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ABSTRACT

We investigate the theory of the dipole oscillations of fully relativistic neutron stars. The equations govern-
ing these modes are reduced to a third-order system; and the variational principle for the frequencies of these
modes is reduced to a form involving only two independent functions. The equations that determine the
damping of these modes, which is due to viscous dissipation, are presented. The frequencies and viscous
damping times for a range of realistic neutron star models based on a number of equations of state and a
range of masses are determined by solving these dipole oscillation equations numerically.

Subject headings: relativity — stars: neutron — stars: pulsation

1. INTRODUCTION

The dipole oscillations of nonrotating general relativistic
stellar models are the only nonradial modes that do not couple
to gravitational radiation. Probably for this reason, these
modes have received little attention in the literature. The differ-
ential equations describing the dipole modes were derived by
Campolattaro and Thorne (1970), and criteria for their stabil-
ity were found by Detweiler (1975) using a variational principle
for their frequencies. These equations have never been solved
(to our knowledge) except in the “relativistic Cowling
approximation” by McDermott, Van Horn, and Scholl (1983).
One of the motivations for the present work is to solve the
complete equations for the dipole p-modes of realistic neutron-
star models numerically.

The dissipative effects of gravitational radiation and vis-
cosity play an interesting and important role in the nonradial f-
and p-modes of neutron stars. While these effects only damp
out the oscillations in nonrotating stars, they also drive the
instabilities that limit the angular velocities of rotating neutron
stars (see, e.g., Chandrasekhar 1970; Lindblom and Detweiler
1977; Friedman 1983; Lindblom 1986, 1987, 1988). The
angular velocity dependence of the frequencies of the dipole
modes has never been computed because these modes do not
exist at all in the only well-studied rotating stellar models: the
Maclaurin spheroids. Therefore, it is not clear at this time
whether or not a secular instability can exist in the dipole
modes of realistic rotating stars. It is interesting to note,
however, that the viscosity-driven secular instability in the
1 = —m modes occurs at lower angular velocities for lower
values of [ (for I > 2 where it has been studied). It is possible,
therefore, that a dipole mode viscosity-driven secular insta-
bility could exist in some rotating stellar models, and it is
conceivable that the instability could be the dominant one (i.e.,
setting in at the lowest angular velocity) in some stars as well.
It will be necessary to await the results of the computations of
the angular velocity dependence of the frequencies and viscous
damping times for these modes under way by Ipser and Lind-
blom before we will know for sure whether or not dipole mode
secular instabilities exist. In this paper we lay the foundation
for that work by determining the effects of viscosity on the
dipole p-modes of realistic, fully relativistic nonrotating
neutron star models.

Section II of this paper describes the mathematical formal-
ism needed to describe the dipole oscillations of nonrotating
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general relativistic stellar models. We reduce the fourth-order
system of equations for the dipole oscillations given by Cam-
polattaro and Thorne (1970) to a third-order system. We also
show how the variational principle for the frequencies of these
modes given by Detweiler (1975) can be written in a form that
depends on only two of the perturbation functions. Finally, we
derive the equations for the viscous damping times of these
dipole oscillations. Section IIT describes the numerical algo-
rithm that we use to solve the dipole oscillation equations, and
the results of our computations for a number of neutron star
models based on a variety of nuclear matter equations of state
and a range of neutron star masses are presented. We also
show (as a check of the accuracy of our computations) that the
frequencies of a sequence of fully relativistic polytropic stellar
models does correctly approach the corresponding dipole fre-
quency of the analogous Newtonian stellar model.

II. THEORY OF DIPOLE OSCILLATIONS

This section presents the mathematical formalism needed to
analyze the dipole oscillations of fully general relativistic stellar
models. We treat the oscillations here as infinitesimal linear
perturbations of nonrotating (spherical) stars. The background
spherical stellar models are briefly discussed; then a discussion
of the adiabatic (i.e., nondissipative dipole pulsation equations
is presented which is simpler than previously published
accounts; finally, we present the equations needed to analyze
the damping of these modes by viscosity. (Gravitational radi-
ation damping does not occur in the dipole oscillations of
nonrotating stars.)

