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ABSTRACT

The instabilities that limit the rotation rate of neutron stars are driven by gravitational radiation reaction
and moderated by viscosity. This paper estimates the angular velocities where these instabilities set in. These
estimates improve on previous work in two ways: (a) by approximating the influence of the dissipative mecha-
nisms on the locations of the critical angular velocities, and (b) by using fully relativistic calculations of some
of the relevant frequencies and time scales. This analysis indicates that the influence of gravitational radiation
is somewhat greater than had been anticipated in earlier work, and as a result that an m = 4 or 5 (rather than
m = 3 or 4) instability is probably responsible for limiting the angular velocity of rapidly rotating neutron
stars. The minimum rotation periods are computed here for a sample of eight different equations of state for
the nuclear matter, for a range of different viscosities, and for the allowed range of neutron star masses. These
calculations show that the critical rotation periods are very insensitive to the value of the viscosity but depend
strongly on the equation of state of the nuclear matter and on the mass of the neutron star.

Subject headings: dense matter — stars: neutron — stars: rotation

I. INTRODUCTION

Since the discovery of the pulsar PSR 1937 + 215 (Backer et
al. 1982) with period 1.56 ms, a great deal of attention has been
given to the problem of predicting the minimum period that is
consistent with the widely accepted rotating neutron star
model of pulsars. Friedman (1983) pointed out that the insta-
bility that limits the angular velocity of neutron stars occurs in
a nonaxisymmetric mode that is driven by gravitational radi-
ation reaction. While gravitational radiation causes these
modes to grow in rapidly rotating stars, viscosity stabilizes
them (Lindblom and Detweiler 1977). Thus the presence of
viscosity causes an increase in the critical angular velocity
where this gravitational radiation reaction instability sets in.
For modes [having angular dependence exp (img)] with small
values of m, the gravitational radiation reaction time scale is
much shorter than the viscous time scale in neutron stars. The
critical angular velocities for these modes are, consequently,
effectively unchanged by the presence of viscosity. For large
values of m the viscous time scale is much shorter than the
gravitational radiation reaction time scale. The corresponding
critical angular velocities are substantially increased in this
case, which makes these modes effectively stable.

To predict the maximum angular velocity of neutron stars,
therefore, one must perform two different analyses. First, the
critical angular velocities where these instabilities set in must
be determined, and their dependence on the viscous and gravi-
tational radiation reaction time scales must be estimated for
the relevant modes. Second, these dissipative time-scales must
be estimated for realistic neutron stars. Friedman (1983) made
estimates of both effects. He used the Newtonian Maclaurin
spheroids as simple models of rotating stars to obtain esti-
mates of the time scales for viscosity and gravitational radi-
ation to influence the evolution of a mode. From these
estimates he concluded that modes having m > 5 in neutron
stars would be stabilized by the presence of viscosity. This led
him to predict that the instability in the m = 4 mode would
probably limit the angular velocity in neutron stars. In the
Maclaurin spheroids this mode becomes unstable when ¢ (the
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ratio of the rotational kinetic energy to the gravitational
potential energy) has the value 0.08. Friedman estimated the
critical angular velocities for this mode in realistic neutron
stars by using the moment of inertia and gravitational binding
energy of nonrotating relativistic neutron stars (see Arnett and
Bowers 1977) to approximate t. The critical values of the
energy ratio t have also been computed more recently for
rigidly rotating Newtonian polytropes by Imamura, Friedman,
and Durisen (1985) and by Managan (1985).

This paper adopts a rather different strategy for computing
estimates of the dissipative time scales and estimates of the
critical angular velocities of the relevant modes. The fre-
quencies and gravitational radiation reaction time scales of the
relevant modes (2 < m < 5) are computed here for fully rela-
tivistic but nonrotating neutron star models having “ realistic”
equations of state. The values of these quantities in rotating
stars are then extrapolated from their nonrotating values using
the Maclaurin spheroid formulae for their angular velocity
dependence. These extrapolations suggest that gravitational
radiation reaction is stronger in these stars than had been
anticipated on the basis of Friedman’s work. Consequently, the
modes through m = 4 or m = 5 will be unstable to the gravita-
tional radiation secular instability.

