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Gravitational wave detectors in the LIGO/Virgo frequency band are able to measure the individual
masses and the composite tidal deformabilities of neutron-star binary systems. This paper demonstrates that
high accuracy measurements of these quantities from an ensemble of binary systems can in principle be
used to determine the high density neutron-star equation of state exactly. This analysis assumes that all
neutron stars have the same thermodynamically stable equation of state, but does not use simplifying
approximations for the composite tidal deformability or make additional assumptions about the high
density equation of state.
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I. INTRODUCTION

The masses, M, and the tidal deformabilities, Λ, of
neutron stars can (in principle) be measured by observa-
tions of the gravitational waves emitted during the last
stages of the inspiral of neutron-star binary systems [1].
Since all neutron stars are expected to have the same
equation of state, accurate measurements of M and Λ for
an ensemble of neutron stars could be used to determine
the high density portion of the neutron star equation
of state exactly by solving the inverse stellar structure
problem [2–4].
Unfortunately, the individual tidal deformabilities of the

stars in a neutron-star binary system are not accurately
observable by gravitational wave detectors operating in the
LIGO/Virgo frequency band.1 Instead a composite tidal
deformability Λ̃, representing the deformability of the
binary system as a whole, is observable with such detectors.
This composite tidal deformability is related to the proper-
ties of the individual stars by

Λ̃ ¼ 16

13

M4
1ðM1 þ 12M2ÞΛ1 þM4

2ðM2 þ 12M1ÞΛ2

ðM1 þM2Þ5
; ð1Þ

where Λ1 and Λ2 are the tidal deformabilities, and
M1 ≥ M2 are the masses of the individual stars [1,5,6].
The observation of gravitational waves from a neutron-star

binary, GW170817, provides the first (and at present only)
observation of M1, M2 and Λ̃ for a binary system [7,8].
The purpose of this paper is to explore the extent to

which measurements of the masses, M1 and M2, and the
composite tidal deformabilities, Λ̃, of neutron-star binaries
can in principle be used to determine the high density
portion of the neutron-star equation of state. Could such
measurements determine the equation of state exactly
(assuming the measurement errors could be made arbitrar-
ily small) through the solution of some appropriate inverse
structure problem? Or, are such measurements only able to
constrain the equation of state in some way?
An inverse structure problem determines the equation

of state of the matter in an astrophysical system using
measurements of the macroscopic properties of that system.
Mathematically well posed inverse structure problems do
exist for individual neutron stars [2–4,9,10]. In particular,
given a complete knowledge of the curve of observables,
MðpcÞ and ΛðpcÞ (parameterized e.g., by the central
pressures pc of the stars), this curve exactly determines
the equation of state, ϵ ¼ ϵðpÞ, a curve in the energy
density ϵ, pressure p space. It is not surprising that the
stellar structure equations determine this unique relation-
ship (and inverse relationship) between these curves. It is
less obvious that an analogous inverse structure problem
exists for binary systems. Does a complete knowledge of
the two-dimensional surface of observables for binary
systems, M1ðp1cÞ, M2ðp2cÞ and Λ̃ðp1c; p2cÞ (parametrized
e.g., by the central pressures, p1c and p2c, of each star)
determine the equation of state exactly as well?
The inverse structure problem for neutron-star binaries

does have an almost trivial formal solution. Given a
complete knowledge of the surface of observables,
fM1ðp1cÞ;M2ðp2cÞ; Λ̃ðp1c; p2cÞg, the equation of state

1Tidal distortion effects first appear in the post-Newtonian
expansion of the gravitational waveform at order ðv=cÞ10 as a
term proportional to a composite deformability parameter. It is
only at even higher order that additional terms appear that would
allow the deformabilities of the individual stars to be determined.
Gravitational wave detectors operating in the LIGO/Virgo fre-
quency band are never likely to be able to measure those high
order terms in neutron-star binary systems.
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can be determined exactly by restricting attention to equal-
mass binaries: M1ðp1cÞ ¼ M2ðp2cÞ, so that p1c ¼ p2c and
Λ1ðp1cÞ ¼ Λ2ðp1cÞ ¼ Λ̃ðp1c; p1cÞ. The inverse structure
problem for binaries in this special case reduces to the
single neutron-star inverse structure problem, and that
problem can be solved exactly in various ways [2–4].
Unfortunately, observations of precisely equal mass binary
systems will never be available. So, the interesting question
is not whether the inverse structure problem for binaries has
a formal solution, but rather how (and how well) it can be
solved using measurements from a random ensemble of
unequal mass binary systems.
The method proposed here for solving the inverse

