Static uniform-density stars must be spherical in general relativity
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In this paper the uniqueness of the static solutions of Einstein’s equation that represent isolated
uniform-density perfect-fluid stellar models is demonstrated: any static asymptotically flat
space-time containing only a uniform-density perfect fluid confined to a spatially compact
world tube is necessarily spherically symmetric. This result generalizes to relativistic uniform-
density models the well known Newtonian theorem of Carleman and Lichtenstein.

1. INTRODUCTION

The inevitability of spherical symmetry in isolated static
(i.e., time independent and nonrotating) fluid stellar models
was first demonstrated in the Newtonian theory by Carle-
man' and Lichtenstein.>* To date the analogous result has
not been established in general relativity theory. A number
of studies of the properties of static relativistic stellar models
have been published, however. Some of the more interesting
results of these investigations are as follows. Masood-ul-
Alam* has shown that the topology of the space-times con-
taining these static stellar models must be diffeomorphic to
R3 % R. Avez,>° Kiinzle,” and Lindblom®?® have studied the
geometry of this general class of space-times. They estab-
lished the equivalence of spherical symmetry and a number
of other geometrical properties (e.g., spatial conformal flat-
ness) in these space-times. Kiinzle and Savage'? showed that
the spherical static space-times are isolated in the sense that
no continuous family of static fluid space-times exists which
contains both spherical and nonspherical space-times.

Recently Masood-ul-Alam'! explored the implications
of the positive mass theorem'*'* on the geometry of static
fluid space-times. He demonstrated that the positive mass
theorem could be used to prove the necessity of spherical
symmetry in a subset of these space-times that satisfies cer-
tain special properties. He assumed that the fluid obeyed a
particular equation of state, which having dp/dp <0 is un-
fortunately extremely unphysical. He also limited his atten-
tion to a subset of the stellar models based on this equation of
state which have p>0. Since the spherical models in this
subset all have p = 0 at the center of the star, he has implicit-
ly assumed that the central pressure in these (potentially
nonspherical) models is never greater than that achieved in
the corresponding spherical model. When stated in this way
the additional assumption, p>0, seems to me to be an un-
natural auxiliary assumption in the context of the particular
equation of state considered by him.

In this paper the necessity of spherical symmetry in iso-
lated static uniform-density stellar models is demonstrated.
These stellar models have a somewhat more physically ac-
ceptable equation of state than the one considered by Ma-
sood-ul-Alam. Furthermore, no unnatural auxiliary as-
sumption is necessary in this case. Thus Masood-ul-
Alam’s'! recognition of the importance of the positive mass
theorem in the study of static space-times is further support-
ed. This work also supersedes portions of Ref. 8 which erro-
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neously claimed to prove the necessity of spherical symme-
try in static uniform-density stellar models. (This error has
been noted previously in Ref. 9.) Section II of this paper
reviews the established properties of static stellar models
that are needed in this analysis. Section III presents the proof
that spherical symmetry is a necessary property of isolated
static uniform-density stellar models in general relativity
theory. The method of proof is to perform a particular con-
formal transformation on the spatial metric which sets the
mass to zero and leaves the scalar curvature non-negative.
The demonstration that the scalar curvature resulting from
this transformation is non-negative requires the use of the
divergence identities for static stellar models found in Ref. 8.
The positive mass theorem implies that this conformally
transformed metric is flat. The desired result follows from
the already established equivalence of spatial conformal flat-
ness and spherical symmetry in static fluid space-times.?

Il. STATIC STELLAR MODELS

In this section some of the basic properties of static per-
fect-fluid space-times are reviewed. Careful derivations of
these results can be found in the literature. The statements in
this section are valid for any static perfect-fluid space-time
while those in the next section are valid only for uniform-
density stellar models.

