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ABSTRACT

The frequencies and damping times due to (bulk and shear) viscosity and gravitational radiation reaction
are computed for the lowest frequency 0 <! <S5 modes of a wide range of nonrotating fully relativistic
neutron star models. These computations generalize previous results by determining the effects of bulk vis-
cosity (using coefficients appropriate for normal matter, pion-condensed matter and strange quark matter,
respectively), by examining a large set of modes (including the radial and dipole modes), and by expanding the
sample of neutron star matter equations of state. These damping times play a crucial role in determining the
stability of rapidly rotating neutron stars (in effect determining their maximum angular velocities) and in any
model of periodic astrophysical phenomena that involves a pulsating neutron star.

Subject headings: dense matter — hydrodynamics — stars: neutron — stars: pulsation

I. INTRODUCTION

Pulsars having periods in the millisecond range have been discovered on a regular basis in recent years (see, e.g., Becker et al.
1982; Fruchter, Stinebring, and Taylor 1988). These objects are generally believed to be rotating neutron stars whose rotation
frequencies are identical to the frequencies of the observed pulsations. It is of fundamental interest, therefore, to determine
theoretically the maximum rotation rate that is allowed for a neutron star, and hence the maximum pulsar frequency that can be
expected observationally. The maximum angular velocity of a sequence of rotating neutron star models is determined by the point
at which the frequency of some mode acquires a negative imaginary part and hence becomes unstable. Thus, an understanding of
the frequencies (including their imaginary parts or “damping times ”) of neutron star oscillations is fundamental. In this paper we
explore in some detail one aspect of this problem: the effect of the equation of state of neutron star matter on these oscillations. We
present new fully relativistic calculations of the frequencies and damping times (due to bulk and shear viscosity and gravitational
radiation) of the 0 < I < 5 modes of a wide range of nonrotating neutron star models. In addition to expanding the set of modes
previously considered, we explore a larger range of equations of state, including two based on the assumption that there occurs a
phase transition to an “exotic ” state (pion-condensed matter or quark matter, respectively). We also present new calculations of the
bulk viscous damping times.

The stability of young, rapidly rotating neutron stars is probably determined by the balancing of the gravitational radiation
reaction forces which threaten to destabilize all rotating stars (Chandrasekhar 1970; Friedman and Schutz 1978; Friedman 1978)
and viscous forces which insure the stability of sufficiently slowly rotating stars (Lindblom and Detweiler 1977; Lindblom and
Hiscock 1983). In order to determine which stars are stable, it is necessary to evaluate the imaginary parts of the frequencies of the
relevant modes (the p-modes with | = m) to determine whether they are positive or negative. One element of the needed analysis is
presented in this paper: the calculation of the frequencies and the damping times (the reciprocal of the imaginary part of the
frequency) of nonrotating fully relativistic neutron star models. Another element of this analysis, the angular-velocity dependence of
these frequencies and damping times, has at present been carried out only in the context of Newtonian stellar models (Ipser and
Lindblom 1989, 1990). While the radial (I = 0) and dipole (! = 1) modes are not expected to participate in this gravitational
instability (since they emit no gravitational radiation in nonrotating stars), these oscillations could perhaps be observed directly, and
so we have tabulated their frequencies and damping times as well.

Section II of this paper reviews the methods that we employ to evaluate the frequencies and the gravitational and viscous
damping times of the modes of relativistic stellar models. We also correct in that section several errors that appeared in earlier
expressions (Cutler and Lindblom 1987) for the shear viscous damping times. Section III reviews the assumptions about the
equation of state and the viscous dissipation coefficients that we employ in our computations. Finally, § IV contains the tabulated
results of our computations and discusses briefly their significance.

II. EVALUATING THE DAMPING TIMES

This section describes the method that we employ to evaluate the damping times for the modes of nonrotating fully relativistic
neutron stars. For neutron stars, the dissipation mechanisms (both viscosity and gravitational radiation) act on the p-modes over
time scales that are much longer than the pulsation periods of the modes themselves. It is possible, therefore, to approximate these
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modes as being essentially adiabatic with small dissipative corrections. We begin with a brief discussion of the method of finding the
adiabatic modes of these stars, and then describe in more detail how to include the small effects of viscous dissipation.

