
Gen. Rel. Grav. manuscript No.
(will be inserted by the editor)

Simple Numerical Solutions to the Einstein

Constraints on Various Three-Manifolds

Fan Zhang · Lee Lindblom*

August 4, 2022

Abstract Numerical solutions to the Einstein constraint equations are con-
structed on a selection of compact orientable three-dimensional manifolds with
non-trivial topologies. A simple constant mean curvature solution and a some-
what more complicated non-constant mean curvature solution are computed
on example manifolds from three of the eight Thursten geometrization classes.
The constant mean curvature solutions found here are also solutions to the
Yamabe problem that transforms a geometry into one with constant scalar
curvature.
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1 Introduction

Einstein’s gravitational field equations are a complicated non-linear second-
order system of partial differential equations for the components of the space-
time metric. Like the electromagnetic field equations, Einstein’s equations can
be written as a system of evolution equations plus constraints that must be
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satisfied at each instant of time, i.e. on any spacelike surface in the spacetime.
These constraint equations are typically written as systems of elliptic partial
differential equations, which must be solved on an initial time slice before an
evolution can proceed to determine the full spacetime geometry. A variety of
methods have been developed for solving these equations on spacetimes of in-
terest to the numerical relativity community, e.g. for neutron star and black
hole binary systems (see e.g. [1,2,3,4,5]). This paper focuses on a basic prob-
lem that has not received much attention in the literature to date. Solutions
to the constraints are explored here on compact orientable three-manifolds
having a variety of different topologies.

Standard numerical relativity codes at this time are not able to solve prob-
lems on manifolds with non-trivial topologies. Methods have been developed
recently, however, that provide a way to solve partial differential equations
numerically, including the Einstein constraints, on a wide variety of three-
manifolds with different topologies [6]. Those methods are used here to find sim-
ple numerical solutions to the Einstein constraints on four different manifolds:
S2× S1, G2× S1, L(8, 3) and SFS[S2 : (2, 1)(2, 1)(2,−1)]. (The names used
for these manifolds are those used in [7].) The first two, S2×S1 and G2×S1,
are simple fiber-bundle spaces with S1 (the circle) fibers and base spaces S2
(the two-sphere) or G2 (the genus two two-manifold). The L(8, 3) manifold is
an example of a lens space obtained from the three-sphere (S3) by identifying
points related by a discrete isometry. The SFS[S2 : (2, 1)(2, 1)(2,−1)] man-
ifold is a Seifert fibred space constructed from the S2 × S1 fiber bundle by
excising neighborhoods of three fibers from this space and twisting the fibers
in these neighborhoods before re-attaching to the S2 base manifold.

Section 2 reviews and summarizes the particular forms of the constraint
equations used in this study. Section 3 describes the simple constant mean
curvature (CMC) solutions to the constraints found here on the example man-
ifolds described above. Numerical solutions to this equation are found using
the pseudo-spectral methods implemented in the SpEC code (developed orig-
inally by the Caltech/Cornell numerical relativity collaboration [2]). These
CMC solutions are also non-trivial solutions to the Yamabe problem that con-
structs a constant scalar curvature geometry on the manifold [8]. Section 4
describes the numerically more challenging and somewhat more complicated
non-constant mean curvature (or variable mean curvature VMC) solutions to
the constraints on these manifolds. Section 5 summarizes the main results, and
suggests areas where the methods described here might be improved.

2 The Einstein Constraints

This section gives a brief introduction to the form of the constraint equations
used in this study. Consider a spacetime containing a three-dimensional space-
like surface with future-directed timelike unit normal nα.1 The components of

1 Greek letters are used for spacetime indices, e.g. α, β, ..., and Latin letters for spatial
indices on a surface, e.g. a, b, c, ....
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the Einstein equations,

Gαβ n
αnβ = 8πTαβ n

αnβ , (2.1)

Gaβ n
β = 8πTaβ n

β , (2.2)

play the role of initial value constraints on this surface. When re-written in
terms of the spatial metric gab and extrinsic curvature Kab of this surface,
these equations have the form,

Gαβ n
αnβ = 1

2

(
R−KabK

ab +K2
)
= 8πTαβ n

αnβ , (2.3)

Gaβ n
β = ∇bKba −∇aK = 8πTaβn

β , (2.4)

where R is the scalar curvature associated with the metric gab, ∇a is the gab
metric-compatible covariant derivative, and K = gabKab on this surface.

