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The system of equations that describes the macroscopic properties of a mixture of
superfluids is derived by generalizing the equations of Andreev and Bashkin to include new
vorticity-preserving forces. The affects of these forces on the dynamics is investigated by using
a macroscopic phenomenological approach developed by Bekarevich and Khalatnikov. A
Hamiltonian formulation of the theory is developed and used to couple the charged
components of the fluid to the electromagnetic field. The physically relevant values of the
additional vorticity-preserving forces are determined by requiring that each component
of the superfluid mixture responds to the electromagnetic field via an appropriate Lorentz
force. © 1991 Academic Press, Inc.

I. INTRODUCTION

The equations that describe the macroscopic dynamics of a superfluid were first
derived by Landau [1] and have subsequently been generalized in a number of
ways. The equations were extended to include the description of a mixture of two
superfluids by Khalatnikov [2] and by Andreev and Bashkin [3], while Var-
danyan and Sedrakyan [4] generalized the equations to include charged superfluids
coupled to the electromagnetic field. Holm and Kupershmidt [5] extended the
theory to a mixture of N charged superfluids and developed a Hamiltonian for-
malism for the resulting fluid equations and electromagnetic coupling. In this paper
we generalize these equations still further by including a large class of vorticity-
preserving interaction terms in the dynamical equations for the superfluid velocities.
A Hamiltonian formulation for the equations is presented and used to couple the
charged components of the mixture to the electromagnetic field. The new vorticity-
preserving forces play a non-trivial dynamical role at the locations of vortices and
have a profound effect on the natural coupling of these fluids to the electromagnetic
field.

We consider a fluid consisting of a mixture of N species of superfluids, a single
“normal” fluid consisting of the excited states of all the superfluid species, and an
additional “ordinary” fluid of other particles. To avoid confusion we will use the
terms “normal” and “ordinary” when referring respectively to the latter two fluids.
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The specific physical system that we have in mind is the superfluid interior of a
neutron star. There the neutrons and protons each form superfluid condensates
while the electrons (and muons) form an independent ordinary fluid. Other systems
to which the present study may apply include mixtures of He* in He* and mixtures
of protons and neutrons in a heavy-metal crystal (for references see Holm and
Kupershmidt [5]).

The macroscopic superfluid equations, of the type introduced by Landau [1], are
intended to describe the behavior of the large scale properties of the fluid (e.g.,
density, temperature, velocity) which have been suitably averaged over distances
that are large compared to typical inter-particle separations. The theory of
superfluid mixtures being considered here is described by macroscopic variables
associated with each component of the fluid: e.g., the total mass density and
superfluid velocity, p, and v,, associated with the ath species of superfluid, the
velocity, v, of the normal fluid, and the density and velocity, p, and v,, of the
ordinary fluid. The ordinary fluid is composed prlmarlly of electrons in a neutron
star, so. we let the subscript e refer to this fluid whatever its composition might be.
Note that we allow the normal and ordinary fluids to have independent dynamics
at this point in order to allow for the possibility of macroscopic electromagnetic
interactions between these fluids. In contrast, we combine all of the excited super-
fluid states into a single normal fluid. In a neutron-star superfluid this equilibrium
should be maintained by the strong interactions of the various species on very short
time scales.

For each superfluid species the macroscopic velocity, v,, is chosen to be propor-
tional to the kinematic portion of the canonical momentum of the particles (or
Cooper pairs) which have condensed into the superfluid state. The canonical
momentum for each species is given, therefore, by m (v, + a,A), where m, is the
mass, a,=q,/m,c is the charge-to-mass ratio of each particle (or Cooper pair)
divided by c, the speed of light, and A is the electromagnetic vector potential. (We
use gaussian units for all electromagnetic quantities.) For the simple casé con-
sidered here, in which the order parameter for the condensed stated is a complex
scalar field [6], the canonical momentum is related to the gradlent of the phase,
S,, of the order parameter via the London equation:

" .
v,+a,A=—VS,. (1)
m .

a

While the macroscopic superfluid equations, of the type described above, have
proven to be extremely successful in describing a varisty of superfluid phenomena,
they do not provide a convenient (or perhaps even acceptable) description of super-
fluids in which rotation and magnetic fields are present. As a consequence of
Eq.:(1), the vorticity, @,, is linked to the value of the magnetic induction, B, by

=V xv,= —a,B; except where the right side of Eq. (1) becomes singular. On the
basis of microscopic theory and laboratory experiments, such singular regions are
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found to assume the form of arrays of one-dimensional quantized vortices [7].
Thus the curl of Eq. (1) takes on the form [8, 9],