The perturbations of a nonrotating relativistic stellar model may be described in terms of the Lagrangian fluid displacement
vector, &,, and the perturbed metric tensor, dg,,. The equations of motion for these quantities are derived by linearizing the
gravitational field equation about a background equilibrium solution. The solutions of these linearized equations having time
dependence €™ are called modes. By the spherical symmetry of the background stellar model, the perturbation quantities may be
decomposed into spherical harmonics, Y;™, satisfying decoupled equations. Thus, by a suitable choice of gauge, the Lagrangian fluid
displacement corresponding to a given mode and spherical harmonic may be written in the form

o= WO r Y™V, r — VIV, Y"Ir'e™ . (1)
Similarly, the perturbed metric tensor may be written in an appropriately chosen gauge as
ds® = (g p + 6gp)dx® dxP
= —e'(1 + P'H, Y"e'dt? — 2iwr' 1 H, Y™ dt dr + e*(1 — r'H, Y"e)dr? + r}(1 — r'KY"e'**}(d6? + sin® 0d¢?) . ?)

The gauge of the metric can be further specialized by setting V = H; = K = 0 for the [ = 0 (radial) oscillations, K = 0 for the [ = 1
(dipole) oscillations, and H, = H, for the I > 2 oscillations. The equations for Hy, H,, H,, K, W, and V (which are functions of r
only) that result from imposing the perturbed Einstein equation were first derived for the I = 0 modes by Chandrasekhar (1964), for
the | = 1 modes by Campolattaro and Thorne (1970), and for the I > 2 modes by Thorne and Campolattaro (1967). These equations,
together with appropriate boundary conditions, form an eigenvalue problem for the frequency, w, of the mode. Because of the
emission of gravitational radiation, these frequencies will have nonvanishing imaginary part of the modes with [ > 2 even in the
absence of viscosity. Numerical methods for solving this eigenvalue problem for the lowest frequency p-modes (the f-modes when
1 # 1) are described in Glass and Lindblom (1983) for I = 0, Lindblom and Splinter (1989) for I = 1, and in Lindblom and Detweiler
(1983) and Detweiler and Lindblom (1985) for [ > 2.

It is relatively straightforward to determine the effect of a small amount of viscous dissipation on the pulsation of a star once &,
and dg,, for the dissipation-free mode are known. The presence of dissipation causes the energy E in a mode to decrease according
to the formula

dE 2E

—=——. 3

dt T 3)
The damping time, 7, for a given mode can be determined, then, once the energy E and the rate of change of the energy dE/dt are
known. The rate of change of the energy in a pulsation is related to the dissipation in the fluid by the integral

‘fl—f = - ‘[ (2néa®dc%, + (| 60 |})e’e**r? sinfdrdfdgp — Fg . @
In this expression da,, and do are the shear and expansion of the perturbed fluid motions, 1 and { are the coefficients of shear and
bulk viscosity, and Fg is the flux of energy carried away by gravitational radiation. The rate of change of the energy can be
determined, therefore, once the shear and expansion of the mode are known. For small dissipation, 56 and d¢ are essentially the
same as those for the corresponding nondissipative mode. Thus, to lowest order in small dissipation coefficients, dE/dt can be
determined from equation (4) with only a knowledge of the nondissipative eigenfunctions &, and dg,,. The energy E can similarly be
evaluated to lowest order with only a knowledge of the nondissipative mode. For the / = 0 and / = 1 modes, we use integral
expressions for E given in Glass and Lindblom (1983) and Lindblom and Splinter (1989). For the I > 2 modes, we use the value of
the gravitational radiation damping time 7 (where 1/ is the imaginary part of the frequency of the nonviscous mode) and the
gravitational radiation energy flux F to evaluate the energy as E = 414 F. These expressions for dE/dt and E are combined as
prescribed in equation (3) to determine the viscous damping time 7.

