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ABSTRACT

The neutrino radiation, trapped in the core of a collapsing star, serves as an efficient mechanism
for transporting energy and momentum throughout the core. We show, however, that the asso-
ciated radiative viscosity is ineffective in damping differential rotation in the stellar core. We also
compare the effectiveness of damping the oscillations of a stellar core by neutrino dissipation and
by gravitational radiation. We find that gravitational radiation will provide the dominant damping
mechanism for the low / modes in sufficiently dense stellar cores: p > 10%, Neutrino dissipation
provides the damping for lower density cores, and for modes with hlgher I values. Our estimates
indicate that neutrinos do not dominate the damping of core oscillations to the extent found by

Kazanas and Schramm.

Subject headings: gravitation — neutrinos — stars: collapsed — stars: pulsation

I. INTRODUCTION

Recent studies of the collapse of stellar cores show
that the neutrino cross sections are large enough that
the neutrinos become trapped in the core, and therefore
have time to reach thermal equilibrium with the matter
(Arnett 1977; Sawyer and Soni 1979). When this
situation occurs, it is appropriate to approximate the
momentum and energy transport due to neutrinos in
the core as a classical radiative viscosity and heat
conduction. The coefficients of viscosity » and ¢, and
the heat conduction coefficient x, due to the dissipation
from a thermal neutrino gas with energy density p,,
are given by Weinberg (1971):
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The constants ¢ and ¢ are the Stefan-Boltzmann con-
stant and the speed of light, while A and £ represent the
mean free path and the degeneracy of the neutrinos,
and F; is a Fermi integral. We compute here the effects
of these dissipation terms on the dynamics of an ideal
fluid of neutrons, representing the matter in the stellar
core. The characteristic time scales for the cooling of
the stellar core, 7., the damping of differential rotation
due to viscous dissipation, 7,, the damping of acoustical
waves, 74, and the damping of the nonradial modes by
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gravitational radiation, 7, are computed. We show
that the ratio 7,/7, is always greater than one; conse-
quently, the neutrinos are not effective in damping out
differential rotation, despite the large numerical values
of the viscosity coefficients (see Kazanas 1978). Fur-
thermore, we show that the ratio 74/7, is less than one,
unless the temperature of the core has fallen signifi-
cantly below the Fermi energy of the neutron gas in
the core. Thus the neutrinos can be effective in damping
the oscillations of the stellar core while the core is hot.
Finally, we compare the damping of the nonradial
modes of the core due to neutrino dissipation and
gravitational radiation. We find that the emission of
gravitational radiation is less efficient than the neu-
trinos in dissipating the oscillation energy in stellar
cores, except for the modes having small spherical
harmonic index ! in sufficiently dense stellar cores;
p > 103, Our method of treating the neutrino dissipa-
tion and our conclusions differ from those of Kazanas
and Schramm (1977) and Kazanas (1978).

II. COMPUTING THE DISSIPATION TIME SCALES

The damping of differential rotation in a rotating
stellar core is governed by the following terms from the
Navier-Stokes equation (see Landau and Lifshitz 1959,
§ 15):

p % = V;[n(Vie? 4 Viv? — 254V %)) . 5)
The time scale over which the viscosity is effective in
changing the velocity distribution in the core can be
estimated by considering the dimensional form of
equation (5):
RO AQ
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- In this equation p represents the ‘average density of the
core, 7 the average viscosity, R the radius of the core,
Q the average angular velocity, AQ the average spatial
variation of the angular velocity from the mean value,
and 7, the viscous damping time scale. From this
equation, the standard expression for the viscous damp-
ing time (the time required to damp velocity variations
of the order AQ ~ Q) can be inferred:

_ R
—.

