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Hyperbolicity and stability are analyzed in the nonlinear regimes of two theories of relativistic heat-conducting fluids. Both
theories are found to be unstable and non-hyperbolic for sufficiently large deviations from equilibrium. One of these theories (an
extended hydrodynamic theory) is well behaved for small (but finite) deviations from equilibrium.

In a number of different physical situations the
model of a relativistic heat-conducting fluid is the
simplest description of the matter that includes all of
the basic phenomena. The collapse of a degenerate
stellar core (a supernova) is one such situation in-
volving relativistic matter and very large energy cur-
rents (i.e., heat-fluxes) due to the emission of
neutrinos. The collision of two heavy ions moving at
relativistic velocities and the consequent emission of
large numbers of light particles may be another such
situation [1]. The purpose of this Letter is to ex-
plore some of the fundamental mathematical prop-
erties of two theories of relativistic heat-conducting
fluids in the nonlinear regime that would be needed
to describe such phenomena.

The “standard” theory of a relativistic heat-con-
ducting fluid is the inviscid limit of the relativistic
dissipative fluid theory proposed by Eckart [2] (and
a similar theory by Landau and Lifshitz [3]). This
is the simplest relativistic generalization of a simple
single component fluid with thermal conductivity.
This theory has been found to be unstable, acausal
and ill posed in the linear regime near equilibrium
[4,5]. A more complicated extended hydrodynamic
theory (in which the heat flux vector is a dynamical
field) has been proposed by Israel and Stewart [6-
8] which is free of these pathologies in the linear re-
gime [9,10]. In this Letter we extend the analysis of
the stability and hyperbolicity of these theories to the
nonlinear regime. In order to simplify this analysis
we restrict our attention to the case of a fluid having

planar symmetry; and we choose the thermody-
namic functions to be those appropriate for an ex-
tremely high temperature relativistic gas. The
assumption of planar symmetry should not be in-
appropriate to describe, as a first approximation, the
collision of two highly Lorentz contracted heavy ions
as viewed from the center of mass frame; nor should
the assumption be inappropriate to describe locally
the regions of a supernova that are far enough away
from the center.

The result of our analysis is that both theories have
pathologies when states of the fluid that are suffi-
ciently far away from equilibrium are considered. The
Eckart theory is unstable (almost any deviation from
equilibrium grows without bound) and fails to be
hyperbolic for any state of the fluid. The Israel-
Stewart theory also exhibits instability and non-hy-
perbolicity but only in states of the fluid that are far
away from equilibrium. The spatially homogeneous
mode in our plane symmetric system is found to be
unstable only when |g|/pc>0.50308 where |g| is the
magnitude of the heat-flux vector, p is the energy
density of the fluid (including rest mass) and cis the
speed of light; the system becomes non-hyperbolic
when |g| /pc>0.08898. The Israel-Stewart theory is
well behaved therefore, over the range of fluid states
likely to be needed to describe any realistic physical
situation.

The evolution equations for the plane symmetric
motions of a relativistic heat-conducting fluid (the
inviscid limits of the Israel-Stewart theory or the
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Eckart theory) take a particularly simple form if the
components of the four-velocity are written in the
form u®=(cosh y, sinh y, 0, 0). (The spacetime
metric is taken to be the standard Minkowski metric
of special relativity, diag(—1, 1, 1, 1), and cartesian
coordinates have been chosen with the x-axis ori-
ented along the direction of spatial variation of the
fluid variables.) The heat flow vector, which is de-
fined to be orthogonal to u? then has the form
g*=q(sinh y, cosh y, 0, 0). With these definitions,
the fluid equations become

cosh ¥ d,n+sinh yw d,n+nsinh y 0,y

+ncoshyd,w=0, (1)
cosh y d,p+sinh w d,.p+ [ (p+p) sinh

+2gcosh y]d,w+ [(p+p)cosh ¢

+2gsinh y]d, . y+sinh ¥ d,q

+cosh y d,4=0, (2)
sinh y d,p+cosh ¥ d,p+cosh v d,q

+sinh ¥ 4,9+ [(p+p) cosh w+2g sinh w]0, ¥

+ [ (p+p) sinh w+2g cosh y]d,¥=0, (3)
and

sinhy  fg ) cosh y
< T —2Tcoshy/ 4, T+ T

- %sinh w)&x T+ }q(cosh y 3,f+sinh y d,8)