2nh
o,+a,B= r
m

S [ val) 62 Ir =01l @)

a i

where 1, (/) is a vector giving the location of the points (parameterized by /) along
the ith vortex belonging to species o, and v,;(/) is the unit vector tangent to the vor-
tex. Due to the extremely small magnitude (in the ground state) of the circulation
about each vortex, 27#/m,, any fluid undergoing macroscopic rotation (or having
a macroscopic magnetic field) must contain a very large spatial density of these
vortices. The inter-vortex separation is expected to be much smaller, therefore, than
typical macroscopic length scales. For example, in the superfluid interior of a
neutron star that rotates at the angular velocity of the Vela pulsar, the inter-vortex
spacing is estimated to be about 10~ 3cm [10]. Similarly a neutron star having a
typical magnetic field of 10'2 G is expected to contain vortex lines with an average
spacing of about 10—°¢m [10]. It is appropriate, therefore, to perform a second
spatial averaging of the superfluid equations to smooth out these singularities.
Following Bekarevich and Khalatnikov [11] and Sonin [8] we replace the
singular superfluid velocities and magnetic induction which satisfy Eq. (1) with
smooth averaged quantities that satisfy

2nh

o

o,+a,B=—n,v,, (3)

where n, is the number of vortices per unit area perpendicular to v, (the unit vector
parallel to the average local direction of the vortices) [12]. To complete this
averaging process, the expression for the energy of the fluid must be modified to
include the internal energy associated with the vortices (e.g., the kinetic and/or
magnetic energy associated with the circulation of fluid about each vortex). In the
derivation of the superfluid equations in the following sections we include a simple
model for this vortex energy which is a natural generalization of the model
proposed by Bekarevich and Khalatnikov [11].

The goal of this paper is to derive a system of equations that describes the
dynamics of mixtures of charged superfluids on length scales larger than typical
inter-particle and inter-vortex separations. In Section II we present a standard
macroscopic derivation of the uncharged (a, = 0) versions of these equations based
on the conservation laws. In our derivation, however, we include a large class of
new vorticity-preserving forces in the superfluid velocity equations. Special cases of
these forces have been considered previously by Bekarevich and Khalatnikov [11].
These additional forces play an important role in the presence of vortices, as
illustrated by the vortex-averaged version of the theory considered here. We also
present in Section II a Hamiltonian formulation of the uncharged equations which
generalizes the work of Holm and Kupershmidt [5]. Using this Hamiltonian for-
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mulation, we turn in Section IIT to the coupling of electromagnetism to the charged
components of superfluid mixtures. We find that the new vorticity preserving force
terms introduced in Section IT have a profound affect on this electromagnetic
coupling. By properly choosing these forces, it is possible to allow each component
of the charged superfluid mixture to respond to the electromagnetic field via an
appropriate Lorentz force law. We think that the electromagnetic coupling
proposed here is far more natural, therefore, than those proposed by Vardanyan
and Sedrakyan [4] or Holm and Kupershmidt [5].

II. THE UNCHARGED SUPERFLUID EQUATIONS

The macroscopic dynamical equations for mixtures of superfluids are derived
here using the method developed by Landau [1] and Khalatnikov [2]. One begins
by imposing the appropriate conservation laws for this system: mass conservation
for each species of particle, the conservation of total momentum, and conservation
of entropy for the ordinary and the normal fluid. These equations together with an
assumed form for the variation in the energy density (the first law of thermo-
dynamics) imply an equation for the time evolution of the energy density of the
fluid. The requirement that this energy-evolution equation be a conservation law is
used to fix the remaining undetermined quantities in the theory: the form of the
stress energy tensor and the forces that appear in the equations for the fluid
velocities.

The equations that describe the evolution of this fluid mixture include the
conservation of mass of each species of particle, the conservation of entropy and the
total momentum conservation equations:

0.5+ Vi(pavl, + P2) =0, 4)
0pe+Vi(p.v2)=0, (5)
08y + V(S Vi) =0, (6)
0,5, + V(s.07) =0, (7)
8,P*+V,n°=0. )

In these equations &, is the partial derivative with respect to the time coordinate ¢
while V, is the three-dimensional Euclidean covariant derivative (i.e., in Cartesian
coordinates V, is just the partial derivative 8/0x”). Latin indices (a, b, ¢, etc., except
e which we reserve for the ordinary fluid) refer to the spatial components of vectors
and tensors, and summation over these repeated indices is assumed. The mass
current of each species of superfluid particle (measured in the frame co-moving with
v,y and including both superfluid and normal phases) is denoted P;. The entropy
densities of the ordinary and normal fluids are denoted as s, and s, respectively.
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The stress tensor is denoted 7% and the total momentum density of the fluid P“ is
taken to be equal to the sum of the mass currents of each species of particle, ie.,

Pi=p,v+Y, (p.0f,+ Py) 9)

In addition to the conservation laws, Egs. (4)~(8), dynamical equations for the
evolution of the superfluid velocities v2 and the ordinary fluid velocity v; must be
specified. Without loss of generality we take these equations to have the forms:

0,0% + 12V, 08 + Vo(p, — L v, — Vil ?) = FE, (10)
9,09 + 02V, 0% + Vo, — 4 |ve—v(n,|2)+;—°’ VeT, = F°. (11)

