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ABSTRACT

We continue our investigation of the influence of the equation of state of matter (in the nuclear
density regime) on the dynamical behavior of neutron stars. The properties of the two lowest
frequency radial oscillation modes of neutron stars, constructed from 13 equations of state, are
presented. We find that the frequencies of both radial oscillation modes studied here are generally
higher than the frequency of the corresponding quadrupole f mode.

Subject headings: dense matter — equation of state — stars: neutron — stars: pulsation

I. INTRODUCTION

In this paper we continue the study of the oscillation
modes of realistic neutron star models begun in the
accompanying paper (Lindblom and Detweiler 1983).
Since neutron stars involve both strong gravitational
fields and matter at supernuclear densities, these objects
offer a unique opportunity to explore a domain of
physics untested in the laboratory. General relativity is
used to describe the gravitational interaction in neutron
stars, and we explore the effects of a number of different
theories of ultradense matter on the oscillations of neu-
tron stars.

An increasing body of observational data is being
accumulated which appears to be associated with oscil-
lating neutron stars. Some y-ray and X-ray burst phe-
nomena have been associated with neutron stars (see,
e.g., Ramaty ef al. 1980; Oda 1981). Also, observations
of pulsars have revealed quasi-periodic subpulses which
several authors (see, e.g., Boriakoff 1976; Van Horn
1980) have suggested might be identified with oscilla-
tions of the underlying neutron star. Such observations
may eventually yield enough information to allow us to
constrain our ignorance of the physics of high density
matter and strong gravitational fields in these objects.

This paper explores the influence of the structure of
matter at supernuclear densities on the radial pulsations
of neutron stars. We compute the frequencies and eigen-
functions of the two lowest frequency radial oscillation
modes for neutron stars constructed from 13 equations
of state. The equation of state models used in this paper
are identical to the models used by Lindblom and
Detweiler (1983), and they are essentially the same as
those used by Arnett and Bowers (1977) in their survey
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of the equilibrium structure of neutron stars. The equa-
tion of state models will be referred to here by the letters
assigned to these models in Table 1 of Lindblom and
Detweiler (1983) (e.g., model A, model B, etc.). A de-
tailed description of these equation of state models is
given in the accompanying paper (Lindblom and
Detweiler 1983) and will not be repeated here.

The adiabatic index y for these computations is taken
to have the “equilibrium” value which is related to the
equation of state by y=p~'(p + p)(dp/dp). This ex-
pression is only correct for sufficiently low frequency
oscillations (see, e.g., Meltzer and Thorne 1966;
Chanmugan 1977). In practice, the actual adiabatic in-
dex does not differ significantly from the equilibrium
value used here for densities above ~ 10" g cm™?3. For
the neutron stars of primary interest here (M > M) the
majority of the matter in the stars has a density well
above 10 g cm™3. Consequently, the simple form of
the adiabatic index used here does not have much effect
on the computed frequencies.

We evaluate the oscillation frequencies for these neu-
tron star models by explicitly integrating the radial
perturbation equation. Our computations were per-
formed in roughly the same manner as described by
Bardeen, Thorne, and Meltzer (1966), Meltzer and
Thorne (1966), and Glass and Harpaz (1983). A descrip-
tion of the details of our computations is given in the
Appendix. In § II we present the detailed numerical
results of our computations for neutron stars con-
structed from the 13 equation of state models. In § III
we compare our computations to the few observational
data which appear to be related to oscillating neutron
stars.

An interesting feature of the results of our computa-
tions is the relationship between the frequencies of these
radial oscillations and the quadrupole oscillation fre-
quencies computed by Lindblom and Detweiler (1983).
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We had expected the fundamental radial frequency to
be lower (for the same neutron star) than the fundamen-
tal quadrupole frequency. This was the case for the
Harrison-Wheeler equation of state (our model H) mod-
els computed by Meltzer and Thorne (1966) and Thorne
(1969). Every other equation of state considered by us,
however, had some neutron star models with fundamen-
tal radial frequencies higher than their quadrupole
frequencies. This curious result appears to be a manifes-
tation of the stiffness of the nuclear matter equation of
state. Totally incompressible fluid models have finite
quadrupole oscillation frequencies, while their radial
modes do not exist at all, having “infinite” frequencies.
It is not hard to imagine, therefore, a star composed of
compressible (but very stiff) matter whose radial
frequency is higher than its quadrupole frequency (we
thank Steven Detweiler for suggesting this explanation
to us). This heuristic analysis is confirmed by the com-
putations of Chandrasekhar and Lebovitz (1964). They
found in the pulsations of Newtonian polytropes that
small values of the adiabatic index, y < 1.6, resulted in
the fundamental radial mode having a lower frequency
than the quadrupole mode. For stiffer equations of
state, y > 1.6, the quadrupole mode had a lower
frequency. The single exception to the general pattern of
higher radial frequencies in our results came from the
Harrison-Wheeler equation of state. Since this is the
softest of the equations of state studied by us, it too is
consistent with this general picture.

