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ABSTRACT

A method is described for determining the dissipative effects of viscosity and gravitational radiation on the
modes of rapidly rotating Newtonian stellar models. Integral formulae for the dissipative imaginary parts of
the frequencies (i.e., the damping or growth times) of these modes are derived. These expressions are evaluated
numerically to determine the angular-velocity dependence of these dissipative effects on the I = m f-modes of
uniformly rotating polytropes. The importance of the gravitational-radiation driven secular instability in limit-
ing the rotation rate of neutron stars is estimated using these results.

Subject headings: hydrodynamics — stars: neutron — stars: pulsation — stars: rotation

1. INTRODUCTION

This paper continues the study of the oscillations of rapidly
rotating Newtonian stellar models that was begun by Ipser &
Lindblom (1989; 1990, hereafter referred to as Paper I). Paper I
developed a method of finding the oscillation modes of rapidly
rotating stars in terms of a single scalar potential 6U for the
case when the effects of dissipation could be neglected. In this
paper we extend this analysis to include the dissipative effects
of viscosity and gravitational radiation on these modes. The
secular instabilities driven by these dissipative effects are
widely believed to be the mechanism that limits the rotation
rate of neutron stars (see, e.g., Friedman 1983; Wagoner 1984).
Thus a careful analysis of these effects is essential in order to
understand the range of this important observable quantity.
The basic dissipative hydrodynamic equations are introduced
in § 2 and equations for the dissipative imaginary parts of the
frequencies of the oscillation modes are derived. In § 3 these
dissipative time scales are evaluated numerically for sequences
of rapidly rotating polytropes. Finally, in § 4, these dissipative
time scales are used to compute the critical angular velocities
above which rotating neutron stars are unstable.

2. EQUATIONS FOR THE DISSIPATIVE TIME SCALES

The state of a Newtonian fluid is specified by giving its mass
density, p, and velocity, v% at each point. The equations that
describe the evolution of these quantities, including the effects
of viscosity and gravitational-radiation reaction, are (see for
example Landau & Lifshitz 1975)

0,p+ V (pv)=0, 1)
and
0,0° + 1°V,1° + VOU = V' Dgy + 2p 1V, (na®) + p V(o) .
()]

In these equations 0, and V, represent the partial derivative
with respect to time, ¢, and the spatial Euclidean covariant-
derivative (i.e., just the partial derivatives d/0x* in Cartesian
coordinates) respectively. The potential U is defined as

213

U = h — @, where his given by the integral
? dp
h(p) = J -,
o P(P)
and p is the pressure of the fluid. The Newtonian gravitational
potential, @, satisfies the equation

VeV, ® = —4nGp 4)

where G is the gravitational constant. The potential ®gg
couples the fluid to gravitational-radiation reaction (see, e.g.,
Thorne 1969) by the formula

©)

© ] d21 + lD;n
Qo= —1, 2, (=U'NrY] A ()
1=2 m=~1
where D} is the mass multipole,
Dy = f prYImdx, ©)
N 4nG I+ 1D)I+2 ™

T A DRl + DR

and c is the speed of light. Finally, n and { are the shear- and
bulk-viscosity coefficients (which are taken to be given func-
tions of p), while ®® and o are the shear and the expansion,
given by

o™ = LVt + Voo — ®)

3g*V. ),
and
a=V,".

©®

The tensor g,,, the Euclidean metric (i.e., the identity matrix in
Cartesian coordinates), and its inverse, g°®, are used to raise
and lower tensor indices.

The time-independent (i.e., equilibrium) solutions of these
equations are the rigidly rotating subset of those considered in
Paper I. In particular the fluid velocity, v* = Q¢® = w?QVg, is
a constant multiple of ¢° which satisfies Killing’s equation,
0=V,¢, + V,o,;ie,

V,0=0. (10)
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Throughout this paper we refer to the standard spherical coor-
dinates as r, 0, and ¢, and the cylindical radial coordinate as
w =r sin 0. The fluid equation (2), can be integrated com-
pletely under these circumstances, with the result

C = h(p) — ® — 10°Q? (11)

where C is a constant, and ® satisfies equation (4). The pro-
cedure that we use to find numerical solutions to these equa-
tions, representing models of rotating stars, is described in
Paper 1.

