
source-free Maxwell equations and the Euler equation with
a Lorentz force. For the incompressible fluid of the toy
model, the source-free Maxwell equations are

∇ · B ¼ 0; ð21Þ

ð∂t þ £vÞB ¼ ∂tB −∇ × ðv × BÞ ¼ 0; ð22Þ

and the Lorentz force per unit mass is

fm ¼ 1

ρ
j × B ¼ 1

4πρ
ð∇ × BÞ × B; ð23Þ

where j is the electric current density, or, equivalently

fim ¼ 1

4πρ
Bjð∇jBi −∇iBjÞ: ð24Þ

With no driving force, the MHD-Euler equation has the
form

E ≔ ∂tvþ v · ∇vþ ∇p
ρ

− fm ¼ 0: ð25Þ

The differential rotation of the unstable r-mode is driven by
the second-order axisymmetric radiation-reaction force.
This is an azimuthal force, along ϕ, and we represent it
in the toy model by a force fGR per unit mass of the form

fGR ¼ α2ðtÞfðϖÞϕ̂; ð26Þ

where fðϖÞ encodes the spatial dependence of the radi-
ation-reaction force, while the mode amplitude can be
modeled simply as given first by an exponential growth and
then by a constant after time tsat

αðtÞ ¼
�
αð0Þeβt; t ≤ tsat;

αsat ≡ αð0Þeβtsat ; t > tsat:
ð27Þ

The time evolution of the system is then determined by
Eq. (22) and the driven MHD-Euler equation,

∂tvþ v · ∇vþ ∇p
ρ

− fm ¼ fGR; ð28Þ

with

∇ · v ¼ 0; ð29Þ

because of the incompressibility assumption. Equation (29)
is identically satisfied by a velocity field of the form (19),
and the evolution equation for B, Eq. (22), keeps B
divergence free.
The ϖ and z components of Eq. (22) are ∂tBϖ ¼

∂tBz ¼ 0. The model has vanishing Bz, and Eq. (21)
implies that Bϖ has the temporally constant form

Bϖ ¼ R
ϖ
B0; ð30Þ

where R is the radius of the cylinder.

LIMITS ON MAGNETIC FIELD AMPLIFICATION FROM … PHYSICAL REVIEW D 96, 124008 (2017)

124008-5



Only the ϕ component of the magnetic field is dynami-
cal, and it is expressed in terms of ξϕ by a first integral of
the ϕ component of Eq. (22), namely

Bϕ ¼ R
ϖ
B0∂ϖξ

ϕ: ð31Þ

Hence, for a stationary system in which ΩðϖÞ ¼ ∂tξ
ϕ is

constant in time, Bϕ will simply grow linearly in time;
this is the well-known magnetic-field “winding,” producing
a toroidal magnetic field out of a purely poloidal one
[9,15,34].
As the instability develops and saturates, however, the

evolution of the angular displacement ξϕ is given by the ϕ
component of Eq. (28)

∂
2
t ξ

ϕ − ω2
A

R4

4π2ϖ3
∂ϖðϖ∂ϖξ

ϕÞ ¼ α2ð0Þfe2βt; ð32Þ

where ωA is given by Eq. (3). Two remarks are worth
making about Eq. (32). First, it has a simple mechanical
equivalent in terms of a driven harmonic oscillator, whose
driving force first grows exponentially and then becomes
time independent after tsat. Second, although it is derived
from the MHD-Euler equation, it does not involve the
pressure: the remaining ϖ component of the MHD-Euler
equation determines p but is not needed for the evolution of
ξϕ, B or Ω.
We model crust pinning of the magnetic field by the

boundary condition

Bϕðϖ ¼ RÞ ¼ 0; ð33Þ

and Eq. (31) then implies

∂ϖξ
ϕðϖ ¼ RÞ ¼ 0: ð34Þ

Setting r ≔ ϖ2=R2 allows us to write the homogeneous
MHD-Euler equation in the form of a cylindrical wave
equation ∂

2
t ξ

ϕ − π−2ω2
Ar

−1
∂rðr∂rξϕÞ ¼ 0, whose solutions

are proportional to Bessel functions of order 0,

ξϕn ¼ J0ðknϖ2=R2Þeiωnt; ð35Þ

where kn is the nth zero of J00 and

ωn ¼ ωAkn=π: ð36Þ
Writing f and ξϕ as sums of orthogonal eigenfunctions

f ¼
X

fnJ0ðknϖ2=R2Þ; ð37aÞ

ξϕ ¼
X

cnðtÞJ0ðknϖ2=R2Þ; ð37bÞ

we obtain the exponentially growing solution to Eq. (32)
prior to tsat,

ξϕ ¼
X
n

α2ðtÞ
4β2 þ ω2

n
fnJ0ðknϖ2=R2Þ: ð38Þ

On the other hand, when the driving force is time
independent, representing an r-mode after nonlinear satu-
ration is reached, the term α2ð0Þfe2βt in Eq. (32) is replaced
by the time-independent term α2satf. The solution for ξϕ is
now the sum of a time-independent term and harmonic
functions of angular frequency ωn With a constant force,
the equilibrium value of ξϕ is obtained by omitting 4β2

from the denominator of Eq. (38), and ξϕ has the form

ξϕ ¼
X
n

α2sat
ω2
n
fnJ0ðknϖ2=R2Þ

þ
X
n

anJ0ðknϖ2=R2Þ cosðωntþ ηnÞ: ð39Þ

The amplitude of the harmonic term depends on the
transition from exponential growth to a time-independent
driving force. A gradual approach to saturation reduces the
amplitude, and we set an upper limit by adopting a driving
force whose growth stops instantaneously, as given by
Eqs. (26) and (27).
The oscillation amplitude is then

an ¼ α2sat
2β

ω2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2 þ ω2

n

p fn <
α2sat
ω2
n
fn; ð40Þ

implying a maximum value of ξϕ less than twice its
equilibrium value. Here we have assumed that, prior to
tsat, ξϕ is dominated by the exponentially growing solution
(38) associated with the unstable r-mode.
Equations (38) and (39) give us the toy-model’s exact

expressions for the angular displacement of a fluid element.
We now consider its implications for the unstable r-mode,
assuming that the behavior of the toy model’s differential
rotation is similar to that of the r-mode. The axisymmetric
part of the r-mode’s radiation-reaction force per unit mass
is of order [cf. Eq. (11)]

hjfGRji ∼ α2ðtÞβΩR: ð41Þ

For a normal interior, the Alfvén frequency (3) has
magnitude

ωA ¼ 0.9 × 10−4B9R−1
6 ρ−1=214.6 : ð42Þ

With fn ∼ βΩ and hence α2ðtÞRfn of order jfGRj and
decreasing for large n, the sum in Eq. (38) is dominated by
modes with kn ∼ 1 and ωn ∼ ωA. Prior to saturation, we
then have a bound that is independent of β,

ξϕsat ≲ α2sat
βΩ

4β2 þ ω2
A
< α2sat

Ω
4ωA

; ð43Þ
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implied by the relation

β

4β2 þ ω2
A
¼ 1

4ωA

�
1 −

ð2β − ωAÞ2
4β2 þ ω2

A

�
≤

1

4ωA
: ð44Þ

From Eq. (31), an angular displacement ξϕ with character-
istic wavelength of order R gives a magnetic field
Bϕ̂ ∼ B0ξ

ϕ, with a corresponding upper limit prior to
saturation

Bϕ̂
sat ∼ ξϕB0 ≲ α2sat

Ω
4ωA

B0 ¼
1

4
ffiffiffi
π

p α2satΩRρ1=2

or

Bϕ̂
sat ≲ 1

4
ffiffiffi
π

p αsatBcrit; ð45Þ

where we have used Eq. (3) for ωA and Eq. (12) for the
critical magnetic field needed to damp the r-mode. The
corresponding inequality for the change in the magnetic
energy density at quadratic order in ξϕ is

δEsat ≲ 1

16π
α2satδEcrit: ð46Þ

Then αsat ≪ 1 implies Bϕ̂
sat ≪ Bcrit, or Esat ≪ Ecrit. This is

our main result.
After saturation, the linear r-mode is no longer growing.

Energy gained from the first-order radiation reaction is
balanced by energy loss to daughter modes and to dis-
sipation, and we now ask whether magnetic-field windup
can play a significant role at this stage. In the post-
saturation evolution of the angular displacement given
by Eq. (39), ξϕ reaches and oscillates about an equilibrium
value that can be large if ωA is small. That is, from Eq. (39),
we have

ξϕ ≲ α2sat
βΩ
ω2
A
; ð47Þ

Bϕ̂ ≲ α2sat
βΩ
ω2
A
B0: ð48Þ

Now, however, the growth rate of each mode is proportional
to ωn. Equation (10) is then replaced by

dEm

dt
∼ ωAhδBi2; ð49Þ

and the critical magnetic field for which the energy gained
from radiation reaction is comparable to the energy lost to
magnetic-field windup is given by

hδBicrit ∼ αsatΩR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρβ=ωA

p
≥ 1.5 × 1013α−4β

1=2
−3.3f500R

3=2
6 ρ3=414.6B

−1=2
9 G; ð50Þ

where we have used ωA ≥ ωAðB0Þ ¼ ðB0=RÞ
ffiffiffiffiffiffiffiffi
π=ρ

p
.

Equations (48) and (50) imply

Bϕ̂

hδBicrit
≲ αsat
π3=4

β1=2R1=2ρ1=4B−1=2
0

¼ 1.3 × 10−4α−4β
1=2
−3.3R

1=2
6 ρ1=414.6B

−1=2
9 : ð51Þ

To reach the critical magnetic field, one would need a
normal interior with B0 of order 20 G, more than 6 orders of
magnitude smaller than the smallest estimated external
magnetic field in an old neutron star (4.5 × 107 G, inferred
from the period and spin-down of PSR J1938þ 2012
[35]).2 Equation (51) implies that the post-saturation
growth of an initial magnetic field of 108 or 109 G will
continue to satisfy the saturation constraint (45).
The growth of a realistic initial magnetic field is then

much too small to alter the r-mode. In particular, for a
neutron star whose interior is a normal plasma, the
maximum angular displacement is of order

ξϕmax ∼ 2α2−4β−3.3f500ρ14.6R
2
6B

−2
9 rad; ð52Þ

and a corresponding maximum change in the magnetic
field is

Bϕ̂
max ∼ ξϕB0 ≲ 2 × 109α2−4β−3.3f500ρ14.6R2

6B
−1
9 G; ð53Þ

as implied by Eq. (48).
Again, two remarks are in order here. First, because

Eq. (47) refers to a time after saturation has been achieved,
the azimuthal displacement in Eq. (52) has a time-inde-
pendent equilibrium value. Using again the mechanical
equivalent discussed above, such a time-independent dis-
placement corresponds to that of a harmonic oscillator
subject to a constant and time-independent gravitational
force. Second, in this toy model, because the poloidal
component Bϖ is constant and decoupled from the growth
of the toroidal field, the frequencies ωn of the modes are
constant in time: they do not grow with the growth of the
toroidal field. As a result, the quadratic dependence on the
mode’s amplitude in Eq. (53) can increase the magnetic
field by 6 or more orders of magnitude if αsat ≃ 0.1–1, as
was assumed in earlier work [9,20].
The exact decoupling that keeps ωn constant may be an

artifact of the toy model: Sec. IV D displays the second-
order MHD-Euler equations governing differential rotation

2Although interior fields below 100 G seem highly unlikely,
field decay to that level has not, to our knowledge, been ruled out
observationally.
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generated by an unstable r-mode. In this more realistic
model, we have checked that, for a generic background
magnetic field, there is no analogous decoupling of
poloidal and toroidal fields. Nevertheless, numerical evo-
lutions of the MHD-Euler equations [36] show a poloidal
field whose magnitude remains approximately constant
while differential rotation winds up the magnetic field. We
therefore do not assume that an increasing magnetic field
produced by differential rotation results in an increased
frequency of modes associated with the field windup.
For cold neutron stars whose interior is a type II

superconductor, we find in Sec. V that an essentially
equivalent version of the constraint (45) holds both before
and after nonlinear saturation. Before encountering the
detailed calculation in Sec. V, we can understand the result
heuristically as follows. The energy density of a stellar
mode with displacement ξ and frequency ω is of order
ρω2ξ2. In particular, differential rotation drives modes
whose energy density is of order δE ∼ ρω2

Aξ
2, where

ξ ∼ Rξϕ. The Alfvén frequency ωA;SC of a superconducting
interior is much larger than that of a normal plasma, and the
rate of growth of magnetic energy is thus much larger for a
given displacement ξϕ. However, because the bound
ξϕ ≲ α2satΩ=ωA;SC on ξϕ is more stringent by the factor
ωA=ωA;SC, the bound on δEm remains the same:

δEm ≲ α4satρΩ2R2

∼ α2satðenergy density of the linear r-modeÞ: ð54Þ

The constraint also holds after saturation because, as we
noted in Sec. II A, ωA;SC ≫ β, implying that the equilib-
rium displacement is within about a factor of 2 of the
displacement at saturation. We conclude that, for small
saturation amplitudes (αsat ≲ 10−4), magnetic field windup
from differential rotation is too small to produce magnetic
fields that can damp or significantly alter the unstable
r-mode.

