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A number of properties of static general relativistic stellar models are presented which appear to
be relevant to the ongoing search for a proof that all such models must have spherical symmetry.
It is shown that any such model, having conformally flat spatial sections, must have spherical
symmetry. A general procedure is described which allows one to construct the type of “divergence
equals positive quantity” identities for static stellar models, which were used to prove that static
black holes must have spherical symmetry. This procedure is used to produce a large new class of
identities for the exterior vacuum regions of static stellar models and identities are constructed for
the interior regions of uniform density models. These identities are used to prove that static
uniform density stellar models must have spherical symmetry.

I. REVIEW OF STATIC STELLAR MODELS

In this paper we study the solutions of Einstein’s field
equations with matter corresponding to a perfect fluid which
is in static equilibrium. It has been shown previously'- that
such a stellar model is a spacetime with a metric which can
be represented by the line element

ds’ = — V2dt? +g,,dx%dx" . (1)

The components of g,, and the function V are independent
of the coordinate ¢, and the tensor g,, represents the positive
definite metric on each ¢t = constant submanifold, each of
which has the same topology as R >. Einstein’s equations for
this system can be written in the form

V.VV =47V (p +3p), )

R, =VIV, V.V +4m(p — p)g., - 3
The tensor R, represents the three-dimensional Ricci ten-
sor of the metricg,, , and V,, represents the three-dimension-
al covariant derivative compatible with g, . The functions p
and p represent the mass density and pressure of the fluid,
respectively. These are related by an equation of state; i.e., a
given relationship of the form p = p(p). The contracted
Bianchi identities for the three-dimensional curvature, and
Eq. (3) imply the equivalent of Euler’s equation:

Vo= —V'e+pV, V. “

In the discussion that follows, it will be helpful to define
a number of additional quantities:

W=vVVV,V, (5)
na — W—l/ZvaV, (6)
Bab — gab — nn® , (7)
H,, =B.B,"V.n,, ®
'/’ab =4, — %ﬂabH- (9)

These quantities describe the geometry of the ¥ = const. 2-
surfaces. The unit vector field n ¢ is orthogonal to these sur-
faces; 3, is the intrinsic metric; H,, is the extrinsic curva-
ture tensor and ¢,, represents the trace-free part of H,,.
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The quantities which define the geometry of the
V = const. 2-surfaces are related to one another by splitting
Einstein’s equations into pieces tangent and orthogonal to
these surfaces in the standard way. In the discussion that
follows, we make use of two of the equations obtained by this
splitting of Egs. (2) and (3):

WYV, W= —2W'"2H+87V(p+3),  (10)

w-'vvv,H
- %W-1/2H2 + V-IH__BabVa (oBchc W—I/Z)
— Wy —8TW (o + p) . (11

The derivation of these equations can be found in the
literature.'"

It has long been suspected that no nonspherical, asymp-
totically flat solutions exist to Egs. (2) and (3). This belief is
motivated by an analogous theorem for Newtonian stellar
models’ and a similar result for the vacuum (p = p = 0)
black hole solutions of Egs. (2) and (3).5'° It has also been
shown that stationary (nonstatic) general relativistic stellar
models (made of dissipative fluids) must be axisymmetric.'!
Little progress has been made on the problem of static rela-
tivistic stellar models however. It has been shown that if

BV, W=0 (12)

then the model must be spherical.® It has also been shown
that no “almost” spherical static stellar models exist.>*

For the remainder of this paper, we discuss some of the
properties of these stellar models which appear to be relevant
to the ongoing search for a proof that spherical symmetry is
necessary. In Sec. I1 it is shown that if the 3-geometry de-
scribed by g, is conformally flat, then the stellar model
must be spherical. In Sec. III we describe a procedure which
allows one to construct, for stellar models, the type of identi-
ties which were used®'® to prove that static black holes must
have spherical symmetry. In Sec. IV we use the procedure
described in Sec. III to construct identities applicable in the
vacuum exterior regions of any static stellar model, and in
the interior regions of models with uniform density. And
finally in Sec. V, we use these identities to show that, in the
special case of uniform density models, spherical symmetry
is necessary.
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Il. CONFORMAL FLATNESS AND SPHERICAL
SYMMETRY

The conformal properties of a three-dimensional mani-
forld are not described by the Weyl tensor (which vanishes
identically) but by a certain third-rank tensor field, ' defined
by

Rabc = VcRab - VbRac + %(gacva —gachR ) . (13)

This expression can be evaluated in terms of the functions ¥,
p, etc. by using Eq. (3) for R, . Making this substitution, and
using the quantities defined in Egs. (5)—(9), it is straightfor-
ward to verfy the following;

Ry R =8V WY ¥ + W BN WV, W .

