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ABSTRACT

Two approaches to measuring the parametrized post-Newtonian parameters B and y using
the gravitational fields of the gas giant planets are considered. First, we note that the post-
Newtonian pericenter precession rates of the innermost moons of these planets are the largest
in the solar system, being many times larger than that of Mercury. We review the observations
of these objects to date, and suggest techniques that could well render this effect measurable.
Second, we consider the post-Newtonian effects on the orbit of a spacecraft. We argue that with
currently available techniques, the Doppler tracking of a spacecraft could determine the post-
Newtonian effect on the orbit to the few percent level.

Subject headings: celestial mechanics — planets: general — relativity

I. NATURAL SATELLITES: ORBITAL
PERICENTER PRECESSION

The perihelion precession of Mercury was the first
known natural phenomenon that could not be
explained in terms of Newtonian gravity but could be
accounted for by general relativity theory (Einstein
1961). Well before Einstein created the theory of
general relativity, astronomers realized that there was
an excess 43" per century precession in the perihelion
of Mercury’s orbit. The measurement of this preces-
sion, and its theoretical significance, have continued
to be of great scientific interest (Dicke and Goldenberg
1967; Dicke 1974; Hill and Stebbins 1975). Observa-
tions are also being made to determine the post-
Newtonian perihelion precessions of Venus, the
Earth, and certain asteroids (Reasenberg and Shapiro
1977). These observations are of extreme importance
to experimental gravitation since of the three basic
solar system tests of general relativity (perihelion
precession, light bending, time delay) only the peri-
helion precession effect involves the parametrized
post-Newtonian (PPN) parameter 8.

The post-Newtonian precession of the orbit of
Mercury is not, however, the largest in the solar
system. The post-Newtonian (PN) contribution to the
pericenter precession rate of an orbit is given by the
formula:

G3/2M3/2
wpn=m(2+27—ﬁ), 1

where M is the mass of the central body, a is the
semimajor axis of the orbit, e is the eccentricity of the
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orbit, G is the gravitational constant, and ¢ is the
speed of light. The PPN parameters 8 and y have
values 8 = 1, y = 1 in general relativity, and we have
ignored ‘“preferred-frame” effects in the pericenter
shift (Will 1974). The theoretical PPN precession
rates for the innermost satellites of Jupiter, Saturn,
and Uranus are all larger than that of Mercury (see
Table 1). Indeed, the post-Newtonian precession of
Jupiter V is about 50 times larger than that of Mercury,
being more than half a degree per century. Mercury
retains the distinction of having the largest post-
Newtonian precession per orbit. The satellites of the
gas giant planets, however, have such short orbital
periods (e.g., 12 hours for Jupiter V, as compared to
88 days for Mercury) that the total precession increases
rapidly with time.

Although the post-Newtonian effects are very large
for these bodies, there are serious problems facing
anyone who would attempt to measure and separate
out the effects of post-Newtonian gravity. These
difficulties are of two distinct types. The first relates
to the problem of determining the orbital elements of
these satellites to the desired degree of accuracy. The
second type of difficulty arises because the total
precession of the orbits of these satellites is governed
mostly by strictly Newtonian effects. To isolate the
post-Newtonian component of the precession, all
larger contributions must be modeled and subtracted
out.

There are essentially three observational problems
which make it difficult to determine the orbital
elements accurately from Earth-based observations.
The first is that the complete orbits of these objects
subtend a very small angle as seen from the Earth.
While the orbital path of Mercury traces out an arc
some 40° wide, as seen from Earth, the entire orbit of
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TABLE 1
LARGE PoST-NEWTONIAN PRECESSIONS IN THE SOLAR SYSTEM
Visual Visual Quadrupole
wpN Wquad Eccentricity Magnitude of Magnitude of Moment of
Satellite (arcsec yr~1) (arcsec yr~—*) of Orbit Satellite* Central Body* Central Body
Mercury......... 0.43 0.015 0.2056% —0.36 -27 (13 + 8) x 10-5%
Jupiter V......... 22 3.3 x 108 < 0.0025§ +13.0 —2.55 (14733 + 4) x 1079
Jupiter I.......... 2.7 1.7 x 10° 0.0000% +4.80 —2.55 (14733 + 4) x 10-¢
Jupiter II......... 0.84 34 x 10* 0.0003+ +5.17 —2.55 (14733 + 4) x 10-¢
SaturnI.......... 34 1.3 x 10¢ 0.0201t +12.1 +0.67 (1667 + 2) x 10~5
Saturn II......... 1.8 5.5 x 10® 0.0044% +11.8 +0.67 (1667 + 2) x 10-5
Saturn III........ 1.1 2.6 x 10° 0.0000% +10.3 +0.67 (1667 + 2) x 108
Saturn IV........ 0.58 1.1 x 10° 0.0022+ +10.4 +0.67 (1667 + 2) x 10-°
Uranus V........ 0.51 9.8 x 10* < 0.01** +16.5 +5.52 ~0.005**

