Is perturbation theory misleading in general relativity?
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Two senses in which the perturbation equations of general relativity can be misleading are

explored. (i) Under certain circumstances there exist solutions of the perturbation equations that
appear to be gauge, in that the metric perturbation is the symmetrized derivative of a vector field,
but which nonetheless are not true gauge. (ii) Under certain circumstances there exist solutions of
the perturbation equations that cannot, even locally, be extended to higher order in perturbation
theory. The latter is a local version of the well-known phenomenon of “linearization instability.”

I. INTRODUCTION

Einstein’s equation, a system of nonlinear second-order
partial differential equations, is sufficiently complex that,
for most situations of physical interest, there are available no
corresponding exact solutions. Consequently, much of our
insight into the physical implications of general relativity
has come from the study of approximate solutions. The most
common approximation method is perturbation theory: One
introduces a background space-time—an exact solution of
Einstein’s equation—and then considers deviations, to first
or higher orders, from this background.

To what extent do such approximate solutions corre-
spond to exact solutions? The question has both a quantita-
tive and a qualitative aspect. The quantitative question asks
for some numerical measure of the extent to which an ap-
proximate solution corresponds to some exact solution.
Consider, for example, use of the quadrupole formula to
compute the amount of gravitational radiation emitted by a
system. By how much does the result of this computation
differ from the correct answer—that obtained from the full
Einstein equation?' The qualitative question, on the other
hand, asks whether the predictions of the approximate solu-
tions agree, even in their broad, overall features, with those
of exact solutions.

It was first noted by Brill? that, under certain circum-
stances, there is not even qualitative agreement between the
linearized and full solutions of Einstein’s vacuum equation.
These circumstances are that the background space-time
possess both a compact Cauchy surface and a Killing
field.>® One first writes down a certain integral over the
Cauchy surface, where the integrand involves the Killing
field and an arbitrary solution of the first-order perturbation
equation. One then shows (i) that, by virture of the second-
order perturbation equation, this integral must vanish, and
(i) that there exist solutions of the first-order perturbation
equation for which the integral is nonzero. Then these first-
order perturbations, since they cannot even be extended to
second order, certainly cannot come from any family of solu-
tions of the full Einstein equation.

We consider here a somewhat different class of circum-
stances under which perturbation theory is qualitatively in-
correct. As in the result above, we require of the background
space-time that it possess symmetries. But, in contrast to
that result, (i) the perturbation fields are required to respect
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the symmetries, rather than being allowed to break those
symmetries, and (ii) the arguments are purely local, rather
than global.

An example will illustrate what we have in mind. Con-
sider the external gravitational field of a static, plane-sym-
metric “sheet” of matter. We expect that the space-time ap-
propriate to this situation will have three orthogonal,
commuting Killing fields: # % {timelike, giving the static char-
acter), and x° and y° (spacelike, giving the plane symmetry).

Consider first the limit in which the stress energy of the
sheet is small. It should then be appropriate to treat the gra-
vitational field as a linear perturbation off Minkowski space-
time. Denote by g,, the Minkowski metric, by V, its asso-
ciated derivative operator, and by % x%y° three
orthonormal translations in this space-time. The first-order
perturbation of the metric, denoted 4, , must satisfy the lin-
earized Einstein equation

VY by — 2V by, + V. V87, =0, (1)
and must respect the symmetries
°Ythab = gxhab = gyhab = O (2)

We now claim the following: the most general solution of Egs.
(1) and (2) is given by

hab = 2v(aTb) ’ (3)

where 7° is any vector field such that each of L ,7°%, L . 1%,
and . ,7° is a Killing field. Clearly, any such 4,, does in-
deed satisfy (1) and (2). To prove the converse, let 4, satisfy
(1) and (2). Equation (2) is the statement that z,,V, 4., =0,
where z? is the unit translation in the background orthogo-
nal to the other three. But this in turn implies

z[aRbc]de =0, (4)
where
Ropea = — 2v(av|[chdnb 1 (5)

is the linearized Riemann tensor. Equation (1) is the state-
ment that all traces of R, vanish. But this implies, taking
the double dual of (4), that z°R,.; = 0. Contracting (4) with
z° and using this last equation, we obtain that R ,.; = 0, i.e.,
that A, is of the form (3) for some 7 °. Finally, for 4, of this
form, Eq. (2) is precisely that statement that each of %, 7%,
Z 7% and .Z 7°is a Killing field, completing the proof.
We thus conclude that every linear perturbation appro-
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priate to this problem is “pure gauge.” This conclusion is not
surprising, for one might expect a static, plane-symmetric
sheet of matter to result in a “uniform gravitational field,”
i.e., in flat space-time.