IV. EQUILIBRIUM AND PERTURBATION
EQUATIONS

We work in the approximation of Newtonian MHD with
the star described by a perfect fluid with infinite conduc-
tivity. The version of the Euler equation that we use,
Eq. (61), includes fGR, the post-Newtonian gravitational
radiation-reaction force (per unit mass). This force plays a
central role in the nonlinear evolution of the r-modes that is
the primary focus of our paper. Because the old neutron
stars we consider have spin-down times much longer than
the gravitational radiation-reaction time scale of an r-mode
(and may also be balanced by accretion), we neglect
radiation reaction associated with the magnetic field.
We denote by Q ≔ fρ; v; p;Φ;B;Eg the collection of

fields that determine the state of the fluid. Here ρ is the
mass density, vi is the fluid velocity, p is the pressure, Φ is

the gravitational potential, and E and B are the electric and
magnetic fields. For a barotropic equation of state,
p ¼ pðρÞ, the specific enthalpy h of the fluid is

h ¼
Z

p

0

dp
ρ
; ð55Þ

and we define a potential U by

U ≔ hþΦ; ð56Þ

where Φ satisfies the Poisson equation

∇2Φ ¼ 4πρ: ð57Þ

The following equations govern the evolution of the fluid
and its electromagnetic field. With the flat 3-metric gij and
its determinant g, conservation of mass (the continuity
equation) has the equivalent forms

ð∂t þ £vÞðρ
ffiffiffi
g

p Þ ¼ 0 ¼ ∂tρþ ∇ · ðρvÞ; ð58Þ

where we use the relation 1ffiffi
g

p £v
ffiffiffi
g

p ¼ ∇ · v. The vanishing

of the electric field in a comoving frame is given by

Eþ v × B ¼ 0; ð59Þ

ð∂t þ £vÞðB
ffiffiffi
g

p Þ ¼ 0 ¼ ∂tB −∇ × ðv × BÞ; ð60Þ
and by Eq. (23) for the Lorentz force per unit mass.
Recalling that fGR is the radiation-reaction force per unit
mass associated with gravitational radiation, we write the
MHD-Euler equation in the form

∂tvþ v · ∇vþ ∇U − fm ¼ fGR: ð61Þ
The radiation-reaction force per unit mass is given by

[14,37,38]

fGR ¼
X
l≥2

X
jmj≤l

ð−1Þlþ1Nl

32π
ℜ

�
∇ðrlYlmÞffiffiffi

l
p d2lþ1Ilm

dt2lþ1

−
2rlYlm

Bffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p d2lþ2Slm

dt2lþ2
−
2v × ∇ðrlYlmÞffiffiffi

l
p d2lþ1Slm

dt2lþ1

	
;

ð62Þ
whereℜðZÞ denotes the real part of the complex quantity Z.
The quantities Ilm and Slm are the complex mass and
current multiple moments of the fluid source (cf. Eqs. 5.18
(a)–5.18(b) in Ref. [39]] defined by,

Ilm ≔
Nlffiffiffi
l

p
Z

ρrlY�lmd3x; ð63Þ

Slm ≔
2Nlffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p
Z

ρrlv · Y�lm
B d3x; ð64Þ
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where Nl is a constant

Nl ≔
16π

ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðlþ 1Þ

2ðl − 1Þ

s
: ð65Þ

The functions Ylm are the standard spherical harmonics,
while the Ylm

B are the magnetic-type vector harmonics
defined by

Ylm
B ≔

r × ∇Ylmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ; ð66Þ

with normalization
R jYlmj2d cos θdϕ ¼ 1 andR jYlm

B j2d cos θdϕ ¼ 1. In Cartesian coordinates, r is given
by r ¼ ðx; y; zÞ.

A. Equilibrium equations

We consider a uniformly rotating, axisymmetric equi-
librium star with angular velocity Ω. Because the magnetic
field is not in general aligned with the axis of symmetry, the
equilibrium is stationary only in a rotating frame, satisfying

ð∂t þ £vÞQ ¼ 0; ð67Þ

where

v ¼ Ωϕ; ð68Þ

where ϕ is the generator of rotations about the z axis. In
Cartesian coordinates, ϕ ¼ ð−y; x; 0Þ, implying

ϕ · ϕ ¼ ϖ2; ð69Þ

where ϖ is the distance from the rotation axis.
We consider constant-mass sequences of stellar models,

i.e., models whose exact mass perturbations, δM ¼
MðαÞ −Mðα ¼ 0Þ vanish identically for all values of α.
The integrals of the nth-order density perturbations there-
fore vanish identically for these models:

0 ¼ 1

n!
dnMðαÞ
dαn

����
α¼0

¼
Z

δðnÞρ
ffiffiffi
g

p
d3x: ð70Þ

From Eq. (61) with fGR ¼ 0, the Euler equation gov-
erning the equilibrium is

∇i

�
U −

1

2
ϖ2Ω2

�
þ 1

4πρ
Bjð∇iBj −∇jBiÞ ¼ 0; ð71Þ

where we have used the relation ð∂t þ £vÞvi ¼ 0.

B. Eulerian and Lagrangian perturbations

We denote byQðα; t; xÞ a one-parameter family of stellar
models. For each value of the parameter α, Qðα; t; xÞ

satisfies the full nonlinear time-dependent Eqs. (57)–
(61). The amplitude α is time independent and can be
identified with the initial amplitude αð0Þ when we describe
a growing mode by a time-dependent αðtÞ.
The exact Eulerian perturbation δQ, defined as the

difference between QðαÞ and Qð0Þ, is defined everywhere
on the intersection of the domains where QðαÞ and Qð0Þ
are defined as

δQðα; t; xÞ ≔ Qðα; t; xÞ −Qð0; t; xÞ ð72aÞ
¼ αδð1ÞQðt; xÞ þ α2δð2ÞQðt; xÞ þOðα3Þ;

ð72bÞ

where the nth-order perturbation δðnÞQ is

δðnÞQðt; xÞ ≔ 1

n!
∂
nQðα; t; xÞ

∂αn

����
α¼0

: ð73Þ

Although the exact Eulerian perturbation has meaning only
on the intersection of the support of the unperturbed and
perturbed fluids, δðnÞQ is well defined everywhere in the
interior of the unperturbed star.
Exact Lagrangian perturbations can be defined by

introducing a diffeomorphism χα that maps fluid elements
in the equilibrium star Qð0; t; xÞ to the corresponding
elements in the solution Qðα; t; xÞ. The exact Lagrangian
change in a quantity Q is defined by,

ΔQðα; t; xÞ ≔ χ�αQðα; t; xÞ −Qð0; t; xÞ ð74Þ

¼ αΔð1ÞQþ α2Δð2ÞQþOðα3Þ; ð75Þ

where χ�α is the pullback map (see Appendix A) and

ΔðnÞQðt; xÞ ≔ 1

n!
∂
nχ�αQðα; t; xÞ

∂αn

����
α¼0

: ð76Þ

We can write ΔQ in terms of a Lagrangian perturbation
vector ξi in the manner

ΔQðα; t; xÞ ¼
�
1þ £ξ þ

1

2
£2ξ

�
½Qð0; t; xÞ þ δQðα; t; xÞ�

−Qð0; t; xÞ þOðα3Þ: ð77Þ
With

ξi ¼ αξð1Þi þ α2ξð2Þi þOðα3Þ; ð78Þ
the first- and second-order Lagrangian perturbations are
given by [see Eq. (A20) of Appendix A 1],

Δð1ÞQðt; xÞ ¼ ðδð1Þ þ £ξð1Þ ÞQð0; t; xÞ; ð79aÞ

Δð2ÞQðt; xÞ ¼
�
δð2Þ þ £ξð2Þ þ £ξð1Þδ

ð1Þ þ 1

2
£2
ξð1Þ

�
Qð0; t; xÞ:

ð79bÞ
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The components of the vectors ξð1Þi and ξð2Þi are given in
any coordinates by

ξð1Þi ¼ ∂χiα
∂α

����
α¼0

; ð80Þ

ξð2Þi ¼ 1

2

∂
2χiα
∂α2

����
α¼0

−
1

2
ξð1Þj∂jξð1Þi: ð81Þ

The commutator

Δð∂t þ £vÞ ¼ ð∂t þ £v0ÞΔ

obtained as Eq. (A34) of Appendix A, gives the perturbed
mass-conservation Eq. (58) and induction Eq. (60) in the
forms

ð∂t þ £v0ÞΔðρ
ffiffiffi
g

p Þ ¼ 0; ð82aÞ

ð∂t þ £v0ÞΔðBi ffiffiffi
g

p Þ ¼ 0; ð82bÞ

where v0 is the unperturbed velocity field and Δ is the
exact Lagrangian perturbation. These equations have first
integrals

Δðρ ffiffiffi
g

p Þ ¼ 0; ð83aÞ

ΔðBi ffiffiffi
g

p Þ ¼ 0; ð83bÞ

correct to all orders in α, implying

Δ
B
ρ
¼ 0: ð84Þ

The first- and second-order Lagrangian perturbations of
gij and

ffiffiffi
g

p
are given by

Δð1Þgij ¼ 2∇ðiξð1ÞjÞ; ð85aÞ

Δð2Þgij ¼ 2∇ðiξð2ÞjÞ þ ξð1Þk∇k∇ðiξð1ÞjÞ

þ∇iξ
ð1Þk∇jξ

ð1Þ
k þ∇kξ

ð1Þði∇jÞξð1Þk; ð85bÞ

1ffiffiffi
g

p Δð1Þ ffiffiffi
g

p ¼ ∇ · ξð1Þ; ð86aÞ

1ffiffiffi
g

p Δð2Þ ffiffiffi
g

p ¼ ∇ · ξð2Þ þ 1

2
ð∇ · ξð1ÞÞ2 þ 1

2
ξð1Þ · ∇∇ · ξð1Þ;

ð86bÞ

and the corresponding perturbations of ρ and p are

Δð1Þρ
ρ

¼ −∇ · ξð1Þ; ð87aÞ

Δð2Þρ
ρ

¼ −∇ · ξð2Þ þ 1

2
ð∇ · ξð1ÞÞ2 − 1

2
ξð1Þ · ∇∇ · ξð1Þ;