* Harris 1961.

1 Alfvén and Arrhenius 1976.

1 Hill and Stebbins 1975.

§ Sudbury 1969.

|| Null 1976.

# Brouwer and Clemence 1961.
** Whitaker and Greenberg 1973.

Jupiter V lies within a space of 2. The situation is of
course even worse for Saturn and Uranus. The
second observational problem is the closeness of these
objects to the much brighter planets which they orbit.
For example, at greatest elongation Jupiter V is only
about 1.5 Jupiter radii from the limb of Jupiter, yet
the planet is about 15.5 mag brighter than the satellite.
The glare from the much brighter planets reduces the
amount of the satellite’s orbit which is observable,
and at the same time reduces the accuracy of the
positional measurements which one can make. The
third problem which makes it difficult to accurately
determine the precession rate of these orbits is their
rather small eccentricities. It is difficult in practice to
determine the pericenter of a nearly circular orbit.

The Newtonian contributions to the precessions of
the orbits of these satellites are of two types. The first
type is the result of the gravitational interaction of the
satellite with other objects in the solar system. About
999, of the precession of Mercury’s orbit is due to
this type of effect. The problem is worse for the
satellites of Jupiter and Saturn. The Galilean satellites
of Jupiter interact with each other so strongly that
n-body techniques rather than perturbation theory
must be used to understand their orbits. The innermost
satellites of Saturn also interact strongly with one
another, but the situation is much better than in the
Jupiter system. The second type of Newtonian pre-
cession occurs because the gravitational potentials of
the central bodies are not spherical. The largest
contribution to this type of precession comes from the
quadrupole moment of the central body, J,. The
precession of the orbit caused by this effect is given
by the formula:

3G112M1/2R2J
Wquad =~ m ’ 2

where R is the radius of the central body. The

magnitude of this effect for the satellites of interest is
given in Table 1. We see that this effect is many
orders of magnitude larger than the post-Newtonian
effect because of the large oblateness of Jupiter and
Saturn. To perform a successful observation of the
post-Newtonian effect, therefore, the multipole mo-
ments of these planets must be determined to very
high precision.

What are the prospects for overcoming these
difficulties ? For Jupiter V and Saturn I (the objects
having the largest post-Newtonian precession rates)
there is a fairly large historical data base from which
to draw orbital data. Pierce (1974, 1975) has made a
complete literature search on the satellite systems of
Jupiter and Saturn through 1972. He found 3837
micrometer measurements and 133 photographs of
Jupiter V, and 1103 micrometer measurements and
six photographs of Saturn I. Even with this historical
data base, the orbital elements of these satellites have
not been determined to a very high degree of accuracy.

The most recent, and most rigorous, determination
of the orbit of Jupiter V is that of Sudbury (1969). He
gives a good description of the difficulties encountered
in determining the orbit, particularly concerning
systematic errors in the historical micrometer measure-
ments of satellite position. He concludes that the
older data yield an orbit inconsistent with his new
photographic observations. Most significantly for
our purposes, his range of values for the eccentricity
of the orbit includes zero eccentricity, and he thus
finds the precession of the pericenter to be essentially
indeterminate.

