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ABSTRACT

We investigate here the influence of the equation of state of matter (in the nuclear density regime)
on the dynamical behavior of neutron stars. The properties of the quadrupole ( f mode) oscillations of
neutron stars constructed from 13 equations of state are presented. An efficient algorithm for
computing the complex eigenfrequencies of the nonradial ( p and f mode) oscillations of neutron stars
is presented. The results of our computations are compared to relevant astrophysical observations.

Subject headings: dense matter — equation of state — stars: neutron — stars: pulsation

I. INTRODUCTION

Neutron stars provide a unique natural laboratory;
strong gravitational -fields and matter having super-
nuclear densities are balanced in objects of macroscopic
dimensions. Since the macroscopic equilibrium parame-
ters of neutron stars (masses, radii, moments of inertia,
etc.) depend sensitively on the properties of matter at
supernuclear densities (see Arnett and Bowers 1977), the
observation of these parameters offers a unique oppor-
tunity to study matter at high densities. An even more
sensitive test of the interior structure of a neutron star
could be obtained by studying its dynamical behavior,
viz., the oscillations of the star resulting from small
nonequilibrium disturbances.

A number of observations have been made in recent
years which are believed to be associated with perturbed
neutron stars. These observations are presently of two
classes. The first class of observations comprises y-ray
and X-ray burst phenomena. These events are clearly
explosive in nature and have been associated with neu-
tron stars by many authors (see, e.g., Ramaty and
Lingenfelter 1981; Oda 1981). These explosive events
probably perturb the associated neutron star, and the
resulting dynamical behavior may eventually be deduced
from such observations. The second class of observa-
tions come from pulsar timing measurements. Pulsars
are generally believed to be rotating neutron stars. Ob-
servations of quasi-periodic subpulses have been identi-
fied with oscillations of the underlying neutron star by
several authors (see, e.g., Boriakoff 1976; Van Horn
1980).

I This research was supported by National Science Foundation

grants PHY81-18387 to Stanford University and PHY81-16482 to
Yale University.

With this growing list of observational data which
appears to be relevant to the study of oscillating neutron
stars, we felt that it was appropriate at this time to
prepare a careful survey of the effects of the structure of
high density matter on the observables of oscillating
neutron stars. To accomplish this we have computed
numerical frequencies and eigenfunctions for a large
number of neutron star models using 13 equations of
state in the supernuclear density regime. We have cho-
sen to use essentially the same set of equations of state
and the same stellar models as those used by Arnett and
Bowers (1977) in their extensive survey of the equi-
librium parameters of neutron stars. In the present work
we consider the lowest frequency quadrupole mode (the
f mode), while in an accompanying paper Glass and
Lindblom (1982) investigate the fundamental radial
oscillation modes.

Thorne and co-workers were the first to consider the
nonradial oscillations of a neutron star in a fully general
relativistic context (Thormme and Campolattaro 1967,
Price and Thorne 1969; Thorne 19694, b; Campolattaro
and Thorne 1970; Ipser and Thorne 1973). In these
papers the formalism needed to describe the oscillation
of a neutron star is derived. Thorne (19694a) integrated
the resulting equations to determine numerical frequen-
cies for the quadrupole modes of a very small number of
neutron star models. Thorne’s numerical techniques did
not allow him to accurately determine the imaginary
part of the oscillation frequency (the part caused by the
damping of these modes by the emission of gravitational
radiation). An alternative approach for the computation
of the oscillation frequencies of neutron stars was devel-
oped by Detweiler and Ipser (1973). They found a
variational principle which was used by Detweiler (1975)
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to compute approximate oscillation frequencies for a
more extensive set of neutron star models than those
considered by Thorne. Detweiler’s computations also
had difficulty determining the imaginary part of the
oscillation frequencies, due primarily to the smallness of
the imaginary part relative to the real part (high Q) of
these frequencies.

The present paper is an extension of the research
outlined above. It was our aim to compute accurate
oscillation frequencies (both real and imaginary parts)
for a far wider range of neutron star models than had
been considered previously by Thorne (1969a) and
Detweiler (1975). We integrated the perturbation equa-
tions directly in a manner similar to Thorne (1969a).
We modified Thorne’s algorithm, however, in order to
more efficiently compute the osciliation frequencies and
to more accurately determine the imaginary parts of the
frequencies. The details of our algorithm are discussed
at length in the Appendices.

In § II of this paper we describe the equations of state
which have been used by us to construct the stellar
models whose oscillation frequencies are determined. In
§ 111 the graphical and tabulated results of our computa-
tions are presented and discussed. In the final section,
§ IV, our results are compared to the existing astro-
physical observations (in particular, the 1979 March 5
y-ray event).

II. THE EQUATIONS OF STATE

The aim of the present work is to survey the influence
of the equation of state in the nuclear density regime on
the properties of the oscillations of neutron stars. An
extensive survey of the influence of the equation of state
on the equilibrium properties of neutron stars was made
by Arnett and Bowers (1977). We decided to extend
their survey by computing the oscillation properties of
the neutron star models whose equilibrium parameters
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they have cataloged. We have chosen, therefore, to use
essentially the same set of equations of state used by
them.

Table 1 lists the 13 equation of state models which we
used in our computations. The reference given for each
model generally refers to the nuclear density portion of
that equation of state. For lower densities (except model
H) combinations of the Feynman-Metropolis-Teller, the
Baym-Pethick-Sutherland, and the Baym-Bethe-Pethick
(see Baym, Pethick, and Sutherland 1971) equations of
state are used. Our models are identical to those used by
Arnett and Bowers (1977) except for models H and N.
Our model H uses the Harrison-Wheeler equation of
state, which differs at low densities from the noninter-
acting neutron Fermi gas model which was model H of
Arnett and Bowers. We use the Harrison-Wheeler equa-
tion of state so that our oscillation frequencies may be
compared to earlier work. Our model N is a more recent
generalization of Walecka’s (1974) relativistic mean field
equation of state, which was model N of Arnett and
Bowers. The model used by us is Serot’s (1979) pure
neutron equation of state.

Tabulated values for the equations of state used can
generally be found in the references cited in Table 1. A
convenient collection of many of them (models A-G
and I) can also be found in Arnett and Bowers (1974).
Numerical values for equation of state N were kindly
provided by B. Serot and are reproduced here as Table
2. The actual values of the density and pressure needed
for the calculation were obtained from these tables by
logarithmic interpolation as described, for example, by
Arnett and Bowers (1977).

The adiabatic index y needed in the pulsation equa-
tion was computed by differentiating the equation of
state according to the formula y=(p + p)p~'dp/dp.
We computed y for each value in the equation of state
table by a simple difference formula; intermediate val-

TABLE 1
EQUATIONS OF STATE

Density Range
Model Reference (gem™3)
A Pandharipandi 1971 (neutron) >7.004x 10"
B......... Pandharipandi 1971 (hyperonic; model C) >6.968x 10"
C.oool. Bethe and Johnson 1974 (modetl I) >1.706 X 10'4
D ....... Bethe and Johnson 1974 (model V) >1.700x 104
E......... Moszkowski 1974 >2200x 10
F......... Arponen 1972 >3.103x10"!
<1.328x10%*
G .ooone. Canuto and Chitre 1974 >2374x10"
H........ Hartle and Thorne 1968 (Harrison-Wheeler) all
) G Cohen et al. 1970 >1.010x 10
L........ Pandharipande, Pines, and Smith 1976 (mean field) >1.000x 10"
M ... Pandharipande, Pines, and Smith 1976 (tensor) >1.000x 10"
N ... Serot 1979 >1.926%10"
O.ennn. Bowers, Gleeson, and Pedigo 1975 >2.730x 10
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TABLE 2 and Campolattaro (1967) and Thorne (19694). We have
THE SEROT EQUATION OF STATE made some modifications, however, to make the compu-
tations more efficient and to improve the accuracy of
kg p p the imaginary parts of the frequencies. Qur algorithm is
(fm™") (gem™?) (dyne cm™?) described in detail in Appendix A.
05 . 7083 % 102 7181 % 10%° .The results of our computations are summar%zed in
08 ... 2.907 % 10"3 4.194% 103! Figures 1-8 and Tables 3-15. Our tables contain four
10 ........ 5.684%10"3 8.677x103! parameters which describe the properties of the equi-
12 e 9.832x 10" 2.045x10% librium stellar model: p, the central density, R the radius
14 .o 1.564 X 10:: 7.503X 10§§ of the star, M the gravitational mass, and z the surface
1.5 ..., 1.926 X 10 1.556 X 10 . . .t .
L 2343 % 10M 3207 % 103 redshift of the star. There are in addition five parame-
18 ... 3.367x 10 1.245%x 10 ters which describe the properties of the quadrupole
20 ... 4715%x 10" 4071x 10 (/= 2) mode having no radial nodes: T the oscillation
25 10591072 3.287x10% period, 7 the damping time of the mode, E the energy
gg """" égi;; %815 ;g;éi %836 contained in the oscillations, and two parameters d, and
40 . 1.109x10' 7262 % 103 d g which describe the average radial and angular motion
50 . 3.490x 10 2.747x 10%7 of the fluid at the surface of the star.

ues were found by interpolation. The adiabatic index
computed in this way is appropriate only in the low
frequency limit: when the oscillation periods are much
longer than the reaction times needed to return the fluid
to equilibrium (see, e.g., Meltzer and Thorne 1966). In
practice there is little difference between the “equi-
librium” y used here and the “dynamical” y for densities
about ~ 103 g cm™3. Since the majority of the matter in
a typical (1 M) neutron star is at densities above this,
little effect on the pulsation frequencies actually occurs
because of this simplification.

