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ABSTRACT

A criterion to test the secular stability of rigidly rotating, isothermal Newtonian stellar models
is formulated, which includes the dissipative effects of viscosity and thermal conductivity. This
criterion reveals a previously unnoticed fact: thermal conductivity can cause secular instability
in rotating stellar models. Any stellar model (except for models having degenerate thermodynamic
properties such as an incompressible fluid) which is unstable if viscosity is present would also be
unstable if the heat conduction coefficient were nonzero. Furthermore, it is shown that the time
scale associated with the heat conduction instability can be shorter than the viscous instability
time scale.

Subject headings: instabilities — stars: rotation

I. INTRODUCTION

In this paper it is shown that thermal conductivity can cause secular instability in rigidly rotating, isothermal,
Newtonian stellar models. This effect occurs (heuristically) as follows. When a star is perturbed, the temperature of
the fluid will fluctuate from its uniform equilibrium value. The resulting temperature gradients give rise to thermal
conduction which dissipates energy from the original perturbation. Therefore, if near the equilibrium figure there
exist configurations of the fluid which have lower energy, the heat conduction will provide a means to dissipate the
excess energy and allow the star to change into the lower energy state. This is called a secular instability.

Secular instabilities of rotating stars have been understood in the past primarily from the study of this phenomenon
in the Maclaurin spheroids. In this way Roberts and Stewartson (1963) demonstrated that viscosity could cause
secular instability in rotating stars, and similarly Chandrasekhar (1970) showed that gravitational radiation can
also cause secular instability. The effect which is explored in this paper, secular instability from thermal conductivity,
is not present in the Maclaurin spheroids for the following reason. The initial equilibrium Maclaurin spheroid has
uniform density, and must have uniform temperature if it is to be in thermal equilibrium (with a nonzero thermal
conductivity). It follows from the first law of thermodynamics and the nonconstancy of the pressure in the star that
the temperature must be a function only of the density (and therefore independent of the entropy density of the
fluid). Consequently the standard perturbations of the Maclaurin spheroid (which have vanishing density fluctua-
tions) will have vanishing temperature fluctuations. Therefore, the temperature in the perturbed Maclaurin spheroid
remains uniform, and as a result no energy dissipation from thermal conductivity will occur. Since the effect of
interest here does not occur in the simple analytical Maclaurin spheroids (because of the peculiar degenerate
thermodynamic properties of an incompressible fluid), it is necessary to consider a more general class of stellar
models. A general formalism for studying secular instability in uniformly rotating stars has been developed by
Friedman and Schutz (19784, b). This formalism is extended here to include the effects of dissipation from thermal
conductivity.

Section II reviews the equations of motion of a fluid stellar model, including the effects of viscosity and thermal
conductivity. The first-order Lagrangian perturbations of these equations are given; and a generalization of the
canonical energy of the perturbation in a rotating frame (Friedman and Schutz 19784, b) is defined. In § III the time
derivative of the generalized canonical energy is shown to be negative. This fact is used to formulate a criterion by
which the secular stability of rigidly rotating isothermal Newtonian stellar models can be tested. This criterion is
not strictly equivalent to the one formulated by Friedman and Schutz (1978b) to test for secular instability in the
presence of viscosity alone. It is shown, however, that any model which is unstable according to the Friedman
and Schutz criterion will also be unstable according to the more general criterion presented here. In § IV some of
the implications of this new type of secular instability are discussed. The characteristic time scale associated with
the thermal conductivity type instability is compared to the time scale of the viscosity type instability. It is shown
that the thermal conductivity time scale can be much shorter than the viscosity time scale; consequently in some
cases the physically relevant instability will be the one from thermal conductivity. In particular, the thermal
conductivity time scale is much shorter than the viscosity time scale in the core of a newly formed neutron star
as long as neutrino transport provides the dissipating mechanism.
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II. THE FLUID EQUATIONS

In this section the equations governing the evolution of a viscous, heat-conducting, Newtonian self-gravitating
fluid are reviewed. The equations which describe the perturbations to the stationary equilibrium solutions of these
fluid eqélatic:lns are recalled. An energy functional appropriate for the study of secular instability in these models
is introduced.

