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A very wide class of theories for dissipative relativistic fluids is analyzed. General techniques
for constructing explicit theories are discussed. The conditions under which these theories
have causal evolution equations are determined. The general properties (including stability) of
the equilibrium solutions of these theories are evaluated. The requirement that the theory
have the appropriate number and kind of equilibrium solutions is a strong constraint on the
structure of the fluid theory. The properties of the shock-wave solutions of these theories are
briefly considered. Most causal fluid theories have no solutions capable of describing strong
shock waves. © 1991 Academic Press, Inc.

I. INTRODUCTION

In nature we observe fluids that manifest dissipative effects. What is the correct
relativistic description of such materials? This is more than merely a question of
principle. In a neutron star, for example, we expect the matter to be a fluid having
a sound speed close to that of light. Dissipation (viscosity and thermal conduc-
tivity) in this fluid plays an important role in at least two situations: in determining
the structure of the supernova shock wave that accompanies the formation of the
neutron star and in determining the stability of the neutron star. Thus, a relativistic
theory of a dissipative fluid is needed to describe the macroscopic properties of such
a system. :

In the non-relativistic limit, there exists a theory for dissipative fluids that is sim-
ple, natural, and remarkably successful: the Navier-Stokes—Fourier theory [1]. In
this theory, the fluid is described by six tensor fields: a particle-number density, an
energy density, a fluid velocity, a heat-flow vector, and the trace-free and trace parts
of a stress tensor. These fields are subject to a system of six first-order differential
equations that includes the conservation of particle number, conservation of energy,

394

0003-4916/91 $7.50

Copyright € 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.




CAUSAL FLUID THEORIES 395

and conservation of momentum. This theory also manifests a version of the second
law of thermodynamics, in that there are expressions for an entropy density and an
entropy current,. algebralc functions of the fluid variables, that satlsfy a local
entropy law as a consequence of the fluid equations.

Since the non-relativistic theory of dissipative fluids is so successful, it is natural
to seek a relativistic theory that is a suitable generalization of it. Various attempts
have been made to do this. The most straightforward generalizations of the Navier—
Stokes—Fourier theory are those of Eckart [2] and Landau and Lifshitz [1].
Unfortunately, neither of these theories has causal evolution equations and neither
admits stable equilibrium solutions [3]. More complicated (and more successful)
generalizations are those of Israel and Stewart [4, 5] and Liu, Miiller, and Ruggeri
[6]. However, these theories impose on the detailed structure of the fluid severe
restrictions that are not well motiviated physically.

The purpose of this paper is to explore the basic features of a much wider class
of relativistic generalizations of the Navier-Stokes—Fourier theory. We consider all
theories of a relativistic dissipative fluid that share with the Navier—Stokes—Fourier
theory the following three properties: (a) The state of the fluid at each point of
space-time is characterized by a finite collection of tensor fields at that point. This
property represents a drastic departure from the microscopic description of a fluid,
involving, e.g., a distribution function on phase space. It is a significant—and
possibly unachievable—assumption that a physically realistic theory have this
property. (b) Local laws of conservation of particle number and stress energy follow
from the fluid equations. (¢) A local entropy law follows from the fluid equations.
While it is perhaps natural to assume some entropy law on the macroscopic level,
the existence of a local entropy law seems less fundamental than the existence of the
local conservation laws.

In Section II, we introduce the class of fluid theories having these three basic
properties. We determine when the fluid equations of such a theory are causal. In
Section ITI, we introduce two specific examples of such theories. One of these is a
generalization - of the fluid theories of divergence type [6,7], while the other
includes causal generalizations of the Eckart and Israel-Stewart theories. In
Section IV, we consider the equilibrium states of these general fluid theories. We
find that many of the features of such states (e.g., the form of the particle-
number current and stress energy) are common to all of these fluid theories. The
requirement that the equilibrium states be appropriate—in terms of number and
character—is a severe constraint on the structure of the theory. In Section V
we investigate the stability of these equilibrium states. We find that causality of
the fluid equations implies stability of the homogeneous non-rotating equilibrium
solutions in all these theories and of all equilibrium states in certain theories.
In Section VI, we seek solutions that describe shock waves in these theories.
Generally speaking, these fluid theories, with the possible exception those of
divergence type [6, 7], appear to admit no solutions whatever for strong shocks.
Finally in Section VII we dlscuss a number of open questlons and areas for
further work:
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II. GENERAL FrLuiD THEORIES

We consider fluid theories in which the state of the fluid is characterized by a
finite collection of space-time tensor fields. Let ¢ denote these fields, where upper
case indices stand for the entire set of tensor indices represented in this collection
of fields. We refer to a point, ¢, in this space of fluid fields as a fluid state. We
restrict consideration to fluid theories in which the field equations take the form:

MmABVm(PB=1A- (1)

Here M™ 5 and I, are algebraic functions of the fluid fields, ¢*, and the space-time
metric, g,,. Lower case letters are space-time indices; and repeated indices indicate
contraction. The requirement in Eq. (1) that the system be first order is not a
serious restriction, for a higher-order system can always be reduced to first order
simply by introducing additional tensor fields. The requirement that the equations
be quasi-linear, however, is more severe. Since the indices 4 and B that appear in
Eq. (1) refer to the same set of tensor indices, there are in Eq. (1) the same number
of equations as fields. We use the term solution of the fluid equations to mean the
fields ¢ on space-time satisfying Eq. (1).