For this particular problem, however, we can compare
the linearized approximation with the full theory, for all
vacuum solutions of the full Einstein equation having three
commuting Killing fields are known.”® The most general
such solution can be represented as

ds* = — Az + 171 de? + Az + 1) dx?

+ Uz + 1P dy? + d2,

(6)
where p,, p,, p; are any three numbers satisfying
Pi+P,+ps=p> +p,°+p2=1, and A is any number.
[The parameter A, introduced here for later convenience, has
the effect of merely rescaling the coordinates. So, the family
of essentially different solutions forms a circle (intersection
of a plane and a sphere in the space of the p,).] For A nonzero,
these solutions (except those having one of the p; one, the
others zero) are nonflat; while, for A zero, all the solutions
are flat. Thus, there are exact, nonflat solutions to the prob-
lem arbitrarily close to Minkowski space-time. Yet all linear
perturbations off Minkowski space-time are pure gauge! It
would seem that first-order perturbation theory provides too
few solutions to reflect adequately the full theory.

There is of course a direct way to see what is going on in
this particular example: Take the family of metrics in (6), and
linearize itin A about A = 0. There results a linearized metric
h,;, of the form (3), but with a particular choice of 7, namely

7%= —pz2tt? + p,zxx°

+ 02y + U it — px” — py YOI (7)
This 4, does indeed satisfy Eqgs. (1) and (2), for each of

L= —pat®—12°),

L1 = pylzx® — x2°), (8)

L1 =pilay* —yz°)
is a Killing field, as required. Thus, the situation is the fol-
lowing. First, it is indeed true that all linearized solutions in
this plane-symmetric problem are symmetrized derivatives
of vectors, as in Eq. (3). But this is the “right answer,” for the
linearization about Minkowski space-time of our family of
exact solutions also yields a metric perturbation the sym-
merized derivative of a vector field. It is only at higher order
in perturbation theory that the nonflat character of these
exact solutions becomes apparent. What is happening, then,
is that a first-order perturbation of the form 4, =2V, 7,, is
necessary in order to provide access, at higher order in per-
turbation theory, to the nonflat exact solutions. Such first-
order perturbations, then, should not in this example be re-
garded as *“‘gauge.”

This same example illustrates a second potential diffi-
culty with perturbation theory. We saw above that the first-
order theory appears to provide too few solutions to reflect
the full theory, an appearance that resulted from a too-broad
application of the term gauge. The second difficulty is that
the first-order theory does—not only in appearance, but in
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fact—provide too many solutions to reflect the full theory.
To see this, consider the linearized solution 4,, given by Eq.
(3) with 7 given by Eq. (7)—but with the constants p; now
chosen so that (p, + p, + p,)* is not equal to p,*> + p,* + p;°.
This 4,, does not indeed satisfy the first-order linear equa-
tions (1) and (2). But, we claim, this particular linearized
solution comes from no family of exact solutions. This claim
(which will be discussed in more detail later) can be seen
directly at this point by taking all linearizations about flat
space-time of families of solutions taken from Eq. (6) (possi-
bly allowing the p; to depend on the parameter A; possibly
applying A-dependent, Killing-field-preserving diffeomor-
phisms). This second difficulty is analogous to the “lineari-
zation instability” discussed earlier by Brill> and others.>*
But there are several significant differences. The earlier
work required a compact Cauchy surface (while here there is
none), dealt with arbitrary first-order perturbations (while
here they must respect the symmetries), and involved a glo-
bal argument (while here local).

This example illustrates the issues with which we shall
be concerned in this paper. Under what circumstances can
“apparent gauge” arise? What is the “correct” notion of
gauge? Under what circumstances does perturbation theory
yield solutions extraneous to the full theory? How can these
extraneous solutions be identified?

Il. PERTURBATION THEORY

In this section, we set up the general framework, consist-
ing of a few definitions and their basic properties, for pertur-
bation theory.

Fix a manifold .# . Specify a list of the types of fields to
be considered on .#, as well as a list of the equations to be
satisfied by those fields. In our earlier example, .« was the
manifold R *; the fields were a symmetric, Lorentz-signature
metric g,, and three vectors fields, ¢ x° and y° the equa-
tions were Einstein’s equation, Killing’s equation for each of
t4 x° and y°, and the equations asserting that all Lie brack-
ets of these vector fields vanish.

Next, let the fields under consideration be divided into
two classes: the passive fields and the dynamic fields. The
passive fields will be fixed throughout, while the dynamic
fields will be subject to perturbation. In our example, the
three vector fields ¢ %, x° and y° were passive, while the met-
ric g,, was dynamic.

Finally, fix a solution of the system. That is, fix actual
fields, satisfying all the given equations, on .« . This solution
will be called the background. In our example, the back-
ground consisted of a flat metric, together with three unit,
orthogonal translations, on .#.

