Some properties of static general relativistic stellar models. I11?
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We expand here the study of the type of identity which has been successfully used to prove the
necessity of spherical symmetry in static black holes and uniform density stellar models. We show
how the system of partial differential equations, whose solutions correspond to these identities,
can be decoupled and partially integrated for fluids with an arbitrary equation of state. The
problem of finding such identities is reduced thereby to the problem of finding the solutions to a

single ordinary differential equation, plus quadratures.

PACS numbers: 97.60. — s, 95.30.Sf

I. INTRODUCTION

At the present time, the program to determine from
general relativity theory its predictions, concerning the
properties of the equilibrium states of astrophysical objects
(stars and black holes), is far from complete. One aspect of
that program, to confirm our intuitive belief that static (i.e.,
stationary and nonrotating) stellar models and black holes
must necessarily have spherical symmetry, has been partial-
ly completed. It has been shown that isolated static black
holes' and uniform density stellar models* must have
spherical symmetry. The crucial element in the arguments
which lead to those results is the existence of certain identi-
ties satisfied by the static solutions of Einstein’s equations. In
this paper we discuss identites of this type which apply in the
interior regions of stellar models having arbitrary equations
of state. We show how the procedure which was developed
to derive these identities* can be significantly simplified. In
particular, we show how the system of partial differential
equations, whose solutions correspond to these identities,
can be decoupled and partially integrated. The problem of
finding identities for fluids with arbitrary equations of state
is reduced thereby to finding the solutions of a single ordi-
nary differential equation, plus some quadratures. Since
identities of this type have played such a crucial role in the
understanding of static black holes and uniform density stel-
lar models, it seems likely that the simplifications presented
here will bring us a step closer to the complete proof that all
static stellar models must be spherical.

. REVIEW

In the first paper of this series (Ref. 4; hereafter referred
to as Paper I) we described how useful identities for static
stellar models could be obtained by solving an appropriate
system of partial differential equations. We review now the
results of that work.

A static stellar model is a metric,

ds’= — V2dt? + g, dx“dx’, (1)
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(where the scalar V and 3-metric g, are independent of the
coordinate ¢ ) which satisfies Einstein’s equations:
VeV, V=47V (p + 3p) (2)
Ry =V "'V, V,V+4m(p —plge- (3)
In these equations R, and V, are the Ricci curvature and
covariant derivative of g, , while p and p are the density and
pressure of the fluid. The density and pressure are assumed
to be related by a given equation of state p = p( p), and as a
consequence of Egs. (2) and (3) must also satisfy Euler’s
equation:
Vo=V '(p+pV.V. (4)
In Paper 1 it was shown that identities of the form
V. KV, W)\VV + K, (V, W)V W ]

= UKV, W)V*W ~'R,, R “* + <‘9—-—-—-K2((;;,W)
A ) LAY AAT 5

will exist if the functions K ,(V, W} and K,(V, W) satisfy the
following system of partial differential equations:
oK, _ F2 dK,

—4gK VW ! 3
E1% W T (p+3p)

- (1677'2V2W"(p +3pP — W 'F?

d
+ STrVE—; (p+ p))Kz, (6)

9Ky _ _pdKs _ 9K,
av oW oW
— |V ' —4nVW " p +3p) +3W TIF| K, (7)

In the above equations W is defined as W= V*V V_V;
F = F(V, W)is a function chosen so that a spherical model
would satisfy V, W = FV_V; R_,.R “** is the square of the
three-dimensional conformal tensor which vanishes if and
only if the stellar model is spherical (see Paper I}; and p and p
are taken to be the known functions of ¥ determined by the
equation of state and Eq. (4).