The stellar models considered here are those described by the solutions of the Newtonian equations of a viscous
heat-conducting fluid. The four fundamental quantities which describe the state of the fluid are the fluid velocity
', the mass density p, the entropy per unit mass s, and the gravitational potential ¢. These quantities satisfy the
following equations of motion:

plow* + V'Vl = —Vip + pVip + V(na”) + V¥(L6), )
pT[o,s + v'V;s] = V[xV,T] + {62 + 3no0¥, )
dp + V(o) =0, 3

ViVip = —4nGp. @

To specify the additional thermodynamic properties of the fluid, the above equations must be supplemented by an
equation of state. The internal energy density of the fluid e is assumed to be a given function of p and s:

= e(p, ) . (%)
The temperature T and pressure p are then defined as follows:
1 {0
r-1 (a_s) , ©)
Oe
p=o(3),- < ™
Other kinematic properties of the fluid are described by the shear tensor o/ and the expansion 6:
o = Vi) + Vit — %gug’ (8)
0= Vi, )]

Finally, the dissipative processes in the fluid are governed by the coefficients of viscosity, » and ¢, and the heat
conduction coefficient «. These are assumed to be positive functions of p and s.
The unperturbed equilibrium solutions to equations (1)-(4) are assumed to be stationary:

3,1)‘ = 3,p = 3ts = 0 . (10)

It fol}_ows that the solutions must also be axisymmetric, rigidly rotating, and isothermal (see Lindblom 1978, § 3);
therefore,

! =0=0vVp=0Vs=VT=0. (11

The first-order perturbations of these equations are discussed here primarily in the Lagrangian framework, in a
notation which is the same as that of Friedman and Schutz (1978a). Eulerian variations of the fluid quantities are
denoted by 8, while Lagrangian variations, A, are defined by A = § + %.. (%; denotes the Lie derivative along the
vector field £'.) The Lagrangian displacement vector & is chosen to relate fluid elements in the unperturbed star
with those in the perturbed configuration. It follows from this definition of &, and the first-order variation of
equation (3), that the variations in v* and p are related to ¢ by

St = 9 ¢ + vV, — IV, (12)
8p = —Vi(pt) . (13)

The variations in the gravitational potential ¢ are related to &' through the variation of equation (4):
ViVidp = 4nGV(p€") . . (14

The independent variables of the perturbation therefore are the Lagrangian displacement ¢, and the variation in
the entropy per unit mass As.
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The evolution of a perturbation of the star is determined by the evolution of the independent functions £ and As.
The time development of these quantities are given by the variations of equations (1) and (2):

A,0°¢ + B0 + Cyé! = Fy, (15)
pT[2(As) + v'Vi(As)] = VH{xV(3T)} . (16)
The operators 4,;, B;;, and C,, are defined (for an arbitrary vector field £') as follows:
Auf’ = sz ’ an
B, = 200"V, ¢, (18)
Cu = ViV ) = Vi o(Z) 58| + VirV - VoVt = V0 - VT (19)

In equation (19) the quantity 8¢ is taken as the implicit function of ¢ given by equation (14). The driving force
F, in equation (15) is given by the following expression:

F, = —vi[(g—ls’)pm] + Vi(ndoy) + Vi(50). (20)

The variations in the shear and expansion are related to the Eulerian variations in the velocity (and thus to ¢ by
eq. [12]) as follows:

dot! = Vi + Vidvt — %g80, 1)
80 = V,8t. (22)
The secular stability of these rotating stellar models has been studied by Friedman and Schutz (1978b) by

considering the properties of a certain functional of the perturbed stellar model, which is related to the energy of
the perturbation. This energy functional is defined by

E=1 j (084,08 + ECyE + 2LEAME + 3ByENd . 23)

The time derivative of this expression is given by
dE. [« ip s
E—J\SUEd X . (24)

This energy functional is not appropriate for the study of secular instability when the coefficient of thermal
conductivity « is nonzero, however, because of the following qualitative difference between a heat-conducting and
a non-heat-conducting fluid. From equation (16) it follows that initially adiabatic perturbations (As = 0) will
remain adiabatic (to first order) only if the heat conduction coefficient vanishes. Therefore, when heat conductivity
is present, it is no longer possible to ignore the nonadiabatic contributions to the motion of the fluid. It is not
surprising, therefore, to find that an appropriate energy functional contains nonadiabatic contributions. A

generalized energy functional E,
_ oT\ a4 1(7T) pplas
E= E+J pAS[(aP )sAp +3 (as)nAs}d X, 25)

is shown in the next section to be a useful tool for the study of the secular instability of rigidly rotating, isothermal
stellar models which have nonvanishing coefficients of viscosity and heat conduction.