The most general and most widely used method of solving these constraints
re-expresses gab and Kab in terms of “conformal” fields φ, g̃ab, τ̃ , σ̃ab and W̃a

(for a review see [9]):

gab = φ4g̃ab, (2.5)

Kab = φ−2(σ̃ab + L̃W ab) +
1
3φ

4g̃abτ̃ , (2.6)

where φ > 0 is the conformal factor, g̃ab is a positive definite metric, σ̃ab
is trace-free and divergence-free (with respect to the g̃ab metric-compatible

covariant derivative ∇̃a), and τ̃ = K. The tensor L̃W ab is defined as the shear
of W̃a:

L̃W ab = ∇̃aW̃b + ∇̃bW̃a − 2
3 g̃ab∇̃cW̃

c. (2.7)

The constraints, Eqs. (2.3) and (2.4), can be re-written as a system of equa-
tions for φ and W̃a by using the following identities that relate the covariant
derivative ∇a and ∇̃a (the covariant derivative compatible with the conformal
metric g̃ab):

∇aρab = φ−6 ∇̃a(φ2ρab), (2.8)

R = φ−4 R̃− 8φ−5 ∇̃a∇̃aφ, (2.9)

where ρab is any trace-free symmetric tensor field, and R̃ is the scalar curvature
associated with g̃ab. Using these identities Eqs. (2.3) and (2.4) can be written
as,

∇̃a∇̃aφ = 1
8φ R̃+ 1

12φ
5 τ̃2 − 1

8φ
−7(σ̃ab + L̃W ab)(σ̃

ab + L̃W
ab
)− 2πφ5T⊥⊥,

(2.10)

∇̃b(L̃W ba) =
2
3φ

6 ∇̃aτ̃ + 8πφ6Ta⊥, (2.11)

where T⊥⊥ = Tαβ n
αnβ and Ta⊥ = Taβ n

β . The stress-energy components T⊥⊥

and Ta⊥ are determined by the physical properties of the matter in the space-
time, while the conformal fields g̃ab, σ̃ab, τ̃ can be chosen freely. Once these
stress-energy and conformal fields are fixed, Eqs. (2.10) and (2.11) become a
second-order system of elliptic equations for φ and W̃a.
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Differentiable structures were constructed numerically in [6] for a collec-
tion of forty different three-manifolds having representative topologies from
five of the eight Thurston geometrization classes [10,11]. The goal here is to
construct simple solutions to Eqs. (2.10) and (2.11) numerically on a selection
of those manifolds. The procedure introduced in [6] produces a C1 reference
metric g̃ab on these manifolds. Those reference metrics are used to construct
Jacobians and a covariant derivative that define what it means for tensor fields
to be continuous and differentiable across the boundaries between coordinate
patches. These reference metrics are also used here as the conformal metric
that appears in Eqs. (2.10) and (2.11).

The symmetric trace-free divergence-free tensor σ̃ab is often associated
with gravitational-wave degrees of freedom. The differentiable structures con-
structed in [6] for these example manifolds provide no structure from which a
suitable σ̃ab could easily be constructed. Therefore for simplicity the solutions
constructed here set σ̃ab = 0.

Another common simplification used in the solution to the Einstein con-
straints is to set ∇̃aτ̃ = 0. In this case the topologies of the manifolds on which
vacuum solutions exist, i.e. those with T⊥⊥ = T⊥ a = 0, are known to be lim-
ited [12]. To avoid this restriction, a very simple form of matter is introduced
to allow solutions to exist for all the cases considered here. In particular a
cosmological constant Λ is included, whose stress energy tensor is given by,

Tαβ = − Λ

8π
ψαβ , (2.12)

where ψαβ is the full spacetime-metric. The components T⊥⊥ and T⊥ a that
enter the constraints in this case, are given by,

T⊥⊥ =
Λ

8π
, (2.13)

T⊥ a = 0. (2.14)

These assumptions simplify the structures of Eqs. (2.10) and (2.11):

∇̃a∇̃aφ = 1
8φ R̃+ 1

12φ
5 (τ̃2 − 3Λ)− 1

8φ
−7L̃W ab L̃W

ab
, (2.15)

∇̃b(L̃W ba) =
2
3φ

6 ∇̃aτ̃ . (2.16)

Two classes of simple solutions to these equations are constructed numerically
in the following sections: those with ∇̃aτ̃ = 0 (the constant mean curvature
solutions) in Sec. 3, and those with ∇̃aτ̃ 6= 0 (the variable mean curvature
solutions) in Sec. 4.