The expression, equation (4), for the time derivative of the energy can be evaluated for any fluid perturbations (¢, and dg,,) using
formulae given in Lindblom and Hiscock (1983) for the shear and expansion. For perturbations having the forms given in equations
(1) and (2), these expressions can be simplified considerably, and the angular integrals can be performed. The resulting damping
times (as deduced from eq. [3]) due to the shear and bulk viscosities are given by

1 |o* (® 2-1),42)3 2 2 1 2

— =120 | 2022 (0 )2 4 200 + 1)a)? + I+ D) = I+ 1) — 1 V2 dr )

7, E ) 2 2
and

T o [® seen e 1 1 _pfdWw 1 4%

T E J;Z_,'r K +5Hy —~e DW=+ ) e dr, ©6)
where

R W v
al_S{re [dr +( 2)r +K_H2_l(l+l)r2 ’ O
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and
vV w
m=1 d—V+(l—2)——e’“2—e“/2. ®)
2] dr r r

Given the functions that describe the nonviscous mode of the star (W, V, H,, and K) it is straightforward, then, to evaluate the
viscous damping times using the integrals in equations (5) and (6). An expression of this type for the shear-viscosity damping time
first appeared in Cutler and Lindblom (1987). We note that the formulae given there contain several errors which are corrected here.
Unfortunately, a missing factor of e’ in their equations (1) and (10) was also omitted from their numerical calculations. The
shear-viscosity damping times published in that paper are all too short, therefore, by factors as large as 2 or 3 (although typically far
less than this). For this reason, we have reevaluated those shear-viscosity damping times in this paper.

We have neglected in equation (4) a number of other forms of dissipation which may occur in real neutron stars. We have
neglected the dissipation due to thermal conductivity, since this effect is roughly 10° times smaller than that of shear viscosity for
normal neutron star matter (Cutler and Lindblom 1987). Furthermore, the sign of the imaginary part of the frequency for this effect
will always be identical to that of the shear viscous term. Magnetic fields could also play a role in damping neutron star oscillations.
For magnetic fields that are “frozen in” to the neutron matter, the damping time of the /th mode due to magnetic I-pole radiation is
expected to be approximately 75 ~ o~ }(pR2w?/B)(c/Rw)?**, or 15 ~ 10° s for the | = 2 mode with | B| ~ 10'2 G. This time scale is
comparable to the viscous time scales but much longer than the corresponding gravitational radiation time scale. Furthermore, if the
magnetic spin axes are closely aligned, the electromagnetic and gravitational back-reactions both affect the mode in the same way.
That is, the imaginary part of the frequency caused by electromagnetic back-reaction will always be the same as the sign of the
imaginary part of the frequency due to gravitational back-reaction. (If the magnetic and spin axes are not closely aligned, then the
star will spin down on a time scale comparable to the viscous damping time of the perturbation.) Thus, neither thermal conductivity
nor magnetic fields are expected to play an interesting role in damping (or amplifying) the oscillations of real neutron stars.

III. MICROPHYSICAL ASSUMPTIONS

In order to evaluate the viscous damping times according to the procedure outlined in § II, the equation of state, p(p) (the energy
density as a function of the pressure), and the equations for the viscosity coefficients, # and {, must be specified. Unfortunately, these
microphysical quantities are very poorly known. Numerous theoretical calculations of the equation of state exist in the literature,
but they do not agree well with each other. In order to estimate the effect of this uncertainty on the dynamical properties of neutron
stars, we evaluate the modes of neutron stars based on a representative sample of the published equations of state. We also use
several different expressions for the dissipation coefficients, corresponding to different temperature regimes and to different possible
phases of neutron star matter.

We construct neutron star models using a sample of 12 equations of state. These equations were chosen to illustrate the range of
published results; however, we have excluded equations of state from our sample that are so soft that they fail to have stellar models
with masses larger than 1.4 M 5. We use a number of equations of state that were included in the study of the properties of neutron
stars by Arnett and Bowers (1974, 1977): P(A), the Pandharipande (1971) pure neutron equation that is based on the Reid soft-core
nuclear interaction; Py(B), the Pandharipande (1971) equation that includes hyperonic matter; BJ(C), the Bethe and Johnson
(1974) (model I) equation based on an improved neutron-neutron potential; A(F), the Arponen (1972) equation based on a
Thomas-Fermi model of the interactions; and MF(L), the Pandharipande and Smith (1975) equation based on a mean-field effective
scalar-meson interaction. (The letter in parentheses following each reference refers to the Arnett and Bowers terminology for that
model.) We also include five more recent equations of state that describe “normal” nuclear matter: RMF, the Serot (1979q)
equation based on a self-consistent relativistic mean-field effective scalar-meson interaction; WFF, the Wiringa, Fiks, and Fabrocini
(1988) equation (the UV14 plus TNI model) that includes three-nucleon interactions; G, ¢, G40, and G;,, the Glendenning (1986)
parameterized field theoretical models for three values of the compressibility modulus, K = 210, 240, and 300 MeV. Finally, we
include two equations of state describing nuclear matter than has undergone a phase transition to an “exotic” state: , the Maxwell
and Weise (1976) equation (with g% = 1.3) which includes pion condensation; and ¢, the Glendenning (1989) equation describing
strange quark matter (with bag constant B4 = 170 MeV). These equations of state are summarized in Table 1.