III. A CRITERION TO TEST FOR SECULAR INSTABILITY

The generalized energy functional E is used in this section to define a criterion to test for secular instability. The
time derivative of E is computed in Appendix A, with the result:

‘;’i_f =— f {451780'“30” + 4(860) + Jﬁ, Vi(ST)V‘(ST)}dsx. (26)

Therefore E is a decreasing function of time. Note that this expression for the time derivative depends only on
Eulerian variations of the fluid variables. It is also shown in Appendix B that E itself can be expressed purely in
terms of Eulerian variations:

-1 50, + L (2PY (sp)2 + L (2P) 9P (5502 — L 150 L7
E=; {p8080,+p(ap)‘(8p) H AR = AL TR @7
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These expressions show that E and its time derivative are invariant under the “trivial” gauge transformations (see
Friedman and Schutz 19784, b) and therefore it is not necessary to restrict the choice of initial data for the per-
turbation (&, 9,£!, As) to some canonical set of data.

While it is not appropriate to restrict the class of perturbations (&, 6,£, As) to those which are locally adiabatic,
As = 0, it is appropriate to consider only those perturbations which leave the total entropy of the star:

S = f psd®x, (28)
invariant (to first order). The first-order variation of the total entropy 8S is given by the expression
58 = f pAsdx . (29)
It is easy to verify (using eq. [16]) that

d(3s)
T 0 (30)
(to first order). Therefore perturbations which have 8S = O initially will maintain 8S = 0 throughout their
evolution. Perturbations for which 8S = 0 will be called quasi-adiabatic.

The criterion to test the secular stability of isothermal rigidly rotating stellar models can now be stated. If the
functional E is positive for all quasi-adiabatic choices of initial data (&, 9, As), then the stellar model is stable,
since the energy functional must decrease and therefore only a finite amount of energy can be dissipated. On the
other hand, if E is negative for some choice of initial data, then the perturbation can grow without bound while
decreasing the energy E infinitely. Therefore the stellar model will be unstable or marginally unstable if there exist
quasi-adiabatic initial data (&', 9,£%, As) which make the energy functional E negative.

For adiabatic perturbations, As = 0, the energy functional E reduces to E, which was used by Friedman and
Schutz (1978b) to formulate a criterion to test secular stability in the presence of viscosity alone. If there exist
initial data (¢, 9,£) which make E negative, then clearly these same data with As = 0 will make E negative. Thus
any stellar model which is secularly unstable when viscosity is present (according to the criterion of Friedman and
Schutz) would also be unstable if the fluid had nonzero heat conductivity. The converse is not obviously true,
however. The nonadiabatic contributions to E do not have definite sign, and therefore could give rise to instabilities
which have no analog in the adiabatic case.

Another simple class of perturbations are those for which & = ¢,£ = 0. For these perturbations Ap = 0, so
the energy functional reduces to

_ L[ (T 243
E_2fp(as)o(As)dx. 31)
Thus one recovers the well-known condition for thermodynamic stability, (67/ds), > 0.

IV. DISCUSSION

In the last section it was shown that thermal conductivity could give rise to secular instability in rigidly rotating
isothermal stellar models. To determine whether or not this instability is relevant in any real astrophysical context,
one must determine the time scale with which the instability grows. The only reliable way of doing this would be
to actually solve the perturbation equations for some unstable mode, and compute explicitly the growth rate of the
perturbation. This is not an easy task, however, especially for the heat conduction instability. The only simple
analytic equilibrium rotating stellar models are the Maclaurin spheroids, and it was shown in § I that the heat
conduction instability does not occur in these models. The only simple calculation which can be done, therefore,
involves writing down the characteristic time scales of the physical processes involved. These time scales can be
derived by dimensional arguments based on the equations of motion (see, e.g., Lindblom and Detweiler 1979).
The time scale associated with the viscous instability is given by