ð87bÞ

Δð1Þp
γp

¼ −∇ · ξð1Þ; ð88aÞ

Δð2Þp
γp

¼ −∇ · ξð2Þ þ 1

2

�
γ þ ∂ log γ

∂ log ρ

�
ð∇ · ξð1ÞÞ2

−
1

2
ξð1Þ · ∇∇ · ξð1Þ; ð88bÞ

where γ ¼ d logp=d log ρ is the adiabatic index.
The first- and second-order Lagrangian perturbations of

the covariant and contravariant forms of the magnetic field
are then

Δð1ÞBi ¼ −Bi∇jξ
ð1Þj; ð89aÞ

Δð2ÞBi ¼ −Bi∇jξ
ð2Þj

þ Bi

�
1

2
ð∇jξ

ð1ÞjÞ2 − 1

2
ξð1Þk∇k∇jξ

ð1Þj
�
; ð89bÞ

and

Δð1ÞBi ¼ Bj½2∇ðiξð1ÞjÞ − gij∇kξ
ð1Þk�; ð90aÞ

Δð2ÞBi ¼ Bj½2∇ðiξð2ÞjÞ − gij∇kξ
ð2Þk�

þ Bj

�
ξð1Þk∇k

�
∇ðiξð1ÞjÞ −

1

2
gij∇lξ

ð1Þl
�

þ∇iξ
ð1Þk∇jξ

ð1Þ
k þ∇kξ

ð1Þði∇jÞξð1Þk

−2∇ðiξð1ÞjÞ∇kξ
ð1Þk þ 1

2
gijð∇kξ

ð1ÞkÞ2
�
: ð90bÞ

Finally, the expressions for the Lagrangian changes
in the contravariant and covariant velocity are (see
Appendix A 2)

Δð1Þvi ¼ ∂tξ
ð1Þi; ð91aÞ

Δð2Þvi ¼ ∂tξ
ð2Þi þ 1

2
£ξð1Þ∂tξ

ð1Þi; ð91bÞ

implying

Δð1Þvi ¼ ∂tξ
ð1Þ

i þ 2∇ðiξð1ÞjÞvj; ð92aÞ
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Δð2Þvi ¼ ∂tξ
ð2Þ

i þ 2∇ðiξð2ÞjÞvj þ ∂tξ
ð1Þj∇iξ

ð1Þ
j

þ 1

2
∂tðξð1Þj∇jξ

ð1Þ
iÞ þ ðξð1Þk∇k∇ðiξð1ÞjÞ

þ∇kξ
ð1Þði∇jÞξð1Þk þ∇iξ

ð1Þ
k∇jξ

ð1Þkvj: ð92bÞ

C. First-order perturbation equations

We now consider perturbations of the MHD-Euler
system, at first order in the amplitude α. We use the
formalism of Friedman and Schutz [28] and its extension to
the MHD-Euler system by Glampedakis and Andersson
[40]. To write the perturbed MHD-Euler Eq. (61),

ρΔð1ÞEi ≔ ρΔð1Þ
�
ð∂t þ vj∇jÞvi þ

∇ip
ρ

þ∇iΦ

þ 1

4πρ
Bjð∇iBj −∇jBiÞ

�
¼ ρδð1ÞfGRi; ð93Þ

in terms of the Lagrangian displacement ξð1Þ, we use the
first-order part of Eq. (84),

Δð1Þ B
i

ρ
¼ 0; ð94Þ

and obtain for the term involving the perturbed Lorentz
force the form

ρΔð1Þ
�

1

4πρ
Bjð∇iBj −∇jBiÞ

�

¼ 1

4π
Bjð∇iΔð1ÞBj −∇jΔð1ÞBiÞ

¼ 1

2π
Bj½∇iðBk∇ðkξð1ÞjÞÞ −∇jðBk∇ðkξð1ÞiÞÞ

−∇½iðBj�∇kξ
ð1ÞkÞ�; ð95Þ

where we have used Eq. (90a) and the fact that Lie and
exterior derivatives commute.
The perturbed MHD-Euler Eq. (93) has the form

Aij∂
2
t ξ

ð1Þj þ Bij∂tξ
ð1Þj þ Cijξ

ð1Þj ¼ ρδð1ÞfGRi; ð96Þ

where

Aij ≔ ρgij; ð97aÞ

Bij ≔ 2ρgijvk∇k; ð97bÞ

Cijξ
j ≔ ρðvj∇jÞ2ξi −∇iðγp∇jξ

jÞ þ∇ip∇jξ
j

−∇jp∇iξ
j þ ρξj∇j∇iΦþ ρ∇iδ

ð1ÞΦ

þ 1

2π
Bj½∇iðBk∇ðkξjÞÞ −∇jðBk∇ðkξiÞÞ

−∇½iðBj�∇kξ
ð1ÞkÞ −∇iξ

ð1Þk∇½kBj��: ð97cÞ

Here δð1ÞΦ is the asymptotically vanishing solution to
the perturbed Poisson equation

∇2δð1ÞΦ ¼ 4πδð1Þρ ¼ −4π∇ · ðρξð1ÞÞ:
For vectors ξi and ηi that vanish at the boundary of the star,
the operators Aij and Cij are self-adjoint in the senseZ

dVηiCijξ
j ¼

Z
dVξiCijη

j; ð98Þ

and Bij is anti-self-adjoint.
The exact perturbed gravitational radiation-reaction

force δfGR is given by [14]

δfGR ¼
X
l≥2

X
jmj≤l

ð−1Þlþ1Nl

32π
ℜ

�
∇ðrlYlmÞffiffiffi

l
p d2lþ1δIlm

dt2lþ1

−
2rlYlm

Bffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p d2lþ2δSlm

dt2lþ2
−
2Ωϕ×∇ðrlYlmÞffiffiffi

l
p d2lþ1δSlm

dt2lþ1

−
2δv×∇ðrlYlmÞffiffiffi

l
p d2lþ1δSlm

dt2lþ1

	
; ð99Þ

where

δIlm ≔
Nlffiffiffi
l

p
Z

δρrlY�lmd3x; ð100aÞ

δSlm ≔
2Nlffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p
Z

rl½ρδvþ δρðΩϕþ δvÞ� · Y�lm
B d3x:

ð100bÞ

D. Second-order axisymmetric perturbation

The second-order perturbation of the MHD-Euler
Eq. (61) has the form

Δð2ÞEi ¼ ð∂t þ £vÞΔð2Þvi þ∇iΔð2Þ
�
U −

1

2
v2
�

þ 1

2πρ
Bjð∇½iΔð2ÞBj�Þ ¼ Δð2ÞfGRi: ð101Þ

Here we have again used the commutation relation (A34a)
together with the commutator (also derived in Appendix A)

Δd ¼ dΔ; ð102Þ
where d is the exterior derivative operator.
Equations (87a)–(90b) display the second-order pertur-

bation of each variable as a sum of two parts. One part is
linear in the second-order Lagrangian displacement ξð2Þi,
while the second part is quadratic in the first-order
displacement ξð1Þi. Each quantity is a sum of these two
types of terms:

Δð2ÞQ ¼ Δð2Þ
linQþ Δð2Þ

quadQ: ð103Þ
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The linear part, Δð2Þ
linQ is the linear perturbation of Q

associated with the displacement ξð2Þi; that is, Δð2Þ
linQ is

identical to Δð1ÞQ if one replaces ξð1Þi by ξð2Þi. This is
essentially the statement that, in the Taylor expansion of a
function F of ξi,

Fðαξð1Þ þ α2ξð2ÞÞ ¼ Fð0Þ þ ∂F
∂ξj

����
ξ¼0

ðαξð1Þj þ α2ξð2ÞjÞ

þ 1

2
α2

∂
2F

∂ξj∂ξk

����
ξ¼0

ξð1Þjξð1Þk þOðα3Þ;

αξð1Þi and α2ξð2Þi have the same coefficient, namely the first
derivative of F.
It follows that the second-order perturbation of the

MHD-Euler equation is again the sum of a part linear in
the second-order Lagrangian displacement ξð2Þi and a part
quadratic in the first-order displacement ξð1Þi; similarly,

Δð2Þ
linEi is the linear perturbation Δð1ÞEi of Eq. (96), with

ξð1Þi replaced by ξð2Þi. Including the second-order radiation-
reaction term, the second-order Eq. (101) thus has the form

ρΔð2ÞEi ¼ Aij∂
2
t ξ

ð2Þj þ Bij∂tξ
ð2Þj þ Cijξ

ð2Þj

þDiðξð1Þ; ξð1ÞÞ ¼ ρΔð2ÞfGRi; ð104Þ

where the operators Aij, Bij, and Cij are given by
Eqs. (97a)–(97c) and the quadratic operatorDi has the form

ρ−1Diðξð1Þ; ξð1ÞÞ ¼ ð∂t þ £vÞΔð2Þ
quadvi

þ∇iΔ
ð2Þ
quad

�
hþΦ −

1

2
v2
�
− Δð2Þ

quadfmi:

ð105Þ

Here, with Δð2Þ
quadBi and Δ

ð2Þ
quadvi displayed in Eqs. (90b) and

(92b), we obtain

Δð2Þ
quadh ¼ 1

2

γp
ρ

��
γ − 1þ ∂ log γ

∂ log ρ

�
ð∇ · ξð1ÞÞ2

− ξð1Þ · ∇∇ · ξð1Þ
�
; ð106aÞ

Δð2Þ
quadΦ ¼ δð2ÞquadΦþ ξð1Þ · ∇δð1ÞΦþ 1

2
ξð1Þ · ∇ðξð1Þ · ∇ΦÞ;

ð106bÞ

Δð2Þ
quad

�
1

2
v2
�

¼ 1

2
f∂tξð1Þi∂tξð1Þi þ vi2∂tξð1Þj∇iξ

ð1Þ
j

þ vi∂tðξð1Þj∇jξ
ð1ÞiÞ þ vivjðξð1Þk∇k∇iξ

ð1Þ
j

þ∇jξ
ð1Þk∇kξ

ð1Þ
i þ∇iξ

ð1Þk∇jξ
ð1Þ

kÞg;
ð106cÞ

Δð2Þ
quadfmi ¼

1

2πρ
Bj∇½jΔ

ð2Þ
quadBi�: ð106dÞ

In Eq. (106b) δð1ÞΦ and δð2ÞquadΦ are the potentials

associated with δð1Þρ and with δð2Þquadρ:

∇2δð1ÞΦ ¼ 4πδð1Þρ ¼ −4π∇iðρξð1ÞiÞ; ð107aÞ

∇2δð2ÞquadΦ ¼ 4πδð2Þquadρ; ð107bÞ

δð2Þquadρ ¼ 1

2
ρ½ð∇iξ

ð1ÞiÞ2 þ ξð1Þi∇i∇jξ
ð1Þj�

þ ξð1Þi∇iρ∇jξ
ð1Þj þ 1

2
ξð1Þi∇iðξð1Þj∇jρÞ;

ð107cÞ

where the last expression is obtained from Eqs. (79b) and
(87a)–(87b).
We now restrict consideration to an axisymmetric back-

ground star. Because the components of ξð1Þi have time
dependence cosðmϕþ ωtÞeβt and sinðmϕþ ωtÞeβt [see
Ref. [14] and Eqs. (145a)–(145b)], the quadratic combina-
tionDiðξð1Þ; ξð1ÞÞ is a sum of terms of three kinds: terms with
angular and temporal dependence cos½2ðmϕþ ωtÞ�e2βt,
terms with dependence sin½2ðmϕþ ωtÞ�e2βt, and terms
independent of ϕ, with time dependence e2βt.
With the term Diðξð1Þ; ξð1ÞÞ moved to its right side,