a) Background Stellar Models

The gravitational field of a static spherical star in general
relativity theory is given by the metric tensor

ds? = —e"dt* + e*dr? + r*(d6* + sin® 6d¢?) , 1)
where v and A are functions of r only. These functions are
determined, along with the variables describing the physical

state of the fluid in the star, p and p (the total energy density
and pressure, respectively), from Einstein’s equation:

1 — A
N = 4 8nre’p , ()]
v = —A +8nrep + p), 3)
P=-3@+pVv, “)
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where the prime denotes differentiation with respect to r, and
we have set G = ¢ = 1. Given an equation of state p = p(p), the
numerical integration of these equations (or other well-known
equivalent forms) is a long-studied, and well-understood
subject (see, e.g., Oppenheimer and Volkoff 1939; Arnett and
Bowers 1977). We comment on only one nuance of the
analysis. The surface of the star is located by determining the
radius R at which the pressure falls to zero: p(R) = 0. In
general, however, the pressure does not go to zero linearly in r,
making the zero difficult to locate. This problem has been
solved by inserting many numerical steps into the integration
near the surface of the star. In the analysis of the oscillations of
stars, however, we find it to be more convenient to work on a
fixed uniformly spaced radial grid. It is still possible, however,
to locate the surfaces of our models accurately by considering
the thermodynamic enthalpy density,

P dn
e(p) = J; )t (%)

of the star. The surface of the star is also a zero of the enthalpy
density: e[p(R)] = 0. Since equation (4) is equivalent to
v' = —2¢, and since v’ does not vanish on the surface of a star,
it follows that e goes linearly to zero. It is straight forward to
determine the location of such a zero accurately.

b) Adiabatic Dipole Oscillations

The state of a stellar model perturbed away from its equi-
librium configuration may be described in terms of the
Lagrangian displacement vector £° and the perturbed metric
tensor &g,,. For the perturbations that represent the dipole
oscillations of a star, it is convenient to make gauge choices
(see Campolattaro and Thorne 1970) so that £° is represented
as

éa = [el/2<g>ylmvar + VVa Ylm]eiwt , (6)

where V and W are functions of r only, Y', is one of the
standard [ = 1 (dipole) spherical harmonics,  is the constant
representing the frequency of the mode, and A is the metric
function from the background stellar model (eqs. [1]-[4]).
Similarly, the perturbed metric, dg,,, can be represented in a
suitably chosen gauge as

09 dx°dx® = (Hye'dt* + 2iwH, dtdr + H, e* dr¥)Y!, e
™)
where Hy, H,, and H, are functions of r only. Einstein’s equa-
tion, linearized about a fixed static spherical background,
reduces to a real system of ordinary differential equations for
the five functions V, W, H,, H,, and H, as first shown by

Campolattaro and Thorne (1970). Their equations are equiva-
lent to the following system:

16nr’w?(p + p)e**V = 8n(p + pyv'e**W

+ (v — 2ro*e ") H, + (16nr’pe* — 3ri)H,, (8)
rH, = —H, — 8n(p + p)e**W , )

8npye* W' = (41v' — dnpyr?e’H, + (1 — ¢* — irv)H,
+ rw*e "H, — 8np'e’?W + 16npye*V , (10)
rHy =(1—3rn)Hy — (1 + $r)H, — ro?e™"H, , (11)

rH,' = [3r(X — V) — e*]H, — 8n(p + p)e***W
— 167r(p + p)ev . (12)
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(We note that these equations and the other complicated alge-
braic expressions which appear in this paper were derived,
manipulated, and simplified using the tensor algebraic com-
puter language muTENSOR developed by J. F. Harper and C.
C. Dyer.) In these equations 7 is the adiabatic index which we
compute directly from the equilibrium structure of the star as

Lals
p p

The first two of the perturbation equations (8) and (9) are
algebraic constraints which can be used to determine ¥ and H,
in terms of the remaining functions: W, H,, and H,. The
remaining three equations (10)~(12) form a third-order system
of ordinary differential equations for the three functions W,
H,, and H,. We note that the algebraic condition in equation
(8) was (to our knowledge) previously unknown, and its dis-
covery allowed the reduction of the system of equations from
the fourth-order system, presented by Campolattaro and
Thorne (1970), to the third-order system used here.