An important way to measure how well the numerical solutions successfully
solve Eqs. (2.15) and (2.16) is to evaluate how well they satisfy the original
Einstein constraints Eqs. (2.3) and (2.4). To do that the physical metric gab and
extrinsic curvature Kab are re-constructed from the numerically determined
φ and W̃a using Eqs. (2.5) and (2.6). The scalar curvature R associated with
gab is then determined numerically, which allows the original forms of the
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Hamiltonian H and momentum M a constraints, Eqs. (2.3) and (2.4), to be
evaluated,

H = R−KabK
ab +K2 − 16π T⊥⊥, (2.17)

M a = ∇bKba −∇aK − 8π T⊥ a. (2.18)

The accuracy of the resulting gab and Kab can then be measured using the
following constraint norm,

C2 = V−1

∫ (
H2 + gabM aM b

)√
det g d3x, (2.19)

where V is the proper volume of the manifold,

V =

∫ √
det g d3x. (2.20)

This norm, C, vanishes for an exact solution to the Einstein constraints, so a
non-zero value is a useful measure of the accuracy of a numerical solution.

3 Simple Constant Mean Curvature (CMC) Solutions

This section defines a simple one parameter family of constant mean curvature
(CMC) solutions to the Einstein constraints, and reports the results of numeri-
cal evaluations of these solutions on a selection of three-dimensional manifolds
with different topologies.

In the constant mean curvature case, ∇̃aτ̃ = 0, the Einstein constraints
Eqs. (2.15) and (2.16) simplify considerably. In particular Eq. (2.16) becomes

a homogeneous elliptic equation for W̃a, ∇̃b(L̃W ab) = 0, whose simplest (and
in most cases unique2) solution is W̃a = 0. This in turn reduces Eq. (2.15) to
the following,

∇̃a∇̃aφ = 1
8φ R̃+ 1

12φ
5 (τ̃2 − 3Λ). (3.1)

The integral of the left side of Eq. (3.1) vanishes on any compact manifold.
Therefore the constants τ̃ and Λmust be chosen in a way that makes it possible
for the integral of the right side of this equation to vanish as well. For the cases
studied here, a choice that seems to work well is the following,

τ̃2 − 3Λ = − 3
2 〈R̃ 〉, (3.2)

where 〈R̃ 〉 is the average value of the conformal scalar curvature R̃,

〈R̃ 〉 =
∫ √

det g̃ R̃ d 3x∫ √
det g̃ d 3x

. (3.3)

2 The Wa = 0 solution is unique up to the addition of a conformal Killing field, and none
exist for most geometries.
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This choice transforms Eq. (3.1) into the form

∇̃a∇̃aφ = 1
8φ

(
R̃− φ4〈R̃ 〉

)
. (3.4)

This equation has the exact solution φ = 1 in the constant scalar curvature
case R̃ = 〈R̃ 〉, and admits solutions in all the CMC cases studied here. Note
that it would not be possible to find φ > 0 solutions to Eq. (3.1) when R̃ > 0
unless Λ > 1

3 τ̃
2, i.e. unless the cosmological constant is positive.

Once a conformal metric g̃ab is chosen, Eq. (3.4) becomes a second-order
elliptic differential equation that can be solved using a variety of standard nu-
merical methods. The conformal metrics used for the examples in this study
are the reference metrics constructed in [6] for building differentiable structures
on these manifolds. These positive-definite metrics are smooth within each cu-
bic coordinate chart, and are continuous and differentiable in the appropriate
senses across the interfaces between charts.

Table 3.1 lists the compact orientable manifolds selected for this study.
These three-manifolds belong to three different Thursten geometrization classes:
L(8, 3) and SFS[S2 : (2, 1)(2, 1)(2,−1)] belong to the S3 class, G2 × S1 be-
longs to the H2×S1 class, and S2×S1 is the defining member of the S2×S1

class. This table also lists 〈R̃〉 defined in Eq. (3.3) and the physical volumes
V(CMC) and V(VMC) defined in Eq. (2.20) for the CMC and VMC geometries
constructed in this study on each of these manifolds. These volumes measure
the physical “sizes” of the manifolds in the length-scale units of our code, and
can therefore be used to calibrate the sizes of the curvatures of the geometries.
Figure 3.1 illustrates the multicube structure used in this study to represent
the G2 × S1 manifold, with surface colors representing

√
det g̃ and R̃ for the

reference metric used here. Blue colors in these figures represent small values
of these scalars, and red colors represent large values. The scalar curvatures R̃
for the reference metrics used in this study are not constant, as illustrated in
Fig. 3.1b. Therefore the constraint Eq. (3.4) is not trivial even in the simple
CMC case studied here.