Figure 1 illustrates the ordering of the frequencies of
the normal modes for one particular equation of state
(our model L). Near the maximum neutron star mass
(and, although not shown here, also near the minimum
mass) the fundamental radial frequency approaches zero.
Near these points the quadrupole mode therefore has
higher frequency than the fundamental radial mode.
Except near these special points, however, the quadru-
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F1G. 1.—Oscillation periods for the two lowest radial modes
and the lowest quadrupole mode are illustrated as a function of
surface redshift for neutron stars constructed from equation of
state L. This figure shows that the lowest frequency mode is not
necessarily the radial mode.

pole frequency is lower than the lowest radial frequency
by about a factor of 2.

II. RESULTS

The numerical results of our computations are pre-
sented in Tables 1-13 and Figures 2-5. Since the
parameters describing these equilibrium stellar models
have been extensively cataloged elsewhere (see Arnett
and Bowers 1977; Lindblom and Detweiler 1983), we
list here only the central density p, in units of 10"
g cm™? for each model. Tables 1-13 also list the oscilla-
tion period T (ms), the energy contained in the oscilla-
tions E(10° ergs), and a parameter d (which describes
the radial eigenfunction) for each mode. The subscripts

TABLE 1
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state A)

P T Ey T, E,

(10" g cm™3) (107 35) (10°? ergs) d, (107 35) (103 ergs) d,
3.3880 ............ 0.7512 455 1.0 0.1369 15.97 -1.0
3.0000 ............ 0.5670 6.74 1.0 0.1355 13.37 —1.1
23440 ............ 0.4244 8.46 1.1 0.1337 8.49 —14
1.9950 ............ 0.3821 7.95 1.2 0.1333 5.65 -1.6
17780 ............ 0.3629 6.71 1.3 0.1334 3.26 -19
1.6980 ............ 03574 6.30 1.4 0.1335 2.74 -21
1.5850 ............ 0.3511 5.82 1.4 0.1339 231 -22
1.5140 ............ 0.3481 5.39 1.4 0.1342 1.92 -23
12590 ............ 0.3436 4.19 1.5 0.1369 1.20 -2.6
1.0000 ............ 0.3541 1.52 20 0.1467 0.07 -93
0.8913 ............ 0.3652 0.94 2.1 0.1557 0.03 -14.7
0.8000 ............ 0.3790 0.51 24 0.1679 0.01 -273
0.7080 ............ 0.3990 0.23 2.8 0.1860 0.00 -53.1
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TABLE 2
RADIAL OSCILLATIONS OF NEUTRON STARS (cquation of state B)

Pe TO EO Tl El

(105 gem™3) (107359) (10% ergs) d, (107 35s) (1073 ergs) d
6.2000 ............ 1.2162 0.03 0.9 0.1079 9.81 -1.3
50120 ............ 0.4475 5.55 1.0 0.1057 5.65 -1.9
39810 ............ 0.3198 7.89 1.1 0.1058 3.05 -3.0
33880 ............ 0.2772 7.63 1.2 0.1079 2.17 -3.8
30200 ............ 0.2576 6.56 1.4 0.1105 1.62 —-4.6
3.0000 ............ 0.2567 9.07 1.2 0.1106 3.83 -3.0
26300 ............ 0.2420 6.15 1.4 0.1147 2.01 —4.1
1.9950 ............ 0.2354 1.93 2.6 0.1272 0.42 -1.8
12590 ............ 0.3076 0.37 4.4 0.1622 0.03 ~18.5
1.0000 ............ 0.3629 0.16 4.1 0.1861 0.00 —36.7
0.8913 ............ 0.3850 0.17 3.1 0.1939 0.01 —-214
0.8000 ............ 0.3993 0.12 3.2 0.2010 0.00 —-32.2

TABLE 3
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state C)
Pe Ty E, T E,

(10" gem™3) (107 35) (10°3 ergs) dy (107 3s) (103 ergs) d,
3.0000 ............ 2.0276 0.93 0.9 0.1611 15.04 - 1.1
25120 ..ol 0.8059 5.37 0.9 0.1599 13.94 —-1.2
22390 ..ot 0.6553 7.30 0.9 0.1597 11.61 -1.3
1.9950 ............ 0.5662 8.59 1.0 0.1597 9.44 —14
1.7780 . ........... 0.5067 9.33 1.0 0.1599 7.77 —-1.5
1.5850 ............ 0.4655 8.84 1.1 0.1605 4.95 - 1.8
14130 ............ 0.4361 9.89 1.1 0.1614 6.54 -15
12590 ............ 0.4156 7.64 1.2 0.1632 3.01 -22
11220 ............ 0.4029 6.35 1.3 0.1659 1.97 —2.6
1.0000 ............ 0.3965 5.12 1.4 0.1700 1.33 -3.0
0.8000 ............ 0.3994 2.70 1.7 0.1822 0.37 -4.8
0.6000 ............ 0.4256 0.71 2.6 0.2078 0.01 —18.2
0.5000 ............ 0.4539 0.54 2.5 0.2238 0.02 —13.6