The system of Eqs. (1) is called symmetric if M™ 45 is symmetric in 4 and B. The
system is called hyperbolic [8] if it is symmetric, and if the vector

E"=iM", 72" (2)

lies in the future of some space-like three-dimensional sub-space of the tangent
space, for all non-vanishing ZA. The system is called causal if it is symmetric, and
if E™ lies within the future light cone (i.e., if E™ is a future-directed timelike vector),
for all non-vanishing Z“. Hyperbolicity guarantees that the system of equations has
a well-posed initial-value formulation. Causality guarantees, in addition, that no
fluid-signal speed exceeds the speed of light. For physical reasons, we are primarily
interested in fluid theories that have causal evolution equations. However, it will be
convenient, initially, to consider all theories having equations in the form of Eq. (1),
without assuming causality, hyperbolicity, or even symmetry.

In order that Eq. (1) represent a fluid theory (as opposed to an arbitrary classical
field theory), we require that the conservation laws of particle number and stress
energy, and an entropy law, be consequences of it. First, we require that there be
specified fields N™ (the particle-number current) and N“, algebraic functions of ¢
and g, that satisfy

ON™

NAMmAaz 8q)B

(3)

and

NI, =0. (4)
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These conditions are precisely those needed to ensure that particle-number conser-
vation, V,,N" =0, follow from the field equations. Similarly, we require that there
be specified fields 77 (the stress-energy tensor) and T 44 that satisfy

aT’ﬂu
TuAMm — 5
AB EQDB ( )
and
T4, =0. (6)

These conditions are those needed to ensure stress-energy conservation, V,, 7" =0.
Finally, we require that there be specified fields S™ (the entropy current) and S*
that satisfy

C‘:S’”
SUM" 5= M
ce

and
S ,=0. (8)

These conditions are those needed to ensure an entropy law, V,,, S = S*I, > 0. This
represents the second law of thermodynamics in the theory.

To summarize, by a fluid theory we mean a collection of tensors M” 4z, 1., N™,
Tme §™ N4 Tt and S (all algebraic functions of the fluid fields, ¢, and the
space-time metric, g,,) that satisfy Eqgs. (3)-(8). Numerous examples fit into this
general framework: ordinary relativistic perfect fluids, as well as the Eckart [2],
Landau-Lifshitz [ 17, Israel-Stewart [4, 5]. and the divergence-type [6, 7] theories
of relativistic - dissipative fluids. Some of the perfect-fluid and divergence-type
theories are known to be causal, while the Eckart theory is known to be symmetric
but not hyperbolic. It is not known whether the Israel-Stewart or the Landau-
Lifshitz theories are even symmetric.

In the remainder of this section, we analyze how causal fluid theories may be
constructed. For theories having symmetric field equations, the fields- N, T", §™,
N4 T and S* are not independent. Rather. they must satisfy the following
equations: ‘ ‘

AS™ ‘*]V)n
N2 - 51 =0, 9)
oy co
(‘:SH'I T
THAE_:_ _4_‘:720’ (10)
L CQ cQ
AN ‘*Tmu
TuA c . jwv:l (. — 0. (1 1 )
JaJ A
% cQ
'\Tmb ‘*Tmu
TaA ¢ _ ThA ¢ v — 0 (12)

ot co
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These conditions follow from Egs. (3), (5), and (7) and the symmetry of M™ 5.
Equation (9), for example, is the result of contracting Eq. (3) with SE Eq. (7) with
N2 and subtracting. Note that these equations do not involve M™ 45 OF I,. There
are at least two approaches to finding solutions of these equations. In the first
approach, arbitrarily specify the fields N, T™, and S™ as functions of the fluid
fields. Then take Eqgs. (9)(12) as a system of linear equations for N4 T%4 and S™.
This system consists of 56 (=4+16+ 16 +20) equations on 6K (=K+4K+K)
unknowns, where K is the dimension of the field-space. Thus, we are guaranteed a
nonzero solution provided K> 10. In the second approach, specify the fields N4,
T%4, and S* as functions of the fluid fields, and then take Egs. (9)-(12) as a system
of first-order differential equations for N, 7™, and S™. A nonzero solution of this
system will exist only if appropriate integrability conditions, involving the Lie
brackets of N4, T4, and S regarded as vector fields on field space, are satisfied.

