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A phenomenological macroscopic one-fluid description of a classical superfluid is presented which is completely equivalent to
Landau’s two-fluid model in the limit of small departures from equilibrium. The one-fluid model described here is a special case
of the “extended hydrodynamic™ theories in which the heat-flux vector and stress tensor become dynamical variables. The dynam-
ics of the heat-flux in our model replaces the dynamics of the superfluid component in the two-fluid model. Like Landau’s two-
fluid model, our model contains undetermined equations of state that must be fixed by experiment or by calculations based in
microphysics. The one-fluid model presented here generalizes the one-fluid model of Greco and Miiller by allowing an equation
of state that is compatible with the observed temperature dependence of the sound velocities in superfluid “He, and by including

the effects of viscosity.

The Landau [1] two-fluid model of superfluid “He
is based on the recognition that the observed dy-
namics of this material require a second dynamical
vector field in addition to the velocity and thermo-
dynamic variables needed to describe a normal clas-
sical fluid. Based on a suggestion of Tisza [2],
Landau treated superfluid “He as a particular non-
interacting mixture of “normal” and “superfluid”
components. The velocity of the superfluid compo-
nent became the needed second dynamical vector
field. His equations to describe this material are a
reasonably straightforward expression of conserva-
tion of mass, entropy and momentum, and the re-
quirement that the superfluid velocity evolves in a
curl-free manner.

A long recognized [3] deficiency of the two-fluid
model is that the two components cannot in prin-
ciple be separated. In this Letter we describe a one-
fluid model of superfluids based on the “extended
hydrodynamic” (EH) theory of dissipative fluids. In
EH the heat-flux vector and the stress tensor are dy-
namical fields in addition to the velocity and ther-
modynamic variables that describe the dynamics of
a normal classical fluid. Therefore, there exists am-
ple dynamical structure in EH to accommodate the
needs of a theory of superfluids. The EH theory which
is analyzed here is given by the newtonian limit of

Israel and Stewart’s [4,5] relativistic equations, and
is a generalization of Miiller’s [6] earlier theory. The
theory contains a number of undetermined ther-
modynamic functions which govern the evolution of
the additional dynamical fields. In our one-fluid
model of superfluids, we make phenomenological ar-
guments based on the general observed properties of
superfluid “He to fix several of these additional ther-
modynamic functions. The resulting theory is com-
pletely equivalent to the Landau [1] theory in the
limit of small departures from a non-rotating equi-
librium state, the only regime in which the two-fluid
model is an adequate description of superfluid “He.
We also comment on the differences between our one-
fluid model and a related one-fluid model proposed
by Greco and Miiller [7].

Any single-component classical fluid can be de-
scribed in terms of a number of scalar, vector and
tensor fields: p, the mass density; ¢, the internal en-
ergy (per unit mass); 7, the temperature; s, the en-
tropy (per unit mass); p, the thermodynamic
pressure; 7, the non-thermodynamic (i.e., viscous)
pressure; v', the velocity; ¢’, the heat-flux vector; and
79, the trace-free (viscous) stress tensor. In terms of
the variables described above the conservation laws
for mass, energy and momentum are given by [8]
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0=0,p+V,(pv"), (1) 0=¢'+kT{T~'V'T+p,D,g'—aoV't—,V;r"
0=20,(pe+1pv'v;) + V;[ (4pv'v, +pe+p+ 1)V +7,q, VU — (1=70)tTV (ao/T)

+U+¢'], (2) —(1=y) TtV (e, /T) +3Tq' [ DB/ T)
0=0,(pv') +V,[ (p+1)87+pv'v/+ 7] . (3) +(B/THVV]}, (6)

In these equations 4, is the partial derivative with
respect to time ¢, V; is the partial derivative with re-
spect to the cartesian coordinate x’, with i=1, 2, or
3 (or the covariant derivative in curvilinear coor-
dinates), &7 is the unit matrix in cartesian coordi-
nates (or the components of the inverse metric tensor
in curvilinear coordinates), and summation over re-
peated indices is implied. These equations are sup-
plemented by the first law of thermodynamics,

de=Tds+pdp/p?, 4)

which defines the temperature 7 and thermody-
namic pressure p once an equation of state, say
s=s(p, €), is given for a particular material.