(Note that summation over Greek indices is not intended unless explicitly noted.)
The left sides of Egs.(10)-(11) are respectively the Landau equation for the
evolution of the superfluid velocity and the Euler equation for the evolution of
an ordinary fluid. The forces F? and F2 which appear on the right sides of
Egs. (10)—(11) are yet to be determined. The F; must either be curl-free or they
must vanish when the superfluid velocities v2 are curl-free, however, if the superfluid
equations are to ensure that the v evolve in a curl-free manner consistent with the
Landau equation in the absence of vortices. In these equations T, and T, are the
temperatures of the ordinary and normal fluids, while p, and u, are the chemical
potentials measured in a frame moving with velocity v{,. More precisely, if Us
is the energy density of the fluid in the frame moving with velocity v(, then
these quantities are defined as the indicated coefficients in the first law of
thermodynamics

dU,=T,ds, +u.dp,+ 3p.d |v.— v, P + Tiy dsgy
+Z {:u'a dpa+Pabd(vi_vl(’n))+ig dwub}' (12)

The terms, A2dw,,, which appear in Eq. (12), generalize the terms proposed by
Bekarevich and Khalatnikov [11] to describe the energy associated with the
vortices in the fluid. Since w,, is proportional to the number density of vortices (see
Eq. (3)) the magnitude of 1 is a measure of the energy per vortex. (See Sonin [8]
for a recent review of more complicated vortex-energy expressions.) When 47 is set
to zero the equations return to their original Landau form in which the superfluid
velocities satisfy Eq. (1) and have singular vorticities. When 47 is not zero, the
superfluid velocities are to be interpreted as averaged quantities that satisfy Eq. (3).
Khalatnikov [13] argues that A% should be taken to be parallel to g in this case
and have a magnitude such that i, -, is the energy density associated with the
fluid circulating about the vortices. We allow 13 to be an arbitrary Galilean
invariant vector field.
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The superfluid mass currents P? are also defined by the first law of thermo-
dynamics, Eq.(12). Nepomnyashchii [14] shows (on the basis of a particular
microscopic theory) that these currents must be the same as those that appear in
the mass conservation law, Eq. (4). We assume that the P¢ as defined by Eq. (12)
are equal to those that appear in the mass conservation law, Eq. (4), in general. The
precise form of these currents in terms of the fundamental variables of the problem
will not play a significant role in our analysis. However, these currents are Galilean
invariant vectors and therefore could be written as some linear combinations of the
Galilean invariant vector fields in the problem: v —vf,,, v; —v{,, and w;. While no
detailed physical motivation for including terms in P proportional to v —v{,, or
®? has ever been proposed, Khalatnikov [13] has speculated that terms propor-
tional to w? might be needed when the fluid velocities are large. It is probably most
appropriate, nevertheless, to think of P2 in terms of Andreev and Bashkin’s [3]
expression

Pi=Y pos(vs—ve). (13)
B

The mass density matrix p,; must be evaluated for any physical system of interest
on the basis of some micro-physical model for that system. Explicit expressions for
p.p have been derived by several authors [3, 4, 10, 15]. They find that p,; must,
quite generally, be symmetric in «f, but that it is not diagonal for many cases of
interest (including the neutron—proton superfluids of neutron—star interiors).

The dynamical evolution of an uncharged superfluid mixture would be com-
pletely determined by Egs. (4)-(12) if expressions for the stress tensor n® and the
forces F¢ and F¢ were known. The method of Landau [1] and Khalatnikov [2]
for determining these quantities is to demand that the evolution of the energy
predicted by these equations is'in fact a conservation law. The energy density of the
fluid U is related to U,, the energy density measured in the frame of reference
moving at velocity v{,,, by the expression

U=U,+ va(bn)_— %pv(bn)v(n)b’ (14)

where p denotes the total mass density of the fluid, p=p.+ X, p,- The time evolu-
tion of this quantity can be computed with the aid of Eqs. (4)-(12). The resulting
expression is

at U+ Vb Ub = pe(veb - U(n)b) Fl; + va(n)a {nab “Pgab - pev:vg
3 L08R+ (pgt, + P) oy + g0 — z:;w:]}

+ Z [Pab + (V X xa)b] [Fz + 2(v(n)a - vaa) V[avZJ:L (15)
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where the energy current U“ and the pressure p are defined by the expressions
U=T,5.05 4 TuySmyVny + (e — L IVel?) pevs + (n**— pg®) V(mys

+Z (ua_% Iv(n)|2)(puvt(ln)+ PZ)
+Y (A X [Fot (Vo= Vi) x @, 1} (16)

and

p= _U0+Tese+T(n)s(n)+uepe+Z Polly- (17)

The Euclidean metric g, (i.e., just the identity matrix in Cartesian coordinates) and
its inverse g% (which appears explicitly in Eqgs. (15) and (16)) are used to raise
and lower tensor indices. Square brackets surrounding a pair of indices indicates
anti-symmetrization, e.g., V%) = 4V’ — Vu3).