We now turn to the problem of finding M™ 5 and I, that satisfy Egs. (3)-(8),
given fields N™, T™, 8™, N, T4, and S* that satisfy Egs. (9)-(12).

Consider first the problem of finding an 7, that satisfies Eqgs. (4), (6), and (8).
Clearly, I, =0 is always one solution. More interesting solutions are those given by
I,=P2Gy PSSP, where Gpc is symmetric and positive semi-definite, and where
P4 satisfies P4 N? =0 and P37 =0. Such G4c and P# can, in fact, be constructed
explicitly from ¢ and g,, provided that there exists some timelike vector function
u” of ¢4 and g,,. The Gpc can be constructed in various ways. For example, one
possible G is that whose action in lowering the index of a fluid-field vector is the
result of lowering (or raising) the space-time indices of each space-time tensor that
make up that vector using a positive-definite space-time metric such as —g ,uu.+
2u,u,. This G is positive definite. For causal theories another possibility, also
positive-definite, is Gpc= —u, M" pc- Finally, a third possibility is Ggc=Q Q¢
where Q is any co-vector constructed from ¢ , and g,,. Any positive linear com-
bination of these G’s is also positive semi-definite. The P can also be constructed
in a number of ways. One possibility, when G s is positive-definite, is the tensor
that projects G-orthogonal to N4 and T4

Consider next the problem of finding an M™ ;5 that satisfies Egs. (3), (5), and (7).
It is convenient to consider separately two cases: (a) when N4, T°4, and S* are
linearly independent, and (b) when they are linearly dependent. We refer to the
fluid states, @, defined by these cases as imperfect-fluid states and perfect-fluid
states, respectively. As we shall see (in SectionIV) the perfect-fluid states share
many of the physical features of ordinary perfect fluids, while in the imperfect-fluid
states dissipation plays a role.

Consider first the imperfect-fluid states. For these, Egs. (9)-(12) are the necessary
and sufficient conditions for the existence of a symmetric M™ ;5 satisfying Eqgs. (3).
(5), and (7). This M™ 4p is unique up to the addition of any M" 5, symmetric in
A and B, that annihilates N4, T**, and S*:

NAM™ ,,=0, TM™ 3 =0, SAM™ ., =0. (13)

As we have seen, a fluid theory is causal provided the vector E™ of Eq. (2) is
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future-directed time-like for every non-vanishing Z*. Consider, in particular, the Z*
having the form

ZA=aN*+ B, T+ 754, (14)

for some «, 3, and 7. Substituting this Z* into Eq. (2) and using Egs. (3), (5), and
(7), we obtain

1 " Tre  as”
E"'=§<a%+ﬁu%:(p7+}'6¢A>'(1NA+ﬁbTbA+ySA). (15)
Thus, a necessary condition for causality is that this E” be future-directed timelike
for all non-vanishing %, 8, and 7. This necessary condition involves only the fields
N7 Tme §™ N4 T4 and S*, and not M ,,. We note that, if the E” of Eq. (15)
are all future-directed timelike, then there always exists a choice of M™,, that
makes the final theory causal. In fact, it is straightforward to construct such an
M"™ ,, whenever there exists a timelike vector function «” of ¢ and g,. In this
case we may construct, as discussed above, a positive-definite G, and projection
tensor P4, that satisfies PAiN®=P;S?=0 and P,;T“*=0. Then M", ;=
— @G, P PY, for any non-zero @, is symmetric, satisfies Eq. (13) and makes
a timelike contribution to E™. The resulting theory is necessarily causal for &2
sufficiently large (in fact, for @ > |u, M" ;77 7% G, PCZ*PRZ"|, where Z* is
the G-unit vector that minimizes —u,, M" ,ZZ%).

Consider now the perfect-fluid states. Let us assume that the linear dependency
between N4, T“!, and S can be expressed as

5,4 [ ;]an . ;’d T‘H. (16)

where { and (, are algebraic functions of ¢ and g, [9]. That is, we assume that
the entropy law is a consequence of particle-number and stress-energy conservation,
and that these conservation laws are themselves independent of each other. Taking
the appropriate linear combination of Egs. (3). (5). and (7), we find the following
additional condition on the fields N, 7" and S™:

65’” (:NHI 6 TIH(I
= Sa A 4

) (':(DA__S (:(p.{_ o

(17)

This equation and Egs. (11) and (12) are the necessary and sufficient conditions
that there exists an M" ,, satisfying Egs. (3}, (5), and (7). Taking the appropriate
linear combination of Egs. (4), (6), and (8). it follows that in a perfect-fluid state
the entropy-production density vanishes:

S, =0. (18)

The necessary condition for the theory to be causal is analogous to the condition
for the inperfect-fluid states: that E” of Eq. (15) be timelike for all «, 8, but with
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y=0. Again, when this holds there always exists an M™ 5 satisfying Eq. (13) that
makes the final theory causal.