To complete the system of equations, the evolu-
tion of the variables 7, ¢’, and ¥ must be specified.
The simplest model sets these field equal to zero:
1=¢'=1Y=0. Egs. (1)-(4) are then the laws for a
perfect fluid in terms of the usual dynamical vari-
ables ¢, p, and v'. The standard Navier-Stokes-Four-
ier theory which includes the effects of dissipation is
obtained by defining the quantities 7, ¢’, and ¥ in
terms of spatial gradients of the dynamical variables
of the perfect fluid theory: 1= —¢V2', ¢'= —kV'T,
and 19= —n(V'v/ + Vo' — 1§9V,0*). The quantities ¢,
n and x are the viscosity coefficients and thermal
conductivity which are assumed to be positive func-
tions of the thermodynamic variables. This theory
has the same set of dynamical variables (¢, p and v*)
as perfect fluid dynamics, since 7, ¢‘ and 17 are de-
termined by the dynamical variables at each instant
of time.

In EH the set of dynamical variables is extended
to include the fields 7, ¢, and t7. The evolution
equations for these quantities are given by

0=1+¢{Vv'+ BoD,1— o Vig' — 0 Tq'Vi( o/ T)
+4TT[D(Bo/ T) + (Bo/ TIV,V'1} (5)

0=174+2p{Vi'—a, Vig/+ B, D, 77—y, Tq'V/ (¢, / T)
+ VU + AT [ DB/ T) + (Bo/ THVVF] )
7

In these equations the differential opeator D, is de-
fined to be the co-moving time derivative given by
D,=0d,+v'V;; the functions «,, f, and y, are func-
tions of the thermodynamic variables; square brack-
ets, [ ], surrounding a pair of coordinate indices
indicate anti-symmetrization; and the bracket op-
eration, ¢ ), is defined by (AY)=4(4"+A4"
—15%4*,) for any tensor A”. Egs. (1)-(7) form a
complete system of equations for the evolution of the
fourteen dynamical variables ¢, p, 1, v, ¢, and 77 of
EH once they are supplemented with “equations of
state” for s, ¢, 1, K, &4, B4 and 7. The EH equations
were first derived with specific values of the a’s, f’s
and y’s appropriate for a dilute gas of point particles
by Grad [9]. Miiller [6] derived these equations for
a somewhat more general set of a’s and f’s using an
argument based on a second-order implementation
of the second law of thermodynamics. The equations
presented here (allowing non-uniform a’s, f's and
y’s) are the newtonian limit of equations first given
by Israel and Stewart [4,5] for relativistic fluids. The
EH theory has received considerable attention in the
context of relativistic fluids [4,5,10,11] since it ap-
pears to be the only viable (causal, stable) theory of
a relativistic fluid which includes the effects of vis-
cosity and thermal conductivity [11,12]. Note that
egs. (1)—(7) reduce to the Navier—Stokes-Fourier
theory when a,=8,=0.

The form of the evolution equations for 7, ¢’, and
14 was explicitly chosen so that the second law of
thermodynamics would take the simple form

3,(p5)+ Vi{psv'+ T ' [ (1 +ao1)d7+a;17] g5}
=T~ (1*/¢+q:q'/xkT+1;7"/2n) , (8)

where the generalized specific entropy function, §, is
defined by

281




Volume 131, number 4,5

ps=ps—3T ~'(Bot’+p1d'q: + B27"1y) - (9)

In equilibrium this function reduces to the ther-
modynamic specific entropy s, but for systems out of
equilibrium 5 reflects the fact that the system is not
in a state of maximal entropy. Eq. (8) implies that
the total entropy, defined as the volume integral of
ps5, is strictly increasing for isolated systems.