TABLE 4
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state D)
Pe Ty Ey T, E,

(10" g cm™3) (107 35) (10°% ergs) dy (1073 %) (1033 ergs) d,
39810 ............ 0.6335 0.18 1.3 0.1530 6.03 -1.7
35480 ............ 0.5817 1.66 1.2 0.1509 14.70 -1.0
3.0000 ............ 0.5412 3.49 1.2 0.1483 12.16 -1.1
25120 .ol 0.5141 5.24 1.2 0.1470 8.70 —-12
22390 ...l 0.4922 6.70 1.0 0.1470 7.90 -12
19950 ............ 04613 8.09 0.9 0.1467 6.30 -12
17780 ....n.ltt 0.4305 9.10 0.8 0.1455 5.10 -12
1.5480 ............ 0.3930 9.46 0.8 0.1437 3.45 —-15
14130 ............ 0.3556 8.91 0.9 0.1420 2.51 -19
12590 ............ 0.3291 6.23 1.3 0.1418 1.00 -33
1.1220 ............ 0.3202 4.48 1.6 0.1452 0.52 —4.8
1.0000 ............ 0.3181 243 2.0 0.1511 0.11 -10.0
0.8000 ............ 0.3245 1.11 2.4 0.1667 0.04 —132
0.6000 ............ 0.3617 0.14 52 0.2042 0.00 -94.0
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TABLE 5
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state E)

Pc T Ey T E;

(10" gem™3) (107 35) (1033 ergs) d, (107 35) (10 ergs) d,
3.0700 ............ 0.5894 8.17 0.9 0.1316 18.29 -1.0
2.8180 ............ 0.5049 10.35 1.0 0.1302 17.21 -1l
25120 ... 0.4344 12.00 1.0 0.1287 13.26 -12
17780 ... 0.3319 10.88 12 0.1265 4.17 -1.9
1.5850 ............ 0.3148 8.60 1.3 0.1271 1.95 -2
14130 ............ 0.3028 7.23 13 0.1287 1.34 -3.1
12590 ............ 0.2950 4.98 1.5 0.1315 0.52 —-46
1.0000 ............ 0.2904 1.87 2.1 0.1426 0.07 -117
0.7943 ............ 0.3008 0.54 3.0 0.1631 0.01 ~24.7
0.6310 ............ 0.3327 0.06 6.9 0.1978 0.00 -185.3

TABLE 6
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state F)

P Ty Eqy T E,

(10 gem™3) (107 35) (1032 ergs) d, (10™35) (1033 ergs) d,
50120 ............ 22222 0.81 1.1 0.1327 10.84 -14
48500 ............ 1.3258 1.42 1.1 0.1326 10.76 -14
46770 ............ 1.0274 1.99 1.1 0.1324 9.84 -15
45600 ............ 0.9148 238 1.1 0.1324 9.97 -14
44670 ............ 0.8492 2.65 1.2 0.1324 9.63 -1.5
42660 ............ 0.7486 3.21 1.2 0.1324 9.14 -1.5
3.5480 ............ 0.5730 4.66 1.2 0.1340 6.65 -1.7
28180 ............ 0.4980 5.40 12 0.1387 4.36 -1.8
25120 ...l 0.4748 5.55 1.1 0.1415 3.34 -1.9
22390 ............ 0.4565 5.59 1.0 0.1439 2.67 -2.0
1.9950 ............ 0.4392 5.49 1.0 0.1457 2.11 -21
17780 ............ 0.4214 5.28 1.0 0.1472 1.60 -22
14130 ............ 0.3885 4.40 1.1 0.1495 0.72 -29
12590 ............ 0.3740 3.71 1.2 0.1509 0.40 -3.7
11220 ............ 0.3623 2.89 1.3 0.1531 0.18 -53
1.0000 ............ 0.3541 2.14 1.5 0.1560 0.08 -80
0.7943 ............ 0.3474 0.85 2.1 0.1666 0.01 -293
0.6310 ............ 0.3556 0.20 3.8 0.1954 0.00 —-235.8
0.5012 ............ 0.3823 0.02 10.2 0.2682 0.00 —695.8
03981 ............ 0.4469 0.00 102.9 0.4003 0.00 —-359.2
0.3162 ............  0.7338 0.00 1500.3 0.5505 0.00 -3333

on each parameter give the number of nodes contained
in that particular mode. Thus, T, E,, and d, refer to the
fundamental radial mode, while T}, E,, and d, refer to
the mode having one node. The details involved with
computing these quantities are described in the Appen-
dix.