In order to evaluate the damping times with equations (5) and (6), expressions for the viscosity coefficients n and { must also be
specified. For the case of shear viscosity, #, two different physical regimes are anticipated in the neutron star interior. At high enough

TABLE 1
EQUATIONS OF STATE

Equation of State Reference Description

Glendenning 1989 Quark matter
Serot 1979 Relativistic mean field
Pandharipande and Smith 1975 Mean field
Wiringa, Fiks, and Fabrocini 1988 Three-nucleon interactions
Maxwell and Weise 1976 Pion condensation
Pandharipande 1971 Reid soft core, pure neutrons
Pandharipande 1971 Reid soft core, with hyperons

G105 G240 G300 «ovvveeens Glendenning 1986 Parameterized compressability

BI(C) e Bethe and Johnson 1974 Pure neutrons, model I

A(F) it Arponen 1972 Thomas-Fermi interaction
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temperatures, the viscosity will be produced primarily by the scattering of neutrons. At sufficiently low temperature (T’ < 10° K) the
neutrons and protons become superfluid, and electron scattering becomes the dominant dissipative mechanism. The shear viscosity
n, for the high-temperature regime has been calculated by Flowers and Itoh (1976). We use the following analytical fit to their
numerical results:

9/4
o= 195 x 1018 215 ©)
Ty
where 7, has units g cm ™! s, p, 5 has units 10'° g cm~3, and T, has units 10° K. This formula, equation (9), reproduces the
Flowers and Itoh (1976) computations to within about 3%. The viscosity, 7,, due to electron scattering (which is appropriate for
low-temperature neutron stars) is given approximately by

2
1, = 6.0 x 1018(@) . (10)
T,
This formula reproduces the exact electron scattering result to within about 5%. We note that 5, is larger thang, for typical neutron
star densities because the electron mean free path is substantially increased when the neutrons and protons become superfluid. In
this paper we calculate a “normal ” shear viscous time scale, setting n = 5, everywhere, and a “superfluid ” shear viscous time scale,
setting n = 5, everywhere. A somewhat more realistic treatment would take the neutron star as having a superfluid region and a
normal region, with #, used as the dissipation coefficient in the former and #, in the latter (see Cutler and Lindblom 1987). This
refinement would not substantially change the value of the computed damping times, however, except for a narrow range of
temperatures near the superfluid critical temperature.

Neutron star matter also dissipates energy via bulk viscosity. For neutron stars, the dynamical oscillation time scale is much
shorter than the time scale required for the nuclear matter to return to complete equilibrium. The variations of the pressure and
density in the perturbed fluid become out of phase therefore. This phase lag results in energy being dissipated from the pulsations via
PdV work. The nuclear matter therefore acquires a (frequency-dependent) bulk viscosity that scales roughly as the square of the
pulsation period over the equilibration time scale. Sawyer (19894a) derives the following expression for {,, the bulk viscosity for
normal neutron star matter (in the high-frequency limit):

2
¢, =60 x 1025(’—275) TS 1)

where {, has the units gcm ™' s ™! and w is the frequency of the mode in s ™. The factor e* which appears in equation (11) transforms
o into the proper frequency of the mode as observed locally by an element of the stellar fluid. When the neutron star matter has
undergone a phase transition into an “exotic” state, the particle interactions available to the material are changed. The equili-
bration time scales for both pion-condensed matter and quark matter are much shorter than for normal neutron star matter, and
their bulk viscosity coefficients are correspondingly larger. The following bulk viscosity coefficient for pion-condensed matter, {,,
has been derived by Sawyer (1989b):