The joining of the nuclear density equation of state,
with the low density equation of state from Baym,
Pethick, and Sutherland (1971) was done at a density
chosen to make the result as continuous and smooth as
possible. The density range used for each of the nuclear
density equations of state is listed in Table 1. There are
three anomalous cases. In model F, the Arponen (1972)
equation of state does not extend beyond the nuclear
density range. The higher density regime of model F
(2.399% 10" g cm ™3 and above) is taken to be the
Pandharipandi (1971) hyperonic equation of state from
our model B. In model G, the Canuto and Chitre (1974)
solid neutron equation of state is applicable only at the
highest densities. In the intermediate range between the
low density equation of state and this high density
region (between 6.968 X 10'* and 1.854%x 10" g cm™?)
the Pandharipandi (1971) hyperonic model is again used.
Finally, model H, the Harrison-Wheeler equation of
state, is used for the complete range of densities.

III. THE RESULTS

We have computed the frequencies of the lowest
quadrupole mode of oscillation for neutron stars con-
structed from the 13 equations of state models described
in § IL. The algorithm used to perform these computa-
tions is similar in principle to that developed by Thorne

The equilibrium properties of these stellar models are
discussed at length by Arnett and Bowers (1977). A
great deal of additional information such as moments of
inertia, binding energies, etc., can be found for these
models from their work. We have chosen to tabulate
here only the four parameters p,, R, M, and z. The
central density p, is tabulated in units of 10" g cm™.
This parameter is the central boundary condition which
we fix for our numerical integration of the equilibrium
structure equations (A3)—(AS). The total radius of the
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F1G. 1.—The surface redshift z is illustrated as a function of
central density p, for neutron stars constructed from equations of
state A, C, F-L.
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F16. 2.—The surface redshift z is illustrated as a function of
central density p, for neutron stars constructed from equations of

state B, D, E, M-0.
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F1G. 4.—The total gravitational mass M is illustrated as a
function of surface redshift z for neutron stars constructed from

equations of state B, D, E, M-O.

M/Mg

F16. 3.—The total gravitational mass M is illustrated as a
function of surface redshift z for neutron stars constructed from

equations of state A, C, F-L.
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F16. 5.—The oscillation frequency w for the fundamental
quadrupole mode is illustrated as a function of surface redshift z
for neutron stars constructed from equations of state A, C, F-L.
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F16. 6.—The oscillation frequency « for the fundamental
quadrupole mode is illustrated as a function of surface redshift z
for neutron stars constructed from equations of state B, D, E,
M-0.

stellar model R is tabulated in units of kilometers. We
determine R from the condition that the pressure of our
analytic polytropic “atmosphere” has a zero at R (see
egs. [A7]-[A8]). This total radius is probably our most
poorly determined parameter; however, our values agree
with those in Arnett and Bowers (1977) to within a few
parts in 10, The total mass of the star M is tabulated in
units of the mass of our Sun. This total mass is the value
.of the function M(r) (see eq. [A2]) evaluated at the
surface of the star M = M(R). The parameter z corre-
sponds to the redshift that a radially propagating pho-
ton would experience while traveling from the surface of
the star to infinity. The parameter z is related to M and
R by the simple equation:

z=(1-2M/R)"*-1. (1)

The redshift has been tabulated separately here because
it is one parameter which may be observed directly.
Emission lines in the 400-460 keV range have been
observed in a number of y-ray burst events (see, e.g.,
Mazets et al. 1981). These have been interpreted as the
redshifted 511 keV e* — e~ annihilation line. Assuming
these events take place near the surface of a neutron

star, one arrives at a direct determination of z. Figures 1
and 2 depict the relationship between the redshift and
the central density, while Figures 3 and 4 depict the
relationship between the redshift and the mass for the
equilibrium models considered here.

When studying neutron star models with a fixed
equation of state it is traditional to parameterize the
equilibrium configurations by either the central density
or the total mass. However, neither of these parameters
seems appropriate for comparing models constructed
from different equations of state. For example, a central
density of 6X10' g cm™* corresponds to a very low
mass and nonrelativistic model for equation of state A,
M =0.26 My and z = 0.036, but the same central den-
sity for equation of state L gives M =1.959 M, and
z=0.275. These are quite dissimilar neutron star mod-
els. Similarly the maximum stable mass varies from 1.4
to 2.6 M, for different equations of state. We find that
stellar models having the same redshift parameter, z, are
more directly comparable from one equation of state to
another. From its definition, z gives a direct estimate of
the importance of relativistic effects for a given model.
Also, the neutron star families constructed from the

10.0 T T T T TIT1TIT] T 1T T TH
)__ —
5.0 _1
F

n lOL— —
o [ 2
0.5 —
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L F -]
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I I N B R NN R |

0.01 0.10

z

F1G. 7.—The gravitational radiation damping time 7 for the
quadrupole mode is illustrated as a function of surface redshift z
for neutron stars constructed from equations of state A, C, F-L.
The box gives the values of the redshift and decay time for the
1979 March 5 y-ray burst event.
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F1G. 8.—The gravitational radiation damping time 7 for the
quadrupole mode is illustrated as a function of surface redshift z
for neutron stars constructed from equations of state B, D, E,
M-O. The box gives the values of the redshift and decay time for
the 1979 March 5 y-ray burst event.

equations of state considered here have very uniform
ranges in the redshift parameter: z = 0.02 for the low
mass limit and z = 0.5 for the high mass limit.

The properties of the quadrupole mode having no
radial nodes is described here in terms of five parame-
ters: T, 1, E, d,, and dy. The first two parameters 7 and
1 describe the frequency of the mode. These parameters
are related to the eigenfrequency w by the relationship

T=27/Re(w), (2)

r=1/Im(w). (3)

We tabulate T in units of milliseconds, while 7 is given
in units of seconds. The two parameters d, and d, are
used to describe qualitatively the behavior of the two
fluid eigenfunctions W(r) and V(r) (see Appendix A).
The parameter d, gives the average radial motion of the
surface of the star, normalized by the radial motion of
the fluid at the center of the star. Thus, d, is related to
the radial function W(r) by

d,=(1-2M/R)"*W(R)/W(0). (4)

LINDBLOM AND DETWEILER

Similarly, the parameter d, describes the average angu-
lar displacement of the fluid on the surface of the stellar
model, normalized by the value of the angular motion at
the center of the star. Thus, d, is related to the function
V(r) by

dg=V(R)/V(0). (5)

Finally, the parameter E measures the kinetic energy
stored in the pulsation of this mode of the star. The
amplitude of the pulsation is normalized by the average
radial displacement of the fluid at the surface of the star
in this mode. This parameter is tabulated in units of
10> ergs, and corresponds to a mode with average
radial motion equal to the radius of the star. For a mode
with a smaller amplitude, say the average radial dis-
placement being e times the radius of the star, the
tabulated entry must be multiplied by &> to obtain the
appropriate pulsation energy. The pulsation energy E of
this mode is related to the other parameters of the star
by the expression (see the Appendix for details):

B(Rew)

E =
" 8TW(R)

FI+2)!
(1_2)!6( ), (6)

The function B(w) in equation (6) is the amplitude of
the outgoing gravitational radiation (see eq. [A41]). The
parameters d,, dy, and E are discussed more fully by
Thorne (1969a), where careful derivations of equations
(4)—(6) may be found.

Figures 5 and 6 depict the dependence of the oscilla-
tion frequency 27/T on the surface redshift z of the
neutron star models considered here. Similarly, Figures
7 and 8 depict the dependence of the damping time 7 on
the surface redshift z. It is interesting to note that the
ordering of the curves on these graphs essentially mimics
the ordering of these equations of state by “average
stiffness.” The ordering based on stiffness is (roughly)
H<G<B<F<D<A<E<C<M<O<I<N<
L, where H is the softest and L the stiffest equation of
state. We see these same orderings qualitatively followed
by the frequency and damping time curves. The softest
equations of state have the highest frequencies (for given
redshift) and the shortest damping times. The softer
equations of state have more centrally condensed stellar
models with larger average densities. Consequently, these
models have shorter dynamical time scales and thus
higher pulsation frequencies. The models having softer
equations of state are more relativistic (higher surface
redshift) and consequently are more effective emittors of
gravitational radiation.