Eq. (104) has the form

Aij∂
2
t ξ

ð2Þj þ Bij∂tξ
ð2Þj þ Cijξ

ð2Þj ¼ Δð2ÞFi; ð108Þ

where

Δð2ÞFi ¼ ρΔð2ÞfGRi −Diðξð1Þ; ξð1ÞÞ: ð109Þ
Recalling that we use brackets h·i to denote the axisym-

metric part of a perturbation, we can write the axisymmetric
part of the second-order MHD-Euler equation as

hρΔð2ÞEii ¼ Aij∂
2
t hξð2Þji þ Bij∂thξð2Þji þ Cijhξð2Þji

¼ hΔð2ÞFii: ð110Þ

Axisymmetry of the background star implies axisymmetry
of the operators Aij; Bij, and Cij, allowing us to move the
operators outside the brackets. Acting on axisymmetric
perturbations, the operator Bij has the form

Bij ¼ −2ρϵijkΩk; ð111Þ

where Ωi is the angular velocity vector. With the first-order
perturbation ξð1Þi known, Eq. (110) is the equation for an
axisymmetric linear perturbation of the star with a forcing
term
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hΔð2ÞFii ≔ ρhΔð2ÞfGRii − hDiðξð1Þ; ξð1ÞÞi: ð112Þ

At second order in the perturbation, the star loses angular
momentum to gravitational waves. We can decompose the
second-order axisymmetric perturbation into two parts:
one representing the spin down of the star, and the other
conserving total angular momentum. The first part, δð2ÞURQ,

is a perturbation that adds uniform rotation δð2ÞURΩ < 0 to
the star and has total (negative) angular momentum equal to
the angular momentum lost in gravitational waves; the

second part, δð2ÞDRQ, is the remaining, angular-momentum-
conserving part of the second-order axisymmetric pertur-
bation that describes the addition of differential rotation
with zero total angular momentum. We write the corre-
sponding decomposition of the Lagrangian displacement in
the form

hξð2Þii ¼ ξð2ÞiUR þ ξð2ÞiDR : ð113Þ

Finally, we can decompose the effective driving force
hΔð2ÞFii into an angular-momentum-reducing part that
drives the change in uniform rotation and an angular-
momentum-conserving part,

hΔð2ÞFii ¼ Δð2Þ
URFi þ Δð2Þ

DRFi; ð114Þ

where

Δð2Þ
URFi ≔ ðAij∂

2
t þ Bij∂t þ CijÞξð2ÞbUR : ð115Þ

E. Symplectic product and the growth of driven modes

We need an equation for the growth of the displacement
ξð2Þi with a driving force and a background magnetic field.
The simplicity of the toy model comes from fact that
Eq. (32) governing the homogeneous solutions has the
form

∂
2
t ξ

ϕ þ Cξϕ ¼ 0; ð116Þ

where the operator C is self-adjoint. This allows one to
write the solution to the inhomogeneous equation as a sum
[Eq. (38)] of orthogonal eigenfunctions of the operator C;
and in the exponentially growing solution, the coefficient of
each eigenfunction of C is proportional to the inner product
of f with the normalized eigenfunction. In contrast, the
dynamical Eq. (108) governing the r-mode includes a first-
time derivative term with an operator Bi

j that is anti-self-
adjoint and does not commute with the self-adjoint operator
Ci

j. If that first-time derivative were not present, solutions
to the homogeneous equation could again be written as a
superposition of eigenfunctions of Ci

j and eigenfunctions
ξin and ξ0ni with distinct eigenvalues would be orthogonal
with respect to the inner product

R
dVξ�i Aη

i ¼ R
dVρξ�i η

i.

The presence of the first-time derivative term means that
solutions to the homogeneous equation,

ðAij∂
2
t þ Bij∂t þ CijÞξj ¼ 0; ð117Þ

are not orthogonal in this sense. There is nevertheless a
conserved symplectic product with respect to which modes
of the homogeneous equation with distinct eigenvalues are
orthogonal. We summarize the results here and relegate to
Appendix B a detailed derivation based on Refs. [27,28]
and a summary by Schenk et al. [41].
Following Friedman and Schutz [28], we define the

symplectic product of two complex solutions to the
homogeneous equation A∂2t ξþ B∂tξþ Cξ ¼ 0 by

Wðξ; ~ξÞ ≔ hξj ~πi − hπj~ξi; ð118Þ

where πi is the momentum conjugate to ξi,

πi ¼ ρ∂tξi þ
1

2
Bijξ

j; ð119Þ

and hji is the usual inner product

hξjηi ¼
Z

dVξ�i η
i: ð120Þ

We use boldface angle brackets to distinguish the symbol
for inner product from the ordinary typeface brackets in the
expression hQi for the axisymmetric part of Q.
We will restrict consideration to perturbations that

conserve total angular momentum, mass and entropy; in
particular, we use only the part hΔð2Þ

DRFii of the driving force
in the decomposition (114) because the addition of uniform
rotation does not enhance the magnetic field. We also
assume that the linear axisymmetric modes of the axisym-
metric background star with a magnetic field are stable,
discrete and nondegenerate. Because the operators A, B and
C are real, if ξ satisfies the homogeneous equation so does
ξ�. For a stable system with a complete set of discrete
normal modes, the modes therefore come in pairs

ξnðt; xÞ ¼ ~ξnðxÞeiωnt; ξ�n ¼ ~ξ�nðxÞe−iωnt; ð121Þ

and we will write frequencies as �ωn, with ωn > 0.
Because we are assuming a stable Newtonian system,
the frequencies are real. The fact that W is conserved
implies that modes with different frequencies are symplec-
tically orthogonal:

Wðξn; ξn0 Þ ¼ 0; ωn ≠ ωn0 ; Wðξ�n; ξnÞ ¼ 0: ð122Þ

The proof is immediate: if Wðξn; ξn0 Þ does not vanish, it
has time dependence eiðωn0−ωnÞt, contradicting dW=dt ¼ 0.
With our assumption that the spectrum has no continu-

ous part, work by Dyson and Schutz [27], using symplectic
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orthogonality, showed that the modes are complete. For a
driving term of the form

Fiðt; xÞ ¼ F̂iðxÞe2βt; ð123Þ
their work implies [see Eq. (B25) of Appendix B] that the
exponentially growing solution to the inhomogeneous
equation,

ðAij∂
2
t þ Bij∂t þ CijÞξj ¼ Fiðt; xÞ; ð124Þ

is

ξi ¼
X
n

ℜ

�
1

iκnωnð2β − iωnÞ
hξ̂njFiξ̂in

�
; ð125Þ

where the modes ξ̂n are normalized by

hξ̂njρξ̂ni ¼ 1; ð126Þ

and

κn ≔ 1 − 2
Ω
ωn

ℑ

R
dVρ~ξϖ�

n
~ξϕ̂nR

dVρj~ξnj2
: ð127Þ

We have adopted the convention ωn > 0; taking the real
part of the bracketed expression in Eq. (125) accounts for
modes with frequency −ωn. After saturation, the driving
force is constant, and the displacement oscillates about a
constant equilibrium value given by Eq. (125) with β ¼ 0
[Eq. (B26) of Appendix B],

ξi ¼
X
n

ℜ

�
1

κnω
2
n
hξ̂njFiξ̂in

�
; ð128Þ

where F is the value of the driving force at saturation.
Note that the canonical energy of the nth normalized

mode is [28]

Ecn ¼
1

2
Wð∂tξ̂n; ξ̂nÞ

¼ −
1

2
iωnWðξ̂n; ξ̂nÞ ¼ ω2

nκnhξ̂njρξ̂ni: ð129Þ

If the unperturbed star is strictly stable against axisym-
metric perturbations (having neither unstable nor
zero-frequency axisymmetric perturbations that conserve
angular momentum, baryon mass, and entropy), then
Ecn > 0, implying κn > 0.
Finally, we break ξ̂in into its real and imaginary parts,

ξ̂in ¼ ξ̂inR þ iξ̂inI; ð130Þ
to elucidate the dependence of different contributions to the
sum on β,ωn andΩ. A short calculation, beginning with the
right side of Eq. (125) gives

ξi ¼
X
n

1

κnð4β2 þ ω2
nÞ
�
hξ̂nRjFiξ̂inR þ hξ̂nIjFiξ̂inI

þ 2β

ωn
ðhξ̂nIjFiξ̂inR − hξ̂nRjFiξ̂inIÞ

�
: ð131Þ

After saturation, Eq. (128) gives the equilibrium value

ξi ¼
X
n

1

κnω
2
n
½hξ̂nRjFiξ̂inR þ hξ̂nIjFiξ̂inI�: ð132Þ

V. GROWTH OF DIFFERENTIAL ROTATION
AND MAGNETIC FIELD WINDUP

To estimate the growth of the differential rotation of an
unstable r-mode, we use Eq. (131) to write the solution
hξð2Þϕi to Eq. (110) at saturation in the form,

X
n

1

κnð4β2 þ ω2
nÞ

×

�
hξ̂nRjhΔð2ÞFiiξ̂ϕnR þ hξ̂nIjhΔð2ÞFiiξ̂ϕnI

þ 2β

ωn
ðhξ̂nRjhΔð2ÞFiiξ̂ϕnI − hξ̂nIjhΔð2ÞFiiξ̂ϕnRÞ

�
; ð133Þ

after saturation, we use Eq. (132) to write the equilibrium
value of hξð2Þϕi in the form

X
n

1

κnω
2
n
½hξ̂nRjhΔð2ÞFiiξ̂ϕnR þ hξ̂nIjhΔð2ÞFiiξ̂ϕnI�: ð134Þ

We estimate the value of the inner product hξ̂njΔð2ÞFi for
modes ξn whose B ¼ 0 limits are zero-frequency axisym-
metric perturbations associated with differential rotation.
Primary differences between Eq. (133) for the Lagrangian
perturbation of the stellar model and Eq. (38) for the toy
model are 1) the effective driving force Δð2ÞF includes the
nonlinear terms Di as well as the radiation-reaction force,
and 2) the coefficient of the mode expression for the
Lagrangian displacement has the factor 1=κn.
Although Eq. (133) involves a sum over all axisymmetric

modes, modes with wavelengths much smaller than R
should give negligible contributions, because the character-
istic length of ρhΔð2ÞFi is of order R for the l ¼ m ¼ 2

r-mode. (For smooth vector fields f and g, the inner product
hgjfi falls off exponentially as the wavelength of the
Fourier components of g approach zero.) Of the axisym-
metric modes with wavelengths of order R, the Alfvén
modes have the lowest frequencies, with magnitudes for
normal and superconducting interiors given by Eqs. (42)
and (154). In particular, normal-fluid g-modes have
frequencies of order the Brunt-Väisälä frequency of about
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150 Hz (see, e.g., Refs. [42,43]), and a class of superfluid
g-modes has a higher frequency [44,45]; inertial modes
have frequencies of order Ω, and the frequencies of p- and
f-modes are much higher. Because the coefficient of the
mode sum is proportional toω−2 for ω ≫ β, we assume that
the estimate is dominated by modes with frequencies of
order ωA.
We will find that the inner products of these axisym-

metric Alfvén-frequency modes with the two terms,
ρΔð2ÞfGRi and −Diðξð1Þ; ξð1ÞÞ that comprise Δð2ÞFi are of
order

hξ̂njρjΔð2ÞfGRjiξ̂ϕn ∼ βΩe2βt; hξ̂njDiξ̂ϕn ∼ ωAΩe2βt: ð135Þ

As in the toy model, we set an upper limit on the maximum
angular displacement by adopting a driving force whose
growth stops instantaneously at t ¼ tsat. Setting β ¼ 0 and
t ¼ tsat in Eq. (135) gives the equilibrium values reached
after saturation.
The estimates (135) then imply (for β;ωA ≪ Ω) a

maximum value of the angular displacement at saturation
given by

ξϕsat ¼ α2satξ
ð2Þϕ ∼ α2sat

maxðωA; βÞΩ
4β2 þ ω2

A
ð136Þ

and a maximum value after saturation

ξϕmax ∼ α2sat
maxðωA; βÞΩ

ω2
A

: ð137Þ

As in the toy model, a larger post-saturation value of the
displacement that arises when ωA < β is mitigated by a
larger critical magnetic field needed to alter the linear
r-mode; that is, after saturation, the critical magnetic field is
given by Eq. (50) instead of Eq. (12).
We first outline the main ingredients that enter the

estimates (136) and (137), and then show how they are
obtained. We assume the linear r-mode grows exponen-
tially until a time tsat and subsequently has constant
amplitude.
(1) Prior to and at saturation, the radiation-reaction force

per unit mass, Δð2ÞfGRi is of order

jΔð2ÞfGRj ∼ βΩRe2βtsat : ð138Þ

This immediately gives the first estimate in
Eq. (135).