structure problem for binaries is a fairly straightforward
generalization of the method developed previously for
individual neutron stars [2–4]. Consider a random ensem-
ble of data points, fM1i;M2i; Λ̃ig for i ¼ 1;…; NB, taken
from the exact surface of observables. The goal is to find an
equation of state whose model observables match these
data. This is done by introducing a parametric representa-
tion of the equation of state, ϵ ¼ ϵðp; γkÞ, where the γk are
parameters whose values can be adjusted to approximate
any equation of state to any desired accuracy [11–13].
Given this equation of state model, and choices for the
central pressures of each of the stars in the binary, pi

1c and
pi
2c, it is straightforward to integrate the stellar structure

equations to determine the masses M1ðpi
1c; γkÞ and

M2ðpi
2c; γkÞ, and the tidal deformabilities Λ1ðpi

1c; γkÞ and
Λ2ðpi

2c; γkÞ. The resulting model observables M1ðpi
1c; γkÞ,

M2ðpi
2c; γkÞ and Λ̃ðpi

1c; p
i
2c; γkÞ from Eq. (1), are then

compared to the exact data using the quantity χ2 that
measures the modeling error:

χ2ðpi
1c; p

i
2c; γkÞ ¼

1

NB

XNB

i¼1

��
log

�
M1ðpi

1c; γkÞ
M1i

��
2

þ
�
log

�
M2ðpi

2c; γkÞ
M2i

��
2

þ
�
log

�
Λ̃ðpi

1c; p
i
2c; γkÞ

Λ̃i

��
2
�
: ð2Þ

The error measure, χ2, is then minimized over the
2NBþNγ dimensional space of parameters fpi

1c; p
i
2c; γkg.

The location of this minimum determines an equation of
state model, ϵ ¼ ϵðp; γkÞ, whose stellar models best fit the
observations.
The equation of state, ϵ ¼ ϵðp; γkÞ, obtained by mini-

mizing χ2 in Eq. (2) provides an approximation to the
physical neutron-star equation of state. If this method of
solving the inverse structure problem for binaries is
successful, these approximate equations of state should
become more accurate as Nγ the number of parameters in
the equation of state model, and asNB the number of binary
data points are increased.

The remainder of this paper describes a series of numerical
tests that illustrate how well this inversion method actually
works in practice. Section II describes the construction of
mock data, fM1i;M2i; Λ̃ig for i ¼ 1;…; NB, from a known
equation of state. Section III describes the parametric
representations of the equation of state used in these tests.
These representations, based on spectral expansions of the
adiabatic index, are shown to converge exponentially to the
“exact” equation of state used for the mock data in Sec. II.
Section IV solves the inverse structure problem with these
mock binary data using the method described above to
determine approximate parametric model equations of state.
The accuracy of these model equations of state are then
evaluated by comparing them to the original “exact” equation
of state used to construct the mock data. These results are
described at length in Secs. IVand V. In summary: the errors
in the equation of state models decrease exponentially in
these tests as the number of parametersNγ is increased. This
method for solving the inverse structure problem for binaries
therefore works very well.

II. MOCK BINARY DATA

Gravitational wave observations of neutron-star binaries
can measure the masses, M1 and M2, and the composite
tidal deformabilities Λ̃ of those systems. Mock data,
fM1i;M2i; Λ̃ig for i ¼ 1;…; NB, are constructed in this
section, to be used inSec. IV to test the solution to the inverse
structure problem for binaries outlined in Sec. I. Thesemock
data are constructed from the simple pseudopolytrope,

p ¼ p0

�
ϵ

ϵ0

�
2

; ð3Þ

chosen as the exemplar “exact” equation of state in part
because its adiabatic index is similar tomore realisticmodels
of neutron-star matter. For these tests the constantsp0 and ϵ0
are chosen to have the values p0 ¼ 8 × 1033 and ϵ0 ¼
2 × 1014 in cgs units. The resulting equation of state
produces a maximum mass neutron-star model of about
2.339M⊙.
The goal of the numerical tests performed in Sec. IV is to

determine how well and how accurately the method for
solving the inverse structure problem described in Sec. I
actually works. To do this effectively, extremely accurate
mock data are needed. The stellar structure equations can
be solved numerically more accurately using an enthalpy
based rather than the standard pressure based form of those
equations [9].2 Consequently it is useful to re-write the