An interesting semiempirical result can be seen in
Figures 7 and 8. For small enough values of the surface
redshift, z < 0.2, the gravitational radiation damping
time is related to the surface redshift by the following
power law: 7=z~ !, The power is essentially indepen-
dent of the equation of state. We have not yet been able
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TABLE 3
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state A)

Pe R T T E
(10 gem™%) (km) M/ M z (107 3%5) (s) (10 ergs) d, dg
5012 el 8.065 1.644 0.585 0.3074 0.1126 1222 2.1 3.6
3981 ...l 8.426 1.653 0.542 0.3234 0.1074 11.58 1.8 3.0
3388 ... 8.685 1.642 0.505 0.3362 0.1067 10.90 1.7 26
3000 .....eenln. 8.887 1.620 0.472 0.3466 0.1059 10.03 1.6 2.4
2344 ... .. 927 1.535 0.399 0.3703 0.1091 7.89 1.4 20
1995 .oiiinn.. 9.495 1.447 0.349 0.3882 0.1168 6.35 1.4 1.8
L778 o 9.640 1.365 0.311 0.4028 0.1268 5.20 1.3 1.7
1698 ............. 9.694 1.328 0.296 0.4086 0.1306 479 1.3 1.7
1585 .ooivinnnn. 9.763 1.271 0.275 0.4182 0.1404 4.18 1.3 1.6
1514 ............. 9.800 1.231 0.261 0.4251 0.1492 3.85 1.3 1.6
1259 .o, 9.927 1.050 0.206 0.4544 0.1964 2.45 1.3 1.4
1.000 ............. 9.997 0.810 0.147 0.4945 0.3144 1.20 1.3 1.3
0.891 .....oe.... 10.010 0.690 0.120 0.5161 0.4230 0.77 1.4 1.3
0.800 ............. 10.035 0.581 0.098 0.5366 0.5805 0.46 1.5 1.3
0.708 ............. 10.121 0.464 0.075 0.5614 0.8793 0.22 1.7 1.3
0.600 ............. 11.244 0.260 0.036 0.6541 3.0132 0.01 4.0 2.0
TABLE 4
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state B)
p. R T T E
(10 g em™3) (km) M/ M, z (1073s) (s) (10°4 ergs) d, dg
7943 ... 6.661 1.397 0.621 0.2510 0.1051 10.17 2.4 43
6200 ............. 7.002 1.412 0.573 0.2647 0.0986 9.72 2.1 35
5012 .ol 7313 1.403 0.519 0.2776 0.0926 8.71 1.9 2.9
3981 ...l 7.684 1.360 0.447 0.2946 0.0896 7.25 1.7 2.4
3.388 ..ol 7.950 1.303 0.392 0.3090 0.0914 5.94 1.6 22
3.020 ...l 8.131 1.250 0.353 0.3204 0.0955 5.04 1.5 2.0
3.000 ...l 8.141 1.247 0.351 0.3207 0.0947 5.05 1.5 2.0
2630 .o 8.342 1171 0.307 0.3360 0.1045 3.99 1.5 1.8
1995 ... 8.760 0.970 0.219 0.3763 0.1468 2.14 1.5 1.6
1259 .ooeiinn. 9.506 0.638 0.117 0.4756 0.3882 0.61 1.5 1.4
1.000 .....uvnenen. 9.831 0.522 0.089 0.5248 0.6375 0.32 1.6 1.4
0.891 ......oo.l. 9.971 0.473 0.078 0.5454 0.7997 0.24 1.7 1.4
0.800 ............. 10.071 0.436 0.071 0.5597 0.9552 0.18 1.8 1.4
0708 ............. 10.208 0.390 0.062 0.5762 1.2031 0.12 20 1.4
0.600 ............. 11.512 0.244 0.033 0.6692 3.5401 0.01 49 23
0500 .........n... 15.045 0.167 0.017 0.8859 35.1410 0.00 200.9 522
TABLE 5
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state C)
Pe R T T E
(10 gem™3) (km) M/M 4 10735) (s) (10%* ergs) d, dg
3548 ...l 9.604 1.845 0.520 0.3610 0.1235 10.92 2.2 3.4
3000 ...l 9.955 1.852 0.490 0.3770 0.1214 10.59 2.0 3.0
2512 10.315 1.840 0.454 0.3947 0.1211 9.87 1.8 26
2239 ... 10.547 1.821 0.428 0.4068 0.1221 923 1.7 2.4
1.995 coiinnnn. 10.777 1.790 0.401 0.4201 0.1245 8.53 1.6 22
L7718 oot 11.015 1.746 0.371 0.4346 0.1289 7.52 1.6 2.1
1585 .oieennnn. 11.237 1.689 0.341 0.4496 0.1342 6.72 15 20
1413 ... 11.446 1.619 0.311 0.4670 0.1456 5.78 1.5 1.9
1259 ..ol 11.647 1.533 0.279 0.4859 0.1605 4.89 1.4 1.7
1122 .o 11.836 1.435 0.248 0.5067 0.1817 3.95 1.4 1.6
1000 ..., 12.020 1322 0217 0.5311 0.2138 3.11 1.4 1.6
0.800 ............. 12.335 1.094 0.164 0.5849 0.3189 1.81 1.4 1.4
0.600 ............. 12.712 0.809 0.110 0.6687 0.6247 0.77 1.5 1.3
0.500 ............. 12.988 0.652 0.084 0.7297 1.0257 0.42 1.5 1.3
0.400 ............. 13.450 0.489 0.058 0.8130 2.0026 0.17 1.8 1.3
0320 ............. 14.244 0.359 0.039 0.9090 4.1862 0.05 2.4 1.5
0.260 ............. 15.557 0.266 0.026 1.0091 8.6376 0.01 4.6 22
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TABLE 6
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state D)

P, R T T E

(10" g ecm™?) (km) M/ Mg z 107 35) (s) (10°* ergs) d, dg
3.981 ...l 9.040 1.645 0.470 0.3407 0.1063 8.71 2.1 3.1
3548 ..ol 9.261 1.650 0.453 0.3522 0.1087 8.52 2.0 2.9
3.000 ...l 9.598 1.648 0.424 0.3700 0.1109 8.29 1.8 2.5
2512 . 9.947 1.631 0.392 0.3900 0.1152 7.33 1.7 2.0
2239 . 10.154 1.610 0.371 0.4028 0.1183 7.16 1.5 2.1
1.995 ....ooinin. 10.336 1.580 0.350 0.4155 0.1233 6.71 1.5 1.9
1778 oo 10.450 1.547 0.333 0.4245 0.1277 6.25 1.4 1.8
1.548 ............. 10.561 1.497 0.312 0.4346 0.1342 5.62 1.4 1.8
1413 ... 10.678 1424 0.284 0.4480 0.1470 4.69 14 1.7
1259 ..oooonl. 10.829 1312 0.248 0.4672 0.1686 3.67 14 1.6
1122 10.966 1.186 0.212 0.4899 0.2024 2.71 1.4 1.5
1000 .....o...... 11.088 1.060 0.180 0.5141 0.2511 1.95 1.4 1.5
0.800 ............. 11.301 0.820 0.128 0.5679 0.4223 0.96 1.4 14
0.600 ............. 11.697 0.549 0.077 0.6542 1.0054 0.27 1.7 1.4
0500 ............. 12.189 0.413 0.054 0.7227 1.9273 0.10 20 1.4
0.400 ............. 13.355 0.290 0.034 0.8267 4.5730 0.02 3.5 1.8
0320 ............. 15.472 0.211 0.021 0.9518 10.9460 0.00 13.5 47

TABLE 7

QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state E)

Pe R T T E

(10 gem™3) (km) M/ My z (1073 5) (s) (10°4 ergs) d, dg
3.070 .o, 9.018 1.730 0.519 0.3486 -0.1128 11.71 1.7 2.7
2818 ... 9.174 1711 0.492 0.3560 0.1112 10.90 1.6 25
2512 9.368 1.675 0.456 0.3665 0.1105 9.90 1.5 23
1778 oo 9.917 1.474 0.335 0.4054 0.1233 6.12 1.4 1.8
1585 ..., 10.070 1.376 0.295 04214 0.1357 4.85 1.4 1.7
1413 .. 10.202 1.265 0.256 0.4392 0.1550 3.76 13 1.6
1259 ... 10.316 1.144 0.220 0.4592 0.1844 279 1.3 1.5
1.000 ............. 10.499 0.891 0.155 0.5058 0.2951 1.38 1.4 1.4
0794 ............. 10.694 0.651 0.104 0.5628 0.5575 0.57 1.5 1.3
0.631 ..o, 11.074 0.452 0.066 0.6328 1.2200 0.17 1.8 14
0.501 ............. 11.963 0.305 0.040 0.7210 2.6917 0.03 2.9 1.7
0398 ............. 14.042 0.206 0.022 0.8431 8.3408 0.00 12.2 43

to understand why the damping time should scale in this
way. For larger values of the redshift parameter, z > 0.2,
all of the curves in Figures 7 and 8 curve upward. This
occurs, we believe, because the emission of gravitational
radiation becomes impeded for very compact models
due to the backscattering of the waves by the deep
gravitational potential well.