(2) With no magnetic field the quadratic contribution
Diðξð1ÞN; ξð1ÞNÞ from the linear Newtonian r-mode
ξiN has no ϕ component. With a generic magnetic
field, hDϕ̂i is small compared to hDϖi and hDzi:

ρ−1jhDϖij ∼ ρ−1jhDzij ∼ Ω2Re2βtsat ;

ρ−1jhDϕ̂ij ∼maxðω2
A; βΩÞRe2βtsat : ð139Þ

(3) For the first-order axisymmetric modes ξin associated
with differential rotation, the part of ξin orthogonal to

ϕi is small compared to ξϕ̂n :

jξϖn j; jξznj ∼
ωA

Ω
jξϕ̂n j: ð140Þ

This comes from the fact that, with no magnetic
field, a perturbation associated with adding differ-
ential rotation has the form Δð1Þvi ¼ ∂tξ

ð1Þi, along
ϕi; Eq. (140) estimates the nonzero values of the
components of ξ orthogonal to ϕ for a magnetic field
with ωA ≪ Ω.

(4) A consequence of the relations (140) is that the ratio
of integrals that appears in the definition (127) of κn
has an upper bound of order

j R dVρ~ξϖ�
n

~ξϕ̂n jR
dVρj~ξnj2

≲ ωA

Ω
;

and this in turn gives an upper bound of order unity
on κn,

jκnj ≲ 1: ð141Þ

The estimates (139) and (140) imply that the quantity

hξ̂njDihξϕ̂ni has an upper bound of order ωAΩ, giving the
second estimate in Eq. (135). Finally, using the estimate
(141) for κn, we obtain our main result, Eq. (136).
To obtain the estimates (138) and (139) for the two

contributions to the effective driving force Δð2ÞF ¼
jΔð2ÞFj, we will use the slow-rotation forms of the
radiation-reaction force and the first-order Lagrangian
displacement. Corrections are of order Ω=Ω0, where Ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. We use the slow-rotation forms not because the

corrections are negligible—for nascent stars with angular
velocities near the Keplerian (mass-shedding) limit ΩK ,
they could change the quantities we consider by factors of
order unity—but because these corrections do not alter our
order-of-magnitude estimates. We also neglect corrections
to the linear r-mode and radiation-reaction force due to the
background magnetic field; here the corrections are neg-
ligible for fields weaker than 1014–1015 G [19,40,46–52].
We consider first the second-order radiation-reaction

force, hΔð2ÞfiGRi. Because the radiation-reaction force
vanishes for the background star, Eq. (79b) gives as its
second-order Lagrangian change

Δð2ÞfiGR ¼ δð2ÞfiGR þ £ξð1Þδ
ð1ÞfiGR: ð142Þ
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For the l ¼ m angular harmonic, the axisymmetric part of
δð2ÞfiGR is given by [see Eq. (112) of Paper I]

hδð2ÞR fiGRi ¼ −
ðlþ 1Þ2

4
βΩ

�
ϖ

R

�
2l−2

e2βtϕi; ð143Þ

at leading order in the star’s angular velocity. The first-
order radiation-reaction force δð1ÞfiGR appearing in
Eq. (142) has the form

δð1ÞfiGR ¼ βδð1Þvi þ δð1Þ⊥ fiGR; ð144Þ

where hξð1Þ; δð1Þ⊥ fGRi ¼ 0 [see Eq. (86) of Paper I]. Because
of this orthogonality, βδð1Þvi, determines the growth rate of
the linear mode ξð1Þi.
At leading order in Ω, δvi and ξi are orthogonal to r̂, and

their components along unit vectors θ̂ and ϕ̂ are

δð1Þvθ̂ ¼ fδð1Þvθ̂ cosðlϕþ ωtÞeβt

¼ −ΩR
�
r
R

�
l
sinl−1θ cosðlϕþ ωtÞeβt; ð145aÞ

δð1Þvϕ̂ ¼ fδð1Þvϕ̂ sinðlϕþ ωtÞeβt

¼ ΩR
�
r
R

�
l
sinl−1θ cos θ sinðlϕþ ωtÞeβt; ð145bÞ

ξð1Þθ̂ ¼ ~ξθ̂ sinðlϕþ ωtÞeβt

¼ −
Ω
ωr

R

�
r
R

�
l
sinl−1θ sinðlϕþ ωtÞeβt; ð146aÞ

ξð1Þϕ̂ ¼ ~ξϕ̂ cosðlϕþ ωtÞeβt

¼ −
Ω
ωr

R

�
r
R

�
l
sinl−2θ cos θ cosðlϕþ ωtÞeβt;

ð146bÞ

where, to leading order in Ω, ω ¼ − ðl−1Þðlþ2Þ
lþ1

Ω and ωr ¼
2

lþ1
Ω is the frequency in a rotating frame. From

Eqs. (145a)–(146b), the vectors ξð1Þi and δð1Þvi are of order

ξð1Þ ∼ Reβt; δð1Þv ∼ΩReβt: ð147Þ

The divergence ∇ · ξð1Þ vanishes at lowest order inΩ, and is
nonzero only at order Ω2 [53], with

∇ · ξð1Þ ∼
Ω2

Ω2
0

eβt; ð148Þ

where

Ω0 ≔
ffiffiffiffiffiffiffiffi
GM
R3

r
∼
vs
R
; ð149Þ

where vs is an average speed of sound in the star.
Prior to saturation, from Eqs. (143) and (144), δð2Þfi and

δð1Þfi are of order βΩRe2βt and βΩReβt, respectively. Then
Eq. (147) implies the term £ξð1Þδ

ð1ÞfGR is of order

j£ξð1Þδð1ÞfGRj ∼ βΩRe2βt;

and we obtain the estimate (138), jΔð2ÞfGRj ∼ βΩRe2βt.
We turn next to Eq. (139) for hDiðξð1Þ; ξð1ÞÞi, where ξð1Þ

is the Lagrangian displacement of the first-order unstable r-
mode. To estimate hDii, we use Eqs. (147) and (148),
together with the estimate ∇Q ∼Q=R. From Eq. (148), we
have

Δð1Þρ
ρ

∼
Δð1Þp
p

∼
Ω2

Ω2
0

eβt: ð150Þ

Equation (105) gives hDiðξð1Þ; ξð1ÞÞi as a sum of three terms
which we consider in order. The angle average removes
both the ϕ dependence and the harmonic dependence on t,
leaving only the dependence e2βt. We then have

jð∂t þ £vÞhΔð2Þviiquadj ¼ 2βjhΔð2Þviiquadj ∼ βΩRe2βt:

ð151Þ
The ϕ component of the second term on the right of
Eq. (105) vanishes by axisymmetry: ∂ϕhU − 1

2
v2i ¼ 0; the

components orthogonal to ϕi have magnitudes of order

j∇hΔð2Þ
quadUij ¼ j∇hΔð2Þ

quadðhþΦÞij ∼Ω2Re2βt;

ð152aÞ����∇


Δð2Þ

quad
1

2
v2
����� ∼Ω2Re2βt: ð152bÞ

The last, magnetic term of Eq. (105) is of order���� 1

2πρ
Bjð∇½ihΔð2Þ

quadBj�iÞ
���� ∼ ω2

ARe
2βt: ð153Þ

From Eq. (5), the Alfvén frequency for a type II super-
conductor has the form

ωA;SC ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πB0Hc

ρ

s
¼ 0.09 R−1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B9Hc;15

ρ14.6

s
s−1: ð154Þ

This and Eq. (3) for a normal fluid each imply ωA < Ω
unless B0 > 1017 G. Then for both nascent neutron stars
and old accreting neutron stars, rotating fast enough to be
unstable to an r-mode, we have ωA ≪ Ω, and we recover
Eq. (139),
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ρ−1jhDϖðξð1Þ; ξð1ÞÞij ∼ ρ−1jhDzðξð1Þ; ξð1ÞÞij ∼Ω2Re2βt;

ð155aÞ

ρ−1jhDϕ̂ðξð1Þ; ξð1ÞÞij ∼maxðω2
A; βΩÞRe2βt: ð155bÞ

Finally, we justify the estimate (140). That is, we show
that ξϖ and ξz are of order ðωA=ΩÞξϕ̂ for an axisymmetric
solution ξi to the perturbed MHD-Euler equation whose
B ¼ 0 limit is a perturbation that describes a change in the
rotation law—the addition of differential rotation to a
uniformly rotating star. Like the vanishing of Dϕ, the
estimate is related to the form of the Euler equation for
axisymmetric perturbations. Writing Ei for a general fluid
with no magnetic field in the form

Ei ¼ ð∂t þ £vÞvi þ
∇ip
ρ

þ∇i

�
Φ −

1

2
v2
�
; ð156Þ

we have

Eϕ ¼ ð∂t þ £vÞvϕ; ð157Þ

with Eϕ ¼ 0 expressing angular momentum conservation
of each fluid ring. The commutator in Eq. (A34a) implies

ΔEϕ ¼ ∂tΔvϕ: ð158Þ

The fact that only the time-derivative term survives
means, for a first-order axisymmetric perturbation
described by a Lagrangian displacement ξð1Þi

ϕiΔð1ÞEi ¼ ϕi
∂tΔð1Þvi ¼ ϕið∂2t ξð1Þi þ 2ϵijkΩj

∂tξ
ð1ÞkÞ;

ð159Þ

implying that the operator Cij has no component along ϕi.
When a background magnetic field is present, Cij acquires
a nonzero ϕ component given by the last line on the right of
Eq. (97c), with magnitude

ρ−1Cϕ̂jξ
ð1Þj ∼

B2ξð1Þ

ρR2
∼ ω2

ARe
βt: ð160Þ

The corresponding magnitude of hξð2Þϖi can be seen
from the ϕ̂ component of the second-order Newtonian
Euler equation:

∂
2
t hξð2Þϕ̂i þ 2Ω∂thξð2Þϖi þ ρ−1Cϕ̂jhξð2Þji
¼ −ρ−1hDNϕ̂ðξð1Þ; ξð1ÞÞi: ð161Þ

The first-order axisymmetric modes satisfy

∂
2
t ξnϕ̂ þ 2Ω∂tξϖn þ ρ−1Cϕ̂jξ

j
n ¼ 0: ð162Þ

We approximate the frequencies of the dominant modes by
ωA, writing ∂tξn ∼ ωAξn, ∂2t ξn ∼ ω2

Aξn, and use Eq. (160) to
write ρ−1Cϕ̂jξ

j
n ∼ ω2

Aξn. We then have

ξϖn ∼
�
ωA

Ω

�
ξϕ̂n : ð163Þ

Finally, in the expression (127) for κn,

κn ¼ 1 − 2

�
Ω
ωn

�
ℑ

R
dVρ~ξϖ�

n
~ξϕ̂nR

dVρj~ξnj2
;

the ratio of integrals is of order ωA=Ω, giving a bound
on κn of order unity. This completes our justification of
the estimates (139), (140), and (141); and the argument
following Eq. (141) then gives our main result, Eq. (136)
for the angular displacement of a fluid element.