We now wish to choose the functional form of the
a’s, fs, K, etc., in such a way that the resulting sys-
tem is an appropriate description of a superfluid. We
begin by noting that the standard Landau two-fluid
theory is an adequate description of superfluid “He
only when the velocity of the fluid is a small fraction
of the characteristic velocities (e.g., the first and sec-
ond sound velocities) of the system [3]. Since the
simple macroscopic description of superfluid ‘He
appears to be adequate only near equilibrium, we
confine our attention hereafter to the dynamics of
small departures from an equilibrium state. The
equilibrium states of egs. (1)-(7) must have
7=¢'=1Y=0 to avoid generating entropy in eq. (8)
and must have v'=0 (up to a galilean transforma-
tion) unless the fluid is rotating. These conditions
and egs. (1)-(7) imply in turn that the thermody-
namic variables are time independent and spatially
uniform. The equations that describe the evolution
of small departures away from such an equilibrium
state are found by linearizing egs. (1)-(7). The dif-
ference between the nearly equilibrium value of a
quantity Q and the value that it takes in the fiducial
equilibrium state is denoted by 8Q; quantities Q
without the prefix 8 hereafter refer to that quantity’s
value in the background equilibrium state. The lin-
earized evolution equations are:

0=29,8p+pV. 8", (10)
0=0,(pde+€dp)+ (pe+p)V.8'+V;8q" , (11)
0=pd,8v'+V,[ (8p+ 81)67+ 81"] , (12)
0=8t+¢(V.8v'+ fod,8t— 0z V,8q") , (13)
0=8¢'+ kT (T~ 'V8T+B,8,8q’

—aVidt—a, V,817) (14)
0=81/+ 20 VI(81/ — at, 8¢’) + B0, 877> . (15)

Egs. (10)-(15) imply the first-order form of the en-
tropy generation law:
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0=0,(p8s+s8p) +V, (psdv'+T ~'8q") . (16)

Egs. (10)-(16) describe the evolution of small de-
partures from an arbitrary non-rotating equilibrium
state in the general EH theory. The functional form
of the a’s and f's which appear in these equations
must now be chosen in such a way that the resulting
system describes a superfield. We first note that al-
though the phenomenology of superfluid “He de-
mands the existence of an additional dynamical
vector field, it does not suggest the existence of ad-
ditional scalar or tensor degrees of freedom. We thus
set fo=P>=0 to remove the dynamics from the fields
St and 877 in egs. (13) and (15). Second, since su-
perfluid “He appears to be extremely efficient at con-
ducting heat, we set 1/k7=0 in eq. (14). Finally
third, we hypothesize that the vector field which
transports entropy, 8v'+84/psT, in eq. (16) (ie.,
on a microscopic level the current of atoms not con-
densed into the zero entropy ground state) should be
identified with the vector field whose shear deter-
mines the viscous stress, 8 — a,8¢°, in eq. (15) (ie.,
the current of atoms capable of transporting mo-
mentum through scattering). Thus, we choose
o, =~ 1/psT. A similar consideration might lead one
to choose the same value for a to limit the coupling
of the bulk viscosity in eq. (13); however, following
Khalatnikov [13] we choose to allow a more general
bulk viscosity coupling. With these choices, egs.
(13)-(15) reduce to the following:

0=81+¢(V,8v'—,Vidq') , (17)

0=p,0,8¢'+T ~'Vi8T—a, Vidr+ (1/psT)V,877,
(18)

0=817+2n( V' (8v/+ 8¢’/psT) > . (19)

Egs. (10)-(12) and (17)-(19) represent the lin-
earized version of an EH description of a superfluid.
In these equations we have not fixed the thermo-
dynamic functions ¢y and B, the viscosity coeffi-
cients ¢ and 7, nor the equation of state s=s(p, €) of
the fluid itself.