A complete fluid theory will include both perfect- and imperfect-fluid states.
Thus, the fields M™ 5 and I for such a theory must be chosen as described above
for each set of fluid states separately, and must also be chosen to have smooth
dependence on " as @" passes from one set of states to the other. This choice is
made difficult by the fact that N*, T4, and S span a six-dimensional space for
imperfect-fluid states, but, because of Eq.(16), only a five-dimensional space for
perfect-fluid states. Thus the constraints on M”45 and I, in Egs. (3)-(8) are of dif-
ferent dimension in the two cases. One way of guaranteeing the existence of smooth
M™ , and I, for all fluid states is the following: Assume that the functions { and
¢, (defined originally only for perfect-fluid states) can be extended smoothly to all
fluid states, and that a function ¥ defined on all states and vanishing on perfect-
fluid states, can be introduced, such that x” and 7 defined by

KA=-11;(SA+CNA+CHT”A), (19)

1/8S8 ON’ oT > (20)

vi=g (G 5 507

have smooth limits at the perfect-fluid states. It is not difficult to show that, under
these circumstances, smooth M™ ,; and I, exist.

11I. EXAMPLES

We consider first a rather general example that illustrates the formalism
developed in Section II. We assume that it is possible to choose the fluid fields ¢*
to consist of one scalar field, ¢, one co-vector field, @, and some additional tensor
fields @ (possibly including additional scalar and co-vector fields)—i.e., to choose
0" = (¢, ,, ¢ )—such that in these variables,

G (21)
N4 =(1,0,0), (22)
T4 = (0, 82, 0). (23)

This is a strong assumption. Essentially, it amounts to the requirement that the
components of S* can be taken as the fluid fields, and that among these fields are
a scalar and a co-vector whose corresponding fluid equations are the particle-
number and stress-energy conservation laws, respectively. In geometrical terms,
Eqs. (21)-(23) are equivalent to the following commutation relations among
N4, T4, and S*, regarded as vector fields on the space of fluid fields:
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aT*® ., ON®
NG T 55 =0, (24)

Y i aT*
T4 — T —=0, 25
op” ot (25)

cS? cN?

2B AT4B
TuA %_ SA Cﬂ = TUB. (27)

co co

To complete thié fluid theory we must, first, satisfy Egs. (9)-(12). Here we have
specified the fields N, T4, and S and must solve for the physical fields N7, T,
and S™ in terms of the ¢“. The following expressions satisfy Eqgs. (9)-(12),

P2x
Nm=2 (28)
(QD (\(10”1
P2x
T(II” — - ( — . (29)
(‘q)H ( (,D]”
X, o
KGR L L S (30)
(QDHI (@ ( qo”l

for any function, X, of ¢ and g_,. It is not difficult to check that, conversely, every
solution of Eqs. (9)—(12) is given by Eqs. (28)-(30) for some X.

Having found fields N, T, §”. N, T**, and S that satisfy Egs. (9)-(12), the
next step in the construction this fluid theory is to find M",, and 7, that satisfy
Egs. (3)-(8). The existence of an M™ ,, that satisfies these equations is guaranteed
by Eqgs. (9)-(12); and it is easy to verify that one such solution is

M = X 31

.43_(:(10’” 6@_4 5(,03' ( )
The resulting theory (with any appropriately chosen /,) is a generalization (to an
arbitrary number of fluid fields) of the fluid theories of divergence type [6, 7]. Of
course the solution of Egs. (3), (5), and (7) is not unique. More general theories are
obtained by adding to M™,, any symmetric M" ,, that satisfies Eq. (13).

The causality of a fluid theory is determined by the quadratic form E” of Eq. (2).
As we showed in Section II, from any given fluid- theory a causal theory can be
obtained by adding an appropriate M"” ,,, provided the restricted quadratic form,
E™, of Eq. (15) is future-dirécted timelike for all %, f8,, and ;. For this example, E”
is given by '
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_ 23X X
Em= 22 42 L
(a+70) G, 5(p2+ (x+y0)(B.+79a) 30, 30 00,

X X
+ (B, +790) By +705) =+ 2a+79) v0" —————;
B+ 70)(Bo+705) 0., 00, 00, ) 20, 00 g7

_ X - 5. ¢
+2(Ba+79.) Yot —————+ 770 0"

; PSP P (32)
09, 09, 0p 8¢, 0p* b

The Eckart [2] theory is a spacial case of the fluid theories considered in this
first example. In the Eckart theory, the additional dynamical fields, @7, consist of
a single symmetric trace-free tensor ¢ ;. The potential X in this case is given by
X =a(p, ) —p lo.0,0%, where u=@,0% and o, 1) is an arbitrary smooth
function [7]. Since X is linear in @7, the last term in Eq. (32) vanishes identically,
and so E” is zero, rather than timelike, for a = —y@, .= —V9., and y#0. We
conclude that it is not possible to modify this representation of the Eckart theory,
by the addition of any M™ g, to yield a causal theory.