A. Normal interior

We turn now to the implications of this estimate. We first
find bounds on magnetic field growth for a normal interior
and then obtain equivalent bounds for an interior that is a
type II superconductor. We obtain as follows a bound on the
maximum growth of δB similar to Eq. (53) of the toy
model. In Eq. (136),

maxðωA; βÞ
4β2 þ ω2

A
¼ max

�
ωA

4β2 þ ω2
A
;

β

4β2 þ ω2
A

�
:

By inspection, ωA
4β2þω2

A
< 1

ωA
, and, using the inequality (44),

we have

maxðωA; βÞ
4β2 þ ω2

A
<

1

ωA
:

Then the angular displacement and corresponding change
in the magnetic field have upper limits

hξϕsati≲ α2sat
Ω
ωA

< α2sat
ΩR
B0

ffiffiffi
ρ

π

r
; ð164Þ

hδBϕ̂
sati≲ α2satΩR

ffiffiffi
ρ

π

r
; ð165Þ

with the small numerical values

hξϕsati≲ 0.4α2−4f500R6B−1
9 ρ1=214.6;

hδBϕ̂
sati≲ 4 × 108α2−4f500R6ρ

1=2
14.6 G; ð166Þ

Recalling Eq. (12) for the critical magnetic field and using
Eq. (165), we obtain our main inequality,
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hδBϕ̂
sati

hδBicrit
≲ αsat; ð167Þ

or, equivalently,

dEm=dt
dEmode=dt

≲ α2sat: ð168Þ

When αsat ∼Oð1Þ, as assumed in the initial investiga-
tions of the instability [20] and in Refs. [9–11], then

hδBϕ̂
sati ∼ hδBicrit, and the magnetic field at saturation is

similar to the critical field needed to damp or substantially
alter the linear r-mode. However, for more realistic values
of the saturation amplitude, and even for an unexpectedly
large saturation amplitude, αsat ∼ 10−3, the change in the
magnetic field at saturation is 3 orders of magnitude below
the critical field.
After nonlinear saturation, the constraint on hδBϕ̂i

corresponding to the limit (137) on the angular displace-
ment is

hδBϕ̂
maxi≲ α2satB0

�Ω=ωA; ωA > β;

βΩ=ω2
A; ωA < β:

ð169Þ

With the critical magnetic field now given by Eq. (50),

hδBicrit ∼ αsatΩR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρβ=ωA

p
≥

αsat
π1=4

β1=2ΩR3=2ρ3=4B−1=2
0 ;

ð170Þ

we have

hδBϕ̂
maxi

hδBicrit
≲ αsat

ffiffiffiffiffiffi
ωA

πβ

r
for ωA > β

≤ 2.4 × 10−5α−4β
−1=2
−3.3 R

−1=2
6 ρ−1=414.6 B

1=2
9 ; ð171aÞ

hδBϕ̂
maxi

hδBicrit
≲ αsat

ffiffiffiffiffiffiffiffiffi
β

πωA

s
for ωA < β

≤ 1.3 × 10−4α−4β
1=2
−3.3R

1=2
6 ρ1=414.6B

−1=2
9 : ð171bÞ

The second case (ωA < β) is Eq. (51) of the toy model.
For ωA > β, the present bound differs from that of the toy
model because of the contribution to the effective driving
force from the quadratic D term, but not by enough to alter
our conclusion.
In particular, after saturation, the oscillation may allow

ξð2ÞϕDR to grow to about twice its equilibrium value, with a
smaller value for a more gradual approach to saturation.
Even with αsat ∼ 10−3, the initial magnetic field would need
to be well below 100 G or above 1016 G before magnetic
field windup could significantly alter the linear r-mode.

B. Superconducting interior

The r-mode instability has been studied most in the
context of old neutron stars spun up by accretion.
The interior of these stars is likely to be a type II super-
conductor, and we now turn to the corresponding limits on
magnetic-field windup for such stars.
For a superconducting interior, the total energy of the

magnetic field is given by

Em;SC ¼ 1

8π
φSCHclf; ð172Þ

where lf is the average length of a flux tube, and φSC is the
total magnetic flux. Differential rotation stretches the flux
tubes but leaves the flux in each tube and the number of
tubes unchanged. Then φSC is constant, and the change in
energy Em;SC is determined by the change in flux tube
length lf. For a tube deformed by a small angular
displacement hξϕi, the change in length at quadratic order
in ξϕ is of order

δlf ≈ lfhξϕi2: ð173Þ

With lf ∼ R, the stretching rate at quadratic order is then

dlf

dt
∼ Rξϕ

dhξϕi
dt

¼ 2βRðξϕÞ2: ð174Þ

We define a field B0 for which the total flux is

φSC ¼ πR2B0: ð175Þ

The total magnetic energy is then

Em;SC ¼ 1

8
B0HclfR2; ð176Þ

which is larger than its value for a normal plasma by a
factor of orderHc=B0, and the corresponding growth rate of
magnetic energy density is

dEm;SC

dt
∼

1

30
βHcB0ðξϕÞ2; ð177Þ

for a superconducting core of approximate radius R. A
detailed calculation by Rezzolla et al. [9–11] for an initial
dipole poloidal magnetic field B0 gives the same relation
with a somewhat smaller numerical coefficient,

dEm;SC

dt
∼ β

1

60
B0Hchξϕi2: ð178Þ

We define an average perturbed magnetic field, hδBSCi,
as a volume average for which hδBSCi2=8π ≔ δEm. The
critical magnetic field for which the growth rate of
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magnetic energy and of the linear r-mode are equal is then
again given by Eq. (12).
To obtain an approximate bound on dEm=dt and hδBSCi,

we first write Eq. (178) in the form

dEm;SC

dt
∼ β

1

60π
ρω2

A;SCðRhξϕiÞ2: ð179Þ

The bound on hξϕi is given by Eq. (164) with ωA replaced
by ωA;SC,

hξϕsati≲ α2sat
Ω

ωA;SC
< α2satΩR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

πB0Hc

r
; ð180Þ

with the small numerical value

hξϕsati≲ 6 × 10−4α2−4f500

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ14.6

B9Hc;15

r
: ð181Þ

We then have

dEm;SC

dt
≲ 1

60π
α4satβρΩ2R2: ð182Þ

Recognizing that the right side is proportional to the
energy of the linear r-mode, as in Eq. (11), we obtain
the inequalities

hδBsat;SCi
hδBSCicrit

≲ 1ffiffiffiffiffiffiffiffi
60π

p αsat;
dEm;SC=dt
dEmode=dt

≲ 1

60π
α2sat: ð183Þ

We are not entitled to claim bounds this stringent,
however, because in deriving the bound hξϕi≲ α2satΩ=
ωA;SC, we used the rough approximation ωn ∼ ωA;SC,
while the coefficient 1=60π in the expression for dEm=dt
is consistent with the somewhat smaller frequency of
long-wavelength Alfvén modes. What our estimates show
are then the approximate bounds previewed in Sec. II,

hδBSCisat
hδBSCicrit

< αsat;
dEm;SC=dt
dEmode=dt

≲ α2sat: ð184Þ

After saturation, because ωA;SC ≫ β, the maximum
displacement and magnetic field are within a factor of
about 2 of their values at saturation.

C. Caveats: Continuous spectrum, zero-frequency
modes, and MRI instability

The claim that magnetic field windup cannot damp or
significantly alter the first-order r-mode comes with some
caveats. The estimates of this section rely on two
principal assumptions: that linear axisymmetric perturba-
tions of the background star can be written in terms of a
discrete nondegenerate spectrum, and that the background
star has no unstable axisymmetric modes—or at least

no unstable axisymmetric modes that wind up the
magnetic field.
It may be that neither assumption is correct: there is no

proof that discrete modes are complete for uniformly
rotating stars, and, once differential rotation is established,
the star is likely to encounter a magnetorotational insta-
bility (MRI). We briefly discuss the implications of
relaxing the assumptions, beginning with a possible con-
tinuous part of the spectrum of linear modes.
Because the effective driving force Δð2ÞF is a quadratic

function of the linear r-mode, its value is unrelated to
assumptions about the spectrum of linear axisymmetric
perturbations. With a continuous spectrum, the estimates
(138) and (139) of its two parts are unchanged, and Δð2ÞF
retains its form, with magnitude

Δð2ÞFϕ̂ ∼maxðω2
A; βΩÞRe2βt: ð185Þ

Were we able to replace a sum over discrete modes by an
integral over a continuous spectrum, we could regain our
estimates for ξϕ. We have no formal justification for this,
because the time evolution of the system is described by an
operator that is not self-adjoint. Simply discretizing the
spatial operators, however, gives a system whose modes
are discrete and for which the estimates hold. Because the
estimates are independent of the discretization, they should
hold in the continuum limit.
The assumption of a stable system is in question once

differential rotation is established by a growing r-mode.
That is, there appears to be an MRI instability when the
magnetic field is smaller than about 1013 G [54,55] and the
drift angular velocity δΩdrift satisfies

dðδΩ2
driftÞ

dϖ
< 0; ð186Þ

in some region of the star. The instability is present only
for perturbations that are not restored by negative buoy-
ancy or by pressure. Buoyancy is governed by the Brunt-
Väisälä frequency, which, for a neutron star, is of order
50–150 Hz (see, e.g., Refs. [42,43]), much larger than
RdΩ=dϖ ∼ αðtÞ2Ω. In the Balbus-Hawley analysis [55],
this removes the instability for most modes, but leaves at
least a set of unstable perturbations whose wave vector k
is quasiradial, along the Brunt-Väisälä vector N, and
there may also be modes with zero or near zero
frequency. Because MRI-unstable perturbations cannot
acquire more energy than is present in the small available
differential rotation, we suspect that the presence of
MRI-unstable or marginally unstable perturbations will
not substantially alter our analysis. We should point out,
however, that after saturation, the constant effective
radiation-reaction force Δð2ÞFa will drive the growth of
any zero-frequency modes.
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VI. CONCLUSIONS

Almost 20 years ago, r-mode oscillations in rotating
neutron stars were shown to be unstable to the emission of
gravitational waves [1,2]. The impact of this finding on
newly born neutron stars and in old neutron stars in x-ray
binaries was soon discussed in a long list of works starting
with Ref. [20]. Among the many features of the nonlinear
development of the stability, the development of differential
rotation was pointed out early on, heuristically [15] and via
perturbation theory [9], as was the amplification of strong
magnetic fields and the possibility that this growth sup-
presses the instability [10,11].
Building on a more realistic estimate of the saturation

amplitude of the instability [5,6] and on a more rigorous
mathematical description of the development of differential
rotation in unstable stars [14], we have here reconsidered the
impact of differential rotation and magnetic field amplifi-
cation on the growth of unstable r-modes. The instability
may be present in nascent neutron stars and in old stars in
x-ray binaries; in each case, nonlinear coupling to other
modes limits the r-mode amplitude to a saturation amplitude
αsat ≲ 10−4. And in each case we find that the maximum
enhancement of the average magnetic field is smaller by the
factor αsat than the critical field needed to damp or
significantly alter the r-mode. We have obtained this result
following two different routes: first, using a simplified but
exact toy model where the star is treated as an incompress-
ible and homogeneous cylinder in the ideal-MHD limit;
second, using a formalism governing the equilibrium and
first- and second-order perturbations of a rotating star with a
background magnetic field and radiation reaction.
In old neutron stars whose interior is a type II super-

conductor, we find that magnetic-field growth stops soon
after the mode reaches its saturation amplitude. In nascent
neutron stars, before the interior has cooled below the
superconducting transition temperature, continued mag-
netic-field growth can follow nonlinear saturation. If the
saturation amplitude is unexpectedly large, with αsat ∼ 10−3,
an initial small magnetic field of about 108 G could be
amplified to 1011 G, before the remaining secular drift of a
fluid element (that winds up the magnetic field) is restricted
to less than a radian. Although still too small to damp the
growth of the linear r-mode, this might be a contribution to
magnetic-field generation in nascent stars.
Although mathematically robust, our findings rest on the

assumptions noted at the end of the last section. In
particular, we assume that there are no marginally unstable
perturbations, and this may not hold when differential
rotation leads to a magnetorotational instability.
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APPENDIX A: LAGRANGIAN PERTURBATIONS

At first order in α the Lagrangian displacement vector
ξ ¼ αξð1Þ can be viewed in two ways. ξ is a connecting
vector from the position x of a fluid element in the
unperturbed fluid to its position χαðxÞ in the perturbed
fluid; and ξð1Þ is the vector field tangent to the trajectories
α → χαðxÞ of the family of diffeomorphisms χα. At higher
order the two viewpoints diverge and we have chosen the
second approach, defining a Lagrangian displacement that
depends only on the family of diffeomorphisms, not on the
metric of flat space or on a choice of coordinates. The
second-order formalism using the first approach was
developed in Ref. [28].