Equation (15) will guarantee the local conservation of energy of the fluid if the
right side vanishes [16]. It is natural to require that the term proportional to
V,0(ma on the right vanishes separately by defining the stress tensor as

n% = pg® + pviv? + Y [02P8+ (p, 05, + P2 00, + gl —Alw?].  (18)

This expression for n* is a symmetric tensor if the mass currents P are given by
Eq. (13), with p,; symmetric in «f and A= 4,05 (where A, is any scalar function).
It is also natural to set the force F¢ equal to zero. While it is possible that there
could exist some non-electromagnetic force acting on the ordinary fluid, we are
unaware of any significant force of this type (other than viscous dissipation) for the
case of the electron fluid in neutron star matter. Since we are ignoring dissipation
in this paper and the electromagnetic forces in this section, we set F2=0. This
leaves only the term containing the forces F. This term will vanish if F¢ is given
by

Fi=Y KG[Pg+(Vxhg)y]+2(00mp — Vas) Vi, (19)
B
where K5 is any tensor that is anti-symmetric in the sense that K3 = —K}%. The

forces F? must vanish, however, when the vorticity of the superfluid velocities
vanishes if Eq. (10) is to return to the Landau form in the absence of vortices. The
tensor K2, must vanish, therefore, whenever the vorticity of v7 vanishes. A simple
example of a tensor that meets these criteria is

K=Y 2K, V07, (20)
Y




CHARGED SUPERFLUID MIXTURES 117

where K,g, is symmetric in af. For the remainder of this paper we restrict our
attention to this case with K, an arbitrary function of s(,) and p,,. The forces given
by Eqgs.(19)-(20) are generalizations of those included by Bekarevich and
Khalatnikov [11] in the non-dissipative limit of their equations. It is worth noting
that these forces do not vanish when the coefficients A2 are set to zero. In this case
the forces become singular at the locations of vortices. By introducing A7 we may
interpret F¢ as the average force the vortices exert on the average flow of the super-
fluids. These forces may also be considered, therefore, to be generalizations of the
vortex elasticity forces introduced by Hall [17] and the “mutual friction” forces
introduced by Hall and Vinen [18] and generalized to mixtures of superfluids by
Onuki [19].

The main purpose of this paper is to determine the form of the electromagnetic
coupling to these superfluid mixtures. This is most easily accomplished by intro-
ducing a Hamiltonian formulation of the equations. Holm and Kupershmidt [5]
give such a formulation for the special case of the fluid equations presented above
when K,z and A% are zero. Here we generalize their work to include non-zero
values for these quantities. The Hamiltonian density is taken to be the energy
density of the fluid; thus, the Hamiltonian of the fluid, H, is given by

H=J. dix U. 1)

It will be convenient (primarily for the discussion on charged fluids that follows) to
relabel the fluid variables, v¢, v2, and P* when they occur in the Hamiltonian form
of the equations:

U, =v;, (22)
ul=v?, (23)
Y= P (24)

Thus, using Egs. (12) and (14), the variation in the Hamiltonian may be written as

6H=J. dsx {Te 6Se + (”e_ % |v(n)|2) 5pe+ pe(ug—v?n)) 5ueb + T(n) 6S(n)

£ (et 1Vl 30+ 5 [P+ (V x )] Sttgy + 01, m}. (25)

In addition to the expressions for the Hamiltonian and its variation, the
Hamiltonian formulation of the fluid equations must include the definition of a
Poisson bracket. In terms of this bracket the evolution equations could then be
expressed in the standard Hamiltonian form

0,F=—[F H], (26)
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where Fis an arbltrary smooth function of the dynamical fluid variables (i.e., s., p.,
U, S(nys Pas g, and Y9). It is reasonably straightforward to find a bracket through
which Eq. (26) reproduces the fluid equations (4)—(11) and which satisfies the anti-
symmetry property [F, G]= —[G, F] for arbitrary smooth F and G. The following
bracket satisfies these conditions

oF G

5 < Sub Ko, V73, (27)

[F,G]=(F,G)— 2jd3

where (F, G) is defined by

OF s, 0G G oF oG oG
3 b b | —
(F.6)=] a* {s v [pea AN eéY”]*apeV [6us+”ew]

e

RPN

A P e

i (e

2o o] e

rsv 2 2 (v ) o

The representation of the bracket in Eq. (27) is non-canonical. To establish that
it is a Poisson bracket, it is necessary to verify that the Jacobi “identity,”

[E, [F,G11+[F [G, E]11+[G, [E, F11=0, (29)

is satisfied for arbitrary smooth E, F, and G. The bracket (F, G) is known to satisfy
the Jacobi identity because it is the direct sum of the Poisson bracket for an
ordinary perfect fluid [20] and the Poisson bracket for a mixture of superfluids
given by Holm and Kupershmidt [5] (up to simple algebraic changes of variables).
Thus, (F, G) is a Poisson bracket. In the Appendix we discuss how the Jacobi iden-
tity can be verified for brackets like [F, G] that are constructed by adding terms
to a Poisson bracket. We have carried out this computation and have determined
that [F, G] does, in fact, satisfy the Jacobi identity whenever Ko,,,y satisfies the

following conditions:
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0K K
0=s, —24+Y p, 2B+ K, (30)
(n 35 0m ;P ap., By
0—_-6_K°‘_ﬂ7+2 K“WKGM, (31)
apl‘ a
O=Z (Kuma’Kaﬂy_ uﬂaKamy)' (32)

We have also shown that Eq. (30) is a necessary condition for Eq. (29) to hold. We
suspect that Egs. (31) and (32) are also necessary conditions, although we have
been unable to prove this. That there exist non-trivial solutions to Egs. (30)-(32)
can be illustrated for the simple “diagonal” case in which K,g, is proportional to
Kronecker deltas: K4, oc 8,,0,,. In this case the general solution to Egs. (30)-(32)
is given by

_ 50!75137

= , 33
pm+ K’as(n) ( )

afy

where the x, are arbitrary constants. We note that the case x, =0 is the generaliza-
tion to mixtures of the “momentum representation” bracket introduced by Holm
and Kupershmidt [21] for a single component “non-rotating” superfluid, written
here in a somewhat different choice of variables.