As a second example, consider the case in which the fluid fields can be taken to
be N and T themselves:

@ = (N T®). (33)

These fields could be re-expressed by decomposing them into a pair of ther-
modynamic potentials, a unit timelike fluid-velocity vector, a spatial heat-flow
vector, and the trace-free and trace parts of a spatial stress-tensor. But these are
precisely the fields that occur in the Navier-Stokes—Fourier, the Eckart, the
Landau-Lifshitz, the Israel-Stewart, and the Liu-Miiller—Ruggeri theories. Thus,
this second example is the case of a “normal” dissipative fluid.

To determine the theory, we must specify the fields N, T4 S4, 8™ M™,5, and
1, as functions of N%, T*, and g,,. We write the components of N4, T™, and S*
as follows:

N4 = (n4, n*), (34)
T = (¢4, 7), (35)
S4= (5% 5%). (36)

The fields n“, ™, and s* are symmetric in a and b. Similarly, we write the
components of M™ ,; and I, such that the fluid equations, (1), become

Mmac VmNC+Mmachm T(.d:[a’ (37)
Mmcub VmNC+Mmabz‘deT(‘d=[ab‘ (38)

The fields M™,, M™., M".,. and I, are symmetric in a and b, and
M ped=M" cap- ) )




CAUSAL FLUID THEORIES 403

In order that the theory be symmetric, these fields must satisfy Egs. (9)-(12).
Evaluating the derivatives ¢7™“/0p® and dN"/0¢™ therein using Eq. (33), these
equations become:

asm asm
nu aN” + nub 6T”b — Sm’ (39)
65:11 65:71
e W + tnuh 6T”b — Snm’ (40)
,ahznah? (41)
,muh — [umh. (42)

The last two equations imply, respectively, that r** and "¢ are totally symmetric.
One method for solving these equations, for example, is first to choose n, and S™
arbitrarily as functions of N T*", and g,,. then to choose symmetric 7’ and "%
such that the left side of Eq. (40) is symmetric, and finally to choose s”, s"", and
n“ to have the values given by Eqgs. (39)-(41).

Finally, we must specify M™ ,, and I satisfying Egs. (3)-(8). For simplicity, we
limit consideration to examples that are generic in the sense that 1“" is invertible.
In terms of the fields defined above, Egs. (3), (5). and (7) then become

ub r 1 sub " _ r L osm
(nP—n't, S PYMY = — 0T 00 (43)
cS™
b ry 1 sab m — T 1 sm
(s s'trYM ancd = T S'E 0 (44)
" P P LA 1 redy, — 1 43py n
M ub [m [/n/ t + [ur t th\ M cdpy (45)

" =L s
M” p=1.,0p—1

clu

—1 f”“me,,\“h . (46)

on

Parenthesis surrounding tensor indices denote symmetrization, e.g, t“*’ =
1(r*® + t*). One method for solving these equations. for example, is first to choose

M" .. to satisfy Egs. (43) and (44). and then to choose M",, and M" , to have
the values given by Egs. (45) and (46). Similarly, Eqgs. (4), (6), and (8) become

(n* —n"t 't 1, =0, (47)

(s —s"t "), =0, (48)

I,=—1t;'1" (49)

One method of solving these equations, for example, is first to choose 7, to satisfy

Egs. (47) and (48), and then to choose I, to have the value given by Eq. (49). The

final fluid equations, (37) and (38), can now be simpilified using Eqs. (43)-(49):
V.. T™ =0, (50)

Mmuhul(vm T“l - t:: lr\“l VmNr) +15 : Vb)N(‘ = Iub' } (51 )

olu
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For this example, the restricted quadratic form E,, of Eq. (15) is given by

_m_l 2. m mab 2 aaSm ab aSm:|
E _2< n™ + B, Bst" +y [s aN““»aT"b

+af 1+ ays™ + .57 (52)

This quadratic form must be future-directed timelike for all a, 8, and y if the fluid
theory is to be causal. Thus, causality requires in particular that n™, s 0S™/ON" +
5% 3S§™/0T*, and 1B, B, be future-directed timelike for all f8,.

If the Israel-Stewart theory has a representation as a symmetric theory, then it
must be a particular case of this example. It is apparently not known whether or
not the Isracl-Stewart theory has such a representation.

