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Abstract. We consider the problem of determining from intrinsic properties
whether or not a given spacelike surface is a Cauchy surface. We present three
results relevant to this question. First, we derive necessary and sufficient
conditions for a compact surface to be a Cauchy surface in a spacetime which
admits one. Second, we show that for a non-compact surface it is impossible to
determine whether or not it is a Cauchy surface without imposing some
restriction on the entire spacetime. Third, we derive conditions for an
asymptotically flat surface to be a Cauchy surface by imposing the global
condition that it be imbedded in a weakly asymptotically simple and empty
spacetime.

1. Introduction

In the initial value formulation of general relativity, one starts with initial data on
a surface S and evolves that data to produce a maximal 4-dimensional region,
D(S), the Cauchy development of S (see [1] and pp. 244-255 of [2]). One goal of
the initial value problem is to find sufficient intrinsic conditions on the surface S
and its data which will guarantee that its Cauchy development D(S) is an
inextendible spacetime. (The surfaces 4 and B in Figure 1 have developments
which are extendible.) Such sufficient conditions are not known.

If D(S) is extendible, then there always exists a maximal extension M which is
an inextendible spacetime. (This is easily proved using Zorn’s lemma [3].) Then,
one might ask whether there is some other surface S’ whose development is all of
M ; ie. D(S)=M. We prove a theorem which shows that if S satisfies certain
intrinsic conditions but is not a Cauchy surface for M, then M has no Cauchy
surface at all (i.e. M is not globally hyperbolic). Stated another way, these intrinsic
conditions on S are sufficient to guarantee that if M is globally hyperbolic then S is
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Fig. 1. Each of these diagrams represents a globally hyperbolic spacetime M containing a connected
spacelike submanifold 4, B, or C and its Cauchy development D(A), D(B) or D(C). Surface A is an open
ball. Surface B intersects a singularity. Surface C winds around a spacetime whose spatial topology is a
3-torus. None of the surfaces is a Cauchy surface for M: D(4)+ M, D(B)£M, and C is not acausal.
None of the surfaces is compact: A is open, B runs off the manifold, and C is unbounded

a Cauchy surface for M. Although motivated for an inextendible spacetime M our
theorem applies even if M is extendible.

Most of the intrinsic conditions which we impose on S are necessary
requirements on any Cauchy surface: S must be a connected, spacelike sub-
manifold. However, as seen from the surfaces in Figure 1, these conditions are not
sufficient to prove that S is a Cauchy surface. If, we impose the additional intrinsic
requirement that S be compact, then our result goes through. In § I we prove,

Theorem 1. Let S be a compact, connected, 3-dimensional manifold which is C!
immersed as a spacelike submanifold of a spacetime M. If M is globally hyperbolic
then S is a Cauchy surface.

It would be desirable to have a similar theorem in which the compactness
assumption is replaced by some other conditions on S. However, without some
additional conditions on the entire specetime (M, g) such a theorem is impossible.
This is shown by the following theorem (suggested by Robert Geroch) which is
proved in §IIL

Theorem 2. Let S be a noncompact, 3-dimensional, spacelike imbedded submanifold
of a time-oriented spacetime (M,g). Then S has a neighborhood U which may be
extended to a globally hyperbolic spacetime (M',g') in which S is not a Cauchy
surface.

Theorem 2 indicates that for a noncompact surface S in an arbitrary spacetime
M, there are no conditions upon the intrinsic topology and geometry of S which
would be sufficient to guarantee that S is a Cauchy surface. Even restrictions on
the extrinsic geometry, describing the imbedding of S in M, are not sufficient since
the theorem shows that an entire neighborhood U as well as S is contained in some
globally hyperbolic spacetime in which S is not a Cauchy surface.
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In order to obtain a result in the noncompact case, similar to Theorem 1, it is
necessary to impose some condition on the entire spacetime such as requiring that
Einstein’s equations are satisfied everywhere in M. In §IV we present a result
which requires the global condition that M is weakly asymptotically simple and
empty.

None of our proofs make any assumptions about the geometry or extrinsic
curvature of S in M. In fact our proofs only depend on the causal structure of the
spacetime M and not on any field equations or energy conditions.