We now consider the equations for the evolution of small
perturbations of an equilibrium solution. We denote the
(Eulerian) perturbation of a quantity g by dq. In the equations
that follow, any function not prefaced by 6 is assumed to be
evaluated in the equilibrium solution. We begin by linearizing
equations (1)+4) about an arbitrary equilibrium solution. The
resulting equations are given by

0,80 + 0"V, 8p + V(pv) =0, (12)
8,60° + v°V, 60" + Sv°V, v* + V46U
= VO 5®ag + 20 V(1 80%) + p V(L Sa), (13)
and
VY. 60 = —4nGop . (14)

Next, we introduce an “energy ” of the perturbations:
1 1
E@) = 3 f[pév“év;" + > 6p oU* + op* 6U):|d3x , (15)
where * represents complex conjugation and 6U = p/p — 5®.

The time derivative of this quantity can be evaluated using
equations (12)14), with the result

E
iid? = - f (2n 60" 5%, + { 60 Sa*)d>x

12 & [d?*1sDy (doDpn
2.5 ,,,:Z_l(_l)N’[ A3+t dt

d21+15D*m déDm .
dtz,H‘ <dt’ +lmQ§D;”>:|. (16)

In this expression the perturbed quantities 6%, o, and 6D}
are related to the perturbations of the fundamental fluid vari-
ables dp and ov° by

— imQ 51);*"'>

80 = §(V2 0P + VP v° — 2g™V, 5¢°) (a7
60 = Va 60“ s (18)

and
oD} = jﬁpr’Yr'" dx . (19)

We now assume that all perturbed quantities have sinu-
soidal dependence in the coordinates t and ¢: dq =
8q(r, 0)e** ™ where o is the frequency of the mode and m is
an integer. Under this assumption, the time derivative of the
energy, E, is related to the imaginary part of the frequency,
1/t = Im(w), as follows

dE 2E
I — (20)

We can use this equation to obtain explicit integral formulae
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for the contributions to the imaginary part of the frequency
from each of the dissipative mechanisms:

1 1

?=2—EJC5650*(13X, 21)
4

1 1 ab * J3

T=E noo® dok d°x , (22)
n

and
1 Q 2
—t O S Nerttepropm, ()
R 1=Imin

where [, is the larger of 2 or |m|. The imaginary part of the
frequency is the sum of these individual contributions: 1/7 =
Lz + 1/, + 1/16r-

The expressions, equations (21)23), for the damping times
7, Ty, and Ty are identities that are satisfied by the solutions to
equations (12)«14). Since these equations are not easily solved,
the expressions, equations (21)+23), are not directly useful.
However, when the effects of dissipation are small (i.e., when {,
n, and N, are small in a suitable sense) these expressions can be
used to obtain useful approximations for 7,, 7,, Tgg. Under
these circumstances, the exact solutions to the perturbation
equations for dp, 6v°, and w are nearly identical to the corre-
sponding solutions to the nondissipative perturbation equa-
tions. In this case dp and v are determined (approximately)
by the single potential 6U:

_ V{p0®V,U)
op = o ame (24
50° = iQ™V, U , 25)

as described in Paper I. In these equations, w represents the
real frequency of the nondissipative pulsations, and Q* is given
by

. 2iAQ Vet
Qb=w+mQ (o+mQ:|’ (26)

where 1 = (0 + mQ)*/[(w + mQ)? — 4Q?]. (We note that
0% = Q*" and V, 0** = 0.) Using equations (24) and (25), the
damping times 7, and 1, may then be -expressed
(approximately) as the following integrals involving the deriv-
atives of 6U :

[lg"b + (1 — A)z%zb —

1 Qab
E== * a )cb 3
> JpVaéU [QCQ + mQ] V,6Udx, (27)
1 1
—=— jcva V,8U*Q®Q*V, V,5U d°x , (28)
7, 2E
and
1 1
= SU*
T Jnvavb U