(14)
It is interesting to note that the matter variables do not ap-
pear explicitly in this expression; this is precisely the same
expression which was found to hold in a vacuum spacetime.’
Expression (14), however, is true for any geometry satisfying
Egs. (2) and (3).

If the geometry g, were conformally flat, then the ten-
sor R,,. must vanish.'? From Eq. (14) it would follow that
¥,, and 8°° V, W must also vanish in this case. Consequent-
ly, it would follow from the standard arguments® that the
stellar model would necessarily be spherical. Thus we have
established the following lemma.

Lemma: If the spatial geometry g, of a static general
relativistic stellar model [i.e., a solution of Egs. (2) and (3)] is
conformally flat, then the stellar model necessarily has spheri-
cal symmetry.

Another expression for the square of the conformal ten-
sor, which will be useful in the following section, is the
following:

‘%V“W‘]RabcR abe
=V, VW —V'VVV W —3W VWY W
4 87W (o + p) + 4TVW (o + 3p)VV YV, W

— 1672V p +3p)* — 87V VWV p . (15)

This expression is derived using essentially the same proce-
dure as that described to derive Eq. (14); and we note that
this expression agrees in the vacuum limit with an analogous
expression derived previously.’

11l. CONSTRUCTION OF DIVERGENCE IDENTITIES

The proof that static black holes must have spherical
symmetry depends on constructing an identity which has the
form of a divergence equaling a positive definite quantity
(which vanishes if and only if the spacetime is spherical).
One positive definite quantity, which might be suitable for
such an identity, has been identified in the last section: R,
R “*¢. The existence of another suitable quantity is implied by
Eq. (12). If the spacetime were spherical, then the vector
V., Wmust be proportional to V,, ¥; we call the proportional-
ity factor F. The function ¥ = F(V,W) can be determined
explicitly (as shall be discussed in detail in Sec. IV) once the
equation of state of the fluid in the stellar model is specified.
Taking F as a known function, it follows that the quantity:

[V.W—FV, V][V'W—FVV¥] (16)
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is positive and vanishes if and only if the model is spherical.

Having identified two suitable positive definite quanti-
ties, we are lead to ask when an identity of the following form
can be found:

v {K, (V,W)VV +K,(V,W)V'W}
—_—}‘QI(KW)V“W*IR Rabc

abe

+ O, (V,WIW |V, W—FV, V|, (17

where K|, K,, @, and Q, are functions of ¥ and Wwith @, >0
and @, > 0. (We note that every identity used to prove the
spherical symmetry of black hole spacetimes has been of this
form.3-'%13) On examining each side of Eq. (17) (using Eq.
(15) to evaluate the first term on the right) we find, in addi-
tion to functions of ¥ and W, terms linear in the three func-
tions: V°V, W, V'V V, W, and V'W V, W. If we require that
the coefficients of these functions on one side of the equation
equal the corresponding coefficients on the other side, the
following four constraints on the functions X, K,, Q,, and
Q, are implied:

Kz = Ql s (18)
aQ
0, = WE"VL‘F%QI’ (19
an — _ZFaQI _ aKl
av W W
~[pr—smw o3 + 2w |0,
(20)
K,

—5;;—=F2%—4’17K‘VW'1(;) +3p)

— [1677'2V2W"(p +3p)?

—3W"F2+81rV%(p +P)]Q1~ 20

Thus, if these partial differential equations can be solved for
K, K,, Q,,and Q, (with @, >0 and @, > 0), then an identity
in the form of Eq. (17) will exist. Note that ¥ and W play the
role of independent variables in these equations. Each of the
coefficients in these equations is a known function of ¥ and
W: F was assumed to be a known function, while g and p are
explicit functions of V determined by integrating Eq. (4).