+ B(cosh v d,g+sinh ¥ 3,q) + (cosh
+1Bgsinh y)d,w+ (sinh w+1Bgcosh w)d,
+q/xkT=0, (4)

where p is the energy density of the fluid, #» the num-
ber density, p the pressure, T the temperature, k the
thermal conductivity, and § the second-order ther-
modynamic coefficient (denoted B, in refs. [4-10]).
The equations for the Eckart theory are obtained by
setting #=0 in these equations.

In order to obtain a closed set of equations, it is
necessary to supplement eqgs. (1)-(4) by an equa-
tion of state for the fluid, as well as thermodynamic
expressions for # and x. We chose in this Letter to
examine the high temperature limit of an ideal gas,
for which
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p=p/3=nkT (5)

is the equation of state; and we take the thermal con-
ductivity to be constant, which is the value given by
kinetic theory for the ultrarelativistic limit of a di-
lute gas with a constant (maxwellian) scattering
cross-section [ 11]. Finally, we take the second-order
coefficient, B, to be given by f=54/4p. The param-
eter A takes the value A=1 for an ultrarelativistic gas
in the Israel-Stewart theory (based on a kinetic the-
ory analysis [7]), while the value A=0 corresponds
to the Eckart theory. Using these values for g and
and the equation of state to eliminate 7, and p in fa-
vor of p and n, egs. (1)-(4) become a closed set of
evolution equations for the four variables (p, n, ¥, q).

We first consider the hyperbolicity of these theo-
ries. If there exist four distinct real characteristic ve-
locities of this system of equations, then the system
is hyperbolic [12]. The fluid equations (1)-(4) may
be written symbolically in the form

A*, %9, Y"+B* (6)

where the index v runs over the set of fluid variables,
Y?’=(p, n, ¥, q), and u runs over the set of four
equations, (1)-(4). The components of 4#,% and B#
(which may depend on the Y but not on d,Y”) can
be read off from the fluid egs. (1)-(4). The matri-
ces A, are nonzero only when the spacetime index
a takes on the values ¢ and x, since we have restricted
attention to the plane symmetric case. The charac-
teristic velocities, v, are defined as the roots of the
equation

det(v4*,'—A4*,7)=0. (7

These velocities are most easily determined in the
rest frame of the fluid, i.e., the frame in which y=0.
Eq. (7) then has the form:

[30A—6—-454(q/p)*1v*~6(54+2) (q/p)v*

—[2(54+2)—45A(q/p)*1v*+12(g/p)v+2=0,
(8)

where the dimensionless (in our units, where c=1)
ratio |g|/p is a measure of the deviation from equi-
librium. When |g|/p is taken to be zero in eq. (8),
the resulting velocities are precisely those found for
the longitudinal modes in these theories [5,8], spec-
ialized to the case of a high-temperature ideal gas.
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The fluid equations are hyperbolic only when there
exist four distinct real roots of eq. (8). For the case
of an Eckart fluid, 1=0, there are four real roots only
when |g| /p> 1.523; however, in the region where the
theory is hyperbolic, there is always at least one ve-
locity greater than one (the speed of light in our
units ). Consequently this theory does not have causal
hyperbolic evolution equations.

In theories which have 0.2 <A<0.4, there are four
real roots to eq. (8) for all values of |g|/p; an Israel-
Stewart theory with A in this range is thus always hy-
perbolic, no matter how large the deviation from
equilibrium is. These theories with 0.2<A<0.4 are
always acausal (v> 1), however, for all nonzero val-
ues of |g|/p. The upper limit of A for the set of hy-
perbolic nonlinear theories corresponds, curiously,
to the lower limit of A consistent with the stability of
the linear theory: linear stability requires A>0.4 for
a fluid with the thermodynamic functions consid-
ered here.