X (Qg Qecgbd + QaCde _% Qachd)Vc V,,(SU d3x . (29)

The gravitational-radiation damping time, tgg, iS approx-
imated from equation (23) by using for @ the nondissipative
value of the frequency, and for 6D}",

1

oDl = —
!  + mQ

J FY Y (00, SU)x . (30)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991ApJ...373..213I

T II373..213T 0

o]

[T991A

No. 1, 1991

TABLE 1
PHYSICAL PARAMETERS OF NONROTATING POLYTROPES

St Po_ (g em~3)
- M®  R(km) 10 Q6 TEK)
[ 1.0 15.000 1.407 5431 10°
1.5 17.171 1.407 5431 10°
2.0 18.899 1.407 5431 10°
3/4 ........ 1.0 13.617 1.881 6279 10°
1.5 14.245 2.464 7188 10°
2.0 14.707 2.985 7911 10°
| S 1.0 12.533 2412 7111 10°
1.5 12.533 3.618 8709 10°
2.0 12.533 4.824 10056 10°
S/4 ..., 1.0 10.407 4213 9397 10°
1.5 9.822 7.517 12554 10°
2.0 9.426 11.339 15416 10°

2 Index n is the parameter in the polytropic equation of state: p = kp' * /"

b Frequencies and damping times are given in units of Q, = (nGpy)*/%,
where p, is the average density of the nonrotating star.

These expressions provide first approximations for the values
of the dissipative damping times 7;, 7,, and 7gg. In neutron
stars the effects of dissipation are in fact suitably small, since
the pulsation periods are much shorter than the damping
times, i.e., wt > 1 (see Table 2). Thus, these expressions are
excellent approximations of the imaginary parts of the fre-
quency.

3. DISSIPATIVE TIME SCALES OF ROTATING POLYTROPES

The dissipative time scales 7, 7,, and 75 have been evalu-
ated numerically for the I = m f~-modes of a range of uniformly
rotating polytropic stellar models. The parameters in the poly-
tropic equations of state were selected so that the macroscopic
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properties of these models approximate those of more realistic
neutron-star models. The index n in the polytropic equation of
state, p = xkp! " 1/" was chosen to ensure that the central con-
densations of these models were comparable to those of more
realistic neutron stars. The values n = 3/4, 1, and 5/4 roughly
span the range of realistic equations of state that have been
proposed (see, e.g., Cutler, Lindblom, & Splinter 1990). The
parameter k in each equation of state was chosen so that the
radius of the 1.5 M, stellar model is comparable to a model
having comparable central condensation based on a more rea-
listic equation of state. In cgs units the chosen values are
K = 1.3346, 6.637 x 10*, and 4.0038 x 107 for the n = 3/4, 1,
and 5/4 polytropes, respectively. Since analytic formulae exist
to describe the structure, pulsations, and damping of the n = 0
polytropes (the Maclaurin spheroids, see Lindblom 1986),
these models have been included in this study for comparison
purposes. Table 1 summarizes the macroscopic parameters of
the nonrotating Newtonian stellar models used in this study.
Sequences of uniformly rotating stellar models having the
same total mass as these nonrotating models were also con-
structed. The numerical method used to construct these stellar
models is described in Paper I.

In order to evaluate the dissipative time scales, expressions
for the viscosities appropriate for neutron-star matter are
needed. The bulk viscosity { arises as a result of the phase lag
that occurs between density and pressure perturbations in
neutron-star matter due to the relatively long time scale
required for the weak interactions to re-establish equilibrium.
For normal nuclear matter, Sawyer (1989) finds this bulk vis-
cosity to be given by

2
=60 x 1ozs<%) TS 31)

where { has units g cm™! s™1, p, has units 10 gcm ™3, T,

TABLE 2
DAMPING TIMES AND PULSATION FREQUENCIES FOR 1.5 M 5 NONROTATING POLYTROPES

(0)®

Il=m n Q, Tr Qo 7,, Qo 7,. Qo 7, Q,
2. 0 1.033 2.84 x 103 1.07 x 10'3  3.80 x 10'?