The situation for Saturn I (Mimas) is far better.
The eccentricity of the orbit of Mimas is at least an
order of magnitude greater than that of Jupiter V,
thus making it easier to determine the position and
precession rate of the pericenter of its orbit. Further-
more, it is easier to observe Mimas since it is brighter
than Jupiter V, while Saturn is less bright than
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Jupiter. These effects also tend to make the historical
data more reliable for Mimas than for Jupiter V.
The historical observations of the inner satellites of
Saturn were compiled and reduced up to 1928 by G.
Struve (1930). Kozai (1957), analyzing those observa-
tions, was able to determine the motion of the peri-
center of Mimas to an accuracy of + 130" per year,
which is only about 40 times larger than the post-
Newtonian precession. It seems likely that the use of
modern techniques (photography rather than micro-
meter measurements, satellite positions referred to
background stars rather than to the limb of the
planet, etc.), and a determined long range observing
program, could substantially improve these data,
and bring us close to the level of the post-Newtonian
gravity effects. In view of the 22 hour period of Mimas,
it might also be worthwhile to coordinate observations
between two observatories 11 or 12 hours apart in
longitude, to allow observation of both regions of
greatest elongation on the same orbit. It is possible
that such a program could bring the accuracy of
observations to within a zero-order determination of
the post-Newtonian precession of Mimas; however,
to go further and actually determine the post-
Newtonian precession to several digits, a way must be
found to deal with the scattered light of the primary
planet.

The main hope for overcoming the problem of the
much brighter central planet hindering observations
seems to lie in the techniques developed (and being
developed) for the observation of another post-
Newtonian effect: the noneclipse determination of
the deflection of starlight by the Sun. This observation
has been discussed by Hill et al. (1977) and by
Handler and Matzner (1978). There, as here, the main
problem is to reduce the scattered light from the
nearby bright Sun or planet. The use of interferometric
techniques, proposed by Hill and his collaborators,
seems especially promising for Jupiter or Saturn where
Mie scattering is the dominant noise source. Such
techniques will not only allow one to measure the
satellite positions more accurately, but should also
make it possible to observe a greater portion of the
orbit. It may, for example, be possible to observe up
to twice as much of the orbit of Jupiter V as is now
being used. The improvement in orbital accuracy
because of this alone will be much more than a factor
of 2, since observations made near greatest elongation,
which are the easiest to make, are statistically the
worst due to projection effects.

In order to separate out the precession caused by
post-Newtonian gravity, the multipole moments of
the central planets must be determined to very high
accuracy. Perhaps the most promising method to
solve this problem is the use of tracking data from
spacecraft. The Pioneer missions to Jupiter have
already given vastly improved values of the multipole
moments of Jupiter (Null 1976), and future missions
could give values to the needed accuracy. In the case
of Saturn, which is visited by fewer spacecraft, the
multipole moments can also be determined by finding
the orbital elements of several of the natural satellites
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of the system. The moments can then be extracted,
as the precession due to each multipole depends on a
different power of a. The combination of observational
and spacecraft data would yield sufficiently accurate
values of the multipole moments of Saturn.

The large post-Newtonian precession rates of the
orbits of the innermost satellites of Jupiter, Saturn,
and Uranus are phenomena which were heretofore not
fully appreciated. We hope that this paper will inspire
observers to seek modern techniques which will
isolate this interesting effect.

II. SPACECRAFT MEASUREMENTS

We consider now the possibility of measuring the
PPN parameters 8 and y directly from the analysis of
spacecraft tracking data. A good fundamental
discussion of the methods and problems related to
such measurements is given by Anderson (1974). In
order to successfully measure the post-Newtonian
effects on a spacecraft trajectory, we must overcome
two basic difficulties. First, the effects of post-
Newtonian gravity on the spacecraft must be large
enough to be measured with Doppler tracking tech-
niques. Second, any nongravitational accelerations
must either be well modeled and subtracted out, or be
much smaller than the post-Newtonian effects, or
have a significantly different “time signature” on the
orbit from that of the purely gravitational accelera-
tions.