II1. THE ELECTROMAGNETIC-SUPERFLUID INTERACTION

In this section we investigate the coupling of the charged components of the
superfluid mixture to the electromagnetic field. The most efficient way to accom-
plish this coupling uses the procedure, based on the Hamiltonian formulation of the
equations, that is discussed by Holm and Kupershmidt [5]. In this approach,
modeled after the electromagnetic coupling to a charged particle, the physical
momenta in the problem are replaced by their “canonical” counterparts (which are
formed by adding terms to the physical momenta that are proportional to the
electromagnetic vector potential). The Hamiltonian is rewritten in terms of these
“canonical” variables, but its value (for a given fluid state) is modified only by the
addition of the terms needed to describe the energy of the electromagnetic field. The
Poisson bracket is unchanged (when written in terms of these “canonical”
variables) except for the addition of the terms needed to describe the dynamics of
the electromagnetic field itself. This procedure has been described as. “minimal
coupling,” since it limits the electromagnetic-interaction terms in the fluid equations
to those obtained by appropriately replacing the physical momenta of the
uncharged theory with the corresponding “canonical” momenta. The fluid equa-
tions generated in this way interact with the electromagnetic field only through
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forces that are qualitatively similar to the Lorentz force. These equations guarantee
that the appropriate conservation laws are satisfied identically.

The state of the superfluid mixture is described by the dynamical variables s,, p,,
U5 Stnys Pas Uy, and P? Each of the vector fields among these dynamical variables
is proportional to the physical momentum density of its corresponding constituent
particles: P“ is the total momentum density of the fluid; v¢ is proportional to the
momentum density of the superfluid particles (or Cooper pairs) of species «
(appropriately averaged when AZ is non-zero); and v is proportional to the
momentum density of the ordinary fluid. Thus, it is appropriate to define the
following “canonical” variables:

Y= g+ T | 4 (34)
uij=vi+a, A%, (35)
u;=v, +a, A", (36)

where A“ is the electromagnetic vector potential and a, = q,/m,c is the charge to
mass ratio of species a divided by the speed of light [22].

The next step in this minimal coupling procedure is to add to the Hamiltonian
the terms that describe the energy of the electromagnetic field. The standard macro-
scopic expression for the variation of this energy is

1
dUEM=E [E‘dD,+ H°dB,]. (37)

where D“ is the displacement, B* is the magnetic induction [B= (V x A)?], and
where this expression serves as the definitions of E¢ and H< the electric and
magnetic fields. When vortices are present in the superfluid there exist microscopic
electrical currents circulating about each vortex. The vortex averaged equations
neglect these currents and the magnetic energy that is associated with them. While
this energy could be included implicitly in the definition of H“ given in Eq. (37), we
find it to be more convenient to include an expression for this additional energy
explicitly:

1
dUEM=E [E‘dD,+H“dB,]+) a,2%dB,. (38)

This additional energy term, when combined with the term A2dw,, that was
included in the expression for the fluid energy in Eq. (25), results in the following
expresion for the internal energy associated with the vortices: Ald(w,, +a,B,).
Since the vortex averaged version of the London equation (3) dictates that
w; + a,B® is proportional to the density of vortices, it is appropriate that the varia-
tion of this combination yields the internal vortex energy 1%. We note that the term,
a,4;dB,, is also consistent with the expression for the magnetic energy density of
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a flux line lattice as computed by de Gennes and Matricon [23]. When the
additional terms in Eq. (38) are added to the expression for the variation of the
fluid Hamiltonian in Eq. (25) and when the result is re-expressed in terms of the
“canonical” variables of Egs. (34)-(36), the following expression for the variation of
the total Hamiltonian is obtained:

0H= J’ dax{Tease + (ﬂe - % lv(n)l2 - aevfn)Ab) 5Pe + pe(uz - aeAb - U?n)) 6ueb

+ Ty 05y + Y (pa— 3 |V(n)|2 - aaU?,.)Ab) 0p.+ U?n) oY,

1
+Y [P2+ (VX 201 6uab+z7; E® <§Db+[zl7—r v xH)b—% Jb] 6A,,}, (39)

where the total macroscopic electrical current, J¢, is defined by

Ji=a,cp 08+ a,c(p v, + PY). (40)

The final step in this minimal-coupling procedure is to construct the appropriate
Poisson bracket. By assumption, the fluid portions of the bracket are the same
(when written in terms of the “canonical” variables) as the uncharged-superfluid
bracket, [F, G], of Eq.(27). One simply adds to [F, G], the standard Poisson
bracket for the electromagnetic field:

(41)

OF 3G _ oF G
5A4° 8D® oD° 64°)

(F, G} = [F, G] +4ne j' dx g“b< il

Since {F, G} is defined as the direct sum of [F, G] and the standard bracket for the
electromagnetic field, it will satisfy the Jacobi identity whenever [F, G] does.