Another useful function, introduced in Paper I, is
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W, = WV ): the function to which W would be equal if the
model were spherical. This function satisfies the second or-
der differential equation

d*w,
dv?
_1dw, 3 (dWO) B 7T_;_f_dWO(pHp)
Vav | 4 W,\dv W, dv
d
161:'2— 3p)2 + 87V —(p + p). 8
+ W(p+p)+7r dV(p p) (8)

0
For a detailed discussion of these results, the reader
should consult Paper I.

lil. A SIMPLIFIED PROCEDURE FOR FINDING
IDENTITIES

In this section we show how the procedure for finding
identities in the form of Eq. (5) can be simplified by decou-
pling and partially integrating the system of partial differen-
tial equations (6), (7). The first step in this procedure is to
change dependent variables to the set: 4 (V, W) = K (V,
W)+ F(V,W)K,(V,W)and B(V, W)= K,(V, W). We next
take appropriate linear combinations of Egs. (6), {7), ex-
pressed in these new variables, to obtain the following
system:

Y
94 | FOA | 4y
3V+ 8W+ T (p+ 3p)4
OF LoF F _3Fp
(3V+ w v 7 W+8"WF(”+3”)

— 1672—W—(p+ 3p) — SWVW(/J +p))B, (9)

B 3B (oF 1 % 3 F
Z o FrZ (2 4 n 2L
v oW, (aW AR AURIE Jalie W)
B+ o
T tow (10)

The next step is to take advantage of the arbitrariness in
the choice of the function F. The only restriction which F
must satisfy is that, when the star is spherical (i.e., when
W = W,), Fmustsatisfy V, W = F V_V, thisis equivalent to
requiring that F(V, W,) = dW,/dV. At this point, however,
weare free to choose how Fwill behave for W # W,,. To make
that choice specific, let us require that F satisfy the following
partial differential equation:

OF _oF F 3 F?
oF pOF _F 3 F 4 ——F 3
v aw= v T aw Tt

V2 2 d
+ 167 ” (p+ 3p)? + 8aV % (p+p)

(11)
Since Eq. (11) reduces to Eq. (8) on the surface W = W, when
F = dW,/dV, it follows that Eq. (11) admits solutions which
satisfy our criterion F (V, W,) = d W,/dV. With this choice of
F, the system of equations (9), (10) decouples. The coefficient
of B in Eq. (9) vanishes, so that this equation can be used to

determine 4. Given the solution for 4, Eq. (10) can be inte-
grated to determine B.
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To proceed further, it is necessary to change indepen-
dent variables from the set (¥, W) to a more appropriate set,
which we call (X, Y). The new variables X = X (V, W)and
Y = Y (V, W) are defined by the following equations:

Xy, W)=V, s (12)
(2 +rw, W) ) ¥ (V, W) =0, (13)

For the discussion that follows, it will be most helpful to
treat ¥ and W as the functions of X and Y given by the
inverse of the transformation defined by Eqgs. (12) and (13).
The differentials of these variables are related by

3 _ 39 3

FZ 14
ax 3V+ oW (14
9 _W 3 (15)
Y JY oW

We note that it follows from Eq. (14) that F = dW /dX. With
this choice of variables, the equations for 4 and B become

A

Y ar 3 0, 16
3X+ T (p+ pld = (16)
3B —132 1
2 AL bl 3
axX (a xar x (p+ ?)
_iia__ (W)_laA 0. (17)
2 Wax 3y

Itis straightforward now to completely reduce Egs. (16) and
(17) to quadratures. We define the function

"X'[p(X')+3p(X')1dX'}_

VX, Y)= exp[ — 41

WX’ Y)
(18)
If follows that
AX, Y)=aY)W(X,Y), (19)
BiX,Y)
~[er= [ ewr () A v, ]aW/
[XWw?32y], (20)

wherea(Y )and b (Y )arecompletely arbitrary C ' functions of
Y. These quadratures [Eqs. (18)—(20)] can be performed as
soon as one determines the function W (X, Y). Since

F = dW /3X, as we have seen, the real problem lies in deter-
mining the function F from Eq. (11). This problem can be
expedited by changing to the variables (X, Y') discussed
above, and making the substitution F = dW /X in Eq. (11):