2The enthalpy of the star approaches zero linearly at the surface
of the star, while the pressure approaches zero as a relatively high
power of the distance from the surface. Consequently it is much
more difficult to determine the location of the surface (and the
other macroscopic observables of the star) accurately using the
standard pressure based forms of the equations.
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equation of state in terms of the enthalpy h. The simple
equation of state used for these tests, Eq. (3), has the
following enthalpy based form,

ϵðhÞ ¼ ϵ20c
2

p0

ðeh=2 − 1Þ; ð4Þ

pðhÞ ¼ ϵ20c
4

p0

ðeh=2 − 1Þ2: ð5Þ

The massesM1 andM2 in these mock data are computed
by solving the standard Oppenheimer-Volkoff equations
[14] transformed into enthalpy based forms [9]. And, the
tidal deformabilities are computed using the equations
derived by Hinderer [5,6], but transformed into enthalpy
based forms [2,3]. The central enthalpies, hi1c and hi2c, for
the stars in each mock binary system are chosen with a
random number generator from the range needed to
produce stars with masses between 1.2M⊙ and the maxi-
mum mass 2.339M⊙.

3 Figure 1 illustrates the resulting
mock binary systems that are used in the numerical tests in

Sec. IV. The number labels of the mass-pair points indicate
the (randomly chosen) order in which the models are used
in the inversion tests. For example, a test involving NB
binaries would use the data points labeled 1;…; NB.

III. PARAMETRIC REPRESENTATIONS
OF THE EQUATION OF STATE

This section describes the parametric representations of
the equation of state used in the numerical tests of the inverse
structure problem in Sec. IV. Since these tests use enthalpy
based representations of the stellar structure equations,
enthalpy based parametric representations of the equation
of state are needed. Themost efficient representations of this
type presently available are based on spectral representa-
tions of the adiabatic index ΓðhÞ [12]. The best studied
example uses the expansion,

logΓðh; γkÞ ¼
XNγ

k¼1

γk

�
log

�
h
h0

��
k−1

; ð6Þ

where the γk are adjustable parameters, and h0 determines
the low density limit of the domain where the spectral
representation is to be used. For these tests the constant h0 is
chosen to correspond to a density at the outer boundary of
the neutron-star core ϵ0 ¼ ϵðh0Þ ¼ 2 × 1014 g=cm3. Below
this density the equation of state is assumed to be known, and
is taken in our tests to be the exact equation of state given in
Eqs. (4) and (5). Given this expression for Γðh; γkÞ, the
parametric equation of state itself is determined by the
expressions [12]

pðh; γkÞ ¼ p0 exp

�Z
h

h0

eh
0
dh0

μðh0; γkÞ
�
; ð7Þ

ϵðh; γkÞ ¼ pðh; γkÞ
eh − μðh; γkÞ

μðh; γkÞ
; ð8Þ

where μðh; γkÞ is defined as,

μðh; γkÞ ¼
p0eh0

ϵ0 þ p0

þ
Z

h

h0

Γðh0; γkÞ − 1

Γðh0; γkÞ
eh

0
dh0: ð9Þ

These parametric equations of states have been used
successfully to represent a variety of realistic nuclear-theory
model equations of state, with errors that converge toward
zero as the number of parameters Nγ is increased [12,13].
These representations are used in Sec. IVas approximations
to the “exact” equation of state as determined by the mock
binary data from Sec. II. It is useful to understand, therefore,
how well these parametric representations are able to
represent this “exact” equation of state. The adiabatic index
for the “exact” equation of state of Eq. (3) is given by
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FIG. 1. Points indicate the randomly chosen mass pairs
M1 ≥ M2 included in the mock data set.