The notation and terminology used in this paper are those of Hawking and
Ellis [2]. Slight variations in some definitions exist in the literature. In particular,
we use the term spacetime to refer to a connected 4-manifold M having a Lorentz
signature metric g,,.(Note that M may be extendible.) We say that a surface S is
spacelike if every vector tangent to S is spacelike, and we say that S is acausal if
every non-spacelike curve intersects S at most once. Also, we define a Cauchy
surface as an acausal surface S such that D(S)=M. A slight modification of our
proofs shows that if S is only assumed to be non-timelike, then S is an achronal
surface such that D(S)=M iff M is globally hyperbolic. In §III there are two
metrics on the same manifold M’. To distinguish their causal structures, we will
append the metric to the symbol as a subscript. For example, J, (C,) is the past of
the surface C, according to the metric g.

II. Compact Surfaces

To prove Theorem 1, we must show that every inextendible, non-spacelike curve
intersects S once and only once. We do this by first introducing two foliations of M
which Geroch [4] (see also [2], p. 212) has shown exist in every globally
hyperbolic spacetime:

1) M is foliated by a family of Cauchy surfaces {C,, te IR} which are the level
surfaces of a time function t:M—1R.

i) M is foliated by a congruence of timelike curves {7,:xeC,} where
7,nCy={x}. These curves define a C* projection n:M—C, by mapping each
point of 7, into xe C,,.

Using these foliations, we prove the theorem by successively showing that:

A) Every curve 7, intersects S.

B) Every curve 7, intersects S at most once.

C) Every inextendible non-spacelike curve intersects S; i.e. D(S)= M.

D) Every non-spacelike curve intersects S at most once; i.e. S is acausal.

Hence, S must be a Cauchy surface, which will complete the proof of the
theorem.

A) Every Curve t, Intersects S

We must show that n(S)=C,. Since C, is connected, it is sufficient to show that
7(S) is both open and closed within C,.

First notice that as a compact immersed submanifold of M, S is automatically
imbedded; i.e. S has the relative topology as a subset of M (see [5], p. 22 and [6],
p. 226). Hence, the restricted projection 7mg:S—C, is continuous. Since S is
compact, ng is a closed map (see [6], p. 226) and 7(S) is a closed subset of C,,.
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We now show that mg is a local diffeomorphism. For peS, the kernel of
n,: T,(M)— T, (C,) consists of the timelike vectors tangent to 7, at p. The kernel
of the restriction g, : T,(S)— T, (C,) must be spacelike and so is trivial. Since T,(S)
and T, (C,) are both 3-dimensional, mg, is an isomorphism. By the implicit
function theorem (see [5], p. 24), p has an open neighborhood U C S such that the
restriction n,;:U—-n(U) is a difffomorphism. Hence 7y is a local diffeomorphism.

Since a local homeomorphism is an open map, n(S) is an open subset of C,,.

B) Every Curve 1, Intersects S at Most Once

Since S is compact, for each xe C,, 7, S is compact and has a point r e t,NS with
maximum time; i.e. t(r )= (g), for all get,nS. We must prove that r_is the only
point in 7,NS. We do this by proving that the set F ={r |xeC,} is all of S. Since S
is connected, it is sufficient to show that F is both open and closed.

If F were not open, there would exist a sequence of points g, S — F converging
to a point geF. For each point g,, there is a point p,e F with n(p,)==(g,) and
t(p,)>t(q,)- Since S is compact, the sequence p, accumulates at some point peS.
Since = is continuous, n(p)=mn(g). Since ¢ is continuous, t(p)=t(g). Therefore
p=geF. Now, every point pe S has an acausal neighborhood U CS. (This follows
by a straightforward but tedious argument based on the strong causality
assumption and the fact that S is an imbedded spacelike submanifold.) Since the
distinct sequences p, and g, both accumulate at p, there are points with timelike
separation within U. This contradicts the acausality of U and proves that F is
open.

To see that F is closed, consider a sequence of points p,e F converging to some
point ge S. Then there exists a point pe F with n(p) =7(g). Since F is open and ng is
a local homeomorphism, p has a neighborhood U CF such that the restriction
ny:U—-mn(U) is a homeomorphism. Since 7 is continuous the sequence n(p,)
converges to n(q)=n(p)en(U); and for large enough n the sequence n(p,) remains
in n(U). Since ny'em is continuous, the sequence p,=ny 'on(p,) converges to
ngteon(g)=ngy'en(p)=p as well as to q. Hence g=peF and F is closed.