This, then, is the arrangement we contemplate for per-
turbation theory: a manifold .« a list of fields and the equa-
tions they are to satisfy, a division of the fields into passive
and dynamic, and a background solution of the system.

Now consider a one-parameter family of solutions of
this system of equations, jointly smooth on .# and in the
parameter A. Let this family be such that all passive fields are
independent of A, and such that the fields in the family re-
duce, for A = 0, to the background fields. Taking the first
derivatives, with respect to 4, of the dynamic fields in this
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family, and evaluating at 4 = 0, we obtain the first-order
perturbed fields. Taking the first derivatives, with respect to
A, of the equations applied to our family of fields, and evalu-
ating at A = 0, we obtain the first-order perturbation equa-
tions. This is a system of linear equations on the first-order
perturbed fields. The first-order perturbation equations,
once derived in this way, are then regarded as equations in
their own right; one is free to consider solutions of this sys-
tem of equations without reference to a one-parameter fam-
ily—or even to whether such a family exists—giving rise to
that solution. In our earlier example, the only first-order
perturbed field was the perturbed metric 4,,, and the first-
order perturbation equations were precisely Eqgs. (1) and (2).
(Nothing new results from the A derivatives of the commuta-
tion relations, since these involve only the passive fields.)
More generally, taking all derivatives up to the nth, with
respect to A, of the equations, and evaluating to 4 = 0, we
obtain the nth-order perturbation equations. These equations
involve the background fields and the first n derivatives,
with respect to A, of the dynamic fields. The nth derivatives
of the dynamic fields always appear linearly, but the other
derivatives in general do not. Any solution of the nth-order
perturbation equations yields immediately a solution of the
mth-order equations (for m < n), by simply omitting all A
derivatives of order higher than the mth.

There is available a particularly simple class of solutions
of the nth-order perturbation equations. Consider a one-pa-
rameter family Z(4) of diffeomorphisms on .#, jointly
smooth on .# and in A. Let this family be such that all pas-
sive background fields are invariant under all (1), and
such that (0} is the identity diffeomorphism on .# . Apply-
ing these Z(4 ) to each of the dynamic background fields, we
obtain a one-parameter family of solutions of the system.
This family satisfies, by virtue of the conditions just imposed
on Z(A), the conditions of the previous paragraph. Hence,
taking all derivatives up to the nth with respect to 4, of the
dynamic fields in this family, and evaluating at A =0, we
obtain a solution of the nth-order perturbation equations.
Solutions of the form so obtained will be called gauge solu-
tions, reflecting the fact that the resuit of applying Z(4 ) to
the background has exactly the same physical content as the
background itself. Thus, the general gauge solution of the
first-order perturbation equations is determined by a vector
field 7* on .# [reflecting the first derivative of Z(1) at
A = 0], with respect to which the Lie derivatives of the pas-
sive background fields vanish [reflecting the condition that
the passive background fields be invariant under the Z(1)].
The first-order perturbed fields are those obtained by apply-
ing .Z, to each of the dynamic background fields. The gen-
eral gauge solution of the second-order perturbation equa-
tions is determined by two vector fields 7° and o on .4
[reflecting the first two derivatives Z(1 ) at A = 0}, with re-
spect to which both of the Lie derivatives of the passive back-
ground fields vanish. The perturbed fields are those obtained
by applying each of .¥° . and .¥..Z, + .Z, to each of the
dynamic background fields.

Fix a manifold .#, lists of the types of passive and dy-
namic fields to be considered on .#, a list of the equations to
be satisfied by these fields, and a background solution of the
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system. We have seen above that certain one-parameter fam-
ilies of solutions of this system lead to solutions of the pertur-
bation equations, and that certain one-parameter families of
diffeomorphisms on .# lead to gauge solutions of the pertur-
bation equations. We now consider the extent to which these
processes can be reversed. Does a given solution of the per-
turbation equations arise from some one-parameter family
of solutions of the original system? Does a given gauge solu-
tion arise from some one-parameter family of diffeomor-
phisms?

The second question is easy to answer. We claim the
following: Given any gauge solution of the nth-order pertur-
bation equations, there exists a one-parameter family Z(4 )
of diffeomorphisms giving rise to that solution. To prove
this, we must show that, given n vector fields 7°, g¢,....k° on
A, there exists a family & (1) of diffeomorphisms whose
first n derivatives with respect to A, at A = 0, are character-
ized by these vector fields. But for » = 1, a suitable family® is
given by & _(4), the diffeomorphisms generated by the vec-
tor field 7 ¢ itself; forn = 2, by &Z . (A )0 D (A 2/2); and simi-
larly for other a.