We consider first the question of whether the
post-Newtonian contributions to the acceleration of
a spacecraft are large enough to be measured by
currently viable Doppler tracking techniques. The
post-Newtonian contribution to the acceleration
experienced by a spacecraft in orbit about a spherical
central body (assuming a “fully conservative” theory
of gravity, i.e., PPN parameters o; = oy = a3 =
Li=li=0= Z;4 = 0 in the notation of Will 1974)
is given by:

apn =

GMr [2BGM y(ZGM _ 02)]

c?rs r r

GMv-r

+ Qy +2)—7%5 o2r3

3
Note that a direct measurement of the post-Newtonian
acceleration along a spacecraft’s trajectory would in
principle allow one to measure both 8 and y simul-
taneously because of the velocity-dependent terms in
equation (3). For the nearly parabolic orbits taken by
most spacecraft which encounter the gas giant planets
(with the notable exception of the Jupiter orbiter) the
velocity-dependent terms will be of the same size as
the gravitational potential terms. A detailed covariance
analysis for orbits of this type by Anderson and Lau
(1978) shows that the linear combination of PPN
parameters 8 — 2y can be well determined by Doppler
tracking while the other linear combination 28 + y
will have an error about 10 times larger. Also note
that the post-Newtonian contributions to the accelera-
tion have different angular and radial dependence
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from any of the purely Newtonian multipole moment
terms. This fact will allow the simultaneous determina-
tion of all sufficiently large multipole moments, and
the post-Newtonian contributions, from the analysis
of a single orbit.

In order to estimate the accuracy with which the
PPN parameters can be measured, we adopt the
following (admittedly rough and simple-minded)
scheme: the maximum acceleration caused by the
B-contribution to post-Newtonian gravity with a
Pioneer 11 type orbit (i.e., the acceleration at r = 10°
km near Jupiter) is

OagloB = 3.5 x 10~°kms~2, (G))

We compare this to an acceleration noise generated
by the uncertainty in the Doppler tracking system:

where 7 is the integration time of the Doppler tracking
system (chosen by us to be 60s), §(Av) is the un-
certainty in the spacecraft velocity, and 8(Av/v) is the
size of the rms Doppler frequency shift noise. Thus,
we find

an

R a0

x 7.14 x 10128(%)- ©)
This simple-minded scheme overestimates the ac-
curacy by neglecting the problem of separating out
the many different contributions to the total accelera-
tion. At the same time it underestimates somewhat
since it does not take into account the fact that
measurements are made all along the orbit, not just
at one point. In practice it seems to give reasonable
predicted accuracies. We applied this approach to
estimate the error in the measurement of J, for the
Pioneer 11 orbit. We predicted a value which was 4
times smaller than the actual error given by the
detailed data analysis of Null (1976). Further, we
used this technique to predict the accuracy with which
B could be determined from the proposed solar probe
orbit. Our estimate agrees with the predictions of
Anderson and Lau (1978) for B, based on a complete
covariance analysis. Thus we conclude that equation
(6) gives a reasonable estimate of the probable
measurement error.

The best Doppler tracking analysis accomplished
to date is that reported by Null (1976) for the Pioneer
10 and 11 encounters with Jupiter. The NASA-JPL
Doppler tracking system at that time had a data
rms noise level of §(Aw/v) = 2.3 x 1012 for an
integration time of 1 minute. It would appear that the
post-Newtonian effects on the Pioneer 10 and 11
spacecraft trajectories are within about an order of
magnitude of the noise level of the analysis which
was done in 1975-1976, since, by equation (6), we
find 88 ~ 16.

Since then, the Doppler tracking system has been
improved significantly, mainly owing to the significant
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upgrading of the NASA-JPL Doppler tracking net-
work in preparation for another relativistic gravity
experiment: the detection of gravitational waves by
Doppler tracking of distant interplanetary spacecraft
(Estabrook and Wahlquist 1975; Thorne and Bragin-
sky 1976; Wahlquist e al. 1977). The addition of dual-
frequency tracking (“S-band’’ [2200 MHz] from
Earth to spacecraft [“uplink”]; “S-band” and ““X-
band” [8600 MHz] from spacecraft to Earth [*“down-
link”]) and conversion to hydrogen maser clocks
from the earlier rubidium clocks as master oscillators
has decreased the noise level to §(Avfy) & 3 x 10-1*
for an integration time of 1 minute. This should
clearly allow a determination of 8 to about 20%, by
equation (6).