3IM

™= GaRy (32)

where M is the total mass of the star, R is the average radius, and 7 is the average viscosity. The thermal conduc-
tivity instability time scale should be comparable to the characteristic cooling time scale which can be derived
from the thermal diffusion equation. This time scale is given by

_3Mc,
Te = TR’ (33)
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where ¢, is the average specific heat (per unit mass) and « is the average heat conduction coefficient. These time
scales can be used to estimate the growth times of unstable modes (assuming the mode has a low spherical-harmonic
index /).

A rapidly rotating neutron star produced by the catastrophic gravitational collapse of a stellar core is one place
that secular instabilities could have a decisive role in determining the evolution of the star. In this situation, the
dissipative mechanism will be primarily due to radiation transport by the neutrinos produced during the collapse.
The viscosity and heat conduction coefficients for this process are given by (see, e.g., Lindblom and Detweiler 1979)

7 = 55aT*\c 1, 34)
x = ZaT®)c, (35)

where a and ¢ are respectively the Stefan-Boltzmann constant and the speed of light, T is the temperature of the
star, and A is the mean free path of the neutrinos within the star. The specific heat for a hot neutron gas is given

by the formula
¢, = 5ki2m, (36)

where k is the gas constant and m is the mass of the neutron.
Consider the ratio of the viscous instability time scale to the heat-conduction instability time scale for the
situation described above:
To/Te = 2mc?[kT. 37

Since the mass of the neutron (mc? = 1 GeV) is much larger than the typical postcollapse temperature (kT =
20 MeV), it follows that the heat-conduction instability will grow at a faster rate in this situation than the viscous
instability. Substituting typical neutron star parameters into equation (33), one estimates that the heat-conducting
instability of a sufficiently rapidly rotating neutron star would grow with a time scale of about 100 s (see, e.g.,
Sawyer and Soni 1979).

APPENDIX A

THE TIME DERIVATIVE OF E

In this appendix it is shown that the time derivative of the energy functional E (defined by eq. [25]) is negative.
Begin with equation (25) and use equation (24) to evaluate the time derivative of £"

9E _ [ soFasx + [ o| (£ Apads) + 3T Asaibp) + T Asas) [ (A1)
Jawras+ [ (5 (&

The time derivative of As is evaluated using equation (16) while the time derivative of Ap is given by the first order
variation of equation (3):

9(Ap) + v'V(Ap) = —pV,80*. (A2)
By using these expressions for the time derivatives of Ap and As, using the properties of the equilibrium model

(egs. [10]-[11]), and setting the integrals of divergences to zero, the expression for the time derivative of E can be
converted to the following:

% = —[ Bndoyd0 + 1(36)71d%x + f T [(ar) Ap + (aT ) As]v,[msr]dax
%\ _ (T s

+ j [($)p ) (ap) ]AsViSvd | (A3)

The third integral on the right-hand side of equation (A3) vanishes because of the Maxwell relation:

o)\ _ (T .
(#).-#). 9
Since the equilibrium stellar model is taken to be isothermal, the Lagrangian and Eulerian variations of the
temperature are equal; thus
ST = AT = (3T) Ap + (g) As. (A5)
os 0
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Using this expression in equation (A3), we arrive at the final expression for the time derivative of E:
% =— f [%,,ao,,sou + U(86)* + % V,(ST)Vf(aT)]dax. (A6)

The viscosity coefficients, n and £, and the heat conduction coefficient « are nonnegative functions; consequently
the right-hand side of equation (A6) is negative. Therefore, the energy functional E is a decreasing function of time.

The energy functional E does not represent the total energy of the perturbation in the rotating frame of the star
(even for adiabatic perturbations as implied by Friedman and Schutz 1978b). If it did represent the total energy,
then its time derivative would be zero since energy is conserved. When dissipative processes are present, energy is
converted from Kinetic to thermodynamic forms; however, the total energy is conserved (see, e.g., Landau and
Lifshitz 1959, § 49). In particular, E does not contain some of the thermodynamic energy terms. For example, E
does not contain the term J' pTAsd®x, and this term has a nonzero time derivative (at second order) even in the
purely viscous case considered by Friedman and Schutz (1978b). The fact that E does not represent the total energy
of the perturbation does not decrease its value as a tool for the study of secular instability, however.