In § IT of this paper the secular instabilities of the Maclaurin
spheroids are reanalyzed The purpose here is to obtain the
formulae for the angular velocity dependence of the frequencies
and time scales that govern the secular instabilities. This
analysis results in a very simple formula for the critical angular
velocity of a given mode. In § III the accuracy of this formula
for predicting the critical angular velocities in more general
classes of stars than the Maclaurin spheroids is tested. These
angular velocities are estimated for the 3 < m < 5 modes of
rigidly rotating Newtonian polytropes with indices n = 1.0 and
n = 1.5. These estimates agree with the values deduced from
computations of Imamura, Friedman, and Durisen (1985) and
Managan (1985) to within 5%-10%. Finally, in § IV, the criti-
cal angular velocities are estimated for realistic neutron stars
using this formula. The frequencies and gravitational radiation
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reaction time scales needed to use this formula are computed
using a fully general relativistic analysis and a number of differ-
ent “realistic” equations of state for the nuclear matter in the
star. The critical rotation periods are computed for neutron
stars having the maximum mass, and also for neutron stars
having the minimum number of baryons (1.4 N ) that can be
formed astrophysically. The critical periods are computed for a
range of different viscosities expected to span the possibilities
for neutron star matter. These calculations show that the criti-
cal angular velocities depend very sensitively on the mass of
the neutron star, and on the equation of state of the nuclear
matter. They do not, however, depend very strongly on vis-
cosity. The critical angular velocities, so predicted, are com-
pared to the frequency of the pulsar PSR 1937 +214. These
calculations show that most of the critical rotation periods are
shorter than the 1.56 ms period of this pulsar. Only the lowest
mass models (N = 1.4 N) in the stiffest equations of state in
this sample are inconsistent with the existence of the 1.56 ms
pulsar. These estimates suggest, however, that no pulsar having
period shorter than ~0.6 ms is consistent with any of the rea-
listic equations of state.

II. THE MACLAURIN SPHEROIDS

The secular instability (instability caused by the presence of
dissipative forces) of the Maclaurin spheroids was first recog-
nized on the basis of energy arguments by Thomson and Tait
(1883). This early analysis did not, however, determine the time
evolution of an unstable spheroid away from equilibrium.
Roberts and Stewartson (1963) were the first to study the [ = 2
modes of viscous Maclaurin spheroids. They explicitly calcu-

lated the frequencies of these modes and demonstrated the
existence of an exponentially growing m = —2 mode in suffi-
ciently rapidly rotating models. Chandrasekhar (1970a, b)
demonstrated that an analogous instability to gravitational
radiation reaction exists in the Maclaurin spheroids as well (in
an m = 2 mode). Both these effects were first studied in the
context of the modes of interest here (the general I = m modes)
by Comins (1979a, b).

The modes of the Maclaurin spheroid are taken to have the
dependence exp [io,(Q)t + imp — t/7,(Q)] on the time ¢ and
the azimuthal angle ¢. The frequencies ¢,(Q) depend on the
angular velocity Q of the spheroid, as well as on the integer m.
These frequencies, determined originally by Bryan (1889) and
tabulated by Comins (1979b), have the remarkable property
that they are essentially independent of angular velocity when
viewed in the corotating frame of the spheroid. Thus the func-
tion

%,(Q) = [0,(Q) + mQ]/c,,(0) ¢y

is surprisingly independent of Q, as can be seen in Figure 1.
The frequencies of the nonrotating fluid spheres that appear in
equation (1) were first computed by Thomson (1863) and are
given by the expression

GM 2 — 1))
w0 =| T @

where G is Newton’s constant, M the total mass, and R the
radius of the corresponding nonrotating sphere (or equiva-
lently the geometric mean of the principal axes of the rotating
spheroid: R® = a,a, a,).
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F1G. 1.—Maclaurin spheroid functions «,,(Q) for 2 < m < 5. These functions, defined in equation (1), are the ratios of the frequencies of the I = m modes (as
measured in the rotating frame of the spheroid) to the frequency of the nonrotating sphere of the same density. The angular velocity is given in units of (xGp)'/?,

where p is the density of the spheroid.
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The time scale t,(Q) that determines the rate at which a
particular mode is damped (or amplified) by the dissipative
processes was first computed by Comins (1979a) for these
modes. His expression for this time scale can be written in the
form