C) Every Inextendible Non-Spacelike Curve Intersects S

Since S is compact, the time function ¢, restricted to S, assumes its maximum and
minimum. Thus, S lies between two surfaces C,_ and C,, with ™ <t(p)<t™ for all
peS. Any inextendible non-spacelike curve y must intersect both Cauchy surfaces
C,_ and C,,. Parametrize 7y so that y(0)eC,_ and y(1)eC,, ; i.e. t-y(0)=t" and
top(1)=t". The projection of y into S is the curve yg=ng 'emoy. Consider the
continuous function 4(g)=tey(g)— toys(o). The function 4 measures the difference
between the time of a point on y and the time of its projection in S. 4(c) is positive
when (o) is in the future of y4(o), negative when y(o) is in the past of y4(c), and zero
when y(0)=y4(0). Since 7 lies in S, t~ <toypg(s)<t™. Hence, 4(0)=t~ —t-y4(0)<0
while 4(1)=t" —toy4(1)>0. Since 4 is continuous, there exists g,€(0, 1) such that
Moy)=0. Therefore, y(o,)=74(0,)€S ie. y intersects S at the point y(o,).

D) Every Non-Spacelike Curve Intersects S at Most Once

Let y be a future-directed, non-spacelike curve which intersects S at y(a,). Let
pg¢=Tg 'omoy be its projection into S and consider the continuous function
A(g)=top(o)—toyg(o). Note that 4(g,)=0.
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Fig. 2. This diagram illustrates how the two surfaces S and S, the curve ¢, and its open neighborhood
W are located within the spacetime region M'. In the original metric S and S’ are Cauchy surfaces and ¢
is noncausal. After modifying the metric in the region W, ¢ becomes a timelike curve, the surface S’
remains a Cauchy surface, but the surface S is no longer a Cauchy surface

We now show that A is increasing in a neighborhood of o,. Let UCS be an
acausal neighborhood of y(g,). Notice that y(s,)eintD(U). Hence there exists a
6 >0 such that y(e)eint D(U) for all 6 (g, — 6, 0, + ). If p(6)e D*(U) then the curve
Toey Must intersect U at yg(o) in the past of y(s), ie. 4(0)>0. Similarly if
y(6)e D~ (U) then 4(0)<0. If ce(a,—6,0,) and y(6)e D™ (U) then the curve Taiv(o))
from y4(o)e U to y(o) followed by the curve y from y(o) to y(g,)e U would be a
future-directed, non-spacelike curve which intersects U twice. This is impossible
because U is acausal. Therefore, if oe(o,—9,0,) then yp(o)e D (U) and 4(c)<O0.
Similarly, if ge(g,,0,+0) then A(6)>0. Since 4 is continuous, it must be
increasing in some neighborhood of g,

Therefore, 4 is a continuous function which is increasing whenever it is zero.
Thus, 4 can have at most one zero and 7y can intersect S at most once.

II1. Noncompact Surfaces

Our proof of Theorem 2 is constructive. Out of the given spacetime (M, g)
containing S, we construct the neighborhood U containing S and the spacetime
extension of U, called (M', g'). We choose the sets M’ and U C M’ as subsets of M.
Then we construct the new metric g¢° by modifying the metric g within a set W
which is in the past of S and outside of U. The modification consists of tipping the
light cones so that a certain curve o contained entirely within W (and therefore in
the past of S) becomes a future inextendible timelike curve according to ¢'. The
existence of the curve ¢ in the past of S shows that S is not a Cauchy surface for
(M, g'). However, we finally show that there is a surface S’ in the past of W which
remains a Cauchy surface after the metric is modified, so that (M’,g') is globally
hyperbolic. Figure 2 shows where the curve o and the neighborhood W are located
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Fig. 3. This diagram illustrates how the metric is modified in the region W. In the metric g the light
cones are at 45° in this diagram and the curve ¢ is noncausal. The light cones shown in the figure are
those of the modified metric ¢g'. Note that in the modified metric ¢ is a future directed timelike curve
which never intersects S

relative to the surfaces S and S’ within M'. Figure 3 shows how the metric is
modified within W by tipping the light cones.

Proof of Theorem 2. The manifold M’ CM is chosen so that S is a Cauchy surface
for (M'. g). To do this, we first find a neighborhood N CM in which S is achronal.
(The existence of such a neighborhood is guaranteed by Lemma 2 in the Appendix.)
Then we take M'=D (S, N).

Since (M', g) is globally hyperbolic, it can be foliated by surfaces C, and by
curves T, as described in § II. Like S, all of the surfaces C, are noncompact. Also, as
in § 11, the projection along the curves 7, is denoted by 7. For the present proof, we
choose the curves 7, to be everywhere orthogonal to the surfaces C, and we choose
the surfaces C, so that S=C; for some T>0. The open set
U={peM' :t(p)>0} CM’' CM is the neighborhood of S required by the theorem.
The set M’ is the manifold of the extension (M, g").