3/4 1.292 5.44 x 107 197 x 10'2 560 x 10'! 1.70 x 10'8

1 1.415 243 x 10* 6.00 x 10! 2.05 x 10! 1.85 x 10*7

5/4 1.543 8.46 x 10* 1.09 x 10! 495 x 10'®  3.29 x 10'¢
3. 0 1.512 1.65 x 10° 3.81 x 10'2 1.36 x 10'?

3/4 1.819 2.55 x 10* 1.57 x 10'2  3.94 x 10'! 2.13 x 10'®

1 1.959 1.06 x 10* 6.15 x 10'* 1.80 x 10'* 2,66 x 10*7

5/4 2.095 3.11 x 10? 1.47 x 10! 5.54 x 10'° 5.57 x 10'¢
4. 0 1.886 1.03 x 107 198 x 10'2  7.04 x 10'!

3/4 2208 1.34 x 10° 147 x 10'* 334 x 10"} 3.48 x 10'®

1 2350 5.21 x 10° 7.00 x 10'! 1.81 x 10'* 490 x 10*7

5/4 2.481 1.30 x 10° 2.08 x 10'! 6.69 x 10'° 1.19 x 10'7
Soo.e. 0 2202 7.35 x 108 121 x 10'* 432 x 10!

3/4 2526 8.17 x 107 142 x 10*2 302 x 10'* 590 x 10'®

1 2.667 295 x 107 798 x 10! 1.87 x 10'*  9.14 x 10'7

5/4 2.789 6.21 x 10°® 2.81 x 10! 7.94 x 10'° 2.52 x 10'7
6...... 0 2481 594 x 10'® 823 x 10'! 292 x 10!

3/4 2812 5.84 x 10° 139 x 10'2  2.80 x 10'*  9.83 x 10'®

1 2939 192 x 10° 8.99 x 10! 193 x 10! 1.65 x 10'®

5/4  3.053 3.39 x 108 3.63 x 10'* 920 x 10'° 507 x 10*7

® Index n is the parameter in the polytropic equation of state: p = kp*' * /.
b Frequencies and damping times are given in units of Q, = (1Gp,)'/%, where p,, is the

average density of the nonrotating star.
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has units 10° K, and o has units s . The shear viscosity #
arises as the result of momentum transport within the fluid due
to the scattering of particles. For neutron-star matter hotter
than the superfluid transition temperature (T = 10° K) this
scattering is dominated by neutron-neutron interactions. The
resulting viscosity #, has been calculated by Flowers & Itoh
(1976). The following analytical fit reproduces their result to
within a few percent:
9/4
M= 1.95 x 1018 213 (32)
T3

where 7, has units g cm ™! s~ . For neutron stars cooler than

the superfluid-transition temperature the viscosity is thought
to be dominated by electron-electron scattering. The expres-
sion

2
7. = 60 x 1018(’%) , (33)

9

reproduces the exact electron-electron scattering result to
within a few percent at neutron star densities (Cutler & Lind-
blom 1987).

The time scales 1, 7,, and 7 are evaluated using equations
(21), (22), and (23). In these expressions the quantities E, do,
50, and 8D} are evaluated in terms of the potential SU as
described in equations (24)—30). This potential is the solution
of the nondissipative pulsation equations, and is evaluated by
the procedure described in Paper 1. Thus, the problem of
finding the dissipative time scales is reduced to the evaluation
of the quadratures in equations (27)—30). It is straightforward
to evaluate these integrals using the expressions for the vis-
cosity coefficients in equations (31)~(33).