Having specified the desired form of the Hamiltonian in Eq. (39), along with the
bracket, {F, G} in Eq. (41), the time evolution of any quantity is determined via
Hamilton’s equations:

8,F= —{F, H}. (42)

In particular, the time evolutions of the dynamical variables s., p., U, S(n)s Pa> Vao
P?, A4° and D° are determined. The resulting evolution equations for the mass and
entropy densities are unchanged from their uncharged analogues, Eqgs. (4)-(7) (ie,
the corresponding conservation laws). In contrast the total fluid momentum
density, P4, is no longer conserved as it was in Eq. (8). This quantity now evolves
as

1 a
6,P“+Vb7r“b=aE“+[<EJ+z aanxa>xB], (43)
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where P“ is the total fluid momentum density of Eq. (9), n* is the fluid stress tensor
of Eq. (18), and the total electrical charge density ¢ is defined by

C=a,cp,+Y, a,cp,. (44)

Note that the total fluid momentum responds to a Lorentz force in which the elec-
tric current includes contributions of the form ca,V x A,. This additional current
can be associated with the microscopic motions of the particles of species a which
circulate about the vortices. In effect a,A, acts as a magnetization of the fluid. The
momentum evolution equation (43) can also be written in a form in which the
Lorentz force on its right side involves only the macroscopic current J% This is
accomplished by redefining the stress tensor (including the pressure) in Eq. (18) by
making the substitution @, — @, + a,B. Since the combination w, + a,B represents
the density of vortices, by Eq.(3), this re-expressed version of the stress tensor
might be considered to be the more natural one.

The equations for the evolution of v? and v¢, Egs. (10) and (11), are also trans-
formed by the addition of electromagnetic terms. In particular, the forces F, and F,
become

Fa =~V XQ, + caaE +v(n) X (ma + aaB)
+Z Ka/,y(Pﬁ-FVxlﬁ)x(c)y-#ayB) (45)
By
and
F,=a,(cE+v,xB). (46)

While the ordinary fluid responds to the standard Lorentz force, the force on the
superfluid is rather more complicated. For now let us observe only that this force
is influenced profoundly by the presence of the new vorticity preserving forces that
are proportional to K,4,. We note that this force reduces to the expression given by
Holm and Kupershmidt [5] for the case K.z, = A2 =0. We also note that this force
agrees with that of Vardanyan and Sedrakyan [4] only when the vortex-free
London equation, ®,+ a,B=0, is satisfied or when K4, has the value given in
Eq. (57) and the mass density tensor, p.p of Eq. (13), is diagonal. Their equations
do not appear to be consistent with energy conservation under any other
circumstances.

The Hamiltonian formalism also produces the equations for the evolution of the
dynamical electromagnetic fields, 4* and D% These are simply the time-dependent
Maxwell equations,

0,A4°= —cE® (47)

and

3,D%=c(Vx H)* — 4nJ*. (48)
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The divergence of Eq. (48) guarantees that the constraint equation,
V,.D?=4no, (49)

is preserved as the fluid evolves. We note that the definition of the magnetic field
H* given in Eq. (38) allows the equations for electromagnetic fields to be written
in a form that includes only the sources, o and J*, associated with the macroscopic
motions of the fluid.

It is enlightening to consider the special case of a simple fluid of point
charges for which the electromagnetic energy density assumes the form Ugym =
(D-D+B-B)/8n. In this case the clectromagnetic fields are related by the
expressions

E*=D* (50)
and

Hf=B"—4n Y a,A%. (51)

For this case the Maxwell equation (48) can be re-expressed in terms of E¢ and B*:

0,E*=c(VxB)i—4nJ—dnc ¥ a,(Vx k)" (52)

We note that the current source in this form of the equation (including the
contributions ca,V x A, from the microscopic vortices) is the one that appears in
the expression for the Lorentz force that acts on the total momentum of the fluid
in Eq. (43).

Hamilton’s equations, (42), determine the evolution of all physical quantities,
including the total momentum and energy of the combined superfluid—electro-
magnetic system. We note that the equation for the evolution of the momentum,
Eq. (43), can be rewritten in a form that makes the conservation of the total
momentum self-evident:

1
0=6, |:Pa+__ (DXB)G]'*’VI, {nab_UEMgab
4nc

|1
(e gs) | D HB T kB 5

Similarly, the equation for the evolution of the total energy of the system can be
written in the form of a conservation law:

0=08,U+ Ugm)+ Vs [U”+4—C—n ExH) +c Y a(Ex x,,)b]. (54)
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That these conservation laws are satisfied is unrelated to the issue of whether the
bracket {F, G} in Eq. (41) satisfies the Jacobi identity or not. Thus, the evolution
equations presented here guarantee momentum and energy conservation for any
values of K,g, even if they cannot be expressed as a rigorous Hamiltonian system.
For simple fluid systems in which the electromagnetic fields satisfy Eqgs. (50)(51),
the expressions for the electromagnetic energy flux, stress tensor, and Poynting
vector in these conservation laws reduce to their standard forms in terms of £ and
B“ [24]. In this special case the total stress tensor is symmetric whenever the fluid
stress tensor % is symmetric.