The question of whether a given solution of the pertur-
bation equations arises from some one-parameter family of
exact solutions of the original system is more difficult. The
source of the difficulty is that one does not in general have
easy access to the exact solutions of the system. Indeed, it is
the lack of such access that causes one to turn to perturba-
tion theory in the first place. Fortunately, there is a notion
closely related to “come from a family of exact solutions,”
but far easier to work with. We say that the nth-order pertur-
bation equations are reliable if every solution of those equa-
tions can be extended [by some choice of the (» 4 1)st-order
perturbed fields] to a solution of the (# + 1)st-order pertur-
bation equations. The condition, then, is that the solutions
can be extended to one higher order in perturbation theory.
The advantage of this definition is that it deals only with the
perturbation equations and their solutions, with no reference
to exact solutions of the full system. Should it happen that
every solution of the nth-order perturbation equations
comes from some family of exact solutions, then the pertur-
bation equations must certainly be reliable; extend any per-
turbed solution from nth to (# + 1)st order using the family
of exact solutions. But there is no gnarantee that, conversely,
reliability implies that all perturbed solutions must come
from families of exact solutions.

Il. GAUGE

We now return to the example of Sec. I: the external
gravitational field of a static, plane-symmetric sheet of mat-
ter. We found in that example that the general solution of the
first-order perturbation equations (1) and (2) is

he = Zv(a Tpy s 9)

where 7 is any vector field such that each of £, 79, &  7°,
and .7 ,7° is Killing field. We initially interpreted these so-
lutions, in light of Eq. (9), as gauge; they give, for example,
vanishing curvature tensor to first order. But this interpreta-
tion was found to be unacceptable, for there are in this exam-
ple exact, nonflat solutions of the system arbitrarily close to
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the Minkowski background. A one-parameter family of such
exact solutions does give rise to a first-order perturbed met-
ric of the form (9), with 7 given by Eq. (7).

In Sec. II, we introduced a general framework for per-
turbation theory, applicable to virtually any system of equa-
tions on fields. Within that framework, gauge solutions of
the perturbation equations were defined quite generally as
arising from certain families of diffeomorphisms preserving
the passive fields. Applying the general definition to this ex-
ample, we obtain the following: The gauge solutions of the
first-order perturbation equations (1) and (2) are those of the
form (9), but with 7“ now a vector field such that each of
ZL,r% L7, and £ 7° vanishes. Thus, we correctly ex-
clude from being gauge the solution with 7 given by Eq.
(7)}—the solution which gives access to the nonflat exact so-
lutions. While this solution arises from some diffeomor-
phisms, it does not arise from those preserving the passive
fields. In short, gauge must be defined in this more restrictive
way in the presence of passive fields.

This phenomenon——the existence of nongauge per-
turbed metrics that are nonetheless symmetrized derivatives
of vector fields—is not just a special feature of the static,
plane symmetric case. It is rather, as the following example
shows, pervasive for Einstein’s equation in the presence of
symmetries. Fix a manifold .#. Let the dymanic field be a
Lorentz-signature metric g,,,, and the passive fields n vector

fields £ °. Let the equations be Einstein’s equation, Killing’s
equation for each of the £ ¢, and a set of commutation rela-
i
tions
& Eo=CHee, (10)
¢ ‘

where the C';, are fixed constants satisfying the Jacobi rela-
tion C™;

simplify the discussion, we suppose that the background g,
admits no Killing fields other than linear combinations, with
constants coefficients, of the £ °. The first-order perturbation

C'1m = 0. Fix a background solution g,,, £ °. To

equations in this case are those analogous to Egs. (1) and (2).
One class of solutions of these equations is that with A,
given by Eq. (9), where 7 is any vector field such that each of
the .¥ 57"’ is a Killing field

L re=Ukge, 1y
¢ %

where U,* are constants. Applying .¥ ; to Eq. (11) and anti-

J
symmetrizing over i and j, we find that U,* must satisfy the
further condition

u,c*,, + u"c*,, —U,*C™; =0. (12)
These solutions are “apparent gauge.” The true gauge solu-
tions, on the other hand, are those of the form above, but
with the additional property that the U,* in Eq. (11) vanish.

Under what condition are all apparent gauge solutions
in fact true gauge? Note that we may, without altering the
perturbed metric, add to the 7° in Eq. (9) any Killing field,
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ie., any field of the form w'¢ * with the w' constant. The

condition, then, is that by adding such a field to 7* we may
achieve vanishing of the U,* in Eq. (11), i.e., that

U/ =w"C/,, (13)
for some w’. We conclude the following: Every solution that is
apparent gauge is actually true gauge provided every U sa-
tisfying Eq. (12) is of the form (13). Note that this condition
involves only the Lie-algebra structure on the Killing fields.
It may, in fact, be restated thus: Every infinitesimal auto-
morphism on the Lie algebra is inner. Note also that, by the
Jacobi relation, every U, * of the form (13) automatically sat-
isfies Eq. (12).