The system of equations (10)}~(12), together with appropriate
boundary conditions at the center of the star (r = 0) and the
surface of the star (r = R), form an eigenvalue problem for the
dipole modes. The boundary conditions at the surface of the
star require that the gravitational potentials H, and H, vanish
there:

(13)

Ho(R)=H(R)=0. (14

At the center of the star, the boundary conditions are based on
the requirement that the physical perturbation variables (i.c.,
&% 69,5, dp) are finite. These conditions require that

lim (%’) =w, (15)
r-0 \7
lim <ﬂ> =h, (16)
r—0 r

H
lim <r—21> = —8xnlp, + pw, (17)
r—0

where h and w are constants not fixed by the boundary condi-
tions, and p, and p, are the values of the density and pressure
at the center of the star.

¢) Variational Principle for the Frequency

It is often extremely helpful to have available a variational
principle from which the frequency can be computed. We use
the variational principle described here to obtain initial esti-
mates of the frequency of a mode, and, once we have obtained
a solution to the mode equations described above, we use the
variational principle as a redundant check on the value (and
hence the accuracy) of the frequency. The variational principle
can also be used to estimate the frequencies of these modes
without an exact knowledge of the eigenfunctions using a
Rayleigh-Ritz technique.

A variational principle for the frequencies of these modes
was first derived by Detweiler (1975). His variational principle
is equivalent to

R 2 2
w? f e—v/Z[(p + p)ellz(_rVVZ_ + 2V2) e M2 (I';l) ] dr

0 T

_fkev/z r2e*? ﬁ’_ 2 L(1+rv’)e_"/2(H Yt dr
A P o¥pl " T6n 2

2
+ PR) MWHR)

R (18)
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for the case considered here, where y is given by equation (13)
(and up to a typographical error in Detweiler’s paper which
has been corrected here). The constant M which appears in
equation (18) is the total mass of the star, while p(R) is the
value of the density at the surface of the star (i.e., possibly zero
depending upon the equation of state).

We also point out that this variational principle can be
written in a way that depends only on the two functions W and
H,. The functions V and H, that appear in equation (18) can
be replaced by expressions obtained from equations (12) and
(9), respectively, which only depend on W and H,. Similarly,
the “ Eulerian ” perturbation in the density, dp, which appears
in equation (18), is given by

—A/2

(o + PW' + p'W + (p + ple*?(3r’H, — 2V)],
19

which depends only on W and H, when the expressions for V
and H, from equations (12) and (9) are used. This form of the
variational principle (which involves only W and H,) has one
useful and one interesting consequence. The useful conse-
quence of this form would be realized if it were used to estimate
the frequencies with a Rayleigh-Ritz technique; it would only
require the use of two parameterized test eigenfunctions. The
interesting consequence of this form of the variational principle
is that it implies that the mode equations (10}{12) could be
rewritten as a set of two coupled second-order equations for
the functions W and H, alone. (To obtain these second-order
equations one would simply vary this form of the variational
principle with respect to W and H,.) We chose to perform our
numerical integration of these modes using the third-order
system, equations (10)«(12), rather than “reducing” the equa-
tions in this way to a fourth-order system in W and H, alone.

op=—
p =

d) Viscous Dissipation

While the time-scale for the damping of the dipole modes by
viscosity is very brief by astronomical standards (~ 10* s), it is,
in fact, very long compared to the dynamical time-scale of the
oscillation. The viscosity is in effect, then, a very weak force
which may be treated as a small modification of the adiabatic
oscillations discussed above. One effect of this small viscosity
will be to introduce a small imaginary part to the frequency of
the mode, w — @ + i/r, which will damp out the oscillation.
This viscous damping time, 7, may be computed by evaluating
the rate at which the energy of the mode is dissipated by the
viscosity. Lindblom and Hiscock (1983) have shown that the
energy contained in a mode, E(t), evolves in the presence of
viscosity as

dE
dr

where 7 is the viscosity of the star, & o* is the shear of the
velocity perturbation, and dx* is the proper three-volume
element on a t = constant hypersurface. Since this energy is
quadratic in the perturbation functions, the time derivative of
the energy is also given by

dE 2E

—_—=——, 21

dt T @D
for a perturbation with time dependence ' ~*/*. By eliminating
dE/dt from equations (20) and (21), an expression for the