Up to this point we have conducted our discussion of the electromagnetic
coupling to mixtures of superfluids without restricting the values of the coefficients
K4, that appear in the superfluid force, Eq. (45). Ultimately, the choice of these
coefficients must be based on experimental criteria, or at the very least on a
microscopic model of the material. We conclude this section by suggesting a natural
choice for the K4, from the viewpoint of the macroscopic analysis developed here.
Since these coefficients participate in the superfluid—electromagnetic coupling, we
choose them to ensure that this coupling has the form of an appropriate Lorentz
force. In analogy with the force that acts on the total momentum of the fluid,
Eq. (43), it seems natural to require that F, take the form of the Lorentz force with
an electric current arising from the macroscopic flow of the superfluid condensate
plus the microscopic circulation of these particles about the vortices. The macro-
scopic current associated with the particles of species a that have condensed into
the superfluid state is given by

IO =ca(pV,,+P,), (55)
where the superfluid component of the mass density is denoted p¢. The superfluid
force equation will reduce to the desired form,

1
Fa = (s) [pz(xs)(v(n) - vuz) + Paz + V X ;"a) X (l)a

1
+ca,E+— (I +ca,Vxk,)xB, (56)

cpy

when K ;, is chosen as
1

Kaﬂ.’,:m 5:1},5!].’,. (57)

This choice generalizes to mixtures of charged superfluids the interaction proposed
by Volovik and Dotsenko [25] and Khalatnikov and Lebedev [26]. It is
interesting to note that the argument given for selecting this interaction was
different in each of these investigations. We chose this interaction so that the
superfluid velocity would respond to an appropriate Lorentz force law. The
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macroscopic analysis of the uncharged fluid equations by Khalatnikov and Levedev
[26] chose an interaction equivalent to Eq. (57) so that the force on the superfluid
velocity would be independent of the normal fluid velocity. In contrast, Volovik
and Dotsenko [25] base their choice of this interaction on a microscopic analysis
of the fluid equations and the underlying dynamics of the fluid vortices (see also
Rasetti and Regge [27]). We also note that the choice of K,g, in Eq. (57) does not
in general have the form, Eq.(33), needed for the bracket to satisfy the Jacobi
identity. Except for the case of a zero-temperature fluid (when s, = O0and p®=p,)
these fluid equations do not, therefore, have a rigorous Hamiltonian formulation.
Volovik and Dotsenko [25] indicate, however, that a Hamiltonian formulation can
be recovered (even for non-zero temperatures) if the superfluid component of the
mass density is treated as an independent dynamical variable. While this may be
appropriate under certain circumstances (e.g., near the superfluid transition
temperature [287]), we have taken the more traditional approach of assuming that
p') is given in terms of the dynamical variables by an appropriate equation of state.

The superfluid force, Eq. (56), can be re-expressed in a form that illustrates more
clearly the physical significance of its various terms. Let us consider the case when
the superfluid mass currents P, are given by the Andreev and Bashkin [3]
expression, Eq. (13). If we define the density of normal particles of species a as the
coefficient of v, in the mass current, then the superfluid density p¢ is related to
the mass density matrix p,g by,

P9 =Y pus- (58)
B

Using this relation, the superfluid force can be written as

PS)Fa =Z paﬂ(vﬂ—va) Xma+ (V X la) X (ma+aaB)
B .o

1
+caap§f)E+Z JOxB. (59)

In this expression, the first term is a mutual drag force between the flow of one
species of superfluid past another. This term vanishes if the mass density matrix is
diagonal. The next term is analogous to the force, introduced by Hall [17], to
describe the elasticity of the vortices. When the vortex energy A, is taken to be
proportional to @, +a,B, this term is the natural charged-fluid generalization of
Bekarevich and Khalatnikov’s [11] expression for this force. The last terms are the
Lorentz force with an electric current produced by the macroscopic flow of super-
fluid particles. We note that the current that appears in this Lorentz force contains
Fermi-liquid effects (by way of the mass density matrix p,z) analogous to those
computed by Easson and Pethick [29] to describe non-superfluid protons in a
neutron-star interior. This expression also reduces to the standard Lorentz force
when there is only a single component charged superfluid [30].
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The expression, Eq. (57), for the coefficients K5, could be generalized slightly by
setting