1. First- and second-order Lagrangian perturbations

We derive here relations used in Sec. IV B to obtain
first- and second-order Lagrangian perturbations, defined
by Eq. (75).
Recall that the pullback map χ� associated with a

diffeomorphism χ is defined on scalars f by

χ�fðt; xÞ ≔ fðt; χ½t; x�Þ: ðA1Þ
On covariant and contravariant vectors wi and wi its action
is given in any coordinate system by

χ�wiðt; xÞ ¼ ∂iχ
jwjðt; χ½t; x�Þ; ðA2aÞ

χ�wiðt; xÞ ¼ ∂jðχ−1Þiwjðt; χ½t; x�Þ: ðA2bÞ
Acting on forms (antisymmetric covariant tensors)ωa…b,

it satisfies

½χ�; d�ω ¼ 0; ðA3Þ
where d is the exterior derivative.
Given a family of diffeomorphisms χαðxÞ of the unper-

turbed fluid to the perturbed fluid at a fixed time t, we can
define a family of Lagrangian displacements ξðα; xÞ in a
way that is analogous to defining the velocity field viðt; xÞ
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from the family of diffeomorphisms ψ t that describe the
fluid flow: in the fluid case the family of diffeomorphisms
acts on both the spatial coordinates x and the time
coordinate t, while in our analogous case the parameter
α plays the same role as the time coordinate in the fluid
case. In the time-dependent fluid case ψτ maps a fluid
element at x at a time t to its position ψτðt; xÞ at time tþ τ.
The velocity field viðt; xÞ is tangent to the curve
cðτÞ ¼ ψτðt; xÞ,

viðt; xÞ ¼ d
dτ

ciðτÞ
���
τ¼0

¼ d
dτ

ψ i
τðt; xÞ

���
τ¼0

: ðA4Þ

More concisely, the four-dimensional diffeomorphism Ψτ,

Ψτðt; xÞ ¼ ðtþ τ;ψτðt; xÞÞ; ðA5Þ

moves the point ðt; xÞ a parameter distance τ along an
integral curve of the Newtonian 4-velocity

uðt; xÞ ¼ ð1; viðt; xÞÞ: ðA6Þ

We now repeat the construction for the family of
diffeomorphisms χαðxÞ. In this case, we include the
parameter α as a coordinate and denote by ðα; xÞ a point
in the support of the perturbed fluid: the fluid element at
ð0; xÞ in the unperturbed fluid is at the corresponding point
ðα; χαðxÞÞ in the perturbed fluid. As initially defined, χα
maps a point x occupied by a fluid element in the
unperturbed fluid to the location χαðxÞ of that fluid element
in the perturbed fluid. We extend χα to a family ~χα of
diffeomorphisms that act on points in the perturbed fluid
by writing

~χηðα; χαðxÞÞ ≔ χηþαðxÞ: ðA7Þ

We define the vector field ~ξðα; xÞ as the tangent to the curve
cðηÞ ¼ ~χηðα; xÞ,

~ξiðα; xÞ ¼ d
dη

ciðηÞ
���
η¼0

¼ d
dη

~χiηðα; xÞ
���
η¼0

; ðA8Þ

and to maintain a Lagrangian displacement ξ that is
proportional to α at lowest order, we write

ξ ¼ α~ξ: ðA9Þ

Again our construction has a more concise form in terms
of the four-dimensional diffeomorphism Xη (the analog
of Ψτ),

Xηðα; xÞ ¼ ðαþ η; ~χηðα; xÞÞ∶ ðA10Þ

Xη moves the point ðα; xÞ a parameter distance η along an
integral curve of the vector field

Ξðα; xÞ ¼ ð1; ~ξiðα; xÞÞ: ðA11Þ

This is the statement that Ξ generates the family of
diffeomorphisms Xα, and it leads to a simple expression
[Eq. (A17) below] for the Lagrangian perturbation in the
fluid variables Q at nth order in α. We begin by noting that
the relation

d
dα

X�
αfðxÞ ¼

d
dα

fðXαðxÞÞ ¼ ð£ΞfÞjXαðxÞ; ðA12Þ

for a scalar f, implies

dn

dαn
fðXαðxÞÞ

���
α¼0

¼ £nΞfðxÞ: ðA13Þ

The action of an analytic family of diffeomorphisms Xα on
an analytic function is then given by a convergent Taylor
series in α, namely

X�
αf ¼ eα£Ξf: ðA14Þ

In our case, we have only a smooth family of diffeo-
morphisms acting on a smooth function, and the Taylor
series at finite order in α gives the relation

X�
αf ¼

�
1þ α£Ξ þ � � � þ 1

n!
ðα£ΞÞn þ oðαnÞ

�
f: ðA15Þ

It is straightforward to check that the same relation holds
for the action of X�

α on arbitrary smooth tensors.
From the definition (74) of the exact Lagrangian change

in the fluid variables Qðα; xÞ, we have

X�
αQð0; xÞ ¼ Qðα; χαðxÞÞ; ðA16Þ

implying

ΔQ ¼ X�
αQð0; xÞ −Qð0; xÞ ¼

Xn
1

αk
1

k!
£kΞQ

���
α¼0

þ oðαnÞ:

ðA17Þ

In particular, writing

ξð1Þ ¼ ∂αξjα¼0 ¼ ~ξjα¼0; ðA18aÞ

ξð2Þ ¼ 1

2
∂
2
αξj

α¼0
¼ ∂α

~ξjα¼0; ðA18bÞ

and Ξ0 ≔ Ξjα¼0, we obtain

Δð1ÞQ ¼ £ΞQjα¼0

¼ ð∂α þ £~ξÞQj
α¼0

¼ ðδð1Þ þ £~ξð1Þ ÞQ; ðA19Þ
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Δð2ÞQ ¼
�
£∂αΞQþ 1

2
£2Ξ0

Q

�����
α¼0

¼
�
£
∂α
~ξ þ

1

2
ð∂α þ £~ξð1Þ Þ2Q

�����
α¼0

¼
�
1

2
∂
2
α þ £

∂α
~ξ þ £~ξð1Þ∂α þ

1

2
£2~ξð1Þ

�
Q

����
α¼0

¼
�
δð2Þ þ £ξð2Þ þ £ξð1Þδ

ð1Þ þ 1

2
£2
ξð1Þ

�
Q: ðA20Þ

In these last two equations, we have used the definition (73)
of δðnÞQ.

2. Perturbed fluid velocity

We will next find the expression for the Lagrangian
change in the fluid velocity in terms of the Lagrangian
displacement of the fluid, obtaining the form

Δvi ¼ ∂tξ
i þ 1

2
£ξ∂tξi þOðα3Þ: ðA21Þ

Expanding this result in powers of α immediately gives

Δð1Þvi ¼ ∂tξ
ð1Þi; ðA22Þ

Δð2Þvi ¼ ∂tξ
ð2Þi þ 1

2
£ξð1Þ∂tξ

ð1Þi: ðA23Þ

Equation (A21) can be derived by noting that the diffeo-
morphism χ maps trajectories in the unperturbed fluid to
trajectories in the perturbed fluid. Denote by τ ↦ c0ðtþ τÞ
the path of the fluid element in the unperturbed fluid that
passes through the point x ¼ c0ðtÞ at time t. Then τ ↦
χαðtþ τ; c0ðtþ τÞÞ is the path of the fluid element in the
perturbed flow, and it passes through χαðt; xÞ at time t.
The perturbed velocity is then given by

viαðt; χαðt; xÞÞ ¼
d
dτ

χiαðtþ τ; c0ðtþ τÞÞj
τ¼0

¼ ∂tχ
i
α þ vk0∂kχ

i
α: ðA24Þ

The exact Lagrangian change in the fluid velocity is
given by

Δviðt; xÞ ¼ χ�αviαðt; χαðt; xÞÞ − vi0ðt; xÞ; ðA25Þ

¼ ∂jðχ−1α Þijðt;χαðt;xÞÞv
j
αðt; χαðt; xÞÞ − vi0ðt; xÞ:

ðA26Þ
In all the remaining equations, each variable is evaluated at
the point ðt; xÞ unless the argument is explicitly shown.
Note first that, by its definition (A7), ~χηðα; χαðxÞÞ ¼
χηþαðxÞ. From Eq. (A8), we then have

~ξiðα; χαðxÞÞ ¼
d
dη

χiηþαðxÞ
����
η¼0

¼ d
dα

χiαðxÞ;

ξð1ÞiðxÞ ¼ d
dα

χiαðxÞ
����
α¼0

: ðA27Þ

Similarly,

d2

dα2
χiαðxÞ

����
α¼0

¼ d
dα

~ξiðα; χαðxÞÞ
����
α¼0

¼
�
d
dα

~ξiðα; xÞ þ ∂j
~ξið0; xÞ d

dα
χiαðxÞ

�
α¼0

¼ 2ξð2Þi þ ξð1Þj∂jξð1Þi: ðA28Þ

The expansion of the diffeomorphism χα,

χiαðxÞ ¼ xi þ α∂αχ
i
αjα¼0 þ

1

2
α2∂2αχ

i
αjα¼0 þOðα3Þ; ðA29Þ

now gives

χiα ¼ xi þ ξi þ 1

2
ξj∂jξ

i þOðα3Þ; ðA30Þ

χ−1iα ¼ xi − ξi þ 1

2
ξj∂jξ

i þOðα3Þ: ðA31Þ

Using these expressions, we obtain

∂jðχ−1α Þijðt;χαðt;xÞÞ ¼ δij − ∂jξ
i − ξk∂k∂jξ

i þ 1

2
∂jðξk∂kξiÞ;

ðA32Þ

and

vjαðt; χαðt; xÞÞ ¼ ∂tχ
j
α þ vk0∂kχ

j
α;

¼ ∂tξ
j þ 1

2
∂tðξk∂kξjÞ þ vj0 þ vk0∂kξ

j

þ 1

2
vl0∂lðξk∂kξjÞ þOðα3Þ: ðA33Þ

Substituting in Eq. (A26) the expressions from Eqs. (A32)
and (A33) and keeping terms up to quadratic order in ξ
yields the desired expression (A21) for Δv.