M
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The cooling of the stellar core is determined by the
heat diffusion equation (see Landau and Lifshitz 1959,

§ 50)
pcpaTZ; — mYiGVIT) . )

In this equation ¢, is the specific heat (per particle) at
constant pressure, « the heat conduction coefficient, T
the temperature of the fluid, and # the mass of a
particle in the fluid (the neutron mass for our problem).
The surface of the core is kept at a very low tempera-
ture due to the radiation of neutrinos; consequently,
the temperature variation in the core is always on the
order of the average value of the temperature: AT ~ T
Therefore the dimensional form of equation (8) is given
by

Peo = P> 9

where 7, is the characteristic cooling time of the core.
The cooling time scale is thus given by the expression

_ PRc
Te = K . (10)

The specific heat of the stellar core is due primarily to
the neutron gas in the core. If the temperature of the
core is cool enough that the meutrons are degenerate,
kT/er << 1 (er is the Fermi energy of the neutron gas),
then the specific heat is given by the expression (Huang
1963)
L kT
o 7 k g X (11)

If the temperature is much hotter, £7/ep > 1, then the
neutron gas behaves like a classical Boltzmann gas, and
the specific heat is given by the expression

k. (12)

We compute the values of the various dissipation time
scales for both limiting models of the neutron gas. A
realistic collapse results in temperatures intermediate
between these limiting cases, 2T/er ~ 1, which then
cool toward the degenerate Fermi gas limit.

We estimate the damping of acoustical waves in the
stellar core by treating the neutron gas as isothermal
and uniform-density. This model is not absolutely ap-
propriate for describing stellar cores, which are quali-
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tatively isothermal, but not uniform-density (see Arnett
1977). However, this model is probably better than the
other model which yields simple analytic results (a
uniform-density self-gravitating gas which is not iso-
thermal), since the damping process is primarily a
thermodynamic process, and the thermodynamic func-
tions, T and p, in the completely uniform case more
closely resemble the situation in the real stellar core.

The characteristic damping time of acoustical waves
in a uniform-density isothermal medium is computed
in Landau and Lifshitz (1959, § 77):

T4 = 2p?§[§n+§‘+mw( 1 —L)]ﬂ. (13)

Co Cp

In this equation w, is the velocity of sound in the ma-
terial, and e is the frequency of the acoustical wave.
The specific calculation of the damping time presented
in Landau and Lifshitz (1959) is for the damping of
plane waves, but the same expression describes the
damping of spherical waves also (see Rayleigh 1878,
§ 349). Since the expression is quite independent of the
geometry of the waves, we feel it is possible to apply it
here to the damping of the acoustical oscillations of a
stellar core.

The needed combination of specific heats for the
degenerate Fermi gas limit is given by the expression

e S (14)
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while the expression in the case of a Boltzmann gas
has the form

1 4

Co ¢ 15k (15)
With these expressions for the specific heats, and the
expressions for the heat conduction and viscosity coeffi-
cients from equations (1)—(3), we find that the viscosity
contribution to the acoustical damping in equation (13)
is negligible in the stellar core compared with the
contribution from the heat conduction. The heat con-
duction contribution is larger by a factor of mc?/ep
(mc*/kT) for the degenerate Fermi gas (Boltzmann
gas) case. We therefore neglect the viscosity contribu-
tions, and compute the acoustical damping by the
formula

2 -1
ST R T (16)

The speed of sound for the neutron gas is computed
from the formula

261:‘
2 -
Vs 3 (17)

for a degenerate Fermi gas and

5k7
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for a Boltzmann gas. For the frequency of the sound
wave which appears in equation (16), we use the


http://adsabs.harvard.edu/abs/1979ApJ...232L.101L

No. 2, 1979

formula for the frequencies of the Kelvin modes of
nonradial oscillation of an incompressible self-gravitat-
ing gas sphere (see Chandrasekhar 1961, § 98):

. 2GM I(1 — 1)
CETR 3+ 1

(19)

where G is the gravitation constant, M is the mass of
the core, and 7 is the index of the spherical harmonic
which describes the mode.

The final dissipation time scale to be considered here
is that for the damping of the nonradial modes by the
emission of gravitational radiation. This time scale has
been computed for the oscillations of an incompressible
self-gravitating sphere by Detweiler (1975), who finds
the formula,

4 = 1220 4+ D21 — Do
Te = 30 F D) F 2)wtreRert

The frequency of oscillation of a particular mode is
found from equation (19).