1 _ . . a_m(g) 2m+1
@ ”m‘“’{f"m + ’G"""[am(owm(n)] } -0

The viscous time scale 7y, for the corresponding nonrotating
spheroid (first derived by Lamb 1881) is given by

w7l = (2m + 1)m — 1) % , @)

where v is the kinematic viscosity. The corresponding time
scale for gravitational radiation reaction (first computed by
Detweiler 1975) is given by the expression

3 (m+1)m+2) <2m(m - 1))"‘ %)"‘“ <
2m-niem+ DU\ 2m+1 ) \@R) &’

)

where the constant c is the speed of light. The angular velocity
dependence of the dissipative time scale 7,(Q) has been
absorbed into the two functions B,(Q) and y,,(Q). These func-
tions have reasonably simple expressions in terms of the eccen-

—_ 1 —
T6Rm =

Vol. 303
tricity e(Q) of the spheroid of given angular velocity:
l—eZQ 13 O'mQ + mQ
B.(Q) = [ Q1[0 ] ©)
6,(Q) + (m— 1)Q
and
Tl Q) = {a,(Q[1 — e3(Q)]™3}1em+1) %

These functions are depicted in Figures 2 and 3 for the first few
values of m. These figures illustrate that none of the functions
Op> Pm» OT 7, deviate substantially from their nonrotating
values [a,,(0) = B,,(0) = y,,(0) = 1], even for very rapidly rotat-
ing spheroids. The circle on each curve represents the point at
which the pure gravitational radiation reaction secular insta-
bility sets in to that mode.

The oscillations of the Maclaurin spheroids will be damped
by the dissipative mechanisms as long as the time scale t,,(Q) is
positive. The critical angular velocity Q,, (where instability to
the mth mode sets in) occurs at the point where 1,,(Q) changes
sign. Thus, Q,, is simply the root of the equation

1/1,(Q,) = 0. ®

A more useful expression for these critical angular velocities
can be obtained directly from equation (8) using equations (1)
and (3). The result is:

T 1/(2m+1)
[am(ﬂm) + ?».(‘%.)('m) ] -0
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FiG. 2—Maclaurin spheroid functions f,,(Q) for 2 < m < 5. These functions, defined in equation (6), give the angular velocity dependence of the viscous damping
time for the | = m modes. Angular velocity is given in same units as in Fig. 1.
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FI1G. 3.—Miaclaurin spheroid functions y,(Q) for 2 < m < 5. These functions, defined in eqn. (7), give the angular velocity dependence of the gravitational
radiation reaction damping time for the / = m modes. Angular velocity is given in same units as in Fig. 1.

This equation is very easy to solve numerically because the
functions «,, and 7,, are nearly independent of Q. Thus, an
excellent approximation to the critical angular velocity is

simply
a, ~ Y [1 + (TGR'"')U(MH)] .
m TYom

Since this expression depends only on the properties of the
nonrotating stellar model, it is extremely easy to compute. This
approximation is accurate to within 5%-10% for the
3 < m < 5 modes of the Maclaurin spheroids, and the approx-
imation gets better and better for larger values of m.

In neutron stars the gravitational radiation reaction time
scale is much shorter than the viscous time scale, Tgg m < Ty >
for small values of m (m = 2 or 3). For these small values of m,
the second term in equation (9) will be negligible compared to
the first so that Q,, = Qg ., Where

7m(0)

(10)

QGR,m = O(m(ngR,m) . (11)
These “ viscosity-free ” critical angular velocities have decreas-
ing magnitudes as m gets larger. Thus, each successive mode is
unstable over a wider range of angular velocities. For larger
values of m (m 2 6), the viscous time scale is shorter than the
gravitational radiation time scale: tgg ,, > Ty, In this case the
second term in equation (9) is larger than the first. The critical
angular velocities are consequently significantly increased.
Therefore, viscosity stabilizes these modes. Since the critical
angular velocities Q,, are decreasing with m for small m and
increasing with m for larger m, it follows that a minimum criti-
cal angular velocity will exist. For neutron stars this minimum
occurs for m =4 or 5, as we argue in § IV. This minimum
critical angular velocity will be the maximum angular velocity
of the stable Maclaurin spheroids.