The energy contained in the oscillations is defined by
equation (A13). This energy has been normalized to
correspond to a radial pulsation whose surface ampli-
tude is equal to the radius of the unperturbed star R. To
scale the tabulated energies to correspond to smaller
amplitude oscillations, one must multiply them by the
factor (£/R)?, where ¢ is the desired amplitude of the
fluid motion for the surface of the star. The parameter d
(defined in eq. [A14]) is a measure of the nonlinearity of

the radial displacement eigenfunction. Specifically, it
measures the ratio of the amplitude of the fluid motion
at the surface of the star to the amplitude of the motion
of the fluid near the center of the star.

The accuracy of our computations was tested by
varying the spacing of the radial grid on which the
stellar model and radial perturbation functions were
determined. These tests indicate that the oscillation peri-
ods T were determined to better than one part in 104,
while the parameters £ and 4 which depend on the
radial displacement eigenfunction were determined to a
few parts in 100.

Figures 2—5 present in graphical form the oscillation
periods for the neutron stars constructed from the 13
equation of state models. Figures 2 and 3 give the
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TABLE 7
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state G)

Pe Ty E, T E,

(10" gem™3) (107 35) (10°3 ergs) d, (1073s) (10°3 ergs) d,
63100 ............ 0.6869 1.44 1.0 0.1072 7.31 -1.7
6.0420 ............ 0.5758 2.52 1.0 0.1070 6.77 -1.8
52320 ............ 0.4068 5.21 1.0 0.1066 478 -2.1
45030 ............ 0.3299 6.86 1.1 0.1062 3.73 —-24
41610 ............ 0.3052 6.83 1.2 0.1063 2.71 -3.0
3.8290 ............ 0.2863 6.87 1.3 0.1069 2.39 -34
34980 ............ 0.2721 6.38 14 0.1084 1.87 —4.2
31980 ............ 0.2625 5.39 1.5 0.1109 1.27 -53
29120 ............ 0.2558 4.82 1.6 0.1144 1.16 -5.6
26130 ............ 0.2504 3.83 1.7 0.1190 0.86 -6.0
23760 ............ 0.2469 7.30 1.2 0.1232 3.91 ~2.6
22390 ............ 0.2454 1.95 23 0.1255 0.24 —-10.1
19950 ............ 0.2444 1.88 23 0.1299 0.40 ~7.1
17780 ............ 0.2485 1.20 29 0.1354 0.21 -89
1.5850 ............ 0.2620 0.71 38 0.1431 0.09 —-12.8
14130 ............ 0.2832 0.44 4.5 0.1525 0.03 —19.1
1.2590 ............ 0.3077 0.41 4.1 0.1620 0.04 —15.5
11220 ...t 0.3363 0.26 4.1 0.1739 0.01 -21.5
1.0000 ............ 0.3629 0.16 4.1 0.1861 0.00 -36.7
0.7943 ............ 0.4001 0.12 3.1 0.2012 0.00 —30.1

TABLE §
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state H)
Pc T E, T E,

(10" g cm™3) (107 35) (103 ergs) d, (107 35%) (103 ergs) d,
3.0000 ............ 0.8152 0.26 1.2 0.2201 0.03 -10.3
1.0000 ............ 0.8747 0.12 1.9 0.3387 0.00 —-522
0.3000 ............ 1.2596 0.01 5.0 0.7804 0.00 —318.9

TABLE 9
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state I)
P T Ey T E,

(10% gem™3) (1073 59) (103 ergs) d, (107 35) (103 ergs) d,
1.9950 ............ 1.1677 431 09 0.1866 62.90 -0.6
17780 ............ 0.8165 11.05 0.9 0.1816 58.07 -0.7
1.5850 ............ 0.6752 16.43 1.0 0.1769 56.14 -0.7
1.4130 ............ 0.5941 20.16 1.0 0.1728 48.03 -0.8
1.2590 ............ 0.5408 22.39 1.0 0.1699 39.00 -0.8
11220 ............ 0.5023 23.38 1.0 0.1681 31.41 -09
1.0000 ............ 0.4705 22.92 1.0 0.1668 23.35 -10
09000 ............ 0.4429 20.84 1.0 0.1651 14.35 - 1.1
0.7943 ............ 0.4168 19.58 1.0 0.1630 11.07 - 1.1
0.6310 ............ 0.3832 11.42 1.1 0.1598 1.43 -2.6
0.5700 ............ 0.3727 8.81 1.1 0.1586 0.52 -3.8
0.5012 ............ 0.3618 3.48 1.6
04500 ............ 0.3539 2.98 L5
03981 ............ 0.3458 1.33 1.9
03162 ............ 0.3284 0.01 15.6
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Pc Ty E, T E,