Table 3.1: Compact orientable manifolds included in this study. Also listed are the average
scalar curvature 〈R̃〉 defined in Eq. (3.3), and the physical volumes V(CMC) and V(VMC)
defined in Eq. (2.20) for the CMC and VMC geometries constructed on each manifold.

Manifold 〈R̃〉 V(CMC) V(VMC)
G2× S1 -2.97 9.68 8.20
L(8, 3) 2.66 8.23 8.23
S2× S1 2.69 9.42 9.39
SFS[S2 : (2, 1)(2, 1)(2,−1)] 2.66 8.23 8.23

For this study the differential Eq. (3.4) has been solved numerically using
the pseudo-spectral methods implemented in the SpEC numerical relativity
code [2]. Functions are represented by their values on a grid defined by the
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(a) Square root of determinant of g̃ab. (b) Scalar curvature R̃.

Fig. 3.1: Views of the multicube structure used to represent the G2 × S1 manifold, along
with the surface values of the determinant of the reference metric,

√
det g̃, and the scalar

curvature R̃.

locations of the Gauss-Lobatto collocation points. Representing functions in
this way provides a numerically efficient way to transform back and forth be-
tween the grid representation of functions, and their representation as Cheby-
shev polynomial expansions. Derivatives are evaluated numerically using the
exact analytic expressions for the derivatives of those Chebyshev expansions.
The elliptic differential operator in Eq. (3.4) becomes in effect a linear matrix
that operates on the vector of grid values of φ. Boundary conditions are also
included in this matrix operator that enforce the continuity of φ and its gra-
dient ∇φ across the interface boundaries between the multicube coordinate
charts. The non-linear Eq. (3.4) is solved by minimizing the discrete version
of the residual E defined by

E = ∇̃a∇̃aφ− 1
8φ

(
R̃− φ4〈R̃ 〉

)
. (3.5)

The SpEC code minimizes these residuals by accessing the ksp linear solver
and the snes non-linear solver from the PETSC software library [13]. These
solves are done iteratively, starting with the initial guess φ = 1 for the lowest
spatial resolution. Once the solver finds a solution that satisfactorily minimizes
E for one resolution, that solution is interpolated onto the next higher reso-
lution grid as its initial guess. This procedure is repeated through a series of
increasing numerical resolutions. Solving the equation in this way mimics the
advantages of a multi-grid solver by allowing the long length-scale features
of the solution (which take the longest to converge numerically) to be deter-
mined in the faster low-resolution solves. These numerical computations take a
very long time, and this has limited our ability to consider additional example
manifolds or to explore them with higher numerical resolutions.

The constraint norm C defined in Eq. (2.19) vanishes for any exact so-
lution to the constraint equations and is therefore an important and useful
measure of the accuracy of the numerical solutions. This constraint norm has
a particularly simple form for these simple CMC solutions. The momentum
constraint from Eq. (2.18) is satisfied identically in this case, M a = 0, since
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σ̃ab = W̃a = 0. Thus C depends only on the Hamiltonian constraint H defined
in Eq. (2.17). For the CMC case H is given by

H = R+ 2
3

(
τ̃2 − 3Λ

)
= R− 〈R̃〉. (3.6)

Consequently the constraint norm C becomes

C2 = V−1

∫ (
R− 〈R̃ 〉

)2√
det g d3x. (3.7)

The vanishing of C implies that the scalar curvature R is constant, R = 〈R̃ 〉,
for these simple CMC solutions. Thus the conformal factor φ is the solution
to the Yamabe problem that transforms g̃ab into the constant scalar curvature
metric gab [8]. Figure 3.2 illustrates the values of the constraint C as a function
of the spatial resolution N (the number of grid points in each direction of
each multicube region) for each of the manifolds studied here. These results
show that our numerical methods (generally) converge with increasing values
of the spatial resolution N , and produce reasonably accurate solutions to the
constraint equations. The values of C for the N = 35 resolutions of the G2×S1
and S2 × S1 manifolds are larger than expected. These numerical solutions
are very time consuming for the higher resolution cases, and it is possible that
the final results reported here could have been improved somewhat with more
computer time or perhaps by setting somewhat different parameters in the
PETSC solvers.