1V. DISCUSSION

Our initial interest in these calculations was moti-
vated by the suggestion of Ramaty eral (1980) that
many features of the 1979 March 5 y-ray burst. event
could be understood by assuming the source was an
oscillating neutron star. The source has been identified
with the supernova remnant N49 (located in the Large
Magellanic Cloud) by its position (see Evans et al. 1980).

Furthermore, Liang (1981) has shown that the spectrum
of this source is consistent with synchrotron radiation in
a 1.9x10'"" gauss magnetic field modified by inverse
Compton scattering, Liang calculates the total luminos-
ity of such a source to be ~ 2.5x10* ergs s~! which is
in remarkable agreement with the observed burst
luminosity if a Large Magellanic Cloud origin is as-
sumed. In addition to the continuum spectrum consid-
ered, there is an emission line whose peak lies at ~ 430
keV. This line has been interpreted as the 511 keV
e* — e~ annihilation line whose peak has been
blueshifted by ~ 20 keV due to finite temperature ef-
fects (see Ramaty and Meszaros 1981) and redshifted by
the gravitational field of the source. With this interpre-
tation, the resulting gravitational redshift has the value
z=0.23 with an uncertainty of ~ 0.05. This redshift is
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TABLE 8
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state F)

Pe R T T E

(10¥ gem™3) (km) M/ M z (10735) s (10°* ergs) d, dg
5012 ..oooiininl. 7.935 1.462 0.481 0.2927 0.0961 7.52 22 33
4850 ............. 8.006 1.462 0.473 0.2963 0.0977 731 22 3.3
4677 ...l 8.088 1.460 0.464 0.2999 0.0974 6.97 2.2 32
4560 ............. 8.146 1.459 0.457 0.3023 0.0973 6.79 22 32
4467 ............. 8.188 1.458 0.452 0.3043 0.0971 7.06 2.1 3.0
4266 ............. 8.294 1.455 0.440 0.3087 0.0958 6.95 2.1 2.9
3981 ...l 8.455 1.448 0.422 0.3162 0.0957 6.76 20 2.7
3548 ...l 8.746 1.432 0.391 0.3315 0.0998 6.12 1.9 2.5
3162 ..ol 9.042 1.411 0.362 0.3478 0.1040 5.59 1.8 2.3
2818 ... 9.349 1.385 0.333 0.3666 0.1113 4.06 2.0 2.5
2512 9.642 1.357 0.308 0.3851 0.1187 470 1.6 2.0
2239 ...l 9.864 1.330 0.289 0.4022 0.1294 4.06 1.6 1.9
1.995 ............. 10.046 1.300 0.272 0.4163 0.1383 4.23 1.4 1.7
1778 .o 10.220 1.263 0.255 0.4310 0.1492 3.68 1.4 1.7
1585 ....ooii.l. 10.364 1.218 0.238 0.4469 0.1655 3.19 1.4 1.6
1413 ............. 10.505 1.165 0.220 0.4619 0.1824 2.96 1.3 1.5
1259 ............. 10.636 1.099 0.200 0.4798 0.2090 2.62 1.3 1.4
L122 10.762 1.021 0.179 0.5002 0.2457 2.00 1.3 1.4
1.000 ............. 10.868 0.938 0.159 0.5214 0.2956 1.54 1.3 1.4
0.794 ............. 11.046 0.752 0.119 0.5687 0.4709 0.87 1.3 1.2
0.631 ............. 11.249 0.560 0.083 0.6247 0.8737 0.36 1.4 1.1
0.501 ............. 12.546 0.306 0.038 0.7794 3.2171 0.03 2.0 1.1
0.398 ............. 13.647 0.242 0.027 0.8621 6.7137 0.01 33 L5
0316 ............. 14.899 0.200 0.020 0.9259 10.9830 0.00 13.0 45

TABLE 9

QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state G)

0. R T T E

(10'% g em™%) (km) M/ M, z (1073 5) s) (104 ergs) d, dg
6310 .oooovvinns. 6.944 1.357 0.538 0.2606 0.0920 8.34 2.1 34
6.042 ............. 7.013 1.356 0.527 0.2634 0.0910 8.17 2.0 3.2
5232 e, 7.236 1.348 0.491 0.2726 0.0870 7.66 1.9 2.9
4503 ...l 7.471 1.327 0.450 0.2834 0.0858 6.80 1.8 2.6
4161 .....oo...... 7.600 1.310 0.427 0.2902 0.0875 6.41 1.7 24
3.829 ..iiinin.. 7742 1.286 0.401 0.2973 0.0875 5.88 1.7 23
3498 ............. 7.899 1.253 0.372 0.3067 0.0909 5.26 1.6 22
3198 ..ol 8.061 1214 0.342 0.3169 0.0950 4.55 1.6 2.1
2912 .ol 8.228 1.168 0.312 0.3282 0.1001 4.01 1.5 1.9
pX) U 8.398 1.114 0.282 0.3419 0.1107 3.39 1.5 1.8
2376 .o 8.558 1.057 0.255 0.3559 0.1230 2.83 1.5 1.7
2239 . 8.638 1.025 0.241 0.3634 0.1310 2.55 1.5 1.7
1995 ...ooiiiiil. 8.781 0.958 0.215 0.3789 0.1505 2.03 1.5 1.6
1778 it 8.943 0.877 0.186 0.3979 0.1805 1.56 L5 1.6
1585 ..ooevnnnns 9.136 0.786 0.158 0.4236 0.2334 111 1.5 L5
1413 ... 9.333 0.705 0.134 0.4503 0.3027 0.81 1.5 1.4
1259 .ol 9.506 0.638 0.117 0.4757 0.3892 0.61 1.5 1.4
1122 .l 9.679 0.575 0.101 0.5017 0.5033 0.44 1.6 1.4
1000 ...ooevnnnls 9.833 0.522 0.089 0.5248 0.6375 0.32 1.6 1.4
0794 ............. 10.081 0.433 0.070 0.5606 0.9654 0.17 1.8 1.4
0631 ............. 10.922 0.282 0.040 0.6324 2.4649 0.02 33 1.8
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TABLE 10
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state H)

P, R T T E
(10¥ gem™3) (km) M/M, z (10735) (s) (10°* ergs) d, dg
10.000 ............ 7.474 0.666 0.165 0.2641 0.1291 0.24 6.2 4.5
6.000 ............. 8.396 0.682 0.147 0.3101 0.1652 0.25 5.1 3.6
3.000 ............. 10.178 0.660 0.112 0.4109 0.3004 0.20 42 28
1000 ....ooeenenl. 14.146 0.553 0.063 0.6814 1.2828 0.08 42 24
0300 ............. 20.811 0.404 0.030 1.1967 7.4287 0.01 7.5 3.1
TABLE 11

QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state I)