(10" g em™3) (107 35) (103 ergs) d, (107 35) (10 ergs) d,
14130 ............ 3.5881 5.71 0.6 0.2041 46.57 -0.5
12590 ............ 1.2012 13.28 0.6 0.1995 39.71 —-0.6
11220 ............ 0.8623 19.32 0.6 0.1953 32.62 -0.7
1.0000 ............ 0.6994 23.56 0.7 0.1915 25.87 -0.8
08913 ............ 0.5755 26.00 0.7 0.1871 18.51 -10
0.7943 ............ 0.4997 24.91 0.8 0.1836 12.15 -12
0.6310 ............ 0.4077 15.29 1.2 0.1792 3.21 -24
0.6000 ............ 0.3982 13.05 1.4 0.1793 2.29 -29
0.5012 ............ 0.3808 6.59 1.9 0.1837 0.64 -53
0.5000 ............ 0.3807 6.51 1.9 0.1838 0.62 -54
0.4000 ............ 0.3844 2.06 2.9 0.1970 0.08 —12.3
0.3981 ............ 0.3849 1.98 2.9 0.1974 0.08 -12.6
03181 ............ 0.4311 0.29 5.6 0.2253 0.00 —138.0
03000 ............ 0.4522 0.16 6.7 0.2417 0.00 —590.6
02512 ....oee... 0.5453 0.02 13.1 0.3551 0.00 —3775.4
02239 ............ 0.6350 0.00 25.6 0.4841 0.00 —3832.0
02000 ............ 0.7565 0.00 120.5 0.6907 0.00 —1431.0
0.1995 ...c........ 0.7597 0.00 128.1 0.6961 0.00 —1361.4

TABLE 11
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state M)
[ T E, T, E

(10" gem™ %) (107 35) (10°3 ergs) d, (107 35) (10° exrgs) d
31620 ............ 0.7436 0.99 1.0 0.1888 4.15 -3.0
22390 ............ 0.5385 3.51 1.2 0.1997 3.68 -32
L7780 ............ 0.5041 3.77 .5 0.2094 3.24 ~34
15850 ............ 0.5021 3.68 1.6 0.2154 3.03 —3.4
12590 ............ 0.5177 3.29 1.7 0.2295 2.58 —3.4
1.0000 ............ 0.5497 2.85 1.6 0.2453 2.16 -3.0
07943 ............ 0.5867 2.52 1.5 0.2599 1.72 -2.5
0.7080 ............ 0.5963 2.45 1.4 0.2636 1.55 -23
0.6310 ............ 0.6032 2.38 1.4 0.2665 1.34 -22
0.5623 ............ 0.6071 2.30 1.3 0.2681 1.09 -22
0.5012 ............ 0.6078 2.21 1.3 0.2682 0.82 -22
03981 ............ 0.6006 1.91 1.3 0.2643 0.31 -3.0
03162 ............ 0.5928 0.93 1.8 0.2660 0.01 —-14.7
02512 ............ 0.6066 0.24 2.9 0.3039 0.00 —524.4
0.1995 ........... . 06456 0.02 7.4 0.4339 0.00 —23373
0.1585 ............ 0.7291 0.00 100.2 0.6736 0.00 —888.7

TABLE 12
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state N)
Pe TO EO Tl El
(10 gem™3) (1073s) (103 ergs) d, (107 35) (10°3 ergs) d,
1.0000 ............ 0.6123 25.62 0.6 0.1704 28.39 -0.7

0.9000 ............ 0.4916 26.31 0.7 0.1646 16.25 -0.9

0.8000 ............ 0.4197 2471 0.8 0.1596 10.18 -1.2

0.7000 ............ 0.3722 18.07 1.0 0.1557 3.37 -20

0.6000 ............ 0.3395 10.90 1.2 0.1548 0.84 -40

0.5500 ............ 0.3272 7.48 1.4 0.1567 0.36 -6.2

0.5000 ............ 0.3170 3.80 1.9 0.1618 0.08 —-13.9

0.4500 ............ 0.3084 1.59 2.6 0.1712 0.02 -23.7

0.4000 ............ 0.3082 0.31 52 0.1887 0.00 -67.0
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TABLE 13
RADIAL OSCILLATIONS OF NEUTRON STARS (equation of state O)