16 20 24 28 32 36
N

10
-5

10
-4

10
-3

10
-2 G2xS1

L(8,3)

S2xS1
SFS[S2:(2,1)(2,1)(2,-1)]

Fig. 3.2: Norm of the Einstein constraints, C, as functions of the numerical resolution N
for the numerical CMC initial data solutions.

Solutions to the CMC Einstein constraint Eq. (3.4) should be smooth across
the interface boundaries between multicube coordinate patches. Therefore the
continuity of the resulting solutions and their derivatives across those inter-
face boundaries is another basic measure of how well these numerical solutions
successfully solve the constraint equations globally. The L2 norms of the differ-
ences between these boundary values of the conformal factor φ are computed
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by taking the square root of the squares of the differences averaged over all the
boundary grid points. These norms are shown in Fig. 3.3 for each numerical
resolution N for each of the manifolds studied here. The results show that
the numerical CMC solutions have boundary continuity errors that are orders
of magnitude smaller than the Einstein constraint errors for these solutions
shown in Fig. 3.2.

16 20 24 28 32 36
N

10
-14

10
-12

10
-10

10
-8

G2xS1
L(8,3)

S2xS1
SFS[S2:(2,1)(2,1)(2,-1)]

(a) Conformal factor discontinuities.

16 20 24 28 32 36
N
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-8
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G2xS1
L(8,3)

S2xS1
SFS[S2:(2,1)(2,1)(2,-1)]

(b) Conformal factor gradient discontinuities.

Fig. 3.3: Norms of the interface discontinuities in the conformal factor and its gradient as
functions of the spatial resolution N for the CMC solutions.

4 Simple Variable Mean Curvature (VMC) Solutions

This section defines a simple one parameter family of variable mean curvature
(VMC) solutions to the Einstein constraints, and reports the results of numeri-
cal evaluations of these solutions on a selection of three-dimensional manifolds
with different topologies.

The constraint equations in the simple VMC case studied here are given
by,

∇̃a∇̃aφ = 1
8φ R̃+ 1

12φ
5 (τ̃2 − 3Λ)− 1

8φ
−7L̃W ab L̃W

ab
, (4.1)

∇̃b(L̃W ba) =
2
3φ

6 ∇̃aτ̃ . (4.2)

These become a second-order system of elliptic equations for φ and W̃a once
the conformal fields g̃ab, σ̃ab, τ̃ and the cosmological constant Λ are chosen.
Unlike the CMC case, these equations are coupled so they must be solved as
a single large system rather than individually one after the other.

The conformal fields g̃ab and σ̃ab for these simple VMC solutions are chosen
to be the same as those used for the CMC solutions described in Sec. 3. The
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conformal metric g̃ab is identified with the reference metric constructed using
the methods describe in [6] for that manifold. The transverse trace-free part
of the conformal extrinsic curvature, σ̃ab is set to zero. Given these choices,
the only remaining freedoms are the choices of a suitable non-constant τ̃ and
the cosmological constant Λ.

The only requirements on τ̃ are that it must be continuous and differen-
tiable, even across the interfaces between multicube regions, and sufficiently
slowly varying to be easily resolved by the numerical code. One possibility is
to set

τ̃ = A
(
1 +B h(sx)h(sy)h(sz)

)
, (4.3)

where A and B are constants, sx, sy and sz are re-scaled local coordinates in
each multicube coordinate chart with ranges −1 ≤ sx, sy, sz ≤ 1, and h(s) is
defined by

h(s) = 8
15 − (1− s2)2. (4.4)

This h(s) has the value h(±1) = 8
15 and derivative dh(±1)

ds = 0 on each of
the boundaries of the coordinate patch where s2 = 1. (The 8

15 constant was
chosen to make the integral of h(s) vanish.) Therefore τ̃ defined in Eq. (4.3)
is continuous and differentiable in the appropriate sense for any values of the
global constants A and B. The spatial average of τ̃ is 〈τ̃〉 = A, so a natural
choice for A is A2 = |〈R̃〉|, which makes the scale of the extrinsic curvature
comparable to the scale of the scalar curvature R̃. The spatial variation in
τ̃ is determined by B. The variance µ is defined as the rms average spatial

variation in τ̃ , and is related to B by B2 = µ2
(
525
64

)3
. Using these choices for

A and B produces the τ̃ used here for the simple VMC solutions:

τ̃ =
∣∣〈R̃〉

∣∣1/2
[
1 + µ

(
525
64

)3/2
h(sx)h(sy)h(sz)

]
. (4.5)

Figure 4.1 illustrates the surface values of this τ̃ on the multicube structure
used to represent the G2×S1 manifold in this study. The variance parameter
µ = 0.1 used for the example in this figure results in spatial variations of τ̃
with max τ̃ /min τ̃ ≈ 1.8.