A static space-time must admit a hypersurface orthogo-
nal timelike Killing vector field, ¢ °. Let ¢ be a function whose
level surfaces are orthogonal to ¢, and let 1“ d,¢t = 1. The
space-time metric can then be represented in the form

ds* = — V?det? + g, dx° dx?, (N

where g, is the positive definite three-metric of the con-
stant-f surfacesand 0 = 4, ¥V = d,g,, . Einstein’s equation for
such a space-time with a perfect-fluid stress-energy tensor is
equivalent to the system of equations

DD,V =4rV(p + 3p), (2)

Ry =V 7 'D, D,V +47(p — p)gus; (3)

where D, and R, are the three-dimensional covariant deriv-
ative and the Ricci curvature tensor associated with g,,, pis
the total energy density (including rest-mass energy), and p
is the pressure of the fluid. To these equations must be added
an equation of state: a function p = p( p) that summarizes
the microscopic properties of the particular fluid. This func-
tion must be positive and monotonically increasing to be
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physically relevant. Associated with Eq. (3) is a Bianchi
identity, which is equivalent to Euler’s equation for these
static fluids,

D,p= -V~ '(p+p)D,V. (4)

The solutions of Egs. (2) and (3) that are of interest in
this paper are the physically isolated solutions. Thus we only
consider solutions in which the support of the pressure is
spatially compact, and in which the space-time metric is
asymptotically flat in an appropriate sense. We assume that
V and g, are given asymptotically by expressions of the
form,

V=1—m/r+v, (5
8 = (14+2m/r)6,, + by, (6)

where 8, is the standard flat metric on a constant-# surface,
the function ris the asymptotic spherical coordinate given by
r* = 6,,x°x”, and the x° are the Cartesian coordinates asso-
ciated with §,, on each constant- surface. The quantities v
and &, must vanish like 7~ as 7— o, and their first and
second derivatives must vanish with successively higher
powers of 7~ 1. The constant m is the mass of the star. These
asymptotic conditions on the solutions of Egs. (2) and (3)
can be deduced from rather mild asymptotic falloff assump-
tions. "’

To avoid the possibility of surface stresses and surface
energy densities and thereby violate the assumption that the
stress energy in these space-times is purely that of a perfect
fluid, some care must be taken to ensure the proper matching
conditions at the boundary between the exterior vacuum re-
gion and the interior fluid portion of the stellar model (and
in addition at any interior surface on which the equation of
state is not continuous). From Eq. (4) it follows that p (and
consequently p) must have level surfaces that coincide with
the level surfaces of V. It also follows from Eq. (4) that p
must be a continuous function (since ¥ must be continuous)
to avoid the existence of surface stresses on the boundary
between the interior and exterior of the star. The pressure
must vanish, therefore, on this boundary. Let "= ¥V, be the

- level surface of V' that corresponds to this boundary. We
must also impose an appropriate discontinuity in D, D, V at

" this surface if the equation of state is one for which p(0) #0
[see, e.g., Eq. (2) ]. The needed condition is most easily ex-
pressed in terms of the function W=D “VD, V. This function
must satisfy the following discontinuity condition® on the
surface V'=V:

[W~'D,VD*W ] = —8xV, p(0), @))]

where [ Q] represents the discontinuity (exterior minus inte-
rior) in the quantity Q on the surface V= V.

The conformal properties of a three-geometry are ex-
pressed in terms of a certain third-rank tensor field R, de-
fined by