10%° sin(20)n®3 T,*

¢, =56 x e 12)

e ‘w
where n is the baryon number density given in units of fm ~ 3. The overall coefficient in equation (12) is proportional to a parameter
sin(26) that measures the degree of pion condensation. (The definition of @ is essentially that of Baym et al. 1975.) For simplicity, we
set sin(20) = 1 for densities above p = 5.0 x 10'* g cm ™3 (the density above which pion condensation occurs), and we take the bulk
viscosity coefficient to be {, below that density. The bulk viscosity coefficient of strange quark matter, {,, has also been computed by
Sawyer (1989c¢) and is well-approximated (to within a few percent) as

(n — 0.03)T,>
e "w? + 1.7 x 10°n2T,*

{, =707 x 103 13)

This expression assumes a strange quark mass of Mg = 100 MeV.

IV. RESULTS AND DISCUSSION

The pulsations and damping times have been computed for the modes of neutron stars constructed from each of the 12 equations
of state listed in Table 1. For each equation of state, we examine the properties of three different stellar models: the model
containing 1.4 N baryons (where N, = 1.19 x 10°” is the number of baryons in the Sun), the model with mass equal to 1.4 M
(where “mass” refers to the gravitational mass), and the model having the largest possible mass for the equation of state. The
minimum number of baryons that are capable of undergoing gravitational collapse to form a neutron star is approximately 1.4 N ;
thus, this model has approximately the minimum possible mass. Table 2 lists the basic parameters characterizing the equilibrium
stellar models constructed from each of the equations of state: the mass M, the radius R, the number of baryons N, the central
density p,, the central gravitational potential e*, the surface redshift z = (1 — 2GM/c?R)~ /> — 1, and the fundamental frequency,

Q, defined by
3IGM\'?
=|—F . 14
QO <4R3> ( )
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TABLE 2
EQUILIBRIUM STELLAR MODELS

EqQuATION Central Surface
OF R Density Redshift Q,
STATE M/Mg (km) N/Ng (1) e (2) (10*s™Y)
[ U, 1.230 8.438 1.400 1.516 0.366 0.3249 1.428
1.400 8.518 1.627 2.005 0.283 0.3938 1.502
1.499 8.173 1.765 3.539 0.186 0.4768 1.653
RMF .......... 1.291 13.535 1.400 0.5037 0.524 0.1798 0.7199
1.400 13.621 1.529 0.5346 0.492 0.1982 0.7426
2.571 12.507 3.096 1.737 0.0952 0.5949 1.144
MF(L) ......... 1.304 14.939 1.400 0.4175 0.549 0.1607 0.6240
1.400 14.985 1.512 0.4397 0.523 0.1751 0.6436
2.661 13.638 3.159 1.484 0.118 0.5358 1.022
WFF .......... 1.269 10.876 1.400 1.077 0418 0.2351 0.9909
1.400 10.813 1.565 1.212 0.365 0.2723 1.050
1.840 9.487 2.164 3.167 0.111 0.5296 1.465
Toeeeeeenaanns 1.243 8.325 1.400 2.666 0.260 0.3373 1.464
1.400 7.903 1.618 3.447 0.165 0.4479 1.680
1.483 7.278 1.743 5.535 0.0800 0.5842 1.957
PyA4) .......... 1.267 10.042 1.400 1.659 0.350 0.2624 1.116
1.400 9.733 1.571 1977 0.280 0.3184 1.229
1.626 8.260 1.885 4.386 0.0883 0.5452 1.695
G300 coveveenens 1.296 13.521 1.400 0.6881 0.497 0.1810 0.7224
1.400 13.360 1.523 0.8109 0.453 0.2033 0.7645
1.708 11.079 1.909 2.490 0.203 0.3547 1.118
Py(B) .......... 1.232 8.183 1.400 2918 0.253 0.3417 1.496
1.400 7.359 1.639 4875 0.115 0.5104 1.870
1413 7.040 1.658 6.026 0.0815 0.5666 2.008
BJ(C) .......... 1.300 12.848- 1.400 0.9740 0.442 0.1941 0.7811
1.400 12.534 1.521 1.102 0.395 0.2215 0.8413
1.850 9.967 2.111 3.142 0.108 0.4874 1.364
Goyp ovevnnnnn 1.297 13.179 1.400 0.8644 0473 0.1872 0.7510
1.400 12.768 1.524 1.101 0414 0.2160 0.8183
1.594 10.553 1.769 2.846 0.204 0.3434 1.162
AF) .ccocenan. 1.262 10.145 1.400 1.933 0.347 0.2571 1.097
1.400 8.980 1.581 3.220 0.205 0.3612 1.387
1.456 7.825 1.660 5.239 0.0978 0.4896 1.739
Gopg coeevenenns 1.296 12.543 1.400 1.198 0.432 0.1996 0.8086
1.400 11.559 1.527 1.785 0.336 0.2476 0.9499
1.456 10.180 1.599 3.143 0.222 0.3156 1.172