Further improvements in the Doppler tracking
system (e.g., addition of X-band uplink, conversion
to superconducting cavity stabilized oscillators or
other improved clocks, addition of on-board space-
craft hydrogen maser clock) could push 8(Av/yv) ~
10-15 or even 10~1% within the next decade. It seems
likely that these improvements will allow the measure-
ment of B8 and y to at least an accuracy of 10-2, at
which point the nongravitational accelerations (~ 102
km s~2) become significant. This accuracy is, for B,
comparable to the best values determined from the
perihelion precession of the inner planets (8 ~ 1.00 +
0.01; Reasenberg and Shapiro 1977).

We will next consider the problem of nongravita-
tional accelerations on the orbit of a spacecraft. From
equation (4) it is clear that any nongravitational
accelerations will have to be <107!2km s~2 to allow
a 19, measurement of the PPN parameters. Let us
review the current understanding of these sources of
noise.

There are three main sources of nongravitational
accelerations which can interfere with the measurement
of the post-Newtonian gravitational acceleration.
First, the acceleration due to radiation pressure from
solar photons, which can be modeled using techniques
developed by Georegevic (1971) and subtracted off.
The residual solar wind and radiation pressure ‘“noise”
was found to be about 102 km s~2 for the Pioneer
10 and 11 spacecraft (Null 1976). Second, there is the
acceleration caused by leakage from the attitude
control jets of the spacecraft. This acceleration is also
about 1012 km s~2 for the Mariner-Pioneer series of
spacecraft. Third, and potentially the most serious, is
the problem of electromagnetic forces on the space-
craft. Jupiter is known to possess a significant magnetic
field. While there was no rigorous way to place
bounds on the charges of the Pioneer 10 and 11
spacecraft, the best estimates provide an upper limit
of 10~7 Coulomb net spacecraft charge (Null 1976).
This again leads one to an acceleration of about
10-2kms~2 For purposes of comparison, the
maximum post-Newtonian acceleration experienced
by a spacecraft on a Pioneer 11 type orbit around
Jupiter (rm = 10°km, v = 50kms~!) is about
4 x 1071°kms~2

Thus we conclude that the nongravitational
acceleration ““noise” is, for a Mariner-Pioneer vintage
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spacecraft, on the order of 10~2 times the peak post-
Newtonian gravitational acceleration.

It is now clear why the gravitational fields of the
gas giant planets are the bestlaboratories for measuring
the effects of post-Newtonian gravity on spacecraft
trajectories. A heliocentric spacecraft trajectory, in
order to experience a post-Newtonian acceleration of
the same order as Pioneer 11, would have to come
within 107 km of the Sun—about one-sixth the radius
of Mercury’s orbit. The nongravitational acceleration
problems associated with such an orbit would be
enormous because of the solar wind and radiation
pressure. Clearly the gas giant planets provide a
cooler and “quieter” (in terms of radiation pressure
and solar wind) environment for such a measurement.
The Earth, while much more accessible than the gas
giant planets, does not possess as strong a gravita-
tional field. The maximum post-Newtonian accelera-
tion a geocentric spacecraft could experience is only
about 107! km s~2, which is getting fairly close to
the nongravitational acceleration noise level (especially
since radiation pressure and solar wind are 27 times

greater at the Earth than at Jupiter). Geocentric
orbital measurements may become more inviting as
drag-free satellite systems are developed.

While it is easier to predict the success of the space-
craft measurements, we strongly feel that observations
of the post-Newtonian effects on the natural satellites
should be pursued, and the two approaches allowed
to complement one another.

It is perhaps worthwhile to note that our current
values for the PPN parameters B and y come from the
three classic heliocentric solar system experiments.
While many groups have independently measured
these effects, it is always the gravitational field of the
Sun which is being measured. This is somewhat like a
group of independent experimenters all using a single
apparatus to measure fundamental constants. This
viewpoint provides a reasonable justification, it seems
to us, for expending some effort on measuring 8 and
y using a different laboratory ; namely, the gravitational
fields of Jupiter and Saturn, even if the values cannot
be determined as accurately as the solar values.
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