Pc R T T E
(10" g cm™?) (km) M/ Mg z (1073 5) (s) (10% ergs) d, dy
2239 oo 11.660 2.443 0.619 0.4496 0.1760 20.24 2.0 3.6
1.995 ..ol 11.906 2.446 0.595 0.4599 0.1693 19.60 1.9 33
1778 oot 12.194 2.439 0.563 0.4723 0.1628 18.73 1.7 29
1.585 oot 12.472 2418 0.530 0.4852 0.1579 17.36 1.6 2.7
1413 ..o 12.750 2.380 0.493 0.4986 0.1522 16.03 1.6 24
1.259 ...l 13.027 2.324 0.454 0.5151 0.1543 14.22 1.5 2.2
1122 ..o 13.282 2.249 0.414 0.5317 0.1568 12.41 1.4 2.1
1.000 ............. 13.502 2.154 0.375 0.5488 0.1614 10.56 1.4 1.9
0794 ............. 13.887 1.892 0.294 0.5924 0.1935 6.94 1.3 1.7
0.631 .....ooo.... 14.130 1.561 0.218 0.6459 0.2670 3.99 1.3 1.5
0501 ............. 14.228 1.207 0.155 0.7100 0.4319 2.01 1.3 1.3
0398 ...l 14.273 0.870 0.104 0.7870 0.8264 0.85 1.4 1.3
0316 ............. 14.443 0.590 0.066 0.8779 1.8385 0.28 1.5 1.3
0251 ............. 15.115 0.380 0.039 0.9861 4.6943 0.06 22 1.4
0199 ............. 17.359 0.235 0.021 1.1290 14.0900 0.00 8.9 34
TABLE 12
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state L)
o, R T T E
(10 gem™3) (km) M/ Mg z (10735) ) (103* ergs) d, dg
1.585 oot 13.514 2.659 0.545 0.5288 0.1738 20.40 1.7 2.8
1.500 ...........t 13.616 2.661 0.538 0.5335 0.1708 20.33 1.6 2.7
1413 ...l 13.734 2.660 0.529 0.5402 0.1727 19.98 1.6 2.6
1259 .ol 13.938 2.648 0.510 0.5514 0.1718 19.33 1.5 24
1122 o 14.129 2.622 0.488 0.5624 0.1712 18.28 1.4 23
1.000 ............. 14304 2.579 0.462 0.5735 0.1713 16.93 1.4 2.1
0891 ............. 14.496 2.498 0.427 0.5886 0.1735 15.09 1.3 2.0
0794 ... 14.685 2.391 0.388 0.6042 0.1774 10.47 1.4 2.1
0631 ..., 14.992 2.044 0.294 0.6525 0.2158 7.81 1.2 1.6
0600 ............. 15.025 1.959 0.275 0.6640 0.2296 6.93 1.2 1.5
0501 .....ooeeln. 15.058 1.640 0214 0.7071 0.3045 4.27 1.2 1.4
0500 ............. 15.057 1.635 0.213 0.7077 0.3058 424 1.2 1.4
0400 ............. 14.895 1.226 0.149 0.7655 0.5003 2.02 1.2 1.3
0398 ...l 14.889 1.214 0.148 0.7672 0.5084 1.97 1.2 1.3
0318 .....oell. 14.656 0.762 0.087 0.8546 1.2029 0.59 1.4 1.2
0300 .....cee... 14.647 0.668 0.075 0.8803 1.5543 0.41 1.4 1.2
0251 ooeeiel.. 14.960 0.439 0.046 0.9668 3.6044 0.10 1.9 1.3
0224 ............. 15.614 0.331 0.033 1.0322 6.5092 0.03 2.8 1.6
0200 ...........el 16.920 0.251 0.023 1.1081 12.0160 0.00 6.3 2.6
0199 ............. 16.958 0.250 0.022 1.1099 12.1910 0.00 6.5 2.1
82
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TABLE 13
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state M)

Pe R : T T E

(10¥ gem™%) (km) M/ Mg z (10735) s) (10%* ergs) d, dg
3062 ..o 10.913 1.753 0.379 0.3959 0.1251 5.20 2.8 3.5
2239 11.908 1.759 0.332 0.4452 0.1372 4.97 2.3 2.8
1778 oo, 12.648 1.736 0.297 0.4877 0.1556 4.58 2.1 2.5
1585 oo, 13.044 1.718 0.279 0.5121 0.1676 433 2.0 2.3
1259 ..ol 13.830 1.670 0.247 0.5661 0.2003 3.91 1.8 2.0
1000 ....onet.. 14.589 1.612 0218  0.6261 0.2467 3.46 1.6 1.8
0.794 ............. 15.281 1.547 0.194 0.6896 0.3091 3.07 1.5 1.6
0.708 ............. 15.475 1.519 0.187 0.7102 0.3342 2.92 1.4 1.5
0.631 ............. 15.648 1.483 0.178 0.7308 0.3639 2.73 1.4 1.5
0562 .. .oouunnnn. 15.796 1.437 0.169 0.7513 0.3993 2.52 1.4 1.5
0.501 ..ooennnnnn. 15.922 1.382 0.160 . 0.7716 0.4413 2.26 1.4 1.4
0398 ............. 16.095 1.231 0.137 0.8155 0.5740 1.67 1.4 1.4
0316 ............. 16.368 0.931 0.096 0.9092 1.0608 0.78 1.4 1.3
0.251 ..oooennnnn. 16.754 0.681 0.066 1.0162 2.1414 0.32 1.6 13
0.199 ............. 17.464 0.485 0.044 1.1385 4.6651 0.10 2.0 1.4
0.158 ............. 18.979 0.337 0.027 1.2840 10.9580 0.02 3.6 1.8

TABLE 14

QUADRUPOLE OSCILLATIONS OF NEUTRAON STARS (equation of state N)

Pe R T T E

(10" gem™?) (km) M/ Mg z (1073 5) (s) (10%* ergs) d, dy
3000 ..ol 11.544 2.485 0.657 0.4462 0.1832 22.53 23 43
2000 ...l 12.270 2.563 0.616 0.4807 0.1772 23.07 1.8 3.2
1.500 .....ooeen. 12.825 2.561 0.561 0.5076 0.1676 21.46 1.5 2.6
1.000 ............. 13.472 2.370 0.443 0.5478 0.1618 15.07 1.3 2.0
0900 ............. 13.653 2.243 0.394 0.5645 0.1655 12.39 1.3 1.8
0.800 ............t 13.800 2.080 0.342 0.5855 0.1781 9.81 1.2 1.7
0700 ............. 13.883 1.871 0.289 0.6119 0.2058 7.14 1.2 1.6
0.600 ............. 13.879 1.608 0.233 0.6434 0.2573 4.70 1.2 1.4
0.550 ............. 13.823 1.452 0.204 0.6618 0.3017 3.61 1.2 1.4
0.500 ............. 13.719 1.278 0.175 0.6822 0.3701 2.61 1.2 1.3
0450 ............. 13.544 1.057 0.140 0.7098 0.5074 1.61 1.2 1.3
0400 ............. 13.338 0.801 0.102 0.7496 0.8233 0.79 1.3 1.2
0350 ..ol 13.242 0.567 0.070 0.8000 1.5548 0.30 1.5 1.2
0300 ............. 13.634 0.362 0.042 0.8721 3.7229 0.06 22 1.4

TABLE 15
QUADRUPOLE OSCILLATIONS OF NEUTRON STARS (equation of state O)
0c R T T E

(10 gem™3) (km) M/ M z (10735%) (s) (10%* ergs) d, dg
2365 ...l 11.292 2374 0.624 0.4407 0.1618 21.76 1.8 32
2000 ..oooeennenns 11.583 2.380 0.595 0.4539 0.1555 21.05 1.7 29
1780 ...ooeoenn.. 11.785 2.370 0.569 0.4652 0.1560 20.10 1.6 2.6
1.500 ............. 12.080 2.327 0.523 0.4800 0.1487 18.07 1.4 23
1259 ..o, 12.364 2.235 0.465 0.4987 0.1488 15.14 1.3 2.1
1.000 ............. 12.671 2.013 0.372 0.5284 0.1577 10.41 1.3 1.8
0800 ............. 12.834 1.682 0.277 0.5672 0.1944 6.08 1.2 1.5
0750 ............. 12.840 1.567 0.250 0.5815 0.2169 5.01 1.2 1.5
0.668 ............. 12.822 1.361 0.207 0.6080 0.2706 3.41 1.2 1.4
0.639 ............. 12.799 1.282 0.192 0.6191 0.3003 2.93 12 1.4
0631 ............. 12.791 1.260 0.188 0.6221 0.3092 2.79 1.2 1.4
0.562 .......c..... 12.703 1.065 0.153 0.6508 0.4140 1.82 1.2 1.3
0.500 ............. 12.584 0.886 0.124 0.6788 0.5727 1.15 1.2 1.3
0450 ............. 12.461 0.742 0.101 0.7017 0.7826 0.72 1.3 1.2
0400 ............. 12.335 0.555 0.074 0.7340 1.3026 0.32 1.5 1.3
0.350 ............. 12.637 0.345 0.043 0.7918 3.1435 0.06 22 1.4
0300 ............. 15.438 0.187 0.018 0.9275 13.5140 0.00 36.0 10.6
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completely consistent with the surface redshift from a
1.2 to 1.4 M, neutron star remnant of a supernova (see
Figs. 3 and 4). All of these considerations taken together
make it appear quite likely that the source of the 1979
March 5 y-ray burst event is on or near a neutron star.
The initial burst of the 1979 March 5 event had a
characteristic rise time shorter than 0.2 ms; the burst
then decayed exponentially with a time constant of
150 + 30 ms for an initial period of ~ 100 ms; this initial
period was followed by a steeper exponential decay
having time constant of ~ 35 ms. The decay times for
this pulse are far too long to be accounted for in terms
of the cooling of the e* — e~ pairs by synchrotron
emission (10715 s; Liang 1981) or the pair annihilation
time (107!2 s; Ramaty eral 1980) for the type of
atmosphere which successfully models the spectrum of
the burst. These considerations lead Ramaty et al. (1980)
to suggest that the energy source for the burst might be
the oscillations of the associated neutron star. They
suggest that the star could be set into oscillation by
some internal event: a phase transition in the core, for
example. The resulting oscillations might heat the atmo-
sphere to temperatures hot enough to create the e* — e~
pairs through the strong magnetic fields which are tied
to the star. The dominant energy loss mechanism for
such an event might be the emission of gravitational
radiation by the quadrupole mode, they suggest. Thus,
the 150 ms exponential decay phase, during which most
of the observed energy was released, might be a measure
of the gravitational wave damping time for this object.
This model can now be checked for consistency using
the results of our present computations of the quadru-
pole modes of realistic neutron stars. The observed
redshift and the 150 ms decay time of the 1979 March 5
y-ray event is shown in Figures 7 and 8. We see that
these numbers are consistent with the quadrupole damp-
ing times of several of the softer equations of state:
A,B,D,E,F,G. From Figures 3 and 4 we see that the
observed surface redshift. is consistent for models
A,D,E,F with masses that could have resulted from the
collapse of a 1.4 M, core. The masses of stars from
models B and G appear to be too small to be consistent
with the observed redshift and the standard picture of
neutron star formation. The oscillation period of the
quadrupole mode for these models can be inferred from
Figures 5 and 6 to be in the range 0.44-0.53 ms.
Weisekopf ez al. (1981) have analyzed the meager data
which had sufficient time resolution to detect such oscil-
lations (255 events during the first 56 ms of the burst)
without finding any evidence for such oscillations.
While the oscillating neutron star model of the 1979
March 5 y-ray burst event does not yet explain all of the
observed features (e.g., the 35 ms decay time, the 8 s
periodicity, or the 50 s long decay rate), it does appear
to be consistent with the extensive analysis of the