3. Commutation relations

We now derive the commutation relations used in
Sec. IV D, namely3

3At first order, Eq. (A34a) can be obtained by using the
relation

½£ξ; £v� ¼ £½ξ;v�;

to write

½Δð1Þ; ð∂t þ £vÞ� ¼ −£∂tv þ £½ξð1Þ;v� ¼ £−∂tvþ½ξð1Þ ;v� ¼ 0:

This algebraic derivation can be extended to the more compli-
cated second-order commutator, but it hides the simpler con-
nection between the commutator (A34) and the commutation
relation of the diffeomorphisms, Eq. (A40).
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Δð∂t þ £vÞ ¼ ð∂t þ £v0ÞΔ; ðA34aÞ

Δd ¼ dΔ; ðA34bÞ
where the second relation is restricted to an action
on forms.
We first show that Eq. (A34a) follows from a commu-

tation relation between the diffeomorphism χα and the
diffeomorphism generating the fluid flow. It is simplest to
write the relation in terms of the corresponding four-
dimensional diffeomorphisms. Let Xα be the spacetime
diffeomorphism associated with χα,

Xαðt; xÞ ¼ ðt; χαðt; xÞÞ; ðA35Þ

and let

t ↦ CαðtÞ ¼ ðt; cαðtÞÞ; ðA36Þ

be the trajectory of a fluid element in the perturbed fluid,
with Newtonian 4-velocity ð1; vÞ, where viðtÞ ¼ _ciαðtÞ.
Then

CαðtÞ ¼ Xα∘C0ðtÞ: ðA37Þ

As in Eq. (A5), letΨτ;α be the spacetime diffeomorphism
that maps a fluid element at time t in the perturbed fluid to
its position at time tþ τ:

Ψτ;α∘CαðtÞ ¼ Cαðtþ τÞ: ðA38Þ

Then

Ψτ;α∘Xα∘C0ðtÞ ¼ Cαðtþ τÞ ¼ Xα∘Ψτ;0∘C0ðtÞ; ðA39Þ

implying

Ψτ;α∘Xα ¼ Xα∘Ψτ;0: ðA40Þ

The Lie derivative of a tensor T with respect to the
4-velocity ð1; vÞ is

ð∂t þ £vÞT ¼ d
dτ

Ψ�
τ;αT

����
τ¼0

; ðA41Þ

where Ψ�
τ;α is the pullback map. By Eq. (A40) the

corresponding pullbacks satisfy

X�
αΨ�

τ;α ¼ Ψ�
τ;0X

�
α: ðA42Þ

Finally, taking the derivative of this relation with respect to
τ at τ ¼ 0, we obtain Eq. (A34a) for tensors T that are
functions of α and x:

ð∂t þ £v0ÞΔQ ¼ d
dτ

Ψ�
τ;0ðX�

αQα −Q0Þ
����
τ¼0

¼ d
dτ

ðX�
αΨ�

τ;αQα −Ψ�
τ;0Q0Þ

����
τ¼0

¼ Δð∂t þ £vÞQ: ðA43Þ

The second commutation relation, Eq. (A34b), is imme-
diate from the vanishing commutator of the exterior
derivative and pullback (acting on forms)

½d; χ�α� ¼ 0: ðA44Þ

APPENDIX B: SYMPLECTIC PRODUCT AND
THE GROWTH OF DRIVEN MODES

We derive here Eq. (125) for the growth of a system
satisfying an equation of the form

ðAij∂
2
t þ Bij∂t þ CijÞξj ¼ Fiðt; xÞ: ðB1Þ

This is essentially a summary of results due to Dyson and
Schutz [27], and are included here because their work and
the summary given by Schenk et al. [41] are more
elaborate, including in particular the Jordan chains that
arise when there are degenerate modes. The treatment
here is self-contained if one assumes that the discrete
normal modes are a complete set for arbitrary initial
data. Schutz and Dyson have a lengthy characterization
of the spectrum that implies completeness of the discrete
modes if one assumes only that the spectrum has no
continuous part.
As noted in Sec. IV E, the orthogonality of nondegen-

erate modes follows from the fact that the symplectic
product W of Eq. (118) is conserved. This is a property of
any Hamiltonian system. Here, a quick computation, using
only the self-adjointness properties of the operators, the
homogeneous equation, and the definition (119) of πi, gives
a direct check that d=dtWðξ; ~ξÞ ¼ 0.
For a nonrotating star, the quantity iWðξn; ξnÞ is real and

is, for each mode with nonzero frequency, proportional to
the usual norm ∥ · ∥, given by ∥ξ∥2 ¼ hξjAξi ¼ R

dVρjξj2.
Because the constant of proportionality involves ωn, and,
even for spherical stars, iWðξn; ξnÞ has no definite sign, we
will use W itself to normalize ξn, writing

1 ¼ Wðξn; ξnÞ

¼ hξnjA∂tξn þ
1

2
Bξni − hA∂tξn þ

1

2
Bξnjξni

¼ hξnj2iωnAξn þ Bξni: ðB2Þ

We now assume that the modes are nondegenerate,

ωn ≠ ωn0 ; for n ≠ n0; ðB3Þ
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implying the orthogonality relation (122),

Wðξn; ξn0 Þ ¼ 0; ωn ≠ ωn0 ; Wðξ�n; ξnÞ ¼ 0;

and we assume that there are no zero-frequency modes. We
adopt the convention ωn > 0 and write a general solution to
the homogeneous equation in the form

ξ ¼
X
n

ðCnþξn þ Cn−ξ
�
nÞ

¼
X
n

ðCnþ ~ξneiωnt þ Cn− ~ξ
�
ne−iωntÞ; ðB4Þ

where ξnðt; xÞ ¼ ~ξnðxÞeiωnt. The coefficients Cn� are then
given by

Cnþ ¼ Wðξn; ξÞ; Cn− ¼ Wðξ�n; ξÞ: ðB5Þ

For a real solution, we have Cn− ¼ C�
nþ.

The familiarity of an expansion in terms of orthonormal
eigenfunctions belies a subtlety of the system: complete-
ness of the modes means completeness of the pairs of initial
data

ðξn�; ∂tξn�Þjt¼0 ¼ ð~ξn;�iωn
~ξnÞ: ðB6Þ

That is, arbitrary initial data ðξ; ∂tξÞt¼0 in the domain of the
operators has a spectral decomposition of the form

�
ξ

∂tξ

�����
t¼0

¼ Cnþ

� ~ξn

iωn
~ξn

�
þ Cn−

� ~ξ�n
−iωn

~ξ�n

�
: ðB7Þ

The coefficients Cn� in the expansion of ξ appear to
determine the coefficients �iωnCn� in the expansion of
∂tξ. How is this possible, when ξ and ∂tξ are each arbitrary?
The explanation is that the two sets of eigenfunctions f~ξng
and f~ξ�ng are not linearly independent; thus in Eq. (B7) the
equation for ξ (or for ∂tξ) alone does not determine Cnþ and
Cn−. Each set f~ξng and f~ξ�ng is separately a basis for the
configuration space H of the system, and using both gives a
basis fð~ξn; iωn

~ξnÞ; ð~ξ�n;−iωn
~ξ�nÞg for the set H ×H of

pairs ðξ; ∂tξÞ.
This behavior—the fact that the set f~ξng of vectors

associated with fωng and the set f~ξ�ng of vectors associated
with f−ωng are each a basis for H—is clear for the
homogeneous equation of a spherical star. Here a mode
satisfies

−ω2
nAξn þ Cξn ¼ 0: ðB8Þ

If the eigenvalue ω2
n is nondegenerate, then the normalized

eigenvectors associated with ωn and −ωn differ only by a
constant phase; they coincide as rays in a Hilbert space. In
the more general case of a stable rotating star with a discrete

spectrum, the fact that the sets fξng and fξ�ng are each a
basis for H was shown by Dyson and Schutz.
Consider now a solution ξðtÞ to the inhomogeneous

Eq. (108). Completeness of the normal modes for data on
each constant-t hypersurface means that, at each time t, we
can find coefficients cn�ðtÞ that satisfy
�

ξ

∂tξ

�
¼

X
n

�
cnþðtÞ

� ~ξn

iωn
~ξn

�
þ cn−ðtÞ

� ~ξ�n
−iωn

~ξ�n

��
:

ðB9Þ

By inserting the eigenfunction expansion into this equation
and using the symplectic product W to project onto each
mode ~ξn, we will find for cn�ðtÞ the dynamical equations

_cnþ − iωncnþ ¼ h~ξnjFi; ðB10aÞ

_cn− þ iωncn− ¼ h~ξ�njFi: ðB10bÞ

The derivation is as follows. From its definition (118),W
can be regarded as acting on pairs ðξ; ∂tξÞ and ðη; ∂tηÞ of
data at a time t, with

W½ðξ; ∂tξÞ; ðη; ∂tηÞ� ≔ Wðξ; ηÞ

¼ hξjA∂tηþ
1

2
Bηi

− hA∂tξþ
1

2
Bξjηi: ðB11Þ

For mode data ð~ξn; iωn
~ξnÞ, the relations A† ¼ A, B† ¼ −B

give

W½ð~ξn; iωn
~ξnÞ; ðη; ∂tηÞ� ¼ h~ξnjA∂tηþ iωnAηþ Bηi;

ðB12Þ

and Eq. (B9) then implies

cnþðtÞ ¼ W½ð~ξn; iωn
~ξnÞ; ðξðtÞ; ∂tξðtÞÞ�

¼ h~ξnjA∂tξþ iωnAξþ Bξi: ðB13Þ

Taking the time derivative of this equation and using
Eq. (108) to replace A∂2t ξ by −B∂tξ − Cξþ F, we obtain

_cnþðtÞ ¼ h−C~ξnjξi þ h~ξnjiωnA∂tξn þ Fi: ðB14Þ

The homogeneous equation for the mode ξn implies

C~ξn ¼ ω2
nA~ξn − iωnB~ξn; ðB15Þ

whence
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h−C~ξnjξi ¼ h−ω2
nA~ξn þ iωnB~ξnjξi

¼ iωnh~ξnjiωnAξþ Bξi: ðB16Þ

Finally, from Eqs. (B16) and (B14), we have

_cnþðtÞ ¼ iωnh~ξnjA∂tξþ iωnAξþ Bξi þ h~ξnjFi
¼ iωncnþðtÞ þ h~ξnjFi; ðB17Þ

where Eq. (B13) was used to obtain the last equality. The
same steps with cnþ, ξn and ωn replaced by cn−, ξ�n and
−ωn, respectively, yield the corresponding equation for
_cn−ðtÞ. To summarize, the driven system is governed by the
equations

_cnþ − iωncnþ ¼ h~ξnjFi; ðB18aÞ

_cn− þ iωncn− ¼ h~ξ�njFi: ðB18bÞ

For an exponentially growing driving force Fiðt; xÞ ¼
~FiðxÞe2βt, the mode amplitudes of the particular solution ξi

to Eq. (B1) with time dependence e2βt are given by

cnþðtÞ ¼ c�n−ðtÞ ¼
1

2β − iωn
h~ξnj ~Fie2βt; ðB19Þ

and we have

ξi ¼
X
n

2ℜ
�

1

2β − iωn
h~ξnjFi~ξin

�
: ðB20Þ

To estimate the magnitude of ξð2Þ in Sec. V, it is helpful to
rewrite this expression in terms of mode functions ξ̂in
normalized by

hξ̂njρξ̂ni ¼ 1: ðB21Þ

We first find the symplectic norm of the mode functions ~ξn.
From Eqs. (97a), (111) and (B2), we have

1 ¼ Wð~ξn; ~ξnÞ
¼ h~ξnj2iωnA~ξn þ B~ξni
¼ h~ξnij2iωnρ~ξ

i
n − 2ρΩϵij ~ξ

j
ni

¼ 2i

�
ωn

Z
dVρj~ξj2 − 2Ωℑ

Z
dVρ~ξϖ�

n
~ξϕ̂n

�
¼ 2iωnκnh~ξnjρ~ξni; ðB22Þ

where

κn ¼ 1 − 2
Ω
ωn

ℑ

R
dVρ~ξϖ�

n
~ξϕ̂nR

dVρj~ξnj2
: ðB23Þ

The mode functions ~ξn are then given in terms of the ξ̂n
of Eq. (B21) by

~ξn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2iωnκn
p ξ̂n; ðB24Þ

and we obtain Eq. (125) for the exponentially growing
solution prior to saturation,

ξð2Þi ¼
X
n

ℜ

�
1

iκnωnð2β − iωnÞ
hξ̂njFiξ̂in

�
: ðB25Þ

After saturation, the displacement oscillates about an
equilibrium position given by

ξð2Þi ¼
X
n

ℜ

�
1

κnω
2
n
hξ̂njFiξ̂in

�
; ðB26Þ

where F is the value of the forcing term at saturation.
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