The time scale with which a given mode grows is given by
equation (3). The gravitational radiation reaction term in this
equation is very small over much of the relevant angular
velocity range because it is proportional to the expression
(Q — Qgr.m)*™"', where Qgg,, is the viscosity-free critical

angular velocity. Since the viscous term is nearly independent
of angular velocity, it is the viscous time scale that will essen-
tially determine the secular evolution of these modes. Of
course, at the critical angular velocity this time scale goes to
infinity. However, because of the presence of viscosity it does
so more slowly than in the pure gravitational radiation case.
Near the critical angular velocity, the first term in the Taylor
series for 1/7,(Q) can be evaluated to obtain the expression

1 2m+1[ m  do, <IGR,,,, L@m+1) dy_,,,]
Q) Torm LOn0) dQ .m dQ

Q _ Qm m 2m/(2m+1)
Pl [ @) ]( Ty > - (12

Since a,, and v,, are decreasing functions and since y,, < 1 when
evaluated at the critical angular velocities, f,, > 1 and an

upper bound for 7,(Q) is given by
2m/(2m+1)
R~'"> . (13)

L | o m@m+1Q—2Q,| (rG
Tm(Q) ~ TGR,mam(O) Tv,m

These expressions are linear in Q — Q,,, while the correspond-
ing expressions in the viscosity-free case go like (Q — Q,)*"*!.
Thus the characteristic time scale for the growth of these insta-
bilities is shorter in the presence of viscosity than one would
have anticipated on the basis of the pure gravitational radi-
ation instability.

III. ROTATING NEWTONIAN POLYTROPES

At present the analysis of the secular instabilities in rapidly
rotating but nonuniform density stellar models is not nearly as
well advanced as that described in § II. This more general
analysis must be completely numerical, since analytic solutions
for the equilibrium structures of these stars do not even exist,
let alone analytic solutions of the perturbation equations. In
fact, at the present time, the only models for which the critical
angular velocities have been calculated (for m > 2 modes) are
the rapidly rotating Newtonian polytropes. Imamura, Fried-
man, and Durisen (1985) and Managan (1985) used slightly
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TABLE 1

CRITICAL ANGULAR VELOCITIES IN RIGIDLY ROTATING
NEWTONIAN POLYTROPES®

n moot, QG M 0,(mGho)  Qup(nGho) M
10 30079 0.60 1.950 0.64
10,0, 4 0058 0.56 2335 058
10 0o 50044 0.50 2.648 0.53
TR 30056 0.61 2219 0.66
15 .. 4 0043 0.57 2.587 0.62
15 e, 5 0034 0.53 2.880 0.56

2 The critical angular velocities Q. were deduced from the critical values of
the energy ratio ¢, tabulated by Imamura, Friedman, and Durisen 1985 and by
Managan 1985. The critical angular velocities Qg were deduced from the
frequencies of nonrotating polytropes o,, by solving eqn. (11). All frequencies
are expressed in units of (Gp,)'/%, where p, is the average density of the
corresponding nonrotating polytrope.

different variational principles to estimate the critical angular
velocities in the 2 < m < 5 modes for polytropes having indices
n = 1.0 and n = 1.5. The results of their calculations are sum-
marized in Table 1. The primary result of their computation is
the value of ¢, the ratio of the rotational kinetic energy T to
the gravitational potential energy W of the star when a partic-
ular mode becomes unstable. I have converted their critical
values of this energy ratio into values for the critical angular
velocity (listed as Q. in Table 1) using unpublished data on the
structure of rigidly rotating polytropes supplied to me by
J. Friedman from J. Imamura.

It would be desirable to have a more straightforward
method for computing the critical angular velocities in stellar
models having more general equations of state. Clearly the
critical angular velocities, even in the general case, will be the
roots of an equation which is the analog of equation (9) for the
Maclaurin spheroids:

a, =29 [&m(nm) ; Mn,,.)(’“"'")mm“’] -

m Tv,m

In this equation ¢,(0), T¢g ., and 7, ,, represent the frequency
and dissipative time scales of the mth mode of the nonrotating
but otherwise general stellar models. The functions &,, and 7,
will depend on the details of the structure of the corresponding
general rotating stellar models. While the properties of non-
rotating stars [e.g., 6,(0), Tgr.m> Tr.m] are reasonably easy to
compute, the functions &, and 3, that contain information
about the pulsations of the rotating models are not easy to
determine.