Vol. 53

quadrupole oscillations of neutron stars which we have
prepared here.

The other class of observations which may be related
to oscillating neutron stars is the micropulse structure of
pulsars. A 0.9 ms periodicity in the pulsations of PSR
2016+28 was first noted by Boriakoff (1976). Since then
periodicities in the 1 ms range have been observed in
other objects by a number of authors: Cordes (1976),
Cordes and Hankins (1977), Hankins and Boriakoff
(1978), and Soglasnov efal. (1981). Boriakoff (1976)
suggested that the 0.9 ms periodicity which he observed
might be caused by a nonradial oscillation of the neu-
tron star. Cordes (1976) notes that the micropulse struc-
ture in these objects becomes uncorrelated between
subpulses whose separation is larger than ~ 10 ms. Since
the damping time of the nonradial modes by gravita-
tional radiation emission is much longer than 10 ms,
Cordes concluded that it was not reasonable to associate
the micropulses with neutron star oscillations.

Our computations of neutron star damping times by
gravitational radiation emission give times in the range
100-300 ms for neutron stars in the expected mass
range. Higher order modes are expected to have even
longer damping times. We agree with Cordes (1976),
therefore, that nonradial oscillations of neutron stars
whose primary damping mechanism is gravitational
radiation do not provide a consistent model for the
micropulses. Even if other damping mechanisms were
present which were more efficient than gravitational
radiation in damping the neutron star oscillations, it
does not appear to us that such a model could be
consistent with these observations. The 0.9 ms period
observed in the micropulsations is longer than the
0.8-0.3 ms range of periodicities for the equations of
state studied here. To find a quadrupole oscillation
period as long as 0.9 ms, the neutron star would have to
have a significantly smaller mass than that expected for
a collapsed white dwarf core. The most massive star
with a period this long has M/My= 0.9, from equation
of state M. The expected core mass for this equation of
state is 1.35 M, (see Arnett and Bowers 1977). Since the
higher order nonradial p modes are expected to have
even shorter oscillation periods than those computed
here, it seems unlikely to us that these pulsar micro-
pulsations can be modeled as nonradial p mode
oscillations of the neutron star. We will argue in the
accompanying paper (Glass and Lindblom 1983) that
the radial oscillations for these stars also have periods
which are too short to account for the micropulsations.
Our analysis does not rule out the possibility that a
dipole mode could have an appropriate frequency, or
that a mode associated with the nonperfect fluid proper-
ties of neutron star matter (the nonadiabatic g modes or
the tortional modes of the solid crust) could have ap-
propriate frequencies to describe the micropulsations.
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APPENDIX A

HOW TO COMPUTE THE QUASI-NORMAL MODES

In this appendix we describe the technical details involved in the calculation of the quasi-normal modes of general
relativistic neutron star models. The techniques described here for determining the perturbation functions within the
star are closely related to those described by Thorne (19694, b). The method described here for determining the
eigenfrequency of a particular mode is closely related to the techniques developed by Detweiler (1980) in his analysis of
the modes of the Kerr black hole.

1. THE EQUILIBRIUM STELLAR MODEL
The calculation of the pulsation of a stellar model must begin with the numerical determination of the equilibrium

stellar model itself. The general static spherical metric which describes the geometry of an equilibrium stellar model can
be written as

ds?=— e’ dt> + et dr® + r?(d6?* +sin’0 d¢?), (A1)
where » and A are functions of r. It is convenient to define the function M(r) as follows:

M(r)=3r(1—e™). (A2)

Einstein’s equations for this system are equivalent to the Tolman-Oppenheimer-Volkoff equations, given by

a

ar =4arp, (A3)
dv  M+4ar’p

el TR N LA 4 A4
dr r(r-2M)° (A4)
p__1 dv

dr 2(p+p) dar (AS)

The functions p and p in these equations are the energy density and the pressure of the fluid in the star. The pressure
and density are related by an equation of state p = p( p). These equations are integrated numerically as an initial value
problem from the center of the star r = 0. The mass function must vanish at the center of the star, M(0) = 0, while the
values of p and » may be freely specified here. The equations are then integrated to the value of r where the pressure
vanishes p(R) = 0. This surface » = R is the surface of the star. The total mass of the star is given by M(R), and the
arbitrary constant in the function » is fixed by normalizing the time coordinate at spatial infinity:

e"®=1-2M(R)/R. (A6)

In our numerical calculations, equations (A3)—(AS5) were integrated by the Hamming’s predictor-corrector-modifier
algorithm (see Lambert 1973). The predictor-corrector-modifier algorithm was started using Ralston’s (1962) minimal
error Runge-Kutta algorithm. The equations were integrated on a uniform radial grid with approximately 350-400 grid
points in the internal (0, R). The numerical integration was terminated at the last grid point having a positive pressure.
The actual surface of the star was located by matching an analytic polytropic “atmosphere” onto this last numerical
gridpoint. The density and pressure near the surface of a polytropic star vary as

p=a(R-n)"", (A7)
p=b(R—r)N, (A8)
where N is the polytropic index. The constants a, b, R, and N are determined by requiring that p, p, dp/dr, and the

adiabatic index y=1+1/N be continuous functions at the final gridpoint. For the computations which we have
performed, the surface value of v is typically in the range 1.3 to 1.4. The accuracy of our computations appear to be at
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the level of a few parts in 104, Our models are unchanged to this level of accuracy when the number of grid points is
doubled in our integrations. Furthermore, our models agree with those computed by Arnett and Bowers (1977) to this
level of accuracy.

I1. THE PERTURBATIONS INSIDE THE STELLAR MODEL

The perturbations of these static spherical stars are decomposed into appropriate spherical harmonics ¥, and
sinusoidal time dependence e’“‘. By making an appropriate choice of gauge, the perturbed metric for a given spherical
harmonic may be put in the form (see Thorne and Campolattaro 1967):

ds? = — e’ (1+ pH,Yle'") dr* — 2iwp'H\Yie™" dr dr + e*(1— p'H, Yie'") dr?
+r2(1- pKY e )(d6? +sin? 0 d¢?). (A9)
The parameter u is defined by
(A10)

={r/R 0<r<R
=1 r=r

The functions H,, H,, and K depend only on r. These functions differ from the analogous functions used by Thorne
and Campolattaro (1967) by the factors p'; by factoring out this ' dependence, we improve the numerical behavior of
our functions near r = 0.

The perturbations of the fluid variables in the stellar model are determined from the fluid dislocation vector field £=.
In an appropriate gauge ¢' = 0, and the other components are given by

£r=p’1r—leA>\/2WY'Leiwt, (All)
£0 = — Wlr2Va,Y.e™, (A12)
g2 =—p/(rsin0) Vo, Yie". (A13)

The radial functions ¥ and W differ from the analogous functions of Thorne and Campolattaro (1967) by the factor [T
We will find it convenient to use a function X(r) rather than ¥(r) in the perturbation equations; these functions are
related by

V=0"2(p+p) ‘e’ [e??X+r pe W —1(p+p)H,). (A14)

In these equations the functions p, p, p’=dp/dr, v, and A represent the functions of r from the equilibrium stellar
model. Wherever V appears in the following equations, it is to be thought of as this functional of H,, W, and X.