It is generally easy to decide whether a given Lie algebra
satisfies the condition above, i.e., whether apparent gauge, in
the presence of passive symmetries with that Lie algebra,
must be true gauge. For the zero-dimensional Lie algebra (no
passive fields), the condition is of course satisfied. For all
one- or two-dimensional Lie algebras, the condition is not.
For three-dimensional Lie algebras, it depends on the alge-
bra. It is satisfied, for example, for the Lie algebra of SO(3)
(the rotations), and for SO(2,1), but not for the three-dimen-
sional commutative Lie algebra. We remark that, when the
condition above fails, then there normally do exist solutions
that are apparent gauge but not true gauge.

The class of solutions considered here is restricted in
that we allow no sources in Einstein’s equation and no pas-
sive fields other than Killing fields, and yet broad enough to
include curved background metrics and arbitrary Lie alge-
bras of symmetries. It appears that apparent gauge is perva-
sive for Einstein’s equation in the presence of passive sym-
metries.

IV. RELIABILITY

We now return again to the static, plane-symmetric ex-
ample of Sec. I. We found in that example that there exist
solutions of the first-order perturbation equations—namely,
those of the form (3), with 7° given by Eq. (7) with the con-
stant p; so chosen that (p, + p, + psf’ #p,” + p.° + p3*—
that do not come from any one-parameter families of exact
solutions of the system. We interpreted this phenomenon as
indicating that the first-order perturbation equations do not
adequately reflect the full equations. In the general frame-
work for perturbation theory in Sec. II, we introduced, for
virtually any system of equations on fields, a closely related
notion: The nth-order perturbation equations are reliable if
every solution of those equations can be extended to a solu-
tion of the equations at next-highest order in perturbation
theory. We now ask how this specific example fits into the
general framework.

The first-order perturbation equations for this example
are (1) and (2). The second-order perturbation equations are

vmvm iab - 2vmv(aib)m + va vbimm = tab - %gabt mm
(14)

and

"ftiab = 'Yxiab = gyiab = 0’ (15)
where i, denotes the second-order metric perturbation, and
t,, is given by

R. Geroch and L. Lindblom 2584

Downloaded 27 Sep 2009 to 131.215.195.60. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



tiy ~38apt"m = — 4"V Vs Pomiiny
- i(vah mn)(vbhmn) - z(vmh na )(v[mhn]b)

+ (Vb ™ — V"R "2V by — Vaho).

(16)
We now claim the following: Given h, satisfying Eqgs. (1) and
(2), there exists i,, satisfying Egs. (14) and (15) if and only if

UUPIS, Sy — (WS, )? =0, (17)

where z  is the unit translation orthogonal to the other three,
u®® = g®® — z°7%is the projection orthogonal to z°, and s, is
given by

Voo = 2,55 (18)
[noting that the existence of such an s, is guaranteed by (2)].
To prove this claim, let &, satisfy (1) and (2). Set, by Eq. (15),
V.V,iy =z.z,k_4, for some k., and substitute into Eq. (14)
to obtain the following: There exists i,, satisfying Egs. (14)
and (15) if and only if z™¢,,, = 0. Next, solve Eq. (16} [noting
that, by (1) and (2), the first term on the right vanishes] for
1.5, contract with z%, and substitute Eq. (18). The claim fol-
lows.

In particular, for the 4, by given by Eq. (3) with 7°
given by (7), the condition, Eq. (17), for the existence of a
second-order perturbed metric becomes
(P1+ P2+ P3)* =p, + p,2 + p,°. This is precisely the same
as the condition, obtained in Sec. I, that our 4,, come from
some one-parameter family of exact solutions. We conclude,
then, that the first-order perturbation equations in this ex-
ample are not reliable. That perturbation theory gives the
“wrong answer” in this example is correctly detected by the
notion of reliability. This is a local version of the lineariza-
tion instability noted earlier.>®

When, in general relativity, can local perturbation the-
ory be trusted, and when can it not? To answer this question
fully appears to be difficult. But the following discussion
does suggest that reliability in general relativity is more the
rule than the exception. '

Let the dynamic field be a Lorentz-signature metricg,,,
the passive fields m vector fields £° Let the equations be