Rabc =DcRab - DbRac + i(gacDbR —gachR)! (8)

where R = R_,g*°. This tensor vanishes if and only if the
geometry is conformally flat.'® Two different expressions for
R,,. will be useful in the analysis that follows. The first re-
lates R . to the geometrical properties of the constant-V
two-surfaces in static perfect-fluid space-times:
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Ryp R =8V W (Yoo ¥ + { W ~B™°D, WD, W),
(9

where ¢, is the trace-free part of the extrinsic curvature and
B.. is the intrinsic metric of the constant-V two-surfaces. If
the metric g,, were conformally flat then the left-hand side
of Eq. (9) would vanish. Since the metric g,, is positive
definite it would follow that

w =B“D,W=0, (10)

in this case. Avez> and Kiinzle” have shown that these con-
ditions, Eq. (10), are equivalent to spherical symmetry.
Therefore, Eq. (9) establishes the equivalence of spatial con-
formal flatness and spherical symmetry for static perfect-
fluid space-times.® Using Eqgs. (2) and (3) R, can also be
expressed completely in terms of ¥, the fluid variables, and
their derivatives. An expression of this type that will be use-
ful in the analysis that follows is given by

1V*W 'R, R
=D°D,W—V~'D°VD,W
—3W " 'D°WD,W + 87W(p +p)
+47VW " (p +3p)D°VD, W
—167°V*(p + 3p)*> — 87¥VD VD, p. (11)

One further property of the conformal transformation of
three-geometries will be useful. Consider the conformal met-
ric g, = ¥*g,,. The conformally transformed scalar curva-
ture R is related to R by the equation'®

R=y *(R—8y~'D°D,y), (12)

where R and D, are the scalar curvature and covariant deriv-
ative associated with g, .

lll. STATIC UNIFORM-DENSITY STARS MUST BE
SPHERICAL

The necessity of spherical symmetry in isolated static
uniform-density stellar models will be demonstrated by
showing that any such model must be spatially conformally
flat. To accomplish this an explicit conformal transforma-
tion is performed on the metric. The scalar curvature of the
conformally transformed metric is shown to be non-nega-
tive. The positive mass theorem is then used to demonstrate
that the transformed metric is in fact flat.

Consider the conformal transformation g,, = ¢'g,,,
where ¥ is the following function of V:

Wm=Pu+m, V.<F<l,
I+ V)21 43V, -2 "2, ocwcy,.
(13)

Note that ¥(¥) and its first derivative are continuous at the
surface ¥ = V. Also note that ¥ (¥), the second derivative
of $(¥), vanishes for ¥, <¥<1 and is positive for 0 < F<V,
since

PN =31+ V,)¥2(1 + 3V, -2 ~%250. (14)
The scalar curvature associated with the metric g,, can now
be computed using Eq. (12) with the result

L. Lindblom 437

Downloaded 27 Sep 2009 to 131.215.195.60. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



R=38y~5p"{Wo(V) — W} (15)
The function W,(¥) used in Eq. (15) is defined by
- wp(1—VH*(1 -V 73 V,<¥<1,
oM = §1rpV(3VS—V)+§1rp(l—9Vf), 0< VKV,
(16)

To establish Eq. (15) it is necessary to use Eqgs. (2) and (3)
and the fact that the integral of Eq. (4) for the pressure can
be written in the form
p=pV (V.= "
for uniform-density fluids in the domain 0 < V< V.
The next step is to demonstrate that the scalar curvature
R givenin Eq. (15) is non-negative. Since ¥ and " are non-
negative from Egs. (13) and (14) it remains only to deter-
mine the sign of W, (¥) — W. The function W, (V) is contin-
uous at the surface V' = V, while its first derivative satisfies
the following discontinuity condition:

[W~'D,VD*W,] = — 8xV, p.

(17

(18)

This is precisely the same, for uniform-density stellar mod-
els, as the discontinuity condition, Eq. (7), satisfied by the
first derivative of W. Consequently the function Wy(V)

— W and its first derivative are continuous everywhere in-
cluding the boundary surface V= V.