3The stellar models used for the mock data were constructed
in a two step process. First a large collection of Nstars models
were constructed whose central enthalpies are given by hnc ¼
hmin þ ðhmax − hminÞðn=NstarsÞ2 for n ¼ 1;…; Nstars, with hmin
and hmax being the central enthalpies of the models with M ¼
1.2M⊙ and M ¼ 2.339M⊙ respectively. This choice of the hnc
produces a collection of stellar models fMn;Λng having
(roughly) equally spaced masses. The second step uses a random
number generator, ran2 from Ref. [15], to generate a uniformly
distributed random sequence of integers 1 ≤ l ≤ Nstars ¼ 1000.
This random sequence of integers is then used to select the
particular stellar models used as the mock data for these tests,
fMi;Λig, from the much larger collection of models fMn;Λng.
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ΓðhÞ¼ ϵc2þp
pc2

dp
dϵ

¼ 2
ϵc2þp
ϵc2

¼ 2þ2ð1−eh=2Þ2: ð10Þ

While this ΓðhÞ is quite simple, its representation as the
spectral expansion given in Eq. (6) requires an infinite
number of terms. The optimal values of the parameters γk
can be estimated by minimizing the equation of state error
measure ΔðγkÞ, defined as

Δ2ðγkÞ ¼
1

N

XN
i¼1

�
log

�
ϵðhi; γkÞ

ϵi

��
2

ð11Þ

with respect to the Nγ spectral parameters γk. The sum in
this expression is taken over N ≈ 85 points taken from an
exact equation of state table, equally spaced in log ϵ in
the density range 2 × 1014 ≤ ϵi ≤ 1.8895 × 1015 g=cm3

that covers the high density cores of all neutron stars with
this equation of state. This sum measures the differences
between the parametric equation of state densities
ϵðhi; γkÞ with N exact densities ϵi ¼ ϵðhiÞ. Figure 2
shows the minimum values of Δ as a function of the
number of spectral parameters Nγ . These parametric
representations therefore converge exponentially toward
Eq. (3), and Fig. 2 provides a best-case estimate of the
accuracy that the approximate solutions to the inverse
problem in Sec. IV might achieve.
Based on our understanding of other spectral represen-

tations, like Fourier series, the spectral parametric repre-
sentations used here are expected to converge exponentially
for all smooth equations of state. The rate of exponential
convergence will depend, however, on the detailed structure
of the particular equation of state. Equations of state having

more “structure” than the simple pseudopolytrope studied
here will converge more slowly. Spectral parametric rep-
resentations of equations of state having phase transitions
(i.e., discontinuities in the equation of state or its deriva-
tives) are also expected to converge, however the rate of
convergence in those cases are expected to be polynomial
rather than exponential.

IV. NUMERICAL INVERSION TESTS

The goal of the inverse structure problem for binaries is to
determine the equation of state from a knowledge of the
observables fM1ðh1cÞ;M2ðh2cÞ; Λ̃ðh1c; h2cÞg (parame-
trized here by the central enthalpies h1c and h2c of each
star). Let fM1i;M2i; Λ̃ig for i ¼ 1;…; NB denote a random
ensemble of points from the exact surface of observables,
and let ϵ ¼ ϵðh; γkÞ and p ¼ pðh; γkÞ denote a family of
parametric equations of state. The proposal is to construct
approximate solutions to this inverse structure problem by
minimizing the difference between models of the observ-
ables fM1ðh1c; γkÞ;M2ðh2c; γkÞ; Λ̃ðh1c; h2c; γkÞg based on
the parametric equation of state, and the observational
data points fM1i;M2i; Λ̃ig. This difference is measured
using the modeling error measure χ2ðhi1c; hi2c; γkÞ,
defined by

χ2ðhi1c; hi2c; γkÞ ¼
1

NB

XNB

i¼1

��
log

�
M1ðhi1c; γkÞ

M1i

��
2

þ
�
log

�
M2ðhi2c; γkÞ

M2i

��
2

þ
�
log

�
Λ̃ðhi1c; hi2c; γkÞ

Λ̃i

��
2
�
: ð12Þ

The best-fit model is identified by minimizing the modeling
error χ2ðhi1c; hi2c; γkÞ with respect to the 2NB þ Nγ param-
eters fhi1c; hi2c; γkg. The parametric equation of state ϵ ¼
ϵðh; γkÞ andp ¼ pðh; γkÞwith γk evaluated at this minimum
is an approximate solution to the inverse structure problem.
The most difficult step in this approach is finding the

minimum of χ2ðhi1c; hi2c; γkÞ numerically. The minimiza-
tion method used for these tests is the Levenberg-
Marquardt algorithm [15]. This is a steepest descent type
algorithm that requires as input the value of the function,
χ2ðhi1c; hi2c; γkÞ, and its partial derivatives with respect to
each of the parameters. The needed partial derivatives can
be constructed from ∂M=∂hc, ∂Λ=∂hc, ∂M=∂γk and
∂Λ=∂γk (computed for these tests using the methods
described in Refs. [2,3]) plus the derivatives