In the case of the Maclaurin spheroids, we saw in § II that
the functions a,, and y,, were nearly independent of the angular
velocity. In that case the values of the critical angular velocities
could be determined with reasonable accuracy for the m > 3
modes by replacing both these functions by their nonrotating
values of 1. It seems likely, therefore, that the functions &,, and
Y. will not depend strongly on the angular velocity in general
stellar models either. It should be possible to obtain reason-
ably accurate estimates of the critical angular velocities in
general rotating stellar models, therefore, by solving equation
(14) using the correct values for 0,,(0), Tgg, m» and 7y, but using
the Maclaurin spheroid functions «,, and y,,,.

This approximation method was tested on the modes of the
rotating Newtonian polytropes. The relevant frequencies of the
nonrotating polytropes were computed using a computer code
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described in Lindblom and Detweiler (1983) and Balbinski
et al. (1985). Those frequencies are listed in Table 1 and are
accurate to about 0.1%. Using these frequencies and the
Maclaurin spheroid functions a,,, the “viscosity-free” critical
angular velocities Qgr were determined by solving equation
(11) numerically. The results of this computation are also listed
in Table 1. The actual values of the critical angular velocities
Q. agree with the estimates to within 5%—-10%. Given the ease
with which Qg can be computed (compared to the difficulty of
determining Q,), this degree of accuracy is perhaps better than
one would have anticipated.

IV. REALISTIC NEUTRON STARS

The study of the structure and stability of rapidly rotating
stars in general relativity is in an even more primitive state of
development than is the analogous theory for Newtonian stars.
Numerical models of rapidly rotating relativistic polytropes
have been constructed by Butterworth and Ipser (1976) and
Butterworth (1976), and rapidly rotating models of realistic
neutron stars have been constructed more recently by Fried-
man, Ipser, and Parker (1985). Friedman (1978) demonstrated
the existence of the gravitational radiation reaction secular
instability in rotating general relativistic stars; and Lindblom
and Hiscock (1983) showed that viscosity tends to suppress the
instability in sufficiently slowly rotating stars as it does in
Newtonian stars. To date, however, no one has computed the
frequencies or the dissipative time scales for rotating rela-
tivistic stars.

The purpose of this final section is to estimate the critical
angular velocities of realistic general relativistic neutron stars.
The plan is to solve equation (14) using fully general relativistic
values of ¢,(0) and 74z, while using the Maclaurin spheroid
expressions for 7y, ,,, &,, and %,,. Since this method of estimat-
ing the critical angular velocities in rotating Newtonian poly-
tropes proved to be accurate to within 5%-10%, the
anticipated accuracy of the present estimates should be compa-
rable to that.

The frequencies and gravitational radiation damping times
have been computed for the 2 < I = m < 5 modes of fully rela-
tivistic neutron stars using a computer code that is described in
Lindblom and Detweiler (1983) and Detweiler and Lindblom
(1985). These frequencies and time scales are reported in
Table 2 for neutron stars based on eight different models of the
supernuclear density equation of state of nuclear matter. For
each equation of state two different neutron stars are con-
sidered. The first corresponds to the model containing 1.4 N
baryons (Ng = 1.19 x 1057). This is the minimum mass
neutron star that can be formed astrophysically. The other
neutron star model listed in Table 2 is the maximum mass
model for each equation of state. Since the equation of state is
not well known in the density range needed for neutron stars, a
number of different models of it are used to gain some feeling
for the uncertainty in the frequencies caused by this ignorance.
The equations of state are denoted by capital letters (A, B, C,
etc.), and Table 3 defines each one in terms of a reference to the
literature (see also Lindblom and Detweiler 1983). The fre-
quencies reported in Table 2 are given as ratios with the
Kelvin frequency 0,(0) (see eq. [2]) and the Detweiler time
scale tgg , (see €q. [5]) for a star having the same mass and
radius. Presenting these data in this way gives an indication of
the accuracy one can expect to achieve when performing “ back
of the envelope ” calculations based on these simple frequency
and time scale formulae.
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TABLE 2
FREQUENCIES OF GENERAL RELATIVISTIC NEUTRON STAR MODELS