Our construction of the curve ¢ and the set W (within which the metric is to be
modified) begins with the specification of a curve o, and a set X, both contained in
the noncompact surface C,. We let ¢,:[0, 0)—>C, be any smooth imbedded
spacelike curve which is not confined to any compact subset of C,. Hence, o, has
no endpoint as its parameter z approaches infinity. We let X CC, be a neigh-
borhood of the curve ¢, in which each point ge X lies on a unique geodesic (within
2) which is orthogonal to . (The existence of such a neighborhood is guaranteed
by Lemma 1 in the Appendix.) We demand that X be chosen small enough so that
there is an upper bound to the proper distance from any point in X to the curve o,
along an orthogonal geodesic.

We now extend the parameter z along o, to a function z on 2 by demanding
that z be constant along the geodesics in X which are orthogonal to a,.
Furthermore, we extend the function z to the region n~ }(2)={q:n(q)eZ} by
letting z(q) =z(n(q)).

We now complete the construction of the curve o and the set W. For z=1, let
0(2) =1,y NC, () Where t'(z)= — 3 Texp(—z). Also, let

W={qen '(2):— 3 Texp(—z[q], <t(g)< —4Texp(—z[q])} .
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This somewhat peculiar definition of W is chosen to ensure that for all ¢ <0, the set
J, (C,)nW has compact closure. (Recall that on this set, the function z is bounded.)

The metric is modified on the set W by tilting the cones of g so that ¢ becomes
a timelike curve. To specify the tilting, we use three vector fields:

u'=—(—g"a,to,)" 2g*a, v*=(g"0,20,2)" '?g* 0,z

and k% which is the tangent to the curve o. Note that u“v“gaﬁ:O, because u* is
tangent to the curves 7, while z is constant on these curves. Also note that
k*u’g,, <0 and k*v’g,, >0, since t and z increase along . We define the function ¢
along o as the angle between k* and u* in the positive definite metric
0,5=9op+29,,u"gpu". Finding that cos¢ and sin¢ are both positive definite, we
see that 0 <¢ <5. We extend the definition of the function ¢ to all of W by
demanding ¢(p) = ¢(q) iff z(p) = z(q). We also need a smooth function f:M'—[0,1],
which vanishes everywhere in M'— W and assumes the value f=1 on ¢. The
existence of this function is demonstrated in [5], p. 11. The modified metric ¢ is
now defined by tilting the light cones of g by the amount 0= 3¢ f: let I*= —u*cos 6
+v*sinf; then g,,=0,,—20,,1"0,,I".

We have now constructed the spacetime (M’,¢’) as an extension of the
neighborhood U containing S (inside U,g =g). To complete the proof of the
theorem, we must show that (M’',¢g’) is globally hyperbolic and that S is not a
Cauchy surface for (M, g").

We show that (M'.g') is globally hyperbolic by showing that S'=C_; is a
Cauchy surface; i.e. that any inextendible causal curve y must intersect " once and
only once. Consider such a curve. If y does not intersect the region W, it follows
that y is a timelike curve in the original metric g. Since S’ is a Cauchy surface for
(M',g), y must intersect S’ exactly once.

Now assume that y intersects the region W at some point p. Then as y proceeds
toward the past from the point p, it can only intersect W within J:(C,, )N W.
However, since the t, congruence remains timelike in the new metric (g;ﬁu“uﬁ <0),
we have that J . (C,,)=J, (Cy,). So y can only intersect W within J(C,, )N W.
We saw earlier that this set is compact. Further, ¢ is a time function for (M, g')
since (g~ ") 0,10,t = ¢* 0,105t cos 20 <0. Consequently (M, g) is strongly causal
and cannot have any inextendible causal curves partially imprisoned in any
compact set (Proposition 6.4.7 of [2]). Hence y must eventually leave and remain
outside of W. Afterward, the metric along y will be identical to g. Consequently, y
must intersect . This shows that D,(S)=M’". The metric ¢’ differs from g only in
the region W, which lies entirely in the future of §". Consequently the entire past of
S’ is identical in both metrics. As a result no non-spacelike curve y (according to g¢’)
can intersect S’ more than once, since no non-spacelike curve (according to g)
intersects S’ more than once. Thus §’ is achronal, and (M’, g') must be globally
hyperbolic.