∂Λ̃
∂M1

¼ −
16M3

1M2ð7M1 − 48M2ÞΛ1

13ðM1 þM2Þ6

−
16M4

2ð48M1 − 7M2ÞΛ2

13ðM1 þM2Þ6
; ð13Þ
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Δ

FIG. 2. Points illustrate the average errors Δ of the enthalpy-
based spectral representations of the “exact” equation of state as a
function of the order of the spectral representation, Nγ .
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∂Λ̃
∂M2

¼16M4
1ð7M1−48M2ÞΛ1

13ðM1þM2Þ6
þ16M1M3

2ð48M1−7M2ÞΛ2

13ðM1þM2Þ6
;

ð14Þ

∂Λ̃
∂Λ1

¼ 16M4
1ðM1 þ 12M2Þ

13ðM1 þM2Þ5
; ð15Þ

∂Λ̃
∂Λ2

¼ 16M4
2ðM2 þ 12M1Þ

13ðM1 þM2Þ5
: ð16Þ

The Levenberg-Marquardt minimization method is
very fast and very accurate at locating the local minimum
close to any given initial parameter point. It often fails to
find the smallest minimum, however, if the function has
many local minima. To avoid unwanted local minima, and
to speed up the calculation, the numerical minimizations
performed for these tests were initialized using the exact
values of the parameters hi1c and hi2c from Sec. II, and the
best-fit values of the parameters γk described in Sec. III.
The minimization procedure is iterated as many times as
needed (typically less than ten) until χ is unchanged from
one step to the next.4

Figure 3 illustrates the minimum values of χ obtained in
this way for different values of Nγ and NB. The equations
used to locate the minimum of χ are degenerate whenever

the number of parameters, 2NB þ Nγ , is less than the
number of data points, 3NB. Consequently these minima
were only computed for Nγ ≤ NB. This figure shows that
the numerically determined values of the minima of χ
decrease exponentially as the number of equation of state
parameters Nγ is increased. These minima are relatively
insensitive to the values of NB for fixed values of Nγ .
Figure 4 shows the accuracy of the parametric equations

of state whose spectral parameters γk are set by the minima
of χ shown in Fig. 3. These equation of state errors are
measured with the quantity Δ defined in Eq. (11). Like the
observational data modeling errors χ, the equation of state
errors Δ decrease exponentially as Nγ is increased, but are
relatively insensitive to NB for fixed Nγ .

5

Figures 3 and 4 show that the modeling errors χðNγÞ are
comparable to the equation of state modeling errors ΔðNγÞ
for the simple mock data used in these tests. This rough
comparability of these errors is expected to apply even for
more complicated, more realistic equations of state. Since
representations of more realistic equations of state are
expected to converge more slowly, the modeling errors χ
are also expected to converge more slowly in those cases.
For smooth equations of state, these convergence rates are
expected to be exponential in the number of parameters Nγ .
Equations of state having phase transitions are expected to
converge as a power of Nγ , with a power that depends on
the order of the phase transition.
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FIG. 3. Curves indicate the minimum values of χðhi1c; hi2c; γkÞ
achieved for different numbers Nγ of spectral parameters, and
different numbers NB of mock binary data points.
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FIG. 4. Curves indicate the values of ΔðγkÞ for the γk that
minimize χðhi1c; hi2c; γkÞ for different numbers Nγ of spectral
parameters, and different numbersNB of mock binary data points.

4In the analysis of real neutron-star observations, it will not be
possible to know a priori what the optimal parameters hi1c, h

i
2c

and γk are likely to be. In this case it will almost certainly be
necessary to adopt more powerful computational methods for
locating the absolute minimum of the complicated nonlinear
function χ2ðhi1c; hi2c; γkÞ.