The equations of state in these tables have been ordered by the ratio of the central density to the average density in the 1.4 M
stellar model. Large values of this ratio arise in “soft” equations of state [such as A(F) or G,,,], while smaller values of this ratio
occur in “stiff ” equations of state (such as g or RMF).

Tables 3 and 4 list the frequencies and gravitational radiation damping times for the modes of these stars. Each of these
frequencies is given in terms of the fundamental frequency Q,. The frequencies and damping times were computed numerically using
the techniques outlined in § II. The eigenvalue problem was solved on a numerical grid containing at least 2000 points inside the
stellar model. We estimate the accuracy of the frequencies to be about 0.1% and the accuracy of the damping times to be about 1%.
The modes considered here are the lowest frequency p-modes for each value of I: 0 < I < 5. For I # 1 these are the f-modes having
no nodes in W(r), the radial Lagrangian displacement. For | = 1 the lowest frequency mode has one node in W(r) and corresponds
to the p,;-mode. Because of spherical symmetry, the frequencies and damping times of these modes are independent of the spherical
harmonic index m. The frequency of the radial (I = 0) mode is not listed in Table 3 for the maximum mass model of each equation of
state, since the frequency vanishes for these marginally unstable models. Damping times are not listed in Table 4 for the radial
(I = 0) and the dipole (I = 1) modes since these modes do not couple to gravitational radiation.

The damping times due to shear viscosity are presented in Tables 5 and 6. They are evaluated using the expressions presented in
§ II1. The normal fluid damping times in Table 5 were computed with the assumption that the shear viscosity 5 = #, from equation
(9), while in Table 6 the superfluid damping times were computed under the assumption that n = #, from equation (10). In all of our
calculations we assume that the neutron star is in thermal equilibrium; i.e., the “redshifted temperature ” Te*? is uniform through-
out the star. The results given in Tables 5 and 6 are for the central temperature T, = 1.0. These damping times scale with
temperature as T2. We have not included calculations for the quark matter equation of state, g, since the above expressions for the
shear viscosity are not appropriate for neutron star matter in that state.
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The damping times due to bulk viscosity are presented in Table 7. We take the bulk viscosity coefficient { = {, from equation (11)
for all of the neutron star models except those constructed from the quark matter and pion-condensed matter in equations of state g
and 7. All of these “normal ” bulk viscous damping times were evaluated for stellar models having central temperature T, = 1.0. In
these models the damping times scale with temperature as T ™. For the stellar models constructed from equation of state g we take
{ = {, from equation (13). The damping times for these models do not scale simply with temperature, so we give the damping times
for two central temperatures: T, = 1.0 and 10.0. For the stellar models constructed from equation of state w, we take { = {, from
equation (12) in the inner core of the star, where p > 5 x 10'* g cm ™3 and { = {, from equation (11) below that density. While the
damping times for the models containing pion condensation do not scale simply with temperature, we find that they do in fact scale
as T~ to within a few percent for temperatures below T, = 10.0. Consequently, for equation of state z, we tabulate the damping
times only for T, = 1.0

Consider first the implications of these computations on the modes (I > 2) that determine the stability of rapidly rotating neutron
stars. The ratio of the bulk to the shear viscosity damping times, 7,/z,, for normal nuclear matter scales with temperature is T 2.
Our numerical computations show that this ratio has values in the range 10*-107 at T, = 1.0. Thus the bulk viscosity will be
insignificant compared to the shear viscosity for temperatures below 3-8 x 10° K. The cooling calculations of Nomoto and Tsuruta
(1987) indicate that the central temperature of a neutron star will fall below these values within about 10° s of its birth. Thus, bulk
viscosity will only play a significant role in affecting the stability of these modes for about the first day of a neutron star’s existence.