To summarize our estimates of the various dissipation
time scales, we list their formulae here, In these
formulae we have included the expressions for the
thermal properties of the neutron gas, and the expres-
sion for the frequencies of the normal modes. The
formulae presented here are those which are appropriate
when the neutrino degeneracy is zero: £ = 0. For
degenerate neutrinos the dissipation time scales r,, 7,
and 74 will be smaller by the factor F3(0)/F;(¢) < 1.
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III. DISCUSSION

To determine whether the neutrinos are effective in
damping out differential rotation in the core, one must
compare the viscous damping time scale with the cooling
time of the core. After the core cools to about 10° K,
the neutrino mean free paths become much larger than
the size of the core. Consequently, the neutrinos cease
to provide an efficient mechanism for the redistribution
of energy and momentum within the core. Therefore
only if the damping time scale, ,, is shorter than the
cooling time scale, ., will the neutrinos be present in
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the core long enough to effectively damp out differential
rotation.

Using equations (21)-(23), we compute the ratio
To/ Ter

™ =10 (MY e
- (Fermi) = pe ( ¥ ) AT >1, (@20

Ty = me
. (Boltzmann) = T >1. (28)

Since the ratio 7,/7. is much larger than one for the
typical parameters of a stellar core, it follows that
neutrino viscosity is never effective in damping out
differential rotation in the stellar core unless the angular
velocity variation is very large indeed: AQ/Q > 2mc?/
kT > 100. We note that this conclusion is essentially
indépendent of the size of the neutrino cross sections,
since the mean free path, A, does not appear in the
ratio 7,/7., and is also independent of the value of the
neutrino degeneracy. Our calculation does, however,
assume that the scattering cross sections are large
enough that the neutrinos remain in thermal equilibrium
with the matter in the core.

We consider second the damping of acoustical waves
by neutrino dissipation. Using equations (22)-(25) we
compute the ratios 74/7,:

% (Fermi) = % lz(—ll_t—ll)
() () GF): @
:—‘j (Boltzmann) = ll(l%ll—)
x (35) ) - 0

Note that each of these expressions contains the ratio
of the internal energy of the neutron gas (3Meg/5m for
the Fermi gas and 3M%T/2m for the Boltzmann gas)
to the gravitational potential energy of the core, 3GM?2/
SR. This ratio will be less than one; consequently, the
following inequalities must be satisfied:

T4 . 2 2041 (e \?

7, (Fermi) < —5 =p\zr): G
a4 241
o (Boltzmann) < =1 (32)

The acoustical damping time is shorter than the cooling.
time in these expressions, therefore, unless the star is
sufficiently cool, 2T << er. From these expressions it is
clear that the neutrinos can be effective in damping
the acoustical oscillations before the stellar core cools.

We complete our discussion of the role of neutrino
dissipation in gravitational collapse by comparing the
effectiveness of neutrino damping of the nonradial
modes to the effectiveness of damping by gravitational
radiation. The ratio 74/7¢ depends crucially on the
relative strengths of the gravitational and weak inter-
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TABLE 1
DisstpaTioN TIME SCALES FOR 1.4 Mg STELLAR CORES*
T A R Ty Te T4 1@ 27w
=0, 3.4X10% 1.7X108 8.7X108 5.7X10? 8.9 7.3 420 7.5X1073
108.......... 7.2X10% 1.5X104 4.1X108 6.8X10% 23 19 21 2.4X10"®
104, ..., 1.4X101 2.5X10? 1,9X108 6.2X10° 40 29 0.96 7.5X10™%
108,......... 1.8X10% 4102 8.7X10° 3.1X10 260 110 0.042 2.4X10°¢

8 All quantities are presented in cgs units.

actions. Therefore we must explore numerically the
values of this ratio for specific core models. We consider
several 1.4 My, stellar cores having a wide range of
different average densities and temperatures. The aver-
age temperatures, densities, and neutrino mean free
paths were selected to coincide with the models con-
sidered by Kazanas and Schramm (1977). In Table 1
are presented the relevant parameters of these core
models, along with the values of the various dissipation
time scales computed from equations (21), (23), (25),
and (26). The time scales 74 and 7 are presented for
the / = 2 modes. The data from Table 1 indicate that
gravitational radiation will provide the dominant mech-
anism for dissipating the energy in the lowest nonradial
modes of oscillation, whenever the stellar core is suffi-
ciently dense: p > 103, The neutrinos will provide the
dissipation for lower density cores, and for the modes
with higher values of 7.