5The results forNγ ¼ 10 are not shown in Figs. 3 and 4, because
the rates of convergence decreased abruptly at this point. This is
probably caused by numerical inaccuracies at the 10−10–10−11

level in some part of the code. Since the source of those errors was
not identified, and since the results for Nγ ¼ 10 appeared to be
unreliable, they were not displayed with the Nγ < 10 results.
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V. DISCUSSION

The results of the numerical tests in Sec. IV confirm that
the method of solving the inverse structure problem for
neutron-star binaries outlined in Sec. I is mathematically
convergent using data from a randomly chosen ensemble of
binaries. The equation of state accuracies shown in Fig. 4
are comparable to the best-fit errors for this equation of
state in Fig. 2. So this method of determining the equation
of state is also very efficient.
Important features of the analysis presented here are its

generality and lack of simplifying assumptions. No
assumptions are made about the equation of state in the
cores of neutron stars other than thermodynamic stability.
Thermodynamic stability requires the equation of state
function ϵðpÞ to be monotonically increasing. It is imposed
implicitly by the spectral expansion for the adiabatic index
ΓðhÞ in Eq. (6) that ensures ΓðhÞ ≥ 0. The analysis here
also makes no simplifying assumptions about the
composite deformabilities Λ̃ of the binaries. In contrast,
the recent analysis of GW170817 in Ref. [16] assumes the
tidal deformabilities of the two neutron stars are related by
Λ1M6

1 ¼ Λ2M6
2, while the analysis in Ref. [17] assumes

Λ2 − Λ1 is a prescribed function of Λ1 þ Λ2 and the mass
ratioM2=M1. The analysis here simply evaluates Λ̃ exactly
using Eq. (1) in terms of the parametric equation of state
and the central enthalpies of each star. No additional
assumption about the form of Λ̃ is needed.
The method proposed here for solving the inverse

structure problem for binaries is well posed and admits
an exact solution when the number of data points NB is
greater than or equal to the number of equation of state
parametersNγ. In contrast, the recent analyses in Refs. [16–
18] attempt to determine four equation of state parameters
using Bayesian statistical methods from the observation of
the single neutron-star binary GW170817. From the
perspective of the exact problem, it is not possible to
determine more than one equation of state parameter from
the observation of a single binary. Analyzing a single
binary using a four parameter equation of state model in the
exact case could only restrict the four-dimensional param-
eter space to some three-dimensional subspace. To make
the problem well posed, prior constraints on the equation of
state parameters would be needed to fix a particular point
on that three-dimensional parameter subspace. In the

method proposed here for solving the inverse structure
problem, the appropriate dimensional space of parameters
is chosen from the beginning by requiring Nγ ≤ NB. No
additional assumptions or prior constraints on the equation
of state parameters are needed.
The “exact” equation of state used to create the mock data

in these tests is very simple and very smooth. Consequently
the rate of convergence of the errors in these tests is probably
faster than it would be for more realistic equations of state.
The inverse structure problem for single neutron stars [2,3]
has been studied using a number of more realistic nuclear-
theory model equations of state. The convergence rates for
the equation of state errors found here are only a bit faster
than those found previously for the smoothest and simplest
realistic nuclear-theory based equation of state models (e.g.,
PAL6). Consequently, the expectation is that the equation of
state errors for the binary problemwill be similar to those for
the single neutron-star inverse problem studied previously.
A fairly small number of high accuracy measurements from
binary systems should therefore be sufficient to determine
the high density neutron-star equation of state at the fraction
of a percent level, if such high accuracy measurements ever
became available.
The mock data used in the analysis in Sec. IV were

constructed with high precision to allow the mathematical
convergence tests of the method to be confirmed with high
confidence. Those convergence tests were the primary
purpose of this paper. Observations from real binary
systems will contain significant measurement errors, and
those measurement errors will also contribute to the errors
in the equations of state determined in this way. More
realistic estimates of the equation of state errors achievable
by these methods can only be found therefore using more
realistic mock data for these tests. The plan for a future
study is to introduce random errors into the mock data with
a sequence of different sizes, e.g., 1%, 2%, 5%, 10%, 20%,
50% errors, and then to determine how these data errors
affect the inferred equation of state errors.
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