Figures 1-3 illustrate the integrands in equations (19), (21),
and (22), respectively, for the | = m = 4 fmode of the 1.5 M
polytrope of index n = 1 rotating with angular velocity Q =
0.6Q,, where Q, = (nGp,)'/? and p,, is the average density of
the nonrotating star of the same mass. Each curve in these
figures represents the r-dependence of the particular integrand
along one of the 10 angular spokes used to compute this
model. For these figures the normalization was chosen so that
the maximum value of each integrand was one. These inte-
grands were derived from the SU(r, u;) depicted in Figure 9 of

1.0
0.8 r
. n = 1 Polytrope
*<+ 0.6 r
< I Q= 0.6V TGP,
(-
S 04 e o4
0.2 r
0.0
00 02 04 0.6 0.8 1.0
r/R(equator)

F1G. 1.—Integrand that determines the gravitational-radiation time scale
for the I = m = 4 mode of the 1.5 M, polytrope of index n = 1 which rotates
with angular velocity Q = 0.6(nGp,)*/2, where p,, is the average density of the
nonrotating star of the same mass.
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0.8 + 4
n = 1 Polytrope
E S
o 0.6
‘g 0 = 0.6+ TGP,
o) -
>, 0.4 l=m = 4
0.2
0.0
0.0 02 04 06 08 10

r/R(equator)

FIG. 2.—Integrand that determines the bulk-viscosity time-scale for the
I'=m =4 mode of the 1.5 M, polytrope of index n = 1 which rotates with
angular velocity Q = 0.6(nGp,)'/%, where p is the average density of the non-
rotating star of the same mass.

Paper 1. The integrand that determines the gravitational-
radiation reaction, Figure 1, is very strongly peaked on the
equator and at the surface of the star. The bulk viscosity,
Figure 2, and the shear viscosity, Figure 3, integrands are suc-
cessively less strongly peaked. The fluid densities where the
functions in Figures 2 and 3 achieve their maxima are in the
range 1 ~ 3 x 10'* g cm 3. Thus the use of the viscosity for-
mulae, equations (31)33), appropriate for the nuclear density
regime is justified.

Table 2 summarizes the values of the oscillation frequencies
and the dissipative time scales for the 2 < [ = m < 6 f-modes of
the 1.5 M, nonrotating stellar models described in Table 1.
These frequencies and time scales have simple scaling laws in
terms of the mass M, radius R, and temperature T for these
polytropic stellar models. The quantity w/Q, depends only on
the polytropic index n, not on M, R, or T; 153 Q, scales as
(R/M)@!* D25 7 Q scales as R'74T2/M>4; 1, Q, scales as
R"2T?*/M'?; and 7,Q, scales as M'/2R'2/TS, For a given
polytropic index n, these quantities depend on the parameter x
(in the polytropic equation of state) and the central density of
the star only through these scalings. As one check of our com-

]
I

1 Polytrope

Q= 0.6\] nGp,

0.0 |

00 02 04 _ 06 08 10

I

r/R(equator)

FI1G. 3.—Integrand that determines the shear-viscosity time scale for the
I'=m = 4 mode of the 1.5 M, polytrope of index n = 1 which rotates with
angular velocity Q = 0.6(rGp,)'/%, where p,, is the average density of the non-
rotating star of the same mass.
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1.2 + l ' ' ' I ' ' ' I E 1.2 F ' ' I I l ' I ' ' I ' T
e 1.0 B
4 0.8 .
4 0.6 .
I n = 3/4 Polytrope Ba 1 5/4 Polytrope
0.4 / yirep Bs4 04 / i ]
I Bs ]
0.2 e 0.2 B
00 bt e L 00 b
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

QA nGo,

F1G. 4—Functions f,(Q) of the angular velocity for the I = m f~modes of
n = 3 polytropes. The angular velocities are given in units of (xGp,)"/2, where
P, is the average density of the nonrotating star of the same mass.

puter code, we have verified that the numerically determined
values of these quantities do scale in the appropriate ways.

It is convenient to describe the angular velocity dependence
of the dissipative time scales 7, Tgg, 7, in terms of dimension-
less functions B(Q), (), and €(Q2). These functions are defined
by the expressions

Q) = 11"(% , (34)

R
S bl

= TC(O) TH(Q) _ Q 4]
@0 r;(m[l (o) ) ©o

where Q,_ . is the angular velocity where the sequence of equi-
librium models terminates. The functions f8,(Q) for the | = m
Jf-modes are illustrated in Figures 4-7. Figures 46 illustrate the
dependence of f,, on the mode number for the n = 3/4, 1, and
5/4 polytropes, respectively. Figure 7 illustrates more directly
the dependence of these functions on the equation of state, for
the single mode | = m = 4. Similarly Figures 8-11 illustrate

(33)

1.0

0.8

0.6

n =1

Polytrope B3
0.4 r B T

02 | Be B ]

QAN TCo,

F1G. 6.—Functions £,(Q) of the angular velocity for the I = m f-modes of
n = 5/4 polytropes. The angular velocities are given in units of (nGp,)'/?,
where p , is the average density of the nonrotating star of the same mass.