Einstein’s equations for this physical situation have been written out by Thorne and Campolattaro (1967). These
equations are given by

H = D [F2K'+r(1+e*)K — e*(3M +4nr’p) K — rHy +8mr(p+ p) e W], (A15)

W=—+1)r "W+re? [y 'p~le™/2 X~ I(I+1)r 2V +1H, + K|, (A16)

X' +3(p+p)e’*(H' -2K")=(p +p)[— W e 2 4 Lot 2 (rm 2 M2 YW — L1+ 1) 2y e PV

e (1) Hy + e 4 K], (a17)
2 2.2
Hy+ |7 ~e” —1|K'=—Ir"'(Hy— K)—eM(2M/r* +8arp) H,
I(1+1)
2 2
- l(lil)e"”[r(1+ er)K —er(BM +47r’p) K — rHy +87r(p + p) e W],

(A18)
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Hy—eM(1-3M/r —4nr’p)K'~8mype®*W' = (2= 1) r 'Hy— r "' [1+ 21+ 1) +47r>(2+ v) p| Hy— w?re* 'K
+roleM =1+ 1+ LI+ 1) =3IM/r —4nr’p(I+2y)] K
+8mr M2 [rp’+(I+ V) yp|W+8al(I+1)r lerypV. (A19)

The first of these equations (A15) serves to eliminate H,; from the system of equations. The four remaining radial
perturbation functions Hy, K, W, and X can be thought of as an abstract vector field,

Y(r)={(H,, K, W, X). (A20)

The remaining Einstein’s equations for these functions form a first-order linear system of the form
dY
= Q(r.1,0)¥(r). (A21)

The matrix Q depends on r, /, and the frequency w, as can be inferred from equations (A16)—(A19).

The radial perturbation equations (A21) form a fourth-order system of linear equations (see Ipser and Thorne 1973).
For given values of / and w it follows that there will exist four linearly independent solutions to these equations inside
the stellar model. The physically relevant solutions to these equations must satisfy appropriate boundary conditions.
The perturbation functions must be finite everywhere; in particular, the functions must be finite at the boundary » = 0.
Furthermore, the function X must vanish at the surface of the star r = R. This condition, X(R) = 0, is equivalent to the
physical requirement that the perturbed pressure must vanish on the perturbed surface of the star (see Thorne
19694, b). For given values of / and w there is only one solution which satisfies all of these boundary conditions inside
the star.

To determine numerically the unique solution to equation (A21) which satisfies all of the physical boundary
conditions, we proceed as follows. At the surface of the star there are three linearly independent vectors Y(R) which
satisfy the boundary conditions X(R)=0. We select three such vectors and use them as initial values for the
differential equation (A21). We integrate these numerically from r = R back to the “middle” of the star at r = R /2.
These integrations yield three solutions, Y;, ¥,, and ¥;, defined on the domain R > r > R /2, each of which satisfy the
boundary condition X(R)=0. The unique solution which satisfies all of the boundary conditions must be some
constant linear combination of these three solutions in the domain R > r > R /2.

Let us be a bit more explicit about the numerical process of finding the three functions ¥,, ¥,, and ¥;. Recall that
the equilibrium stellar model has been determined only on a fixed grid of points. The outermost grid point, having the
value r = R, will never lie precisely on the real surface of the real star at » = R. We found in practice that imposing
the boundary condition X(R;) =0 rather than X(R)= 0 gave unreliable results (as the grid size was changed, for
example). We found it necessary therefore to impose X(R) = 0 at the real surface of the star and to calculate what its
value at r = R must be. Since the outer “atmosphere” of our model was taken to be polytropic (see egs. [A7]-[AS8]),
the behavior of the function X(r) in this polytropic region can be evaluated analytically. It follows that

X(r)=c(r—-R)""". (A22)

We choose the boundary conditions for the functions W, Hy,, and K at the last grid point » = R . Using these values, it
is straightforward to evaluate X'(R) from equation (A21). Using equation (A22), it follows that the value X(R) is
given by

X(Rg)=(N+1)"'(Rg—R)X'(Rg). (A23)

Once this consistent set of boundary values is specified at the last grid point, we integrate numerically using the same
algorithms as were described in connection with the equilibrium models.

To complete the solution of the perturbation equations inside the stellar model, we must find the solutions in the
domain 0 <r < R /2 which are bounded (especially at r = 0). The matrix Q in equation (A21) has rather singular
behavior at r =0, so it is difficult to determine the solutions to these equations numerically near » = 0 in their present
form. Rather than transform these equations, we choose to approximate the solutions analytically via a power series
expansion about » =0. In Appendix B we describe the results of performing such a power series expansion. We find
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that the solution has the form

Y(r)=Y(0)+3Y"(0)r?, (A24)

where ¥(0) and ¥”'(0) are constants. By examining the constraints which Einstein’s equation places on these constants
(see Appendix B) we find that there are two linearly independent solutions which have the form in equation (A24). We
can now use this expansion to «valuate the two linearly independent solutions, ¥,(r) and Y;(r), in some small region
near r=0. The error involved in neglecting the higher order terms in the power series expansion is expected to be
comparable to p3r*. For the neutron star models which we have computed, the parameters generally satisfy p,R* < 0.1.
Consequently, the error in our approximation is expected to be 0.01 (r/R)*. In practice we use the power series
expansion only in the domain 0 < r/R < 1/25; consequently, we expect our errors to be only ~ 1077,

To complete the evaluation of the solutions Y, and Y, we use the values Y,(R /25) and Y;(R /25) from the power
series expansion to provide starting values for a normal numerical integration of equation (A21). The numerical
integration is continued until ¥, and ¥; are determined everywhere on the domain 0 <r < R /2.

The unique solution to equation (A21) which satisfies all of the boundary conditions must be some constant linear
combination of Y|, Y,, and ¥; in the domain R /2 <r < R. Similarly, this unique solution must be some linear
combination of ¥, and ¥; in the region 0 < r < R /2. Thus, the physical solution Y,(r) must be given by

a, Y (r)+a,Y,(r)+a;¥Y3(r) R>=r>=R/2

a, Y, (r)+as¥(r) R/2>r>0 (A25)

A0

for some constants a,. To insure the continuity of the physical solution at » = R /2, we must impose the condition:
a¥|(R/2)+ a,Y,(R/2)+ a3 Y5 (R /2) = a, ¥, (R /2)+ a5 Y5 (R /2). (A26)

These four equations may be solved for the four independent constants «;. (The fifth constant represents the freedom
to scale the solutions and is arbitrary.)

The procedure outlined above allows us to compute the unique physical solution to equation (A21) for any given
values of / and w.

III. THE PERTURBATIONS OUTSIDE THE STELLAR MODEL

Outside of the stellar model, the perturbation functions which describe the motion of the fluid are no longer defined.
The system of perturbation equations reduces therefore to a second-order system of equations for the two metric
perturbation quantities H, and K. Given a solution to the perturbation equations in the inside of the stellar model, the
boundary values H,(R) and K(R) can be used as initial data to start an integration of the remaining perturbation
equations. In this way the functions H,(7) and K(r) can be determined throughout the region r > R. An examination
of this solution in the region far away from the stellar model will reveal, in general, some mixture of incoming and
outgoing gravitational radiation. Thus, a typical value of the frequency w will not correspond to a resonance of the
stellar model; the star must be driven by incoming gravitational radiation to force it to oscillate at this frequency. The
frequencies at which the star oscillates freely without incoming gravitational radiation are called the frequencies of the
quasi-normal modes of the star. The purpose of this paper is to compute the frequencies of the /=2 quasi-normal
modes. It will be necessary therefore to be able to decompose a solution for the perturbed metric into incoming and
outgoing gravitational radiation. This decomposition can be accomplished most conveniently in terms of the Zerilli
equation (see Zerilli 1970; Fackerell 1971; Chandrasekhar and Detweiler 1975).