The Eckart theory is known to be a particular case of this example. It is
convenient to decompose the fields N and T4 for this case as

N¢=nu", (53)
T = puu + (p+ 1) g +u'ul) +u'q’ +u'q* + 1, (54)
where x“ is a unit timelike vector, and ¢“ and the symmetric-trace-free 7% are
orthogonal to it. In the Eckart theory, the entropy current is given by
. ;
S9=snu’ +—q" (55)

T

There are a variety of ways to represent the Eckart theory as a symmetric system
in the form of Eq. (1) (in contrast to a generic fluid theory, which has a unique
representation—up to an over-all scale—in this form). For the case of Eckart, the
most general such representation, up to over-all scale, is given by

m m m m 2/0T m
M abc‘dzuaubé((*udJ+u(u 5b)ucud+l:u +7—-<5f;>nq ]uuubu('ud’ (56)
n (0T
tab: = ub 1 a,.b
T((ap)"[g +(1+ ) uu?], (57)
n(oT 6 /0T
tabc___r MR Bl | a b 7 {a, b, ) abe )
LwT<8n>p ]uuu T(@p),,q w’u” + o™, (58)

e (L) (2 w
- T ap n ap Tu’ (59)

7 T(@p 1 1 1 ( 4
ab = T Uy - ab a a
b Py (aqb) zanb 3'127 Sup+ U Up)

n <6p> . 2 T(&p mea [ 1 1
— = —-——q"q,,— — | u — Tt
nx\on/r ’CTq A T/, e 21, r‘d+3ﬂzrg“[ .

(60)
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In these formulae the scalar « and the totally-symmetric tensor w,,,. satisfying
o““u,u, =0 are otherwise arbitrary. These merely specify the representation of the
theory. The scalars «, #,, and 5, are the thermal conductivity and viscosity coef-
ficients, respectively. The remaining fields required to specify the theory are
obtained directly from the equations given previously: s¢ from Egq. (39), s* from
Eq. (40), n** from Eq. (41), M™, from Eq. (45), M, from Eq. (46), and I, from
Eq. (49).

These representations of the Eckart theory are considerably more complicated
than its representation as a divergence-type theory in the first example.

IV. EQUILIBRIUM SOLUTIONS

We think of a dissipative physical system as being in equilibrium whenever its
dynamics is time reversible. That is, we regard a solution of the fluid equations as
an equilibrium solution if its time reverse is also a solution. In terms of the dynami-
cal fields of a fluid theory, we define the action of time reversal in terms of the
tensor character of each field: tensor fields of odd rank, such as N, change sign
under time reversal, while tensor fields of even rank, such as T*, are unchanged.

For an equilibrium solution, we must have 7, =0. To see this note that the rank
of each tensor expresson on the left of Eq. (1) is always one larger than the rank
of the corresponding component of /. Thus under time reversal the two sides
of Eq. (1) acquire a relative minus sign, and so its right side must vanish for any
solution whose time reverse is also a solution.

Consider now a particular equilibrium state of the fluid. Since the entropy
production density, 6 = S/, is assumed non-negative for a// states of the fluid, its
value in this equilibrium state (zero) is its minimum. It follows that the first varia-
tion of ¢ under arbitrary variations in ¢ must also vanish at this equilibrium state:
do=S*61,=0. We now require that the fluid theory be generic in the sense that
under such variations all values of 4/, may be achieved that are compatible with
the conservation laws, ie., all values satisfying N*5/,=0 and T%*61,=0. (For
example, the Eckart [2] theory. with finite viscosity coefficients and thermal con-
ductivity, satisfies this requirement.) The vanishing of the first variation of the
entropy production density, do. now implies that S has nonzero components only
in the conservation-law directions:

S.{ —— CA/'A _ :u T“A. (61)

These tensors, ¢ and ¢, are functions of ¢ and g,,. We conclude that, in a generic
dissipative-fluid theory, the equilibrium states are (in the terminology of Section II)
perfect-fluid states.

We next investigate the forms taken by the physical fields N, 7" and S$™ in
such a perfect-fluid state. To this end, we introduce the vector

X771 = Snl + CNm + ;" Tmu' (62)
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Taking the derivative of X™ with respect to ¢* and using Eq. (17), we obtain

oxm i,
Sy VAL Sy S 63
IR P (63)

This equation implies that X™ is a function of { and {,, alone, its dependence on ¢
in turn arising from the dependence of { and {, on ¢“. Equation (63) also implies
that N and T are related to X™ by

oxm
e 64
NT=" (64)
and
oxm
T =5Ca. (65)

From the symmetry of T™ in Eq.(65), it follows that there exists a scalar

generating function X (an algebraic function of { and {,) that determines X™:
154
X" =
o

But any scalar function of { and {, is a function of { and u={,(“ alone, and so we
have X = X({, u). Thus, Egs. (64) and (65) become

(66)

¢
Nm"=2 "
ot 8#C (67)
and
%X X
ma=4__ mppra 2_ ma.
T aﬂzi “+ a#g (68)

These in turn determine S™ through Eq. (62):

2 62
0°X X) o, (69)