FW 1 oW aW) Xow
P A 1LY, e
ax:? X X 4 ax + W&X(p+ )
X2 d
— 16— 3p)P — 87X =0. 21
W(p+ p) . —(pr+p) (21)

We note that only the independent variable X appears explic-
itly in Eq. (21). Therefore, the equation to determine W (X, Y)
is an ordinary differential equation. In fact this is the same
differential equation used to determine W, Eq. (8). The only
difference between W, and W then is one of boundary condi-
tions. The boundary conditions on W, are uniquely deter-
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mined by the asymptotic flatness conditions and appropriate
smoothness conditions at the surface of the star (see Paper I.
On the other hand, W (X, Y) is a one-parameter family of
solutions to Eq. (21). Since Eq. (21) is a second order equa-
tion, there are in principle two free parameters in the most
general solution. Therefore, there is considerable freedom
still available in the choice of the function W (X, Y).

To summarize, we have succeeded in reducing the prob-
lem of finding identities from that of solving the system of
partial differential equations (6}, (7) to that of solving the
single ordinary differential equation (21) plus the quadra-
tures in Egs. (18)-(20).

IV. EXAMPLES: NEW VACUUM IDENTITIES

Toillustrate the generality and usefulness of the simpli-
fications which have been presented here, we show now how
every previously discussed identity for vacuum and uniform
density spaces is a special case of the results presented here.
Also, we explicitly write down the most general vacuum
identity of this type. These vacuum identities are significant-
ly more general than those presented elsewhere'™ and may
possibly provide the way to show that no multiple static
vacuum black hole solutions exist.

Turning to the uniform density case first, we find that a
one-parameter family of solutions to Eq. {21) is given by

W=WyX)+7, (22)

W, = {mpX (3X, — X) + 4mp(1 — 9X2), (23)
where p is the density of the star and X| is the value of X at
the surface of the star. Given these integrals of Eq. (21), it is

straightforward to evaluate the quadratures in Eqs. (18)-
(20). In particular, we find

AX, Y)=aY)W >, (24)
B(X, Y)
xefom [ (e v
(25)

The integral indicated here is simple to perform [using Eqgs.
(22), (23)}, but the result is lengthy and unenlightening. The
uniform density identity presented in Paper I is the special
case of the above with a(Y) =

For vacuum spaces, it is possible to explicitly evaluate
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the most general integral of Eq. (21). In particular, we find
that the general solution is given by

WX Y)=[gY)X*+A(Y)]% (26)
where g and 4 are arbitrary functions of Y. It is also straight-

forward now to perform the quadratures in Egs. (18)-(20). If
dg/dY =g'#0, we find

AX, Y)=alY), (27)
4g'X*+h) [ ]
BX,Y
( ) W3/4 ( I !XZ + h )
(28)
where a' = da/dY, etc. When g’ = 0, we get Eq. (27) and

(29)

4h' aXx?
B Y) = by - 2]

32n2)
Specific examples of these vacuum identities have been given
by Israel,! Robinson,* and in Paper 1. One example given in
Paperlisg(Y)= —h(Y)= — M ~'/2Y "% where Misthe
constant which is the asymptotically defined mass of the star
(or black hole). The identities of Israel and Robinson are
special cases of this example, as was shown in Paper 1. An-
other example given in Paper I (except for typographical
errors)isg(Y)= — M ~and h(Y)=4M "2+ Y.
Clearly a large number of other possibilities also exist for
other choices of g and 4. Perhaps some of these identities can
be used to eliminate the possibility of multiple static vacuum
black holes.

Note added in proof: An error has been discovered in
Sec. V of Paper 1. The argument given there, that uniform
density static stellar models must be spherical, is not correct.
One can only conclude, from an argument such as that pre-
sented there, that any nonspherical uniform density model
must have W /W, < 1 everywhere (including spatial infinity).
This implies, for example that the constants of a nonspheri-
cal model must satisfy the inequality 327pM * > 3(1 — V'2)*.
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