The Zerilli function Z(r*) is defined in terms of the metric perturbations H,(r) and K(r) by the following

transformation:
0 1 \[Ho(r)| _[g(r) 1 Z(r*)
(a(r) b(’))(K(r))_(h(r) k(r))(dZ(r*)/dr*)’ (A27)
where a(r), b(r), g(r), h(r), k(r), n, and r* are defined by

a(r)=—(nr+3M) /[ —(n+1)M/r], (A28)
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— Wt M(r=3M
b(r) = [nr w’r (r )] , (A29)
(r—2M)[*r?—(n+1)M/r]
[n(n+1)r2 +3nMr+6M?]
r)= , A30
8(r) r?(nr+3M) (430)
2 2
h(r)=[ nr* +3nMr+3M ]’ (A31)
(r—2M)(nr+3M)
k(r)=-r*/(r-2M), (A32)
n=3(1-1)(1+2), (A33)
r*=r+2Mlog(r/2M—1). (A34)

Given the function Z(r*) which is related to H, and K in this way, it follows that Z satisfies the following simple
one-dimensional wave equation (the Zerilli equation):

d’z
i [V,(r*)-o?] z. (A35)
The effective potential V,(r*) is defined by
1-2M
Vo(r*)= (—/’)—2 [27%(n +1) 7 +6n°Mr? +18nM?r +18M3]. (A36)
r}(nr+3M)

There exist two linearly independent solutions to this equation. Asymptotically these solutions may be expressed as
power series:

Z_(r¥)=er ¥ ayr, (A37)
j=0

[o¢]
Z, ()= Y ar. (A38)
j=0

The solution Z_ represents purely outgoing gravitational radiation, while Z, represents purely ingoing waves.
The constants a; (and their complex conjugates &;) may be determined from the recursion relations derived by
Chandrasekhar and Detweiler (1975). The relevant coefficients for our purposes here are given by

a=—i(n+1)w 'ay, (A39)
a,=—1w 2 [n(n+1)-3iMu(1+2/n)] a,. (A40)

An arbitrary solution to the Zerilli equation will be given by a constant linear combination of Z, and Z_.

Given a specific frequency w, we have seen that a unique physical solution to the perturbation equations exists in the
interior of the stellar model. The boundary values of Hy(R) and K(R) at the surface of the star can be used to
determine the boundary values of Z(R*) and dZ(R*)/dr* by using equation (A27). Then Z(r*) can be determined in
the exterior of the star by integrating equation (A35) numerically with these boundary values. In practice we integrate
Z from the surface of the star » = R, out to a radius r =25 w~!. We use a predictor-corrector-modifier integration
algorithm with a radial stepsize of 0.05 w™'. At the point, = 25w"!, the values of Z and dZ/dr are used to match
onto the asymptotic series in equations (A37) and (A38). We keep terms through 2 in these series expansions. The
error involved in neglecting the higher terms is expected to be of the order (rw)® = 6 X 10~ for our computations. By
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means of this matching process, we can determine the values of the constants () and y(w),
Z(r*)=B(w)Z_ (r)+y(w)Z, (r*), (A41)

which determine the amount of outgoing and incoming gravitational radiation contained in our solution.

IV. LOCATING THE COMPLEX EIGENFREQUENCIES

The frequencies with which a neutron star naturally oscillates, without being driven by incoming gravitational
radiation, are called the eigenfrequencies of the quasi-normal modes. These frequencies will in general be complex,
thereby representing the damping of the modes by gravitational radiation emission. The mathematical decomposition
of the gravitational field into incoming and outgoing modes was accomplished in equation (A41). To locate those
frequencies corresponding to purely outgoing radiation, we must find the roots of the equation

v(w)=0. (A42)

When y(w) vanishes, the metric perturbation will be composed entirely of Z_(r*), the outgoing radiation mode, while
being devoid of Z  (r*), the incoming radiation mode. This then is the mathematical representation of the physically
realistic boundary condition which must be specified to determine this eigenvalue problem. We solve this equation by
first determining y numerically for several real values of w (which are chosen to be as close as possible to the expected
eigenfrequency); second, we fit a polynomial in w to the computed values of y

(@) =y, + 70 + 0% (A43)

third, we determine an approximate root for equation (A42) by locating the roots of the polynomial expansion (A43);
and, fourth, we iterate this procedure, using the real part of our approximate root to calculate a new value of y. We
continue this iteration procedure until the real part of the approximate root changes from one step to the next by only
about one part in 108. This usually requires computing y for six to eight different frequencies.

In our numerical calculations we take advantage of the fact that the resonance frequencies of neutron stars lie very
near the real axis. The imaginary part of the frequency is typically less than 1/1000 of the real part. The smallness of
the imaginary part of w accounts for the difficulties encountered by Thorne (19694, b) and Detweiler (1975) in their
computations of these frequencies. The smallness of Im(w) allows us to adequately probe the behavior of the function
v(w) near an eigenfrequency, simply by evaluating it for purely real frequencies near the eigenfrequency. When the
frequency w is real, all of the differential equations for the perturbation functions become purely real also. Therefore,
the numerical integrations can be performed with real variables resulting in savings of time and storage space in the
computer.

We estimated the accuracy of our numerical computations by increasing the step size in our calculations by a factor
of 2 (i.e., we reduce the number of grid points by one-half). We find that the real part of the frequency changes by
~ReAw/Rew =3 X107, while the imaginary part of the frequency changes by Im Aw/Im w =3 X 107>, Thus, we
feel confident that our eigenfrequencies are accurate to this level. We can also compare the frequencies which we
computed for the Harrison-Wheeler equation of state models (model H) with those computed by Thorne (19694, b).
The real parts of our frequencies agree with Thorne’s to about one part in 1000. The imaginary parts of our frequencies
agree only at the 40% level, however.

APPENDIX B
PERTURBATION FUNCTIONS NEAR =0

In this appendix we will obtain the finite solutions to the radial perturbation equations (A21) as a power series about
r = 0. Therefore we seek a solution of the form:

Y(r) =Y (0)+ Y (0)r + 1 ¥7(0) r2, (B1)

where ¥(0), Y’(0), and Y”(0) are constants. These constants are determined by expanding the equations (A21) in a
power series about r=0 and solving the equations term by term. The lowest order constants ¥(0) have been
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determined previously by Thorne and Campolattaro (1967). These constants must satisfy the relationships:
H,(0) = K(0), (B2)

X(O) = (Po +p0)e"°/2 [%Z(Po +3P0)W(0)_ W~ leﬂoW(O)+%K(0) . (B3)

(The constants py, pg, and », are defined in equations [B5]-[B7] below.) These equations demonstrate that only two
linearly independent bounded solutions exist at r = 0. The next order terms in the expansion of the Einstein equations
yield the conditions:

Y'(0) =0. (B4)

In order to evaluate the next order terms, Y"'(0), it will be necessary to evaluate the equilibrium stellar model in a
power series expansion also. Thus, we let

p(r)=po+3p,r? +ipsrt, (B5)
p(r)=pg+ 10,72, (B6)
v(r)=vy+iv,r* + Sy, rt. (B7)

The constants p,, p,, etc., are evaluated from the series expansion of equations (A3)—(A5):

4

p2=—3 (po+Po)(po +3po) (B8)

P2=P2(P0+P0)/Y0P0’ (B9)
7

—‘3—(P0 +3pg), (B10)

2T

P4=_?(PO+P0)(P2 +5py)— (Pz+Pz)(Po+3Po) 9 Po(Po+Po)(Po+3Po) (B11)
T 6472

vy= T(Pz +51’2)‘*—9‘100(#’0 +3py). (B12)

We can now evaluate the next term in the expansion of the Einstein equations. We find that the following relationships
must hold:

L(1+2)[Hy (0)- K"(0)] =~ °F 3 (Po+370) K (0)— e " [IK(0)+87(po + po) W(0)], (B13)

l(l+1)

+3

3(po + po) H'(0) = 3p,W"(0)— 3w (p, +po)e‘”°l([+ D

WN(O) _e—vo/ZX//(O)

=4l " [ p,+ p, — v, (po + 20)1W(0)+ pW(0)—vre /2 X(0)

47
— 5 PP (0) =4 (p2 + p2) K(0) =307 (py + po)e™"°F, (B14)
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Hi+3+ 3+ D]H"0)-1[3(1+2)+ (1 + 1) (1 +2)+1—3(1+1)] K7(0)

87 3272
- TPol(l+2)K(O)_4W(Po +3p,) K(0)+8mp ~ TPO(DO +p(U+1)W(0)+4nl(1+1)(po+ po) F,
(B15)
(I +2)H"(0) =3 (I +2) K"(0) + 30’ "W (0)—3(1 +2) v, " (0) + 3({ +2)(po + po) le"”o/zX”(O)
27
=- '3—P0V2W(0) +3(+2) Wy + 3ae™ [Vz - TPO] w(0)—3»,K(0)
+4(po +P0)_19_V°/2[V2 +2(p, + p2)(po +Po)‘l] X(0)— /(I +1)»,F, (B16)
where F is defined by the relationship:
_ 2 —1,—1,—v0/2 4_77 3 ]
F—,(,H)[YO Py e X(0)+ 2 o (14 Y W(0)+ 3K (0)|. (B17)
These equations (B13)—(B16) have the form
T-Y”(0)=U-Y(0), (B18)

where the matrices T and U depend only on /, w, and the constants which determine the equilibrium stellar model at
r = 0. Therefore, it is a straightforward numerical problem to evaluate T and U for a given stellar model. One can then
compute the constants Y”’(0) simply by inverting the matrix T:

Y”(0) =T '-U-¥(0). (B19)

These constants allow us to approximate the two linearly independent solutions to equations (A21), ¥, and ¥;, which

are finite at » = 0 by using equation (B1).
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