0.8

0.6

0.4

0.2

00 b v
0.0 0.2 0.4 0.6

QA TGH,

F1G. 7—Functions §,(Q) of the angular velocity for the | = m = 4 f~modes
of rotating n = 0, 3/4, 1, and 5/4 polytropes. The angular velocities are given in
units of (1Gp,)'/?, where p, is the average density of the nonrotating star of the
same mass.

0.0
0.0

0.2

0.4

1.1 T T T ——— T T T T T
1.0 .
0.9 .
0.8 r n = 3/4 Polytrope i
I 72
73
0.7 r Ve Ya
0.6 ' — '
0.0 0.2 0.4 0.6

QAN TG,

FiG. 5—Functions §,(Q) of the angular velocity for the | = m f-modes of
n =1 polytropes. The angular velocities are given in units of (tGp,)!/?, where
Do is the average density of the nonrotating star of the same mass.

QATGo,

F1G. 8.—Functions y,(Q) of the angular velocity for the | = m f~-modes of
n = 2 polytropes. The angular velocities are given in units of (nGpo)'/2, where
P, is the average density of the non-rotating star of the mass.
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1 1 T L T 1.1 T L L T T L T T T T T
1.0 . 1.0 .
0.9 i 09 Yo A
Viscosity Type:
08 t n =1 Polytrope | T — Electron—Electron i
;2 — Neutron—Neutron
3
0.7 r Ya 0.7 —
Vs ]
06 1 L 1 1 1 1 s 1 1 1 L 1 0.6 1 1 I 1 1 L L | I SR 1 | I
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

aAlnGa.

FiG. 9—Functions y,(Q) of the angular velocity for the | = m fmodes of
n = 1 polytropes. The angular velocities are given in units of (nGp,)*/2, where
P, is the average density of the nonrotating star of the same mass.

1.0 1
0.9 1
08 n = 5/4 Polytrope 1
I Y2 ]
0.7 Y3
Ve &
0.6 1 1 I 1 I 1 n 1 " 1 I 1
0.0 0.2 0.4 0.6

QA TGH,

F16. 10.—Functions y,(Q) of the angular velocity for the | = m f~-modes of
n = 5/4 polytropes. The angular velocities are given in units of (nGp,)'/?,
where p, is the average density of the nonrotating star of the same mass.

1.1 ——— T T

1.0

0.9

0.8

0.7

O~6 I I i 1 I I 1 1 e i 1 1
0.0 0.2 0.4 0.6

YNETER

F1G. 11.—Functions y,(Q) of the angular velocity for the | = m = 4 f-modes
of rotating n = 0, 3/4, 1, and 5/4 polytropes. The angular velocities are given in
units of (1Gp,)'/2, where j,, is the average density of the nonrotating star of the
same mass.

QA TGO,

F1G. 12—Functions 7,(Q) of the angular velocity for two choices of the
shear viscosity: neutron-neutron scattering viscosity #, and electron-electron
scattering viscosity 7,. The angular velocities are given in units of (nGp,)'/?,
where p, is the average density of the nonrotating star of the same mass.

the dependence of the functions {,(Q) on the mode number and
the equation of state. Figure 12 illustrates the dependence of
¥.() on the expression used for the shear viscosity. And
finally, Figures 13-16 illustrate the dependence of the functions
€,(Q) on the mode number and the equation of state. These
functions do not depend on the equation of state other than
through their dependence on the polytropic index n. These
functions do not depend on the mass of the star. Note that
these are all fairly slowly varying functions of angular velocity.
The “extraneous” angular velocity dependence 1 — (Q/Q,,,)*
was introduced empirically into the definition of €,(Q), equa-
tion (36), in order that it be a slowly varying function. This was
necessary because the bulk-viscous time scale 7, becomes much
shorter in rapidly rotating stars than it is in the nonrotating
models of the same mass.