Pc Ty Ey T E,

(10% gem™3) (107 35) (10°3 ergs) d (1073 5s) (10 ergs) d,
2.0000 ............ 2.2908 1.92 0.7 0.1790 62.94 -05
17800 ............ 0.9719 9.81 0.7 0.1738 60.90 -05
15000 ............ 0.6400 18.87 0.8 0.1660 49.72 -0.6
15290 ............ 0.6628 17.50 0.8 0.1669 45.34 -0.6
1.0000 ............ 0.4050 22.55 1.0 0.1483 13.88 —1.1
0.8000 ............ 0.3565 14.48 1.2 0.1431 223 -26
07499 ............ 0.3465 11.93 12 0.1434 1.15 -35
0.6683 ............ 0.3308 8.55 12 0.1465 0.49 —-5.0
0.6390 ............ 0.3248 6.08 1.4 0.1491 0.18 ~8.1
06310 ............ 0.3231 5.56 1.4 0.1499 0.14 -9.1
0.6000 ............ 0.3161 4.11 1.5 0.1533 0.08 —12.1
0.5623 ............ 0.3071 2.91 1.6 0.1581 0.06 —13.8
0.5300 ............ 0.2993 1.93 1.8 0.1634 0.04 -162
0.5000 ............ 0.2903 0.88 26 0.1703 0.01 -31.8
04750 ............ 0.2887 0.39 3.8 0.1788 0.00 -60.6
04500 ............ 0.2852 0.32 4.1 0.1796 0.00 -389

periods of the fundamental mode, while Figures 4 and 5
give the periods of the mode with one node. The figures
have been split in two to improve the clarity of presenta-
tion. Figures 2 and 4 depict the periods for equation of
state models A, C, F-L, while Figures 3 and 5 depict the

L —=

0.5

OSCILLATION PERIOD Tq (1073 sec)

0.25

0.025 0.05 0.1 0.2 0.4
SURFACE REDSHIFT z

F1G. 2.—Oscillation period T, of the radial mode with no
nodes is illustrated as a function of surface redshift z for neutron
stars constructed from equations of state A, C, F-L.

periods for equation of state models B, D, E, M-O. The
periods are graphed here versus the surface redshift z of
each stellar model (the redshift measured at infinity for
a photon emitted at the surface of the neutron star).
This parameter is, in principle, directly observable. The

2.0 —

0.5 -

OSCILLATION PERIOD Tg (1073 sec)

0.25 -

| 1
0.025 0.05 0.1 0.2 0.4
SURFACE REDSHIFT z

F1G6. 3.—Oscillation period T, of the radial mode with no
nodes is illustrated as a function of surface redshift z for neutron
stars constructed from equations of state B, D, E, M-O.
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SURFACE REDSHIFT 2

F16. 4.—Oscillation period 7; of the radial mode with one
node is illustrated as a function of surface redshift z for neutron
stars constructed from equations of state A, C, F-L.

relationship between z and other equilibrium parameters
can be deduced from the tables and graphs given in
Lindblom and Detweiler (1983).

The qualitative features of the periods graphed in
Figures 2-5 are consistent with our expectations. The
periods of the fundamental mode, T, are longer than
the corresponding periods of the mode with one node,
T,. The periods of the fundamental mode become very
large as the mass of the star approaches the maximum
neutron star mass. Presumably these periods also be-
come large near the minimum neutron star mass. Our
graphs do not reveal this, however, because we did not
explore the low mass neutron stars (partly because our
equilibrium approximation for the adiabatic index is not
good for low mass neutron stars and partly because our
numerical techniques appeared to become unstable for
low mass neutron stars). One surprising feature of our
results, however, was that the fundamental radial mode
was not the lowest frequency mode. As illustrated for
equation of state L in Figure 1, the period of the
quadrupole mode is longer than the period of the funda-
mental radial mode for a substantial number of neutron
star models. This behavior was found for each equation
of state studied here, except the Harrison-Wheeler equa-
tion of state (model H).
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F16. 5.—Oscillation period 7; of the radial mode with one
node is illustrated as a function of surface redshift z for neutron
stars constructed from equations of state B, D, E, M-O.

The curves in Figures 2-5 representing the periods of
radial oscillation of neutron stars show a great deal
more structure than do the curves in Lindblom and
Detweiler (1983) representing the quadrupole oscillation
frequencies of the same set of stellar models. The radial
pulsations depend more sensitively on the equation of
state than do the nonradial pulsations. The diversity
exhibited in the shapes of the radial pulsation periods in
Figures 2-5 is apparently a manifestation of this sensi-
tivity. The dependence of these radial modes on the
equation of state appears to be sufficiently complicated
that qualitative statements such as “the softer the equa-
tion of state, the lower the frequency” do not appear to
be true for these modes. The sensitive dependence of
these modes on the ultra-high density equation of state
(which produces the complicated and unaesthetic curves
of Figs. 2-5) may ultimately provide the best way for us
to investigate the interior structure of neutron stars.

III. DISCUSSION

At present the observations which may be related to
oscillating neutron stars are of two types: X-ray and
y-ray burst phenomena, and the quasi-periodic micro-

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983ApJS...53...93G

JS. .53 L. 936G

]

rT983A

No. 1, 1983

pulses from pulsars. Neither type of observation has yet
produced data which can be convincingly attributed to
neutron star pulsations, however.