S = 2<Ca§a#+2u e
Note that these expressions, Eqs. (67)-(69), are identical in form to those of an
ordinary perfect fluid: the entropy and number currents are parallel to the timelike
eigenvector of the stress-energy tensor, and the stress tensor is isotropic in that
frame. Defining the standard thermodynamic variables n, p, p,s, and «™ in the
usual way—N"=nu", T™ = (p+ p)u"u’+ pg™“, and S™ = snu™—we obtain, via
Eqs. (67)-(69), expressions [7] for these variables in terms of the derivatives of X.
The resulting expressions automatically satisfy the first law of thermodynamics,

ptp
n

dn, (70)

dp=nT ds+
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provided the temperature T is taken to be T=(—pu) "> Inverting these expres-
sions, we obtain the fields { and {, in terms of the standard thermodynamic
variables:

. pt+Pp
_ 71
¢ nT S 70
and

L—/tl Ll]('lv' (72)

For any fluid theory, the physical fields N, T“" and S are, as we have just
seen, functions only of { and {, in any equilibrium state. In addition, for a generic
fluid theory, all of the fluid fields, o, are functions only of { and {, in any equi-
librium state. Indeed, Eq. (61), in which N*, T*, and S+ are given algebraic func-
tions of @, can in the generic case be inverted to yield ¢ in terms of { and (.
We note that the resulting function, ¢(C, J,). is determined once and for all by
the fluid theory. Thus, the values of { and {, specify completely the particular
equilibrium state.

In addition to these algebraic constraints on the fluid fields in an equilibrium
state, there are constraints on the space-time derivatives of those fields as well. The
fluid equations, (1), when applied to an equilibrium solution, become a system of
homogeneous linear equations on the derivatives V,,J and V,,{,. If there are “too
many” fluid equations, the only equilibrium solutions will satisfy vV, (=0 and
V,.,(,=0. These conditions are unphysical. For example, these conditions admit
only homogeneous non-rotating solutions in flat space-time, and no solutions
whatever for static spherically-symmetric self-gravitating fluid objects. Thus, in
order to allow a “sufficient number” of equilibrium solutions to account for the
observed properties of laboratory fluids. the number of field equations, and so the
number of fluid fields must be limited. We expect. from the observation that
laboratory fluids admit rotating equilibrium configurations, that the fluid equations
will fix only the symmetric part of V,,J,.. This suggests that the appropriate fluid
fields, ¢, consist of one vector and one symmetric second-rank-tensor field (e.g.,
N and T7), and consequently that the fluid equations consist of one vector and
one symmetric second-rank-tensor equation. We assume, for the remainder of this
section, that this is the case.

In this case, the fluid equations, when evaluated at an equilibrium state, will
include three scalar equations: (a) the equation formed by contracting the vector
equation with {,; (b) the equation formed by contracting the tensor equation with
g.; and (c) the equation formed by contracting the tensor equation with Colh
These three will be a system of homogeneous linear equations on the three scalar
derivatives involving ¢ and {,: (V¢ <" Vi and V,, " (where p={%C,). In the
generic situation the only solution will be

V==Y, =0 (73)
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There will, in addition, be two vector equations: (a) the vector equation itself; and
(b) the equation formed by contracting the tensor equation with {,. These two
will be a system of homogeneous linear equations on the three vector derivatives
involving { and {,: V,(, V,u and {"V,(, In the generic situation, this
system will require that some scalar function, &, of { and u be constant, and that
¢V, ¢, be proportional to the gradient of some scalar function of { and pu. The
latter condition may be expressed in terms of a scalar function I

{"V,la+pV,log[(—p)'?Y]=0. (74)

Finally, there will be one symmetric tensor equation on the one symmetric tensor
derivative involving { and {,: V,{,,. In the generic situation, the only solution will,
in light of Eq.(74), be V(= —{Vslog Y. But this means that 6,= re,
satisfies Killing’s equation. Thus the equilibrium equations become:

V,0=0, (75)
V,0,+V,0,=0. (76)

Note that @((, £,) and @,((, {,) are determined once and for all by the fluid theory,
ie., they are the same functions for all equilibrium solutions. In the generic case,
these functions can be inverted to obtain { and {, (and hence ¢) as functions of
© and ©,. Inserting ¢*(0, &,) into Eq. (1), it follows from the above that the
coefficients of the anti-symmetric derivatives of €, must vanish:

dp® Flod

MmABa_@__MaABa@

=0. (17)

m

This equation in effect determines @ and &, for a given fluid theory.
To illustrate these remarks, consider the first example of Section III. From
Egs. (21)-(23), we have

d0"
o,

Substituting and using Egs. (5) and (29), we find that Eq.(77)—but with {,{,
replacing @, @,—holds for any M™ 5 in this example. Hence, we have

=T, (78)