If A>0.4, then there are four real characteristic ve-
locities less than the speed of light for small values
of |g| /p. For the case of the Israel-Stewart fluid with
the kinetic theory value of 4, A=1, the roots of the
characteristic equation are plotted in fig. 1. This
graph reveals that this theory is hyperbolic for small
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Fig. 1. The characteristic velocities for the nonlinear Israel-Stew-
art fluid theory with A=1. The solid curves represent the char-
acteristic velocities in the same spatial direction as the heat flux
(qv>0) while the dotted curve represents the characteristic ve-
locities in the opposite direction (guv<0). For |g|/p>0.08898,
four real velocities do not exist, and hence the theory is not hy-
perbolic. For |g| /p>0.4 one of the real characteristic velocities
is greater than the speed of light.
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deviations from equilibrium, bounded approxi-
mately by |g|/p<0.08898. For values of |g|/p larger
than 0.08898, there are either zero or two real char-
acteristic velocities. Since the energy density p in-
cludes the rest energy of the fluid, bounding the ratio
lq|/p by 0.08898 is not a severe restriction that is
likely to exclude any real physical phenomena.

We turn secondly to the study of the nonlinear sta-
bility of these theories. We consider a system to be
nonlinearly unstable if the evolution of some state of
the system diverges without bound (into the future)
in comparison with every equilibrium state of the
system, It is already known that the general Israel-
Stewart theory is stable (i.e., not unstable) for linear
perturbations about equilibrium, if and only if the
second-order coefficients are chosen to yield hyper-
bolic, causal linear-perturbation equations [9,10].
In contrast, the “first-order” theories (such as Eck-
art [2] and Landau-Lifshitz [3]) are known to be
generically unstable and fail to have hyperbolic evo-
lution equations at the level of linear perturbation
theory [4,5]. It is natural to ask whether this rela-
tionship between stability and hyperbolicity persists
in the nonlinear theories as well.

In order to obtain a simple (though nonlinear)
problem which can be integrated analytically, we now
restrict our attention to spatially homogeneous fluid
states. The fluid equations are then given by eqgs. (1)-
(4) with all x-derivative terms set equal to zero. Egs.
(1)-(4) can then be rewritten as follows:

dnN, d
a _dt(ncoshy/)_O, 9)
dE, _ d 2 inh? ; -
& - dr (p cosh?y+p sinh’y+ ¢ sinh 2y) =0,
(10)
% _d ., ~ _
TRl [4(p+p) sinh 2y+gq cosh 2y¢]1=0,
(11)
d . dq
a (T sinh y/)+,BTcosha//dt
d(g q
12, 2 (2 q_
+iT th<Tcoshv/>+K_0. (12)

Egs. (9)-(11) can be immediately integrated. The
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resulting integration constants are, respectively, the
particle number density in the rest frame of the fluid
(denoted N,), the total energy density of the fluid
(E,), and the total momentum density of the fluid
(P,). In order to simplify the integration of eq. (12),
we consider only fluid motions for which the total
momentum density, P,, vanishes. We use the same
equation of state (the relativistic high temperature
ideal gas) and the same expressions for -the ther-
modynamic functions § and x used in the analysis
above. With these expressions and the integrals of
egs. (9)-(11) all of the fluid variables can be ex-
pressed in terms of the rapidity parameter ¥ and the
integration constants Ny and Eg:

_ 3E,cosh 2y

p=3p= 2+cosh 2y’ (13)
= COJZ—EW (14)

When these values are substituted into eq. (12), a
simple differential equation involving only the single
variable w=cosh 2y is obtained:

K
kN, (1 +

52 1 ) dw

2 w(w—1) —d_t=1'

Cw+l)w
(w2—1)(2+w)

- (18)
This equation can be integrated immediately (by ex-
panding in partial fractions) to obtain the time as a
function of the “velocity” variable w. The resulting
solution can be interpreted physically more directly
if we re-express the answer in terms of the three-
velocity, v=tanh y; we find

1402 3-v?
t_‘L'|:1_v2 +log v+210g(1_v2)

54 1422
+Elog(—2u2 )]+t0a (19)
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where the timescale 7 is defined by t=x/4kN,.