4. CRITICAL ANGULAR VELOCITIES OF ROTATING POLYTROPES

The oscillations of a rotating star will be stable as long as the
imaginary part of the frequency 1/z of that mode is positive.
The viscous contributions 1/, and 1/z, are positive as a conse-
quence of equations (21) and (22). In contrast, the

0.6

e
0.4 F n = 3/4 Polytrope ®

0.2 + g |

0.0
0.0

0.4

0 /\/ nGo,

0.6

F1G. 13.—Functions €,(Q) of the angular velocity of the | = m f~-modes of
n = 3 polytropes. The angular velocities are given in units of (xGp,)!/?, where

P, is the average density of the nonrotating star of the same mass.
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Fi6. 14—Functions €,(Q) of the angular velocity for the | = m f~modes of
n = 1 polytropes. The angular velocities are given in units of (nGp,)*/2, where
P, is the average density of the nonrotating star of the same mass.
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F1G. 15.—Functions €,(Q) of the angular velocity for the | = m f~modes of
n = 5/4 polytropes. The angular velocities are given in units of (nGp,)'/?%,
where p, is the average density of the nonrotating star of the same mass.
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F1G. 16.—Functions €,(€2) of the angular velocity for the = m = 4 f-modes
of rotating n = 0, 3/4, 1, and 5/4 polytropes. The angular velocities are given in
units of (1Gp,)'/2, where p, is the average density of the nonrotating star of the
same mass.
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gravitational-radiation contribution 1/tsg is proportional to
@?*1 equation (23), and so changes sign whenever o changes
sign. Thus, an instability will occur in a rotating star whenever
o is sufficiently negative. For the | = m modes considered in
this paper, w,, is positive for nonrotating stars and decreases
monotonically as the angular velocity of the star is increased.
Thus, these modes are stable in slowly rotating stars, while for
sufficiently rapidly rotating stars they may become unstable if
the viscous time scales are long enough. For a given mode, the
angular velocity where the transition from stability to insta-
bility takes place is called the critical angular velocity Q.. It is
the root of the equation

11 + 1 + 1
T(Qc) - TGR(QC) TC(QC) Tn(Qc) ’

A given sequence of rotating stellar models is stable, then, only
for angular velocities smaller than the smallest critical angular
velocity Q,.

The critical angular velocities of a sequence of rotating
stellar models can be determined by finding the roots of equa-
tion (37). A more useful form of this equation may be obtained
by using the functions that describe the angular-velocity
dependence of the various dissipative time scales, 3,,(€2), 7,.(€2),
and €,(Q), and the function «,(Q) (see Paper I) that describes
the angular-velocity dependence of the frequency of the non-
dissipative mode w,,

0

(37

0,,(Q) + mQ
@,,(0)

Thus, substituting equations (34), (35), (36), and (38) into equa-
tion (37) we obtain

() = (38)

1/(21+1
0, = 20 {am(nc) + ym(nc)["“‘(o)] o

7,(0)

0 @) U
x [1 TR0 1 —(nc/ﬂm)‘] } %)

This equation depends only on the dissipative time scales of
nonrotating stellar models 75¢(0), 7,(0), and 7,(0) and the slowly
varying and relatively equation of state independent functions
%), 7.(Q2), and €,(Q). In the case where the effects of bulk
viscosity are negligible compared to shear viscosity, 7, > t,,
this equation reduces to the one given by Lindblom (1986).
Equation (39) is easily solved numerically. The initial esti-
mate Q, & ®,,(0)/m can be inserted into the right side of equa-
tion (39) with the result being a better estimate. A few iterations
of this procedure produce an accurate value of Q.. Figure 17
illustrates the results of such computations. Each curve rep-
resents the smallest critical angular velocity Q. associated with
the I =m f-modes for a sequence of constant-mass stellar
models based on the indicated equation of state. These critical
angular velocities are given in units of Q_,,, the maximum
angular velocity that exists for equilibrium stellar models
having that mass and equation of state. These “ Keplerian”
angular velocities depend on the equation of state, and have
the values Q. = 0.648Q,, 0.639Q,, and 0.626Q, for the
n = 3/4, 1, and 5/4 polytropes, respectively. Since the viscous
time scales 7, and 7, depend on the temperature of the star,
these critical angular velocities are temperature-dependent as
well. The dashed curves represent critical angular velocities
that neglect the effects of bulk viscosity. We see that in neutron
stars cooler than T ~ 105~ 7 K the shear viscosity is sufficiently
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FiG. 17.—Critical angular velocities Q, as functions of the temperature for
1.5 M, polytropes of indices n = 0, 3/4, 1, and 5/4. The angular velocities are

- given in units of Q,,, the maximum angular velocity for which an equilibrium

stellar model exists of the same mass. The dashed curves ignore the effects of
bulk viscosity.
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F1G. 18—Critical angular velocities Q. as functions of the temperature for
1.0, 1.5, and 2.0 M, polytropes of index n = 1. The angular velocities are given
in units of Q_,., the maximum angular velocity for which an equilibrium
stellar model exists of the same mass. The dashed curves ignore the effects of
bulk viscosity.

large to completely suppress the gravitational-radiation driven
instability. Similarly, in neutron stars hotter than
T ~2 x 10'® K the bulk viscosity is sufficiently large to
suppress this instability. For intermediate temperatures the
instability may occur, but only for stars rotating faster than
90% ~ 95% of the speed at which mass would be ejected from
the star by centrifugal forces. The curves in Figure 17 indicate
that the angular velocities of stars based on stiffer equations of
state are more strongly limited than those based on softer
equations of state. Figure 18 compares the critical angular
velocities of stars of different masses. The angular velocities of
more massive stars are more strongly limited than those of less
massive stars. This occurs because the destabilizing influence of
gravitational radiation couples more strongly to more massive
stars. Finally, Figure 19 illustrates the sensitivity of these criti-
cal angular velocities to the assumed form of the shear vis-
cosity. The viscosity of neutron-star matter is not well
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F1G. 19—=Critical angular velocities Q, as functions of the temperature
based on two different expressions for the shear viscosity: neutron-neutron
scattering viscosity 7, and electron-electron scattering viscosity 7n,. The
angular velocities are given in units of Q,,,,, the maximum angular velocity for
which an equilibrium stellar model exists of the same mass. The dashed curves
ignore the effects of bulk viscosity.

understood. These curves illustrate, however, that the critical
angular velocities are rather insensitive to the form of the vis-
cosity law. Furthermore, the temperature in the expression for
the viscosity serves as an adjustable free parameter. An error of
one order of magnitude in the viscosity law corresponds to
shifting these critical angular velocity curves only by a factor of
3 along the temperature axis.

The estimates of the critical angular velocities of neutron
stars presented in this paper are based on the self-consistent
Newtonian computations of the modes of rotating stars devel-
oped in Paper I and extended here to include dissipative effects.
Real neutron stars are, of course, governed by the laws of
general relativistic hydrodynamics. The extent to which rela-
tivistic effects will modify these Newtonian estimates cannot be
known with certainty until the far more difficult fully rela-
tivistic calculation of the modes of these stars is completed. We
anticipate, however, that the relativistic corrections to the esti-
mates of the critical angular velocities will be small, when pre-
sented in the form given here. In particular we expect that the
critical angular velocities will be approximately 90%-95% of
the relativistic Keplerian angular velocities. This expectation is
based on earlier computations of the critical angular velocities
based on relativistic values of @(0), 75x(0) and 7,(0) but using
the Maclaurin spheroid functions «,,(Q) and t,,(Q2) (Lindblom
1986, 1987, 1988). Those results do not differ substantially from
the ones presented here. Further, a post-Newtonian computa-
tion of the functions «,(Q) by Cutler & Lindblom (1991, in
preparation) indicates that these functions differ from their
Newtonian counterparts by only a few percent at the critical
angular velocities.
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