Equation R
of State M/Mg (km) o, (25 Wy Ws X" X3 Aa s
M......... 1.277 16.057 1.367 1.271 1.224 1.195 0.82 1.27 1.83 2.56
1.759 11.903 1.339 1.167 1.095 1.055 1.86 5.32 129 30.0
L......... 1.311 14.944 1.292 1.212 1.175 1.152 0.99 1.58 2.34 3.68
2.661 13.619 1.112 0.994 0.947 0.923 4.69 17.1 54.6 207.
N 1.385 13.784 1.252 1.171 1.136 1115 1.18 2.04 3.26 5.14
2.563 12.270 1.077 0.961 0916 0.893 6.51 26.6 95.6 279.
O.oevnns 1.282 12.798 1.260 1.177 1.140 1.120 1.17 2.01 3.20 5.47
2.380 11.581 1.082 0.967 0.923 0.900 5.94 23.6 81.5 248.
C.ornnns 1.317 12.027 1.317 1.205 1.154 1.124 1.16 2.23 3.90 6.64
1.852 9.952 1.180 1.046 0.992 0.963 3.88 13.7 41.7 124.
F......... 1.262 10.325 1.306 1.183 1.129 1.097 1.35 2.87 5.50 9.81
1.463 7.966 1.220 1.071 1.010 0.976 3.79 13.6 41.8 123.
Ao 1.246 9.783 1.251 1.147 1.103 1.078 1.53 324 6.20 11.5
1.653 8.427 1.132 1.008 0.959 0.933 4.84 18.1 58.9 183.
B......... 1.223 8.209 1.259 1.134 1.080 1.049 1.95 5.03 11.6 259
1.412 7.000 1.135 1.009 0.959 0.930 5.72 22.8 79.4 263.

® The frequencies X, and gravitational radiation damping times T,, of these neutron stars are presented here as
ratios with the Newtonian expressions for these quantities given in the text; thus w,, = Z,/0,(0) and y,, = T,,/T¢g, m
where ¢,(0) and 4y, are the Kelvin frequency and the Detweiler time scale, which are defined in equations (2) and
(5). Two stellar models are given for each equation of state: the first containing 1.4 N baryons, and the other having
the maximum possible mass for that equation of state.

TABLE 3 The effect of viscosity on the modes of general relativistic
EQUATIONS OF STATE stars has not been computed to date. Such computa}tioqs are
currently in progress; however, the present analysis will be
Equation done using Lamb’s formula (eq. [4]) for the viscous time scale.
of State Reference The viscosity v of neutron star matter has been estimated by
Pandharipande 1971 (neutron) Friedman (1983) to lie in the range 1 <v < 100 cm?s™!. Using
Pandharipande 1971 (hyperonic; model C) this range for the kinematic viscosity and the neutron star radii
2ethe and1 ;%mson 1974 (model I) listed in Table 2, the range of viscous time scales have been

rponen < < 7
Pandharipande, Pines, and Smith 1976 (mean field) comgutf:d fgr eacl;1.2 ﬁ m _FS. mOde‘i ?hesﬁ tlrlnz ls\?ale ranges
Pandharipande, Pines, and Smith 1976 (tensor) are depicted graphically in Figure 'or't e 1 ,Q,Heut,ron
Serot 19794, b star models. The ranges of the gravitational radiation time
Bowers, Gleeson, and Pedigo 1975 scales for these models from Table 2 are also depicted in this

figure for comparison. This figure shows that the gravitational

| 1 | I | |
-=-- Viscosity

— Gravitational —_—t bm————— o m=5
Radiation 4 mea

— F=———==4 M3

— e m a2

| ] | | L ]
0 102 10t 10° 1% 10° 10"
Dissipation Timescale (sec.)

FiG. 4—Dissipation time scales (viscous and gravitational radiation) for the 1.4 N, realistic neutron star models. The viscous time scales are based on the
assumption that the kinematic viscosity for neutron star matter lies in the range 1 < v < 100 cm? s™!. The gravitational radiation time scales are based on a fully
relativistic calculation of the nonradial modes of these stars.