TABLE 7
BuLKk Viscous DAMPING TIMES

EqQuATION 7 Q,
OF
STATE M/Mg I=0 I=1 =2 I=3 =4 I=5

R 1.230 1.01 x 10° 5.78 x 10° 1.86 x 10'° 256 x 10'° 381 x 10'° 552 x 10'°
(To=1) 1.400 8.20 x 10° 791 x 10° 8.30 x 10° 124 x 10'° 195 x 10° 299 x 10*°
1.499 1.39 x 107 272 x 10° 4.92 x 10° 8.60 x 10° 141 x 10*°

T 1230 497 x 10* 1.08 x 10° 1.35 x 10° 1.04 x 10° 1.12 x 10° 1.32 x 10°
(T, = 10) 1.400 707 x 10* 1.68 x 10° 4.64 x 10° 401 x 10® 4.66 x 10° 5.90 x 10°
1.499 349 x 10° 9.85 x 107 1.10 x 10® 1.49 x 108 2.11 x 108

RMF ... 1.291 593 x 10'>  1.86 x 10'* 807 x 10'® 523 x 10'® 420 x 10'®  3.71 x 10'¢
1.400 643 x 10'* 230 x 104 1.00 x 10'7 670 x 10'® 548 x 10'®  4.83 x 10'°

257 7.55 x 10'* 194 x 10'° 120 x 10*° 999 x 10'®  9.65 x 10'®

MF(L) .............. 1.304 479 x 10'* 140 x 10'* 355 x 10'® 225 x 10'® 179 x 10*  1.55 x 10'¢

1.400 5.26 x 10'3 1.69 x 10'* 436 x 10*¢ 2.82 x 10 227 x 10'6 1.98 x 10'¢
2.661

4.55 x 103 4.26 x 10'8 3.14 x 10'® 294 x 10'8 296 x 10'®

WFF ... 1.269 4.83 x 10'3 2.30 x 104 4.69 x 106 3.60 x 10*¢ 3.35 x 10 3.28 x 10'¢
1.400 5.73 x 103 3.31 x 10 6.98 x 10*¢ 5.49 x 10'¢ 5.19 x 10'¢ 5.20 x 10'¢

1.840 394 x 10'* 1.82 x 108 1.53 x 10'® 1.59 x 1018 1.72 x 10'8

. 2N 1.243 3.99 x 10'° 2.87 x 10! 4.82 x 103 3.19 x 103 2.77 x 103 2.74 x 10*3

1.400 5.84 x 10'° 7.16 x 10! 2.34 x 104 1.37 x 104 111 x 104 1.01 x 104
1.483 2.54 x 10'2 2.17 x 10*% 1.25 x 10'* 8.79 x 104 7.67 x 104

Pyd) ...l 1.267 3.84 x 10'3 2.60 x 104 2.16 x 10*¢ 1.70 x 106 1.61 x 10'® 1.63 x 10'¢
1.400 531 x 10*3 4.67 x 10'4 445 x 10'¢ 3.56 x 1016 342 x 10¢ 3.50 x 106
1.626 4.53 x 10*3 2.36 x 10'8 1.52 x 1018 1.40 x 10'8 1.42 x 10'8

(€ P 1.296 2.48 x 10'3 145 x 104 1.85 x 10'6 1.56 x 10'¢ 1.50 x 106 1.48 x 10'¢
1.400 2.16 x 10'3 1.76 x 10'* 1.96 x 10'¢ 1.85 x 106 1.90 x 10'¢ 1.95 x 106