Einstein’s equation with vanishing sources, Killing’s equa-
tion for each of the £ , and set of commutation relations on
the £ °. Fix a background solution. Then the nth-order per-
turbation equations are
vmvmnab - 2vmv(anb)m + va vbnmm =tap — %gabt mm
(19)

and

L gnab =0, 20)

i
where n,, is the nth-order perturbed metric and ¢,, = ;) is
some expression involving the perturbed metrics up to order
{n —1). It follows from the (n — 1)st-order perturbation
equations that this 7,, respects the symmetries . ;t"” =0

i

and is conserved, V,, ¢ °” = 0. Hence, perturbation theory is
reliable at every order provided that, for any t,, that respects
the symmetries and is conserved there exists an n,, satisfying
Egs. (19) and (20).
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We conjecture that one can always solve (19) and (20)
locally, and so perturbation theory is locally reliable, when-
ever the number of passive Killing fields is two or less. Evi-
dence for this conjecture comes from the important special
case in which the Killing fields are linearly independent at
each point and all Killing fields are spacelike. Choose, in this
case, a spacelike slice S to which all Killing fields are tan-
gent. The idea is to solve Eq. (19) for n,,, using an initial-value
formulation on S. While this equation is not hyperbolic as it
stands, it becomes such if there is imposed on n,, the Lor-
entz-gauge condition

vm(nam - % 8am nss) =0. (21)
The initial data then consist of n,,, together with its first
normal derivative, evaluated on S. These must be so chosen
that the gauge condition (21), together with its first normal
derivative, are satisfied on S. To this end, choose as the data
at,t, + 2a,t,, for n,, and Bt,t, + 2 B,,t,, for its first nor-
mal derivative, where ¢ ° is the unit normal to.Sand a®and 8 ¢
are both orthogonal to ¢ °. Substituting, the gauge condition

(21) gives expressions for S and £ “in terms of @ and a®, while
its first normal derivative becomes

Dia=pu, D%*a®=u" (22)
where D? is the Laplacian operator on S, and the source
terms on the right involve & and a® only through their values
and first derivatives in S. We thus conclude the following:
There exists a solution 7n,, of Egs. (19) and (20) provided
there exists a solution a, a® of the elliptic system (22) with o
and a° invariant under the Killing fields. With two or fewer
Killing fields, linearly independent at each point, there does
exist a solution of Eq. (22) with a, a® invariant under the
Killing fields, as one sees by passing to the manifold of trajec-
tories'® of the symmetries. It is false in general that there
exists such a solution with three or more Killing fields. (The
situation here is analogous to trying to solve the Newtonian
gravitational equation D *p = p such that the symmétries of
p are also carried by @. For p invariant under three transla-
tions, i.e., constant, there is no solution ¢ with the same
symmetries.) It seems likely that one could prove the full
conjecture by similar arguments.

So, the local unreliability apparently sets in only for
space-times with a high degree of symmetry—three or more
Killing fields. The situation may be contrasted with the glo-
bal linearization instability, which sets in already with a sin-
gle Killing field.

How pervasive is unreliability for space-times with high
symmetry? A simple class of examples is that provided by
certain spatially homogeneous space-times: those for which
a symmetry group acts simply transitively on spacelike
slices. Recall'! that such a space-time is determined by a
three-dimensional Lie algebra together with positive-defi-
nite metric q,, and symmetric tensor p*® over the vector
space of the Lie algera, satisfying the constraint equations

‘pmm )2 _pmnp"m - %vmvm - Smnsmn + i(smm )2 = 09 (23)
pmnsnpepma - %pmm v, + %Pamvm =0. (24)

Here, ¢, is the alternating tensor for g, , and s** = 5'**) and
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v, result'? from the decomposition of the structure-constant
tensor of the Lie algebra

Ce =5"€mpe — %5 Ve (25)

The Jacobi relation in the Lie algebra is just s*"v,, = 0.

Fix the Lie algebra, and consider the 12-dimensional
manifold % of all pairs consisting of positive-definite g,
and symmetric p*°. Denote by % the subset of this manifold
consisting of those points for which g,,, p*® satisfy the con-
straint equations (23) and (24). Thus, a point of € determines
such a spatially homogeneous space-time. Fix a point
G.s, P°° of €, and suppose that ¥ is a submanifold of . in a
neighborhood of this point. Then a solution of the first-order
perturbation equations with background determined by this
point yields a tangent vector to % at this point. Since ¥ is
there a submanifold, this tangent vector is tangent to some
curve in € through the point. Thus, every solution of the
first-order perturbation equations with this background
arises from some one-parameter family of exact solutions of
the system. We conclude that the first-order perturbation
equations (and, similarly, the higher-order equations) are re-
liable whenever the background is given by a point of € in a
neighborhood of which % is a submanifold of .. The issue
of at what points % is a submanifold is analyzed in the Ap-
pendix, with the following result: The perturbation equations
are reliable to all orders for all such spatially homogeneous
space-times, with the possible exception of those with v, =0
and s*® and p,, of the form

5% = aq® + Puwn?, (26)
Pab = Vdap + W, w4, » (27)

where w* is any g-unit vector in the Lie algebra, and a, 5, 7,
and § are constants satisfying

4y(3y + 28) + (@ + B)3a — B) = 0. (28)

Thus, the perturbation equations are reliable to every
order for the vast majority of spatially homogeneous back-
ground space-times, including in particular all those of Bian-
chi types II1, IV, V, VI, , and VII,. The static, plane-sym-
metric example discussed earlier is analogous to the case
a = f =y =258 =0 above. It is curious that all the “excep-
tional” backgrounds have a fourth Killing field.