1
K.p = (F_ﬂ;) 5a75ﬁy' (60)

The functions B, correspond to the Hall and Vinen mutual friction coefficient i
discussed by Bekerevich and Khalatnikov [11]. Abrikosov, Kemoklidze, and
Khalatnikov [31] argue, in agreement with our macroscopic analysis, that this
coefficient must be set to zero for charged species in order for the theory to predict
what they considered to be the correct dispersion relation for helicon waves. The
theory of Noziéres and Vinen [32] obtains the same dispersion relation for these
waves while Bardeen and Stephen [33] obtain a more general dispersion relation
(implying a non-zero value for f’). Jones [34] has argued that the theory of
Nozieres and Vinen [32] is more applicable to the proton superfluid of neutron-
star interiors and implicitly that f. should be zero for the case of primary interest
to us. For uncharged species the situation is less clear. Experimental measurements
on Hell show that B, is small (p’8, < 1) but not zero for that system [35].
Nevertheless setting this coefficient to zero appears to be a good approximation,
especially for temperatures far below the critical temperature. The coefficients B.
must vanish (for charged or uncharged species) when the temperature vanishes;
otherwise the superfluid force, Eq. (45), would contain terms proportional to the
normal velocity, v, which is not well defined in this limit. A more complete
discussion of these mutual friction effects can be found in Sonin [8]
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APPENDIX: MODIFYING PoissON BRACKETS

In this appendix we investigate the conditions under which terms can be added
to a Poisson bracket and have the result continue to satisfy the Jacobi identity.
Consider the Poisson bracket,

(F, G):j dx ;TFA; [X"E ((i—i)] (61)

In this expression F and G are arbitrary functions of the fields z*, and the index 4
runs over the complete collection of these fields. The operator X “# acts to the right
(on the argument in parenthesis) and is anti-symmetric in the sense that
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(F, G)= —(G, F). Summation over repeated indices 4, B, C, etc. is assumed. We
also assume that this bracket satisfies the Jacobi identity,

0= 3 (& (FG)) ' (62)

(EFG)

where the indicated sum is to be performed by adding the terms obtained by
cyclically permuting the arbitrary smooth functions E, F, and G.
Next we modify the bracket (F, G) as

. OF [ . (5G
[F,G]:(F,G)+[dxg;[y (52—,3)] (63)

The operator Y42 is also anti-symmetric so that [F, G]= —[G, F]. We wish to
investigate the conditions under which the combined bracket, [F, G], satisfies the
Jacobi identity. A straightforward calculation yields the identity:

 wmen-- % Jexee{[re(5)) 5o ()

(EFG) (EFG)
OF SF [8YCP /686G
AB 4By [ O£V | o8 ou ] 6
+[(X Y )<6z5>] 6zC[6zf* <5z>]} &)

The combined bracket, [F, G, satisfies the Jacobi identity if and only if this expres-
sion vanishes for all smooth E, F, and G.

In general, it requires an extremely tedious calculation to determine whether or
not the Jacobi identity is satisfied for a given bracket. In some cases, however, one
is interested in determining whether a relatively simple addition to a given Poisson
bracket results in a bracket that also satisfies the Jacobi identity. In that case,
Eq. (64) provides a relatively. simple method of checking the Jacobi identity. When
the operator X2 is rather complicated compared to Y48 Eq. (64) is reasonably
easy to evaluate. It involves only the “cross terms” between these operators plus
terms that are quadratic in Y“Z. In contrast it is necessary to evaluate all of the
terms that are quadratic in X“? in order to verify the Jacobi identity for the
original bracket.

The Poisson bracket for a mixture of superfluids falls into this general category.
The bracket (F, G) defined in Eq.(28) is quite complicated but it is known to
satisfy the Jacobi identity (based on Lie-algebra arguments). The combined bracket
[F, G] of Eq. (27) involving K,g, is a relatively trivial modification of the original
bracket. Thus Eq. (64) provides a relatively simple way to check whether the Jacobi
identity is satisfied. We have evaluated this identity for the brackets defined in
Egs. (27) and (28) with the result,
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Y. [E[FGI]

(EFG)
G
- (E%;) uzv: '[ 4 {2 %: [S(n) ZI;‘:’V)%LZ‘: P aaKTiw+K"vv] V[Cu;ﬂ ‘;s_fft ‘;S'f; v %

+2 % [m ag; - +Kﬁu1Km] Vi) f—i % v %

+2 % [Kopo Koy — Ko Kopy ] VEu? % % b ;SuGﬁ

by 4 u®
H2 T LK VR Ky VK] VO %‘i ;51 ;S_lf’é

+§y [K e Ky — Kppo Koy ] YV ;i %, f?_:’é} (65)

This expression clearly vanishes if the coefficient of each term in the integrand
vanishes separately. Four conditions are sufficient to guarantee that the integral
vanishes for all smooth E, F, and G: the three conditions in Eqs. (30)—(32) plus the
additional condition,

0=y (Ko, VKp— K5 VKo, (66)

Since Eq. (66) is a consequence of Egs. (30)—~(32), it is not an independent condi-
tion. Only the first term in the integral in Eq. (65) involves the variations with
respect to Y Since the entire integral must vanish for arbitrary smooth functions
E, F, and G, it follows that the coefficient of this first term must vanish separately.
Thus Eq. (30) is a necessary condition. All of the remaining terms involve only
variations with respect to . We have performed numerous integrations by parts
of the expression given here, but have not-been able to produce a form of this
equation from which the remaining necessary conditions may easily be extracted.
The weakest conditions that we have found, however, are Egs. (30)-(32); and we
suspect that they are in fact the necessary conditions.
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