1.708 8.10 x 104 2.82 x 106 4.71 x 10'® 7.59 x 10'¢ 1.10 x 10*7
PyB) ..ooovininnin. 1.232 5.25 x 103 490 x 104 5.23 x 10'¢ 4.06 x 10'¢ 395 x 10'¢ 4.14 x 10'°
1.400 6.34 x 10'3 3.30 x 10** 1.02 x 1018 6.34 x 107 5.61 x 107 5.12 x 107
1.413 6.82 x 10'* 3.69 x 1018 2.13 x 108 1.76 x 108 1.71 x 10'8
BJ(C) ool 1.300 227 x 10'3 143 x 104 5.77 x 1013 496 x 10'° 5.24 x 10'3 5.96 x 10'*
1.400 2.78 x 10*3 195 x 104 8.25 x 10!* 707 x 10!* 743 x 10'3 8.30 x 10'*
1.850 433 x 105 5.77 x 107 4.48 x 107 4.46 x 107 4.67 x 107
Gogp ovvvrrininnnnns 1.297 1.53 x 10'3 1.38 x 10** 1.11 x 10 1.09 x 106 1.14 x 10'¢ 1.21 x 10%¢

1.400 1.32 x 10'3 1.71 x 10** 1.05 x 10'6 1.24 x 10'® 1.47 x 106 1.65 x 10'®

1.594 . 7.51 x 10*4 2.03 x 10'¢ 3.23 x 10¢ 5.14 x 10'¢ 7.60 x 10'¢
A(F) oo 1.262 1.61 x 10'3 226 x 104 1.34 x 10'¢ 1.51 x 10'¢ 1.76 x 10*¢ 2.01 x 10'¢
1.400 2.53 x 10'3 7.39 x 104 3.26 x 10! 4.19 x 10'¢ 5.72 x 10*¢ 7.50 x 10'¢
1.456 4.61 x 10*3 3.59 x 10'7 3.49 x 107 441 x 107 5.78 x 10'7
(€ 1.296 8.53 x 10'? 1.31 x 104 6.08 x 10*° 7.85 x 103 9.81 x 10** 1.16 x 10'¢
1.400 8.98 x 10'2 220 x 104 6.17 x 1013 9.35 x 10'* 1.40 x 10'¢ 193 x 10'¢
1.456 547 x 10'* 1.07 x 1016 1.75 x 10'¢ 2.90 x 10*¢ 4.51 x 10'¢
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The second area in which these computations are likely to have interesting implications is the damping of the radial (I = 0) modes.
For radial oscillations, we find that the bulk viscous damping time scale for normal matter is comparable to the shear viscous
damping times at Ty = 1: 7, = 1,. Each of the bulk viscous damping times for normal nuclear matter lies in the range 1-9 x 10° s at
this temperature. The damping times will be shorter than this at both higher temperatures (due to bulk viscosity) and at lower
temperatures (due to shear viscosity). The bulk viscosity damping times scale with temperature as T 6. Thus, at T, = 10 the
damping time is reduced to ~ 103 s, and at T, = 100 it is reduced further to ~1073 s. According to the calculations of Burrows and
Lattimer (1986), it takes ~ 5 s for the newly formed neutron star’s central temperature to cool from T, = 200 to T, = 100. Thus, the
radial pulsations that were excited during the initial formation of the neutron star would be completely damped out.

We remark that the bulk viscous damping times calculated here for the 2 < I < 5 modes are far longer—by factors ranging
between 10 and 10* at T, = 1—than would have been estimated using the back-of-the-envelope calculation given in Cutler and
Lindblom (1987). The most important source of error in that estimate was the assumption that the bulk viscosity coefficient was
uniform throughout the star. That approximation overestimates the effect of the bulk viscous damping for basically two reasons.
First, the bulk viscosity coefficient, {,, is proportional to the density squared, equation (11). The integrand in equation (6) is largest
when the density is only 1/10 to 1/3 of its central value. This effect increases the damping times by a factor of 10-100. Second, the
bulk viscosity coefficient is proportional to the temperature to the sixth power. For neutron stars in thermal equilibrium (as
assumed here) the temperature is smaller in the outer regions of the star due to redshift effects. We find that the temperature at the
maximum of the integrand of equation (6) has values between 1/2 and 9/10 of the central value. This effect increases the damping
time by an additional factor of 2-100.

We thank J. Friedman and R. Sawyer for numerous helpful conversions, and we particularly thank R. Sawyer for supplying us
with his unpublished calculation of the bulk viscosity coefficient for pion-condensed matter. We also thank A. Mellott and the
University of Kansas Experimental Particle Physics Group for making computer time available to us for the dipole calculations.
This work was supported in part by grants PHY-8518490 and PHY-8803073 from the National Science Foundation.
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