= —J. 2n 60 ,,* 66°%e’ d3x , (20)
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viscous damping time, 7, is obtained in terms of the energy, E,
and a integral involving the shear, do,,, of the pulsations.
Lindblom and Hiscock (1983) have given expressions for these
quantities in terms of &* and dg,,. Therefore, using the param-
eterization of the dipole modes given in equations (6) and (7), it
is straightforward to obtain the following representations of
these quantities (which are valid to lowest order in the
viscosity):

R W2
E = J wz[(p + p)e"’“'”m(—r2 +2V? + e"/ZWHl)
0
H
H, 2] dr, (22)
Y[

_ e—(l+v)/2r

R
IZnéa*ab do%e"d*x = 20 J (6o, + da,2r2e? dr, (23)

0

where «, and a, are given by

H, V e*(w w
=24 —+—|——-— 24
M=ttt \3 5 ) @4)
W e (v v
==t (7‘7)' @)

To lowest order in the viscosity the eigenfunctions and fre-
quencies that appear in these expressions are the same as those
for the adiabatic oscillations discussed above. Thus the viscous
damping time is given approximately by

1 602 R

-—=— J n(6o, 2 + do,2)r2e*? dr (26)

T E )
where E is to be interpreted as the integral in equation (22).
These integrals are straightforward to evaluate numerically

once the eigenfunctions for the adiabatic oscillations are
known.

III. NUMERICAL EVALUATION OF THE DIPOLE OSCILLATIONS

In this section, the methods and the results of our numerical
evaluation of the dipole oscillation equations are discussed.
Equations (10)(12), together with the boundary conditions
equations (14)«(17), constitute a two-point boundary eigen-
value problem. We solve this system of equations numerically
using a “shooting ” technique (see, e.g., Press et al. 1986, p. 586)
as follows. We begin by making a rough guess of the eigen-
function corresponding to the lowest frequency dipole mode
(the p; mode). (In practice we find the following to be reason-
able initial guesses: H, = —S8nu(p, + p.)r’[1 — (r/R)*] and
W =r?[1 — (2r/R)®].) These test eigenfunctions are used with
the variational principle (eq. [18]) to obtain an initial estimate
of the frequency w. Next we make guesses of the values of the
constants h and w that appear in the boundary conditions,
equations (15)17). (A bit of trial and error is needed to find
these.) Once these initial choices for h, w, and w are made, the
oscillation equations (10)+(12) can be integrated away from the
center of the star to a matching point at some r = r, < R. Next
we choose a value for the constant W(R) and integrate the
equations (10)12) with the boundary conditions given by
equation (14) starting at the surface of the star (r = R) back to
the matching point at r = r,. If the two sets of values for W(r),
H(r,), and H,(r,) so obtained fail to agree, we use their discon-
tinuity to adjust and improve the values of the constants h, w,
W(R), and w, by Newton’s method. Using these improved con-
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stants, the equations are reintegrated from both boundaries to
the matching point at r = r,. This process is iterated until the
values of these constants converge, and the desired degree of
continuity of the functions W, H,, and H, at the matching
point is achieved.

We have evaluated the accuracy of the frequencies that we
obtain using the algorithm described above in three different
ways. First, we verified that as we increased the number of
numerical grid points in our models, the difference between the
frequency of a given model and the most accurate frequency
computed was proportional to 1/K2, where K is the total
number of grid points in the model. This dependence of the
accuracy with the number of grid points is consistent with the
accuracy with which we impose the boundary conditions on
the pulsations, for example. The second test of the accuracy of
our algorithm involved the comparison of the frequencies com-
puted directly (using the shooting technique discussed above)
with frequencies obtained from the variational principle (eq.
[18]) using the directly computed values for the eigenfunctions.
In all of our models these two independently computed values
of the frequencies differ by less than 0.1%. The third and most
stringent test of the accuracy of our program involved the
comparsion of our frequencies with previously published
results. The only published value (that we know about) of an
exact calculation of a dipole oscillation frequency (using an
adiabatic index computed as in eq. [13]) is contained in the
paper of Hurley, Roberts, and Wright (1966). There they obtain
the value @ = 2.9696 (3GM/4R>)'/? for the frequency of the
dipole p;-mode of an n = 3/2 polytrope (i.e., for the equation of
state p = kp*?, where « is a constant) using the Newtonian
stellar pulsation equations. For Newtonian polytropes the
ratio w/(3GM/4R*)'/? is independent of the constant k and the
central density of the star p,. Since our relativistic dipole oscil-
lation equations should reduce to the Newtonian equations for
stars of sufficiently small mass, we can verify that our fre-
quencies do reduce to this value in the appropriate limit.
Figure 1 shows the results of our computations of the dipole
frequencies for fully relativistic stars having the equation of