Eq. (19) together with egs. (13)-(17), give a
complete analytic integration of the nonlinear evo-
lution of a spatially homogeneous Eckart or Israel-
Stewart fluid. These solutions are graphed for the
values 1=0 (Eckart theory) and A=1 (Israel-Stew-
art theory with kinetic theory value for g) in fig. 2.
For small initial values of v the behavior of the curves
is, as expected, well described by the results obtained
from the linearized theory: the Eckart fluid is ex-
ponentially unstable, while in the Israel-Stewart the-
ory the velocity exponentially decays towards the
zero-velocity equilibrium state (zero velocity is
equivalent to equilibrium here since we chose the to-
tal momentum, P,, to be zero). What is more inter-
esting is the behavior of the evolution curves for
initially large values of the velocity. When v is large,
the non-logarithmic term in eq. (19) dominates, and
the large v evolution is asymptotically the same for
the Eckart and the Israel-Stewart fluids (in fact for
any value of the parameter A). Examination of fig.
2 shows that there is a critical velocity above which
the Isracl-Stewart fluid evolves away from equilib-
rium, rather than towards it. (As ¢t—oo the graph
shows that v—1; and egs. (13)-(17) imply that
T—o0, n—-0, p=3p-3E,, and g— —2E,.) This crit-
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Fig. 2. The evolution of the three-velocity of a spatially homoge-
neous thermally conducting relativistic fluid, illustrated for the
Eckart theory and the Isracl-Stewart theory (with the kinetic
theory value for 8). The evolution for a particular initial value
of vis found by finding that value on the graph, and then follow-
ing the curve to the future. Any nonequilibrium initial state is
unstable in the Eckart theory; the Israel-Stewart fluid is stable
for initial values v<0.51188.
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ical velocity is approximately given by v.=0.51188,
which is less than the adiabatic sound speed, v,=
3-1/2, This critical velocity corresponds to a certain
deviation of the fluid from equilibrium for which the
ratio |gq|/p (which may be determined from egs.
(13) and (17)) has the approximate value (|ql/
p).=0.50308. This is well outside the domain in
which the Israel-Stewart theory is hyperbolic (|g|/
p<0.08898).

In summary, we have examined the properties of
hyperbolicity and stability in extremely simplified
but fully nonlinear versions of Eckart’s theory and
the Israel-Stewart theory of relativistic dissipative
fluids. We have shown that Eckart’s theory continues
to display the generic instability and acausal, non-
hyperbolic behavior that first appeared in the anal-
ysis of the linear equations. The Israel-Stewart the-
ory (with g given by its kinetic theory value) fails
to be hyperbolic for states of the fluid that are not
sufficiently close to equilibrium |g|/p>0.08898. In
addition the spatially homogeneous solutions in this
theory are thermodynamically unstable for all initial
values of |g|/p>0.50308. Further investigation of
the stability of the entire class of solutions will have
to be performed before it will be possible to deter-
mine whether or not there is as close a relationship
between hyperbolicity and stability in the nonlinear
theory as there was in the linear regime.

Finally, we should consider briefly how seriously
to take these nonlinear pathologies in the Israel-
Stewart theory. Since the energy density of the fluid,
p, includes the rest mass energy of the particles in the
fluid, the state of the fluid for which |g|/p=0.08898
(the point at which the fluid equations cease to be
hyperbolic) represents a spectacularly large heat flux.
It is unlikely that there are any potential physical or
astrophysical applications in which the deviations
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from equilibrium become this large. It is also pos-
sible to extend the range in which the theory is well
behaved by choosing different thermodynamic func-
tions than those considered here. For example by
adopting the value A=10 the domain in which the
equations are hyperbolic is extended to about |g|/
p=1/3.
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