The study of the micropulse structure of pulsar emis-
sion has yielded a number of periodicities with frequen-
cies which are approximately consistent with neutron
star oscillation frequencies. Boriakoff (1976) first re-
ported a 0.9 ms periodicity in the pulsar PSR 2016+28.
Additional periodicities with periods in this range have
subsequently been reported in other sources by a num-
ber of authors: Cordes (1976), Cordes and Hankins
(1977), Hankins and Boriakoff (1978), and Soglasnov
etal. (1981). These periodicities are only correlated
for periods of ~ 10 ms (see Cordes 1976). If these perio-
dicities are associated with oscillating neutron stars,
therefore, the neutron stars must be damped by some
mechanism with time scales of ~ 10 ms. The quadrupole
oscillation calculations presented by Lindblom and
Detweiler (1983) confirm that gravitational radiation is
too inefficient to damp the nonradial modes on this time
scale, and that the oscillation periods of the nonradial
modes are too short to account for a 0.9 ms period. As

RADIAL OSCILLATIONS OF NEUTRON STARS 101

we have seen in the present work, the oscillation periods
of the radial modes are, in general, shorter than the
quadrupole periods. The fundamental radial mode will
have a period as long as 0.9 ms only if the mass of the
neutron star is very nearly equal to the maximum neu-
tron star mass. For the equations of state considered
here by us, the mass had to be within 1.5% of the
maximum mass for all cases, and generally had to be
within 0.6%. Thus, the mass must be very carefully fine
tuned to produce periods as long as 0.9 ms. It seems
unlikely to us, therefore, that a convincing case could be
made for associating this periodicity with a radial neu-
tron star oscillation (even if a suitable 10 ms damping
mechanism were found).

The case for associating y-ray burst phenomena (espe-
cially the 1979 March 5 event) with neutron stars has
been reviewed in Lindblom and Detweiler (1983). At-
tempts to identify periodicities with ~ 1 ms time scales
in the emission of these objects has not been successful
to date (see, e.g., Weisskopf et al. 1981). Thus, none of
the observed features of these objects has yet been
associated with the radial oscillations of a neutron star.

APPENDIX
COMPUTING THE RADIAL OSCILLATIONS

In this appendix we discuss the details of the numerical calculation of the adiabatic radial oscillations of general
relativistic neutron star models. The equation of motion for small radial oscillations of relativistic stellar models was
first derived by Chandrasekhar (1964). We determine the eigenfrequencies of this system by explicitly integrating the
radial perturbation equation. Neutron star pulsation frequencies were first determined in this way by Meltzer and
Thorne (1966). The algorithm used here for integrating the equation and locating the eigenfrequencies is a tridiagonal
matrix method used by Glass and Harpaz (1983) in their study of the stability of relativistic polytropes.

1. THE EQUILIBRIUM MODELS
The static spherical geometry which describes an equilibrium stellar model has a metric tensor of the form:

ds’=—e" D dt> + *V dr? + r?(df? +sin? 9d¢? ). (A1)
The metric function A(r) is often replaced by the mass function defined by
m(r)=3r(1—e™?%). (A2)

Einstein’s equations, which relate the curvature of this geometry to the energy density p and pressure p of the fluid in
the star, are equivalent to the system of equations:

dm

7 = 2

o darip, (A3)
d___ptp 3

&~ Tr—am) (m+4nrp), (A4)
a_ ~1dp

7 =" Aetp) (AS)

This system of equations must be supplemented by an equation of state of the form p = p( p). The equations can then
be integrated from r = 0 in the usual way (see, €.g., Lindblom and Detweiler 1983) once the central density is specified.
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In our numerical calculations we use Hamming’s predictor-corrector-modifier algorithm (see Lambert 1973) started by
Ralston’s (1962) minimal error Runge-Kutta algorithm. The radial perturbation equation seems to be more sensitive to
the low density portion of the stellar structure than was the quadrupole equation. To improve the accuracy in this
region we halved the step size each time the pressure decreased by a factor of 10. The numerical integration was
terminated when the pressure became negative. The zero pressure surface was located by three-point extrapolation
from the last three values of the pressure. The values of the functions describing the equilibrium model (m, p, and »)
were saved for use in the radial perturbation equation on a uniform radial grid containing ~ 1000 points. The accuracy
of the equilibrium model portion of our code is considerably better than the few parts per 10 obtained by Lindblom
and Detweiler (1983).
The adiabatic index y for these computations was determined directly from the equation of state by the relation

p+p d
=—ppd—i’). (A6)

The restoring force for radial perturbations comes entirely from the compressibility of the fluid. The quadrupole
perturbations, however, also use gravity as a restoring force. Consequently, the radial pulsations are far more sensitive
to the adiabatic index y than are the quadrupole pulsations. The function y( p) varies considerably in the “neutron
drip” density region (10!'-10'% g cm™?). Instead of numerically differentiating the equation of state table to determine
v in this region, we use the tabulated values of y given by Baym, Pethick, and Sutherland (1972) for the entire range of
validity of their equation of state. The values of y were not generally available in tabulated form for the nuclear density
portion of the equation of state, however. Since vy is generally smoother in this region, we were able to adequately
determine it for each entry in the equation of state table by using a simple difference formula to compute the
derivative. The values of vy for pressures intermediate between these tabulated ones are obtained by interpolation.
The radial perturbation equation also depends on the derivative of the adiabatic index:

y'=dy/dp. (A7)

These were computed for each entry in the equation of state table by differencing the tabulated y values described
above. Intermediate values of y” are again determined by interpolation.