The numbers presented here are based on the sim-
plified core models described above. For more realistic
models, one could expect changes in these time scales
due to the following effects. First, neutrino degeneracy
will tend to decrease the time scales associated with the
neutrino dissipation effects. For a neutrino degeneracy
of £= 5 (see, e.g., Arnett 1977) the time scales 7,
7., and 74 would be smaller than the values given in
Table 1 by a factor of about 50. Second, the fluid in a
realistic stellar core will be a complex mixture of heavy
nuclei and free neutrons. The specific heat of such a
mixture probably does not differ significantly, however,
from the value for a free neutron gas used in our simple
models. The nuclei have a large number of possible
excited states, which makes the specific heat per nuclei
greater than the specific heat per neutron; nevertheless,
the specific heat per baryon is probably comparable in
the two cases. We thus suspect that a more realistic
fluid model will not significantly change the values of
time scales in this way. Third, we point out that it is
difficult to estimate the differences between realistic
gravitational radiation damping times, and those com-
puted here for an incompressible fluid. As an alternative
simplistic model, we have computed directly the damp-
ing times for the modes of a uniform density, but com-
pressible fluid (I'y = 5/3) using formulae from Det-
weiler (1975) and Ledoux and Walraven (1958). We
find that the damping times for this model are smaller
than those given in Table 1 by a factor of about 15.
This effect would suggest that gravitational radiation
damping could play the dominant role at densities down
to p = 1012
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Since our methods and conclusions differ from those
of Kazanas and Schramm (1977) and Kazanas (1978),
it is appropriate to comment on those differences here.
Kazanas and Schramm (1977) compute the dissipation
of energy in the nonradial modes of a uniform density
(but not isothermal) self-gravitating sphere due to
neutrino and gravitational radiation damping. They
treat the neutrino dissipation by coupling an effective
neutrino luminosity function to the energy conservation
equation for the neutron fluid. This approach is appro-
priate whenever the neutrinos have mean free paths
longer than the size of the stellar core. The use of the
effective neutrino luminosity does not include the effects
of neutrino reabsorption by the core, and consequently
the approach is not appropriate when the neutrinos are
trapped. Kazanas and Schramm (1977) attempt to
correct for the reabsorption of neutrinos by multiplying
their computed damping times by R/}, the ratio of the
time it takes a neutrino to diffuse out of the core to the
time it would take a noninteracting neutrino to escape.
Saenz and Shapiro (1978) have argued that the neu-
trino luminosity calculation of the cooling of the core
can be made consistent with the thermal diffusion ap-
proximation (as used in this Lefter) by correcting the
neutrino luminosity by the factor (R/M\)% When we
correct the damping times computed by Kazanas and
Schramm (1977) by this factor, we find damping times
which are longer by a factor of 10 than those computed
by our equation (23). We interpret this result as mean-
ing that the bulk damping of the core oscillation de-
scribed by equation (23) is more efficient than the
damping by radiating neutrinos from the surface of the
core. Therefore the neutrino damping is dominated by
the effect described by equation (23). Kazanas (1978)
also discussed the damping of acoustical waves in the
core, using a formula which ultimately was derived by
Weinberg (1971) from equation (13). In the physical
situation considered by Weinberg, however, the primary
source of heat capacity in the fluid was that of the
neutrinos themselves, while we find that the primary
source in the stellar core comes from the neutrons.
Therefore Kazanas’s formula for the damping of acous-
tical waves is not appropriate.
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