The last step in the proof is to argue that the surface S is not a Cauchy surface
for (M', g'). We accomplish this by showing that the curve ¢ is a future inextendible
timelike curve which does not intersect S. The curve ¢ was specifically constructed
so that it does not intersect S. The metric g’ was specifically designed so that ¢ is
future timelike, since g;ﬁk“k“: —Oal,k“k‘? cos2(¢p—0)<0. If the curve ¢ were not
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inextendible, there would be a point p, such that ¢ would enter and remain within
every open neighborhood of p. It would also follow that 7(p) would be an endpoint
of the curve g, =m-0. But o, was specifically chosen to have no endpoint; hence &
must also be inextendible. Thus S cannot be a Cauchy surface for (M, g').

IV. Asymptotically Flat Surfaces

As we have seen from Theorem 2, it is not possible to determine whether or not a
non-compact surface is a Cauchy surface simply by imposing intrinsic conditions.
One possible global condition would be to require that Einstein’s equations (with
suitable energy conditions) be satisfied at every point. Then, one might conjecture :
If M is a globally hyperbolic spacetime satisfying Einstein’s equations and if S is a
spacelike surface which is in some sense spatially asymptotically flat [7-9], with
one asymptotic region, then S is a Cauchy surface for M.

We cannot prove this conjecture, but we can prove a closely related result.
Instead of imposing Einstein’s equations at each point as our global assumption,
we require that the spacetime, M, be weakly asymptotically simple and empty.
Also, we require that the surface S approaches spatial infinity (i.e. for every
neighborhood U of spatial infinity, iy, the set S— U is compact).

Our preliminary result is: Let S be a connected, 3-dimensional manifold which is
C! imbedded as a spacelike submanifold of a spacetime M. If M is globally
hyperbolic and weakly asymptotically simple and empty with one asymptotic region
and if S approaches spatial infinity, then S is a Cauchy surface.

The proof of our preliminary result is nearly identical to that given in §1I for
Theorem 1. Hence we omit the details here, except to point out the one major
modification. In general, a non-compact surface cannot be bounded between two
leaves of a given Cauchy foliation, even if the surface is required to be compact
outside every neighborhood of spatial infinity. We therefore use a different
foliation (see [2], pp. 221 and 313). Its leaves are partial Cauchy surfaces C, which
become Cauchy surfaces when adjoined to a piece of .#. For each t, the region U,
between C, and C_, is a neighborhood of i;. Since S— U, is compact, S may be
bounded between two leaves of this new foliation.

Appendix

Let S be a submanifold of a manifold M with metric g. Assume dimS <dimM. An
S-normal neighborhood is defined as an open set N C M such that every point ge N
is connected to SN N by a unique geodesic which is contained within N, and which
is normal to S. If Q CSNN, then N is called an S-normal neighborhood of Q. In
particular, the usual definition of a normal neighborhood of a point is just a
p-normal neighborhood of the point p.

Lemma 1. If ¢ is an imbedded submanifold of a manifold C with positive definite
metric g, then o has an o-normal neighborhood.

Lemma 1 is a slight modification of a theorem presented by Milnor and
Stasheff [10], and its proof is easily modeled after their proof.
In the case of a manifold with an indefinite metric, we prove a similar lemma:
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Lemma 2. If S is a spacelike, 3-dimensional imbedded submanifold of a time-
oriented spacetime M, then S has an S-normal neighborhood in which it is achronal.

Proof. We first note that every neighborhood of peS contains an S-normal
neighborhood of p, since the exponential map is well-defined on a small enough
neighborhood.

For each peS§, let U, be an S-normal neighborhood of p. Then M, = U U,is
peS
an open neighborhood of S within M. Since M, is paracompact, it has an open

cover ¥V ={V} such that for each point ge M, there is another point #(g)e S such
that | J{V.eV:qeV;} CU/(q). (See [6], pp. 167 and 168.) Now each pe S belongs to
some Ve V. Let W, be a new surface normal neighborhood of p contained in some

V. Then M, = W, is a new open neighborhood of § within M.
pesS

We claim that M, is an S-normal neighborhood of S. To see this, let ge M ,.
For each W, containing g there is a unique normal geodesic within W, connecting
q to S. However, ¢ may belong to many W,. We need to prove that all the normal
geodesics coincide. But since each W, is contained in some V,, we have

UiW,:qe W, {Viqe Vi cULg)

Thus the normal geodesic within each W, must coincide with the unique normal
geodesic within U (g) and thus they must all coincide within M.

To see that S is achronal within M ,, notice that M, has a time function which
measures proper time along the normal geodesics and is zero on S. Since S is the
level surface of a time function on M,, it is achronal within M ,.
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