The one-fluid model of a superfield described
above may be compared to the standard Landau two-
fluid model by introducing new variables p,, pn, S,
¢, Vi, and vi which are related to the EH variables
s B, G, ao, V', and ¢’ by
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p=ps+pn> (20)
PV =PV +Paln s (21)
q'=pssT(vy—05) (22)
B =palppss’T?. (23)
ao=(pg1 —<2) /60T , (24)
§=6G- (25)

Using these new variables eqgs. (10), (12), (16)-
(19) can be written in the following form:

0=at(8ps+8Pn)+V:(Ps8U§ +Pn51);1) > (26)
0=29,(p8vi+p,dv5) +V;( (5p+381)87+877], (27)

0=0,(pds+s8p) +V, (psdry) , (28)
0=9,8v.+ Vi(8u+¢61/c) (29)
0=81+¢,V, [p,(8vi — 8vi) ] +¢, Vidvy, (30)
Q=317+ 2 VoV, ) . (31)

The thermodynamic variable 4 in eq. (29) is the
chemical potential defined by p=¢+ p/p—sT. Egs.
(26)-(31) are precisely the two-fluid equations of
Landau [1], with viscous terms added by Khalat-
nikov [13], when written in a form that describes
linear perturbations about a non-rotating equilib-
rium state. At this linear order, our equations pre-
cisely agree with Khalatnikov’s shear viscosity
coupling. The two bulk-viscosity coefficients in our
model, ¢, and ¢, also correspond exactly to Khal-
atnikov’s coefficients of the same names. Khalatni-
kov’s theory also admits a third and fourth type of
“bulk viscosity” which in our equations take partic-
ular values for the associated coefficients given by
ci=c2/¢,, and ¢,=¢; (this last condition is also a
constraint in Khalatnikov’s equations ). The one-fluid
model proposed here is therefore precisely equiva-
lent to Landau’s two-fluid model in the limit of small
perturbations about an equilibrium state, with vis-
cosity coupling that is only slightly less general than
that proposed by Khalatnikov. The one-fluid model
will describe, therefore, all of the properties of su-
perfluid “He that can be described within the two-
fluid model including: normal sound waves, second
sound, and even transverse sound [14] waves.
While we are unaware of appropriate experimen-
tal data at this time, the one- and two-fluids models
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are in principle distinguishable experimentally. The
one-fluid model with the transformed variables given
in egs. (20)-(25) differs from the two-fluid model
at non-linear order. Also, the effects of finite thermal
conductivity could naturally be introduced into the
one-fluid model either by keeping xT finite in eq.
(14) or by changing the relationship between the one-
and two-fluid variables in eq. (22) to
g'=psT (vi, —vi) —k'V'T. Neither of these possibil-
ities is identical to Khalatnikov’s [13] model of fi-
nite thermal conductivity.

Greco and Miiller [6] have also proposed a one-
fluid model of superfluidity based on EH. Their
model differs from ours in two ways. First, it is based
on a special case of the EH equations proposed by
Liu and Miiller [15] instead of the general theory,
egs. (1)-(17), used here. As a result, their model
makes specific predictions about the equations of
state that relate the various functions that appear in
the theory (e.g. p, Bi, T, etc.) which do not agree with
the observed temperature dependence of the first and
second sound velocities. Our model leaves these
equations of state undetermined a priori so that it
can describe the body of experimental data precisely
as well as the two-fluid model. The second difference
is that we have included the effects of viscosity in
our equations while they have not.

The equivalence of the two-fluid model of super-
fluidity and a certain single-component EH theory is
interesting for three reasons: (a) Since superfluids
cannot be physically separated into constituent nor-
mal and superfluid components, it is more attractive
to have a mathematical description of this material
that is fundamentally a single-component fluid. (b)
The description of superfluid “He within EH gives
an interesting, extreme, example of the dynamical
behavior that is possible within the EH framework.
(c) The relativistic EH theories are well behaved
causal theories; therefore the relativistic analogy of
the one-fluid superfluid model discussed here may
well provide the appropriate model for relativistic
superfluids such as the interiors of neutron stars.

We thank Darryl Holm and Werner Israel for help-
ful conversations. This research was supported by
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