A large number of solutions clearly exist to Egs. (18)-
(21). Equations (20) and (21) form a linear system of equa-
tions for Q, and K. One can imagine solving these equations
as a Cauchy initial value problem. On an initial surface, say
V = V,, we arbitrarily specify the functions Q,(V,;, W) and
K (V.,W). Equations (20) and (21) allow us to compute the
normal derivatives of these functions; consequently the
equations can be integrated to find Q, and K, (at least for V/
sufficiently close to V). Thus a large number of solutions to
these equations exist, each of which corresponds to an identi-
ty of the form in Eq. (17). In order to be useful as tools for
proving the spherical symmetry of stars, we must limit the
choice of functions to those for which @, >0 and @, > 0. At
present, it is not known whether or not there exist solutions
with positive @, and Q, in general. We see in the next section
that in some special cases, however, positive solutions do
exist.
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IV. IDENTITIES FOR VACUUM AND UNIFORM DENSITY
SPACES

In this section we use the procedure described above to
derive identities for the special cases of vacuum spacetimes
(the exterior regions of stars) and for the interior regions of
uniform density stars. To do this we must explicitly integrate
Egs. (20) and (21) for these cases. Before these equations can
be explicitly integrated, we need to discuss how the function
F can be determined for a given equation of state. For the
spherical solutions of Egs. (2) and (3) the functions Wand H
(the trace of the 2-dimensional extrinsic curvature) depend
only on V; let Wy(V') and H,(V') denote those functions.
Equations (10) and (11) imply that W, and H,, satisfy the
differential equations

%2: —2W/\*H, + 87V (p +3p), (22)
dH,

T — W, PHE + V'Hy — 87 W, " (p +p).

(23)

The function H, can be eliminated from these equations, to
obtain a single equation for W,

d>W,
dv?
dw, dW,\? dw,
=py-1270 L aw *1( 0) — 8aVW,. ! 0 3
av T gy Wy P 3p)

> — d
+ 167 Wy 'V i(p +3p)2+81rVﬁ(p +p). 29

Given an equation of state, p = p(p), Eq. (4) can be integrat-
ed to determine the functions p(¥') and p(}'). Using these
functions, Eq. (24) can be integrated to determine Wy(V): the
function to which W would be equal if the solution were
spherical. Given this function, Wy, it is easy now to find the
function F. In fact, F can be chosen in an infinite number of
ways. One obvious choice is F = dW,/dV, but
F=dWydV+ (W, — W) "or F=W"W; "dWy/dV
would do just as well. Thus for each equation of state which
we specify there exist an infinite number of different choices
of the function F; and for each F there exist an infinite num-
ber of identities in the form of Eq. (17).

Let us now explicitly utilize the procedure, which is
outlined above, to obtain identities that are relevant to the
study of stellar models. We begin with the simplest case:
identities which describe the vacuum exterior regions of any
stellar model. The first step is to solve Eq. (24) for W,

1

o =1tV (25)
and thus
adw, V

In these expressions, the constant M represents the asymp-
totically defined mass of the star. These solutions now allow
us to choose the function Fin any number of different ways.
We select two different choices, each of which allows us to
explicitly solve Eqgs. (20) and (21) in a straightforward
manner.
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For our first choice we let

_wdw,

W, dv

This expression is substituted in Egs. (20) and (21), and the

equations are integrated. The general solution of these equa-

tions is given by:

O, =Vl -V {4 (x) —8M*(1 —¥V?) 'B'(x)},

(28)

K,=B(x)+8VyW (1 -V)"'Q, (29)

where x = W /W,; A4 and B are arbitrary functions, and
B'(x) = dB /dx. 1t is clearly possible to choose 4 and B in
such a way that Q, >0 and Q, > 0; so that these identities are
potentially useful in our search for a proof of spherical sym-
metry. This class of identities contains, as special cases, ev-
ery identity that has been constructed to prove the spherical
symmetry of black holes. For example, Robinson’s identi-
ties'? are given by

AXx)= —¢, 30)
B(x)= —(c+d)x/8M?, 3N

where ¢ and d are arbitrary constants. The two identities
originally discovered by Israel® (or in this notation by Miiller
zum Hagen, ef al.®) are obtained by setting

= —8Vw (1 —-v?* 1 27

A4(x)=0, (32)

B(x) = —4M ' %x"4 (33)
for one identity, and

A(x)= —2M 37234, (34)

B(x)= — M 12! (35)

for the other. We see that the technique described here yields
a considerable degree of generalization over previously
known identities.