The sign of W,(V) — W will be determined using two
identities and the maximum principle for elliptic differential
operators. Using Egs. (11), (16), and (17) it is straightfor-
ward to show that in the interior of the star (i.e., the region
0< V<V,) the following identity must be satisfied®:

D{V-'D (W — Wy}
— iVsW—lRabcR abe

+IVTIWTID (W — W) DWW —W,). (19)

The right-hand side of Eq. (19) is non-negative. The left-
hand side is an elliptic differential operator acting on the
function W — W,. The maximum principle (see, e.g., Ref.
17) states that W — W, must achieve its maximum value at a
boundary point of the domain on which Eq. (19) is valid
(i.e., on the surface ¥ = V, in this case). Furthermore the
gradient D, (W — W,) must be nonvanishing and directed
out of the domain (the interior of the star in this case) at this
maximum point unless the function W — W, is in fact con-
stant.

A similar identity exists in the exterior of the star
(i.e., the region where ¥V, <¥<1):

V*R,, R +3X,X*
AWl — V?)3

11,18

D {v-'DY} = ) (20)

where X, and Y are defined by
X,=D,W+8VW(1—-V*~'D,V, 21)
Y=(W—W,)/(1—V?3 (22)

The right-hand side of Eq. (20) is also non-negative while
the left-hand side is an elliptic differential operator on the
function Y. The maximum principle implies that the maxi-
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mum of ¥ must occur either on the surface of the star where
V =V, or at infinity where ¥ = 1.

Consider first the case where the maximum Y occurs at
infinity. The asymptotic falloff conditions [i.e., Egs. (5) and
(6)] imply that W and W, go to zero like ~* while 1 — V2
vanishes like 7~', Therefore Y vanishes at infinity. If the
maximum of ¥ occurs at infinity then W — W, is necessarily
nonpositive in the exterior of the star from Eq. (22). By
continuity and the argument given above for the location of
the maximum of W — W, in the interior of the star, it follows
that W< W, everywhere in the space-time in this case. (This
case was inadvertently overlooked in Ref. 8.) Finally, it fol-
lows from Eq. (15) that the conformally transformed scalar
curvature is non-negative in this case: R >0.

Consider next the case where the maximum of ¥ (with
respect to the exterior of the star) occurs on the surface of
the star, V= V. In this case Y>>0 at this maximum since
Y = 0 at infinity. It follows that the maximum of the func-
tion Y (1 — ¥?)? must occur at the same location as the max-
imum of Y in this case, since Y is non-negative and the maxi-
mum of (1 — ¥2)3 occurs on the surface of the star V' = V.
Therefore the maximum of W — W, = Y(1 — ¥'?)? withre-
spect to both the interior and the exterior regions must occur
on the surface of the star in this case. Since D, (W — W,) is
continuous it must vanish at this maximum point. The gradi-
ent of Y at this maximum point is given therefore by
D,Y=6VY(1 — V?)~'D,_V.Since Vis larger in the exteri-
or of the star than the interior, this gradient points into the
exterior region. The maximum principle demands that this
gradient points out of the exterior region unless ¥ is con-
stant. Since Y = 0 at infinity it follows that ¥ must vanish
everywhere in this case, and consequently W = W, every-
where as well. Thus the conformally transformed scalar cur-
vature would vanish identically in this case: R = 0.

To summarize, the conformally transformed scalar cur-
vature R is necessarily non-negative in a static asymptotical-
ly flat uniform-density fluid stellar model.

To complete the proof of the necessity of spherical sym-
metry the asymptotic behavior of the conformally trans-
formed metric g,, must be determined. The asymptotic ex-
pansion of the conformal factor defined in Eq. (13) can be
determined by the asymptotic form of ¥ given in Eq. (6):
¥ =1—m/2r + ¢, where ¢ vanishes like 72 as r—» o. It
follows that the conformal metric is given in this limit by
8. = 8., + h,,, where i, vanishes like 2. Thus the mass
associated with the metric g,, vanishes. The positive mass
theorem'>~'* states that any three-geometry having non-neg-
ative scalar curvature and zero mass is in fact flat. Therefore
the metric g, is flat. The physical spatial metric g, is conse-
quently conformally flat, and the stellar model is therefore
spherical.
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