Thus, the perturbation equations of general relativity
have a pronounced tendency to be reliable.

V. DISCUSSION

We have been concerned here with two types of difficul-
ties associated with perturbation theory in general relativity.
The first is that there can exist solutions of the perturbation
equations that appear to be gauge—in the sense that the per-
turbed metric is the symmetrized derivative of a vector
field—but which nonetheless are not true gauge. The second
is that there can exist solutions of the perturbation equations
that cannot be extended to solutions at the next-higher order
in perturbation theory. The first difficulty is more pervasive
in general relativity than the second, but it also much easier
to deal with.

One might think that, at least for situations similar to
that of the static, plane-symmetric example, these difficulties
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are merely the result of a poor choice of variable. Recall that
first-order perturbation theory for the vacuum Einstein
equation with flat background is often formulated as fol-
lows. Let the field be, not the perturbed metric 4, but rath-
er the perturbed Weyl tensor K, ,, a field having all the
symmetries and traces of a Weyl tensor. Let the first-order
perturbation equation be, not Eq. (1}, but rather the first-
order Bianchi identity

ViKicjae = 0. ' (29)

There is no gauge freedom within K, , itself, only in its
“potential,” A, . This formulation, which does not fit within
the general framework of Sec. II, has no second-order ver-
sion, and is generally inapplicable with sources or curved
backgrounds.

It is instructive to see what happens when this formula-
tion is applied to the static, plane-symmetric example. Take
as the first-order perturbation equations in this case Eq. (29)
together with

ftKabcd = ngabcd = e'g'yKabcd =0. (30)

The most general solution to this system is K,_,, any con-
stant field having the symmetries and traces of a Weyl ten-
sor. By contrast, every one-parameter family of exact solu-
tions of the system gives rise to a vanishing first-order
perturbed Weyl tensor. Thus, on the one hand, the first-
order perturbation equations in this formulation admit too
many solutions; all constant K, ., rather than just
K.« = 0. But, on the other hand, these perturbation equa-
tions admit too few solutions to reflect adequately the full
theory, for all families of exact solutions—even those that do
not represent first-order gauge—collapse to K,,., = Oin the
perturbation theory. Since a family of exact solutions of the
system gives rise to a nonzero Weyl tensor only at second
order, one might expect better agreement between the result-
ing second-order Weyl-tensor perturbations and the solu-
tions K., of Egs. (29) and (30). While all such second-order
perturbations of the Weyl tensor are in fact constant tensor
fields, not all constants are allowed; there must be satisfied a
condition analogous to (p; + p; + ps)* =p,> + p,® + ps* of
Sec. I. Thus, there continue to be too many solutions of Eqs.
(29) and (30). In short, use of the Weyl tensor as the perturbed
field does not seem to alleviate these difficulties with pertur-
bation theory.

One might think that, alternatively, these difficulties are
merely the result of our introduction of passive fields. So, let

the £ be active. Include, with the perturbed fields, those
resulting from the £, and include, with the perturbation

equations, those resulting from the commutation relations
on the £ . Nothing essential then changes. It turns out that

there are still solutions of the first-order perturbation equa-
tions for which the perturbed metric is a symmetrized deri-
vative but which are not gauge solutions. And there are still
solutions that cannot be extended to second order in pertur-
bation theory.

In the discussion of apparent gauge in Sec. I1I, we treat-
ed only the case of Einstein’s equation with vanishing
sources. The introduction of sources, constructed from addi-
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tional dynamic fields, does not significantly change the situ-
ation. An apparent gauge solution is again determined by a
vector field 7¢, where the perturbed fields are those that re-
sult from applying .Z . to each of the dynamic background

fields. Invariance of the active fields under the § ¢ then re-

quires invariance of these perturbed fields under the £°,

which is turn requires invariance of each of the dynamic
background fields under the . 57"’. Thus, apparent gauge

again results whenever each of the .¥° 7° is some linear com-

bination, with constant coefficients, of the &°. For true

gauge, on the other hand, we again require .¥ 57" = 0. So,

there will again be solutions that are apparent gauge but not
true gauge. A further restriction in Sec. III was that all pas-
sive fields be vector fields satisfying Killing’s equation. What
happens when other types of passive fields are included? Are
there versions of apparent gauge at higher order in perturba-
tion theory?