APPENDIX B
THE GAUGE INVARIANCE OF E

The purpose of this appendix is to demonstrate that the energy functional E defined by equation (25) is invariant
under the “trivial” gauge transformations (see Friedman and Schutz 1978a). A “trivial” transformation of the
perturbation functions £ and As is one which changes the values of the Lagrangian variations of the fluid parameters
(At*, Ap, As) while leaving the physical Eulerian variations (8¢, 8p, 8s) unchanged. It is shown here that E can
be written as a functional involving only the Eulerian variations. It follows, therefore, that E is invariant under
the “trivial” transformations. The derivation sketched here (briefly) is a straightforward generalization of the
demonstration by Friedman and Schutz (1978a) of the gauge invariance of E when the perturbation is adiabatic.

Consider first the expression for £ in equation (23). Use the expressions for the operators A;; and B;; from
equations (17)—(18) and the definition of 8v* to express E as

E= %f [pd0'80; + p(V'V,E) W Vié) + p€&'Vi(W*Viny) + §C,E 1% . (B1)

The expression for C;; in equation (19) can now be substituted, as well as the expression for the acceleration from
the equilibrium version of equation (1):

PV = -% Vip + Vip. (B2)
After several integrations by parts, and the use of equations (13)-(14), it follows that

= l i _1_ — 1 i — 8_p — ,1_ i _ l 3_p 3
E= 2‘[ {p&v ov; + p Spdp ’—)Apf [Vjp (ap)stp] ymre V89 Vidp P (3s pSpAs d®x . (B3)

To simplify this expression further, the fact that the fluid is barotropic in its equilibrium configuration is used
(see, e.g., Lindblom 1978, § 3). From this fact it follows that the level surfaces of the entropy, the pressure, and the
mass density all coincide. Consequently there exist functional relationships of the form

p=p(s) and  p=p(s). (B4)
This makes it possible to convert gradients of the density function into gradients of the entropy

d
Vio = 2 Vs, (B5)

where dp/ds is the derivative of the expression in equation (B4). Using this fact, the third term on the right-hand
side of equation (B3) can be converted to

“Lapetlv,p - (2 _1(% Do a5 - s5)| = L (%
pApf [V,p (aP)SV,p] =2 (as)pb‘s[Sp + 7 (As — 8s) - \as pApAs. (B6)

This expression is substituted back into equation (B3), and the additional terms from equation (25) are now added

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979ApJ...233..974L

J. 21233 974D

A%

rt

980 LINDBLOM

to form E. To simplify the resulting expression, one more obscure thermodynamic identity is needed. This is
obtained by expressing the gradient of the temperature using equation (B5):

_[(eT dp (0T
VT = [(.3—.;)9 + as (5; )S]V,s. (B7)
Since the star is isothermal but not isentropic, it follows that
oT dp (0T\ _
(a—s)p"l'%(a)s—o. (B8)
In this way the expression for E can be converted to the following form:
11 Lossn, + Lovsp 4 L () 8550 — L () 9 (5592 — L visovise Ve
E=1 f {pav o+~ dp8p + (as)DSSSP - (6s L 65 = gz VbV s (BY)

This expression depends only on the Eulerian variations of the fluid variables, and consequently is invariant under
the “trivial” gauge transformations. While this expression is sufficient to demonstrate the gauge invariance of E, a
more appealing form may be obtained by repeated use of the identity

o- 2. (2)2),
1

_1 i50. + L (2P) (spy2 + L (2P) 9P (5512 — L 150 L2
E=3 f {pav S0, + (ap)s(3p) +3 (as),, L (85) — g ViSpVi3p bdx. (B11)

The resulting expression for E is

P

This expression is precisely the same as that derived by Friedman and Schutz (1978a), except that this energy
functional allows nonadiabatic perturbations while theirs does not. Furthermore, their arguments that dp/ds > 0
based on local stability apply here also.
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