10°¢
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m:5 | et LI
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F16. 5—Critical rotation periods for the m = 4 and m = 5 modes of 1.4 N, realistic neutron star models. These critical rotation periods are the solutions of
equation (14) using the dissipation time scales shown in Fig. 4. The critical periods have been determined for several values of the kinematic viscosity v (cm? s~ ). For
comparison, the period of the pulsar PSR 1937+ 214 and the periods of the “ Keplerian ” angular velocity for these stellar models have been included.

radiation time scales increase by about a factor of 100 with
each increase in the value of m. This figure also shows that for
small values of m (m < 5) the gravitational radiation time scale
is shorter than the viscous time scale: 74g ,, < Ty ,,. For larger
values of m (m > 6) it is also clear that the viscous time scales
will be shorter than the gravitational radiation time scales. The
time scales for the maximum mass models are somewhat
shorter (up to a factor of 5) than those shown in Figure 4, both
for viscosity and for gravitational radiation.

Using these frequencies and time scales, the critical angular
velocities for these relativistic neutron stars have been esti-
mated by solving equation (14). This analysis indicates that the
minimum critical angular velocity will occur in an m = 4 or an

m = 5 mode for viscosities in the range 1 < v < 100 cm? s~ 1,

The critical rotation periods P,, = 27/Q,, for these modes are
depicted in Figure 5 for the 1.4 Ny neutron stars having
several different values of the viscosity. The circles in this figure
represent the estimated critical periods for each of the equa-
tions of state used. Also included in this figure are the
“Keplerian ” periods for these same 1.4 N, stellar models as
computed by Friedman, Ipser, and Parker (1985). Stars rotat-
ing faster than this “Keplerian” angular velocity are unstable
to shedding mass from their equators. Consequently no equi-
librium stellar models (even unstable ones) rotating faster than
this limit are possible.

Figure 6 illustrates the variation in the critical angular velo-
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F1G6. 6.—Critical rotation periods for the modes 2 < m < 5 of realistic neutron stars. These critical periods were computed with the kinematic viscosity having the
value v = 10 cm? s~ !. The critical periods are shown for two sets of neutron star models, one set consisting of stars having the maximum mass allowed for each

equation of state, and the other set consisting of stars containing 1.4 N baryons.
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cities that can come about due to differences in the masses of
neutron stars. This figure shows the critical rotation periods
computed with a viscosity of v = 10 cm? s~ *. For each of the
modes, 2 <m <5, the critical periods are given for the
maximum mass neutron stars in each equation of state, and for
the models containing 1.4 N baryons. This figure illustrates
quite clearly that the critical rotation periods are maximum for
the m = 4 or the m = 5 modes in all of these models.

Figures 5 and 6 illustrate the considerable uncertainty in the
critical angular velocities that arises from the uncertainty in
the supernuclear density equation of state. By comparison, the
critical periods are remarkably insensitive to the value of the
viscosity. (This excuses in part the use of the Lamb formula for
the viscous time scale.) These periods change by only a few
percent as the viscosity varies over the expected range
1 <v <100 cm? s~ ! Figure 6 illustrates that the critical
periods also depend sensitively on the masses of the neutron
stars. Current observational evidence is consistent with the
expectation that all neutron stars have masses near 1.4 M
(see, e.g., Shapiro and Teukolsky 1983). On this basis one
might expect that the 1.4 Ny models more accurately reflect
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the properties of real neutron stars than do the maximum mass
models. However, since the masses of most neutron stars have
not been determined to date, it is probably unsound to dismiss
at this time the possibility of having larger mass stars.

Also included in Figures 5 and 6 is the pulsation period of
the pulsar PSR 1937+ 214 for comparison. This calculation
indicates that the existence of this pulsar is inconsistent with
the stiffer equations of state (M and L) and the assumptions
(a) that the mass of the pulsar is near 1.4 N and (b) that the
viscosity is in the range 1 <v < 100 cm? s~ !. These calcu-
lations also indicate that no pulsar having a period shorter
than ~0.6 ms would be consistent with any of the equations of
state in this sample.
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84-16691 from the National Science Foundation.
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