The last choice needed to fix these simple VMC solutions is the value of
the cosmological constant Λ. If a solution to Eq. (4.1) exists, the integral of
its right side must vanish. The idea is to choose Λ that makes it possible to
have solutions with φ ≈ 1. In this case the spatial average of the terms on the
right side of Eq. (4.1) must satisfy,

0 ≈ 1
8 〈R̃ 〉 − 1

8 〈L̃W ab L̃W
ab
〉+ 1

12 〈τ̃2〉 − 1
4Λ. (4.6)

From Eq. (4.2) it follows that the spatial variations in L̃W ab should be com-

parable in size to the spatial variations in τ̃ , i.e. 〈L̃W abL̃W
ab
〉 ≈ 4

9µ
2〈τ̃〉2.

The quantity 〈τ̃2〉 that appears in Eq. 4.6 is also determined by the spatial
variation in τ̃ : 〈τ̃2〉 = (1 + µ2)〈τ̃〉2. Thus a suitable choice for Λ should be

Λ = 1
2 〈R̃〉+ 1

9 (3 + µ2)|〈R̃〉|. (4.7)
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Fig. 4.1: Surface values of τ̃ for the simple VMC solution on the G2× S1 manifold. The
scale of the spatial variations in τ̃ is set by the variance parameter µ. In the example shown
here µ = 0.1 which has max τ̃ /min τ̃ ≈ 1.8.

The simple VMC solutions described above were constructed in this study
by solving Eqs. (4.1) and (4.2) numerically. These solutions were obtained for
each of the manifolds listed in Table 3.1 using the numerical methods described
in Sec. 3 for the CMC case. The expression used for τ̃ in these solutions is given
in Eq. (4.5). The variance parameter in this expression is set to µ = 0.1 for
the solutions on the G2×S1 and the S2×S1 manifolds, and µ = 0.01 for the
L(8, 3) and SFS[S2 : (2, 1)(2, 1)(2,−1)] manifolds to speed up convergence in
those cases. The cosmological constant Λ used for these simple VMC solutions
is given in Eq. (4.7).

The VMC Eqs. (4.1) and (4.2) are a much more complicated system than
the simple scalar CMC Eq. (3.1). Consequently the numerical convergence is
significantly slower. This inefficiency made it impractical to consider solutions
with numerical resolutions larger than N = 28 for this study. The N ≤ 28
solutions took several months running in parallel (one processor for each cubic
region) to achieve a satisfactory level of convergence. Figure 4.2 shows the
norm of the Einstein constraints Eq. (2.19) for these numerical VMC solutions,
which are similar in size to the CMC constraint norms at the same resolutions
in Fig. 3.2. Figure 4.3 shows the norms of the discontinuities in the conformal
factor and its gradient across the boundary interfaces between the multicube
regions. The sizes of these discontinuities are also comparable to those for the
CMC solutions at the same numerical resolutions in Fig. 3.3.

5 Discussion

This paper outlines a basic framework for finding numerical solutions to the
Einstein constraint equations on manifolds with non-trivial topologies. These
ideas are illustrated here using simple constant mean curvature and variable
mean curvature numerical solutions on several different compact orientable
manifolds. The constant mean curvature solutions found here have constant
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Fig. 4.2: Norm of the Einstein constraints, C, for the numerical VMC initial data solutions.
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(a) Conformal factor discontinuities.
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(b) Conformal factor gradient discontinuities.

Fig. 4.3: Norms of the interface discontinuities in the conformal factor and its gradient as
a function of spatial resolution N for the numerical VMC solutions.

scalar curvatures and are therefore solutions to the Yamabe problem on these
manifolds as well. The one feature of these numerical examples that was sur-
prising (to us) was the extreme inefficiency of our numerical elliptic solver.
Some of the numerical VMC solutions presented here required running for
months in parallel on a reasonably fast multiprocessor computer. We plan to
study ways to improve this efficiency in a future project so that more cosmolog-
ically interesting solutions can be obtained and studied on a larger collection
of manifolds. We plan to explore a variety of ways this might be done, e.g.
through more efficient utilization of the PETSC solvers, by finding and imple-
menting more efficient numerical methods for solving elliptic equations than
those available in the SpEC code, or by finding different formulations of the
Einstein constraints that can be solved numerically more efficiently.
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