0= (79)
QaZCa’ ' ) (80)

for these theories. The physical interpretation. of Egs. (79) and (80), using Eqgs. (71)
and (72), is that the fluid motion is stationary and rigid, and that the temperature,
suitably red-shifted, is constant throughout the equilibrium fluid. In fact, Egs. (79)
and (80) also hold for the Eckart, Landau-Lifshitz, Israel-Stewart, and the
divergence-type theries. .
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Do Egs. (79) and (80) hold for all of the fluid theories introduced in Section I1?
The answer is, apparently, no. To see this, fix a fluid theory that does satisfy
Egs. (79) and (80). Now modify this theory by replacing M”45 by M”45+ M" 45,
where M"™ , , satisfies Eq. (13). This modification will not affect any of the fields N7,
Tme §m NA, T4 S4 or 1, and so it will not change the dependence of these fields
on ¢ and ¢, in equilibrium states. Thus the function (¢, ¢,) will be unchanged.
However, this modification will change @ and 6, defined by Egq. (77), provided
only that

e io®
[ CPPR AN v P Y} (81)
CSU CL-"I

It appears that such an M™ ,; can be found. Consider, for instance, the second
example of Section I11. For the perfect-fluid states, let M™ 5 be given by

Vi 1]
M abed = U “(uflh)u“d»v (82)
Yyl — — N nrs KM
M cab = T r('n ! Mr‘.\uh' (83)
g g — Lredy— 1 spg KAM
M uh ’ur l rh\ l ‘Mu[pq’ (84)

where u” is the unit vector proportional to N and g, = gup T U Up- This M"
satisfies Eq. (13). Indeed, it annihilates T by Egs. (83) and (84), and it annihilates
N+ and S by these equations and the fact that M",, of Eq. (82) annihilates every
symmetric tensor constructed from g, and u —in particular, n® —n"t; 'r*** and
s — 't ', For the imperfect-fluid states. let M",, again be given by
Egs. (82)-(84), but now projected, as described in Section II, orthogonally to N*,
T4 and S*. Thus, we obtain an M" ;. defined for all states, satisfying Eq. (13).
Furthermore, substituting directly using Eqs. (71) and (72), we see that this M™ 4z
also satisfies Eq. (81). We conclude that Egs. (79) and (80) need not hold for a
general fluid theory. Note that, were the original theory hyperbolic, we could, by
choosing M" ,5 to be a small multiple of that given above, retain hyperbolicity.
Tolman [ 10] has given a physical argument that suggests that Egs. (79) and (80)
should hold quite generally for a reasonable fluid theory. This argument suggests
that it might be appropriate to rule out fluid theories not satisfying these equations.

V. STABILITY OF THE EQUILIBRIUM SOLUTIONS

In certain theories of dissipative relativistic fluids, causality of the fluid equations
implies stability of the equilibrium solutions [7. 11]. In this section we explore the
conditions under which this relationship between causality and stability holds for
more general theories.

Consider a smooth one-parameter family, ¢ (%), of solutions of the fluid equa-
tions (1), which for 4=0 is an equilibrium solution. (We assume for simplicity that
the space-time metric g, is independent of 4.) Denote by Sp" the derivative of this
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family with respect to A, evaluated at A =0. To determine the evolution of this
perturbation, o, we differentiate the fluid equations (1) with respect to 4 and
evaluate at A=0:

m

oM
M 5V, 80% + a(pg‘ﬂ 80V, 0P =41,. (85)

Here, and for the remainder of this section, a field not preceded by J is to be
evaluated at A=0, ie., in the equilibrium solution.

To investigate the stability of this equilibrium solution, we introduce the
quadratic form

E" =M™ 15 50" 6¢°. (86)

We now assume that our theory has causal evolution equations. Then this £™ must
be future-directed timelike for all non-vanishing fluid perturbations d¢“, and so
E(X), defined by

EZ)= —L E"dS, (87)

(where the integral is over a Cauchy surface X') is a positive-definite norm on d¢*.
We use this norm to monitor the evolution of dp* as follows: The difference
between the E(X)’s evaluated on two Cauchy surfaces is given by

E(zz)—E(zl)=fQ Vv, E" dQ, (88)

where the integral is over the region, 2, of space-time between the two Cauchy
surfaces. Were the integrand, V,, E™, non-positive for all fluid perturbations, then
the norm, E(X), would be a non-increasing function of time bounded below by
zero; and so this equilibrium solution would be stable.

Evaluating the divergence of E™, using Eq. (85), we obtain

VmE”’:é(pA 51/[ +J’;BC 5(pA 6(p8 Vm(pc» (89)
where we have set

oM™, 10M™,c 10M7pc
dp¢ 2 8% 2 dp“

(90)

mn —_
JABC -

We now choose (essentially without loss of generality) the fluid variables to be

The first term on the right of Eq. (89) now becomes — 554 81 = —6%, i.e., minus
the second variation, of the entropy-proudction density ¢. Since ¢ achieves its mini-
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mum value (zero) in equilibrium states, this term is non-positive. The second term
on the right in Eq. (89) may be written as

B | do¢ J0°