Another choice of the function F, for the vacuum case,
is

F= (1)3/4 aw, _ —4M 'YW (36)
W, dv

This choice of F also allows Eqgs. (20) and (21) to be integrat-

ed in general in a straightforward manner. The general solu-

tions for Q, and K, are:

Ql — V-lw3/4C (y) _ %MB/zy-lW»l/ZDl(y)’ (37)
K, =Dy +4M'2VYW34Q,, (38)

wherey = W' — W,'4,C () and D(y) are arbitrary func-
tions of y. Clearly it is possible to select the functions C and D
so that @, > 0 and Q, > 0. Consequently this represents an-
other large class of divergence identities which may be useful
in the study of the spherical symmetry of static stars.

Let us move on now to a consideration of the non-vacu-
um interior regions of static stellar models. The first problem
one encounters is solving Eq. (24) for an arbitrary equation
of state. I have not determined how this can be accomplished
in general, yet. For the special case of uniform density stars,
however, the solution can be found. We begin by integrating
Eq. (4) for this case, to find that

p=pV'W¥,—V), (39
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where p is the constant density of the star, and V| is the value
of the potential ¥ at the suface of the star. Using this expres-
sion for p, it is easy to verify that

dw,
av

is the first integral of Eq. (24). We also find that with the
choice

=4V (p+3p)= §mp(3V, —2V) (40)

dw,
av

Egs. (20) and (21) can be integrated in a straightforward
fashion, with the result:

0, =V'E(W- W), “42)
K, = —$m(p+3p)E(W—-W,), (43)

where E is an arbitrary function of W — W,. A more general
integral of these equations exists, which involves an addi-
tional arbitrary function of W — W,. While it is straightfor-
ward to obtain the more general solution, it is rather lengthy
and complicated and it will not be needed in the proof that
uniform density stars mush have spherical symmetry.

F= =47V (p +3p), 41)

V. UNIFORM DENSITY STARS MUST BE SHPERICAL

In this final section we will show how the particular
identities derived in the last section can be used to prove that
spherical symmetry is necessary in the special case of uni-
form density stellar models. This discussion is a somewhat
more detailed version of the proof given in Ref. 14. Before
proceeding directly to the proof it is necessary to discuss in
more detail the smoothness assumptions and boundary con-
ditions for the solutions of Egs. (2) and (3) which are appro-
priate for stellar models. We assume that ¥ and g, are C>
except at the boundary (V' = V) between the interior and
exterior of the star. This assumption guarantees that suitable
coordinates exist so that ¥ and g,, are analytical func-
tions. !¢ At the suface of the star, the differentiability is
reduced however. The exact differentiability can be inferred
by requiring that Egs. (2) and (3) [and consequently Egs.
(10) and (11)] are satisfied even at the surface of the star.
Equation (11) implies that the extrinsic curvature A must be
continuous at the surface'’; while Eq. (10) shows that V, W
will have a discontinuity in the direction of the normal to the
surface if the density function has a discontinuity there. The
magnitude of this discontinuity is given by

lim W-'VVV, W —

Vv

lim WVVV, W

V-V,
= —8xV, lim p. (44)
—0 +

In the case of uniform density stars the density function must
have a discontinuity at the surface, while other equations of
state may not have this discontinuity. To make use of the
formalism derived above, we must also take care to properly
match the function W, across the surface of the star. To this
end we will choose the mass constant of Eq. (25) and the
constant obtained from integrating Eq. (40) so that W} is
continuous while its first derivative satisfies the discontinu-
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ity equation:

lim WVVV, W, — lim W'VVV, W,

e VsV -

= —87V, lim p. (45)
p—0 +

This leads to the following function W
Wo=3mp(1—V3*(1—V2)~* for V>V, (46)
Wo=38mpV 3V, — V) +3mp(1—-9V2) for V<V,.(47)

Note that by choosing W, in this way, the gradient
V.(W — W,) is continuous even at the surface of the star.
We are now prepared to proceed with the proof of the
following theorem:
Theorem: A static asymptotically flat general relativistic stel-
lar model, which is made of uniform (positive) density fluid, is
necessarily spherically symmetric.
The goal of the first step in the proof'is to use the identi-
ties derived in Sec. IV to establish that the function W — W,
must attain its maximum value on the surface of the star.
Integrate Eq. (17) over the exterior region of the star using
Egs. (18), (19), (28), and (29) with B = 0. The divergence on
the left-hand side is converted to a boundary integral at the
surface of the star and at infinity. The surface integral at
infinity vanishes if 4 is bounded. Therefore the following
relationship is true:

_f (Zg) 1/2V-lw-]/2(1 _ VZ)-ZA (W/WO)VGV
Vv=v'

X[V,W—FV,V]dx=1, (48)
where
1= [co {10V W RuR™
+ QW V. W—FV V|’ }d>. (49)

Let us choose the function 4 (U')so thatit vanishes for U < U,
and smoothly increases to positive values for U> U,,. In this
case @, and Q, are nonnegative functions. If the maxiumum
value that W /W, assumed in the exterior of the star were
larger than the maximum value which it assumed on the
surface of the star, one could choose the constant Uy to lie
somewhere between these values. In this case the boundary
integral on the left of Eq. (48) would vanish. Since the vol-
ume integral on the right would vanish in this situation only
if the star were spherical (see Sec. II), we conclude that

W /W, attains its maximum value (relative to the exterior
region) on the surface of the star, or that the star is spherical.
Thus W /W attains its maximum value (relative to the exte-
rior region) on the surface of the star, since this also occurs in
the spherical case. Since W, also attains its maximum on the
surface of the star, it follows that W — W, also attains its
maximum value (relative to the exterior region) on the sur-
face of the star. Next integrate Eq. (17) using Eqs. (18), (19),
(42), and (43) over the interior of the star. By appropriately
choosing the function E, in an argument analogous to that
described above for the exterior, it is straightforward to
show that W — W, attains its maximum value (relative to
the interior region) on the surface of the star. Thus the abso-
lute maximum value of W — W, occurs somewhere on the
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surface of the star. Also, since the gradient V, (W — W,) was
shown to be continuous, it must vanish at this maximum
point.

The next step in the proof is to show that the function
W — W, is in fact constant in the interior of the star. This is
accomlished using a maximum principle for elliptic differen-
tial equations.'® In the interior of the star, Egs. (17), (18),
(19), (42), and (43) with E = 1 imply that

Ve[VIY, (W — W) ]50. (50)

The maximum principle for this type of differential equation
states (roughly, see Ref. 18 for a precise statement) that if
W — W, satisfies Eq. (50) and has a maximum at a boundary
point and if the outward normal derivative of W — W, is not
positive at this maximum point, then W — W, must be con-
stant. Since the gradient of W — W, vanishes at the maxi-
mum point, W — W, must be constant. From this it follows
(again using Eqs. (17)-(19), (42), and (43) with £ = 1) that
R_,. = 0in the interior of the star:

The final step is to show that W /W, is constant in the
exterior of the star. Chose 4 = 1and B = Qin Egs. (17)-(19),
(28), and (29) to find that

V V(1 — V) 2W V(W /W) ] 50 (51)

in the exterior region. We know that W /W, attains its maxi-
mum (relative to the exterior region) on the boundary of the
star. To employ the maximum principle, we must compute
the outward directed (that is out of the exterior region) nor-
mal derivative of W /W,. We find

abce

d(W/W)/dn= — lim W2NVV (W/W,)
Vv,
= lim W"2W, AW — W)dW,/dV.
Vv !
(52)

At the maximum point W — W,,>0 since this quantity van-
ishes at infinity. Therefore d (W /W,)/dn<0 at the maxi-
mum point since d W/dV < O there [see Eq. (46)]. The maxi-
mum principle therefore guarantees that W /W, is constant
in the exterior of the star. It follows from Egs. (17)(19),
(42), and (43) that R_,. = 0 in the exterior of the star also.
Consequently (see Sec. II) the star must be spherical.
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The argument given above has implicitly assumed that
only a single star was present. The argument can be easily
generalized to eliminate the possibility of mutiple static uni-
form density stars. Even if multiple static stars existed, the
argument using Eqgs. (48) and (49) would still imply that the
maximum of W /W, would occur on the surface of one of the
stars. If one chooses this maximal star to supply the param-
eters p and V; for Eqgs. (46) and (47), the argument given
above will go through exactly as before, with the conclusion
that the spacetime is spherical, and consequertly only one
star is present.
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