T T TrTTT l] T T T TTTTT T T TTTTT
3 —
2 _
ww, ]
1= -
O 1 L1 111t [ 1 11111l I It Lo dill
00l .01 1 1
GM/c%R
F1G. 1.—The frequencies of the dipole modes of n = 3/2 polytropes are

given in units of w, = (3GM/4R3)"/. The solid line gives the frequencies as a
function of GM/c?R for a sequence of fully general relativistic stellar models,
while the dotted curve gives the frequency of the corresponding models com-
puted using Newtonian equations by Hurley, Roberts, and Wright (1965).

Vol. 345

state p = kp>® and k = 8.675 x 10° cm? g~2/3 s~ 2. Unlike
their Newtonian counterparts, however, the relativistic fre-
quencies do depend on the parameters of a particular stellar
model, like GM/c?R. Figure 1 illustrates that our computa-
tions of the relativistic dipole oscillations do approach the
correct Newtonian value in the limit that GM/c2R — 0.

We have computed the frequencies and eigenfunctions for a
range of neutron star models based on a variety of nuclear
density equations of state and for a range of neutron star
masses. The frequencies and the viscous damping times for the
lowest frequency dipole mode (having one node in each of the
eigenfunctions V and W) are reported in Table 1. The equa-
tions of state used here are the standard ones discussed in the
literature as described in detail in Baym and Pethick (1979) or
Shapiro and Teukolsky (1983), p. 228, for example. (Except for
the RMF equation of state where we use the Serot 1979 calcu-
lation as tabulated in Lindblom and Detwiler 1983.) For each
equation of state we evaluate the frequencies for three different
models: the maximum mass model, the model having a mass of
1.4 M, (the only neutron star mass actually observed), and the
model having a total baryon number of 1.4 N (where N, is
the number of baryons in the Sun; this is approximately the
minimum number of baryons that can collapse to form a
neutron star). The viscous damping times that are reported in
Table 1 were evaluated using equations (22)—26). For the vis-
cosity of neutron star matter we use the expression,

n =60 x 105%/T? , 27

where T is the temperature of the matter, and all quantities are
expressed in cgs units. This expression (given in Cutler and
Lindblom 1987) approximates the electron-electron scattering
viscosity that is appropriate for neutron star matter which is
cooler than the superfluid critical temperature, T, ~ 10° K.
While the ratio 7/7, is independent of temperature, the product
T, ( a measure of the damping time in units of the dynamical
time scale of the oscillations, i.e., a measure of the Q of the
oscillations) is proportional to the temperature squared. The
values of this quantity given in Table 1 correspond to a
neutron star central temperature of 107 K (the star is assumed
to be “isothermal” in the relativistic sense that Te"? is
constant). We note that the frequencies listed in Table 1 verify
that w and 7 are reasonably well (i.e., to within a factor of ~2)
approximated by the rough estimates w, = (nGp,,.)"’* and
To = R?paye/n(paye), Where p,,. = 3M/4nR>. The extremely
large values of 7w, also verify our contention that the viscosity
in these models is effectively very small and that justifies the
small viscosity approximations that were made to obtain an
expression (eq. [26]) for 7.