Is the conjecture of Sec. IV, that at least three Killing
fields are required for unreliability, true? We showed in Sec.
IV that the spatially homogeneous space-times, with certain
possible exceptions, are reliable. Are all the exceptional cases
actually unreliable? Does the presence of sources, or passive
fields other than Killing fields, increase or decrease the
chances of reliability? Is reliability less prevalent as one goes
to higher orders in perturbation theory? A possible conjec-
ture is that if the nth-order perturbation equations are not
reliable, then neither are the (n + 1)st. One might attack this
by trying to show that, whenever Egs. (19) and (20) admit no
solution for some ¢,,, then that ¢,, can be reached through
some choice of the lower-order perturbations. Even for the
simple static, plane-symmetric example the situation is not
immediately clear. Is it true that the nth-order perturbation
equations in this example are unreliable for all n?

APPENDIX: RELIABILITY OF SPATIALLY
HOMOGENEOUS SPACE-TIME

Fix a three-dimensional Lie algebra. As in Sec. IV, de-
note by % the 12-dimensional manifold of pairs {g,,, p**) of
tensors over the vector space of the Lie algebra, and by % the
subset of . consisting of those pairs for which the constraint
equations (23) and (24) are satisfied, where s*® = 5*) and v,
are given by the decomposition (25) of the structure-constant
tensor.

Denoteby H (g, p) and H,, (g, p) the respective left sides of
the constraint equations (23) and (24). Thus, % consists of
those points at which these functions on .# vanish. Theissue
of at which of its points € is a submanifold turns on the issue
of at which points of € the gradients in % of these functions
are linearly independent. So, consider the linear combina-
tionuH + v"H,. Equating to zero the gradient in .% of this
combination, i.e., equating to zero the g,,- and p**-partial
derivatives, keeping the structure-constant tensor fixed, we
obtain
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B[ 2AP"P"m — PmP™) 4 PV + (S — 3™ ™

— 25%,, 8™ + s7bsm 1+ Ue p®m =0, (Al)
2”’ [qabpmm —Dab ] + [](ab) = oa (AZ)
where we have set

U =" €pnpnV" + P v, — 6% V™0,,,. (A3)

Let, g.5, p™, pt, and v satisfy Egs. (23), (24), (A1), and
(A2). We first derive, as a consequence, the following three
equations: :

#Pap =0, (Ad)
pv, =0 (AS)
s 5" — 4s7s™,) = 0. (A6)

To derive Eq. (A4), first contract Eq. (A2) with ¢°° and use
Eq. (A3), to obtain up™, = 0. Then contract Eq. (A2) with
P, using this and Egs. (A3) and (24). To derive Eq. (A5), first
multiply Eq. (23) by u, noting that, by Eq. (A4), the first two
terms drop out. Were uv, nonzero, then the third term
would be negative, while, by the Jacobi relation 5%y, = 0, s®
would have rank at most two, whence the last two terms
together would be nonpositive. This contradiction estab-
lishes v, = 0. To derive Eq. (A6}, multiply Eq. (A1) by g,
using (A4}, (AS), and the result of multiplying Eq. (23) by B
We next derive, as a further consequence, the following four
equations:

Uis) =0, (A7)
ue,ptm =0, (A8)
Ul shm =, (A9)
Uapve =0. (A10)

To derive Eq. (A7), use Eq. (A2) with Eq. (A4). To derive Eq.
(A8), use Eq. (A1) with Egs. (A4)—(A6). To derive Eq. (A9),
contract Eq. (A3) with s and symmetrize over ¢ and g. The
first two terms give zero, while the last also vanishes as a
consequence of contracting Eq. (A7) with +*+*. To derive Eq.
(A10), note that, by antisymmetry of U,,, it suffices to check
this equation when contracted with ¢* and when the anti-
symmetrized over all indices. But these both follow from Eq.
{A3).

To summarize, we have shown so far that Eqs. (23), (24),
(A1), and (A2) together imply Egs. (A4)~(A 10).

Now let (g,5, p*) be a point of € at which % is not a
submanifold. Then there must be some linear combination
p#H + v*H,, other than the zero function, whose gradient
vanishes at this point. Since uH + v*H,, is not the zero func-
tion, it follows from Eqs. (23) and (24) that either u or U*¢, is
nonzero. But for u nonzero it follows from Egs. (A4)-(A6),
and for U*, nonzero from (A7)-{A 10), that this is one of the
exceptional cases of Sec. IV. We have shown, then, that any
point of %" at which € is not a submanifold must be of the
form (26) and (27) with v, = 0. Equation (28) is merely the
result of substituting Egs. (26) and (27) into Eq. (23).
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