II. THE RADIAL PULSATIONS

Let us consider perturbing the equilibrium stellar models described above by moving each particle of fluid in a
purely radial direction. We denote by §r(r, ¢) the time-dependent radial displacement of the particle of fluid located at
position r in the unperturbed model. Since we are looking for normal modes, we assume §r has harmonic time
dependence

8r(r,1)=X(r)e™". (A8)

Chandrasekhar (1964) used the perturbed Einstein equations to derive the differential equation for the radial
displacement function X(r). This equation is given by

1dv

Y%+(—ag— Z+4wrype>‘—55)i—f+[%(%)z+ —2r—3me>‘—%—47r(p+p)2re>‘+w2e>‘_” X=0, (A9)
where

Y(r)=yp/(p+p), (A10)

z(r)=y(_§+%g;). (Al1)

The functions p(r), p(r), A(r), m(r), etc., are the equilibrium stellar model functions discussed above. In addition to
equation (A9), two boundary conditions must be specified to determine the function X(r). The fluid at the center of
the star is assumed to remain at rest; thus, X(0) = 0 is one boundary condition. The secondary boundary condition
requires the perturbed pressure to vanish on the perturbed boundary of the star. This condition is equivalent to the
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requirement that the Lagrangian change in the pressure,
Ap=—e"/zr_zyp%(rze*"/zX), (A12)

vanish at the surface of the star. These two boundary conditions and the finiteness of X () and dX(r)/dr everywhere
uniquely determine the eigenvalues w® and the corresponding radial eigenfunctions X(r).

The second-order differential equation (A9) is converted to a system of finite difference equations for numerical
evaluation. The differencing scheme can be chosen to make the resulting system of equations into a tridiagonal matrix
eigenvalue problem. The details involved in converting equation (A9) to tridiagonal matrix form are given in Glass and
Harpaz (1983) and will not be repeated here. Once equation (A9) has been converted to tridiagonal matrix form, it is
straightforward to compute the eigenvalues w” and eigenfunctions X(r) (see, e.g., Wilkinson 1965). The determinant of
a tridiagonal matrix can be computed quickly and easily. We locate the eigenfrequencies therefore by computing the
characteristic polynomial of the tridiagonal matrix and searching for zeroes. We then determine the eigenfunction X(r)
corresponding to the eigenvalue w? and refine its accuracy using the techniques outlined in Wilkinson (1965). We check
to ensure that the fundamental radial eigenfunction has no zeroes while the next lowest frequency mode has exactly
one zero. The eigenvalues and eigenvectors of the 1000X 1000 tridiagonal matrix used to represent the radial
perturbation equation are easily determined to very great accuracy (typically better than one part in 10°). Unfor-
tunately, the eigenvalues of the system of difference equations do not agree with the eigenvalues of the differential
equation to this degree of accuracy. By varying the number of radial grid points we estimate the accuracy of our
published eigenfrequencies to be about one part in 10*. The corresponding eigenfunctions appear to be determined to
about one part in 100.

The eigenfunctions are used by us to compute the energy associated with the stellar pulsations. This energy can be
derived from the Lagrangian formulation of equation (A9) given by Chandrasekhar (1964). The expression for the
energy is given by

R1 Z® 1(dv\(dv 8
— 2 (v+A)/2..2 2 A-p &£ ey er o A
E 47rj0 2(p+p)e r{[we + 4(dr)(dr+r)+877ep

¥+ %% [Y% —24/2]} dr,

(A13)

where ¢ = r?Xe ~’/?. We use a simple trapezoidal rule to compute this integral. Our eigenfunctions are normalized so
that X(R)= R, where R is the total radius of the star. Thus, to scale the energy for oscillations with smaller amplitude,
the energy reported in the table must be multiplied by (£/R)?, where ¢ is the desired amplitude of the radial fluid
displacement at the surface of the star.

We have not tabulated the entire radial eigenfunction X(r) for each mode of each neutron star model considered.
We have included in the tables, however, one parameter which describes the nonlinearity of X:

_ rX(R)
4= bm 2x(r)

(A14)

Thus, d measures the amount of fluid displacement at the surface of the star relative to tne amount of displacement
near r = 0.
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