Figure 2 illustrates typical examples of the eigenfunctions W,
H,, and H, for the dipole p,-mode. The particular functions
represented here were computed for the 1.4 M stellar model
based on equation of state R. These exact eigenfunctions show
that the fluid motion in these modes (as determined by the
function W) is confined to the surface region of the star as
anticipated by the work by McDermott, Van Horn and Scholl
(1983) in the Cowling approximation. Figure 3 illustrates
another aspect of the eigenfunctions of this same mode: the
energy dissipation rate due to viscous interaction. This figure
graphs the energy dissipation rate (the integrand in eq. [26]) as
a function of the density p. This illustrates that even though the
eigenfunction W is strongly peaked at the surface, some impor-
tant dynamical quantities have support much deeper into the
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PROPERTIES OF DIPOLE OSCILLATIONS OF NEUTRON STARS

TABLE 1

P, lwy*
Equation of State g cn;") M/My  N/Ng (ms) w/w, T/15° T0,°
Toeiineannns 2.666 x 103 1.243 1.399 0.0683 2.872 1.091 1.83 x 107
3.447 x 103 1.400 1.617 0.0595 2.563 1.822 2.40 x 107
5.550 x 10*3 1.483 1.742 0.0511 2.081 3.138 3.00 x 107
R ............ 1.659 x 103 1.267 1.399 0.0896 2.947 1.373 4.39 x 107
1.977 x 103 1.400 1.570 0.0814 2.750 1.655 4.52 x 107
4.100 x 10! 1.623 1.881 0.0610 2.064 3.004 4.62 x 107
BJ ........... 0.974 x 103 1.300 1.399 0.1280 2912 1.107 8.28 x 107
1.102 x 103 1.400 1.520 0.1189 2.822 1.212 8.01 x 107
3.150 x 10%3 1.850 2.110 0.0733 2.044 2.693 6.93 x 107
TI oot 0.447 x 103 1.314 1.399 0.1772 3.518 0.940 1.51 x 108
0.519 x 103 1.400 1.498 0.1696 3.370 1.020 9.45 x 107
2.239 x 1013 1.759 1.935 0.0981 2.042 1.889 9.29 x 107
RMF ........ 0.504 x 10'* 1.292 1.400 0.1389 4221 1.014 9.14 x 107
0.535 x 103 1.400 1.528 0.1347 4.071 1.151 1.02 x 108
2.000 x 1013 2.563 3.081 0.0847 1.908 4.068 1.82 x 108
MF .......... 0418 x 10'3 1.304 1.399 0.1603 4.088 0.807 1.02 x 108
0.440 x 10'5 1.400 1.511 0.1554 3.991 0.902 1.11 x 108
1.500 x 10'3 2.661 3.157 0.0976 2.106 3.439 221 x 108

interior of the star. We have plotted the energy dissipation rate
as a function of the density of the stellar material to illustrate
that the majority of the viscous dissipation occurs at densities

* wo = (nGp,,,) ">, where p,,, = 3M/47R>.

® 7 = R2pyyg/M(Puvy):
¢ Damping times are given for neutron star central temperatures of T = 107 K.

above 10'* g cm ~3. The viscosity given in equation (27) should

be the appropriate one for cool neutron stars in this density
range. The discontinuities that appear in Figure 3 are caused

- WwHx10®

FiG. 2

Viscous Enerey DissipaTioN RATE
o _

@)
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by discontinuities in the adiabatic index, y, which in turn are a
result of the standard method used to interpolate the equation
of state tables (see, Arnett and Bowers 1977).

This research was supported in part by grant PHY-8518490
from the National Science Foundation.

L

(@]

|
1x10'®

p (g/cm3)

FiG. 3

F1G. 2—The basic eigenfunctions for the lowest frequency dipole p-mode of the 1.4 M, neutron star model based on equation of state R. The function W is
normalized so that W(R) = 1, while the normalization for the metric perturbations H, and wH, relative to W is determined by the geometrical units used in our
computations (in which G = ¢ = 1, and all lengths are expressed in kilometers).

FIG. 3—The energy dissipation rate which is due to viscosity (i.., the integrand in eq. [23]) in the lowest frequency dipole p-mode of the 1.4 M, neutron star
model based on equation of state R. This queantity is graphed as a function of the matter density, p, in this particular stellar model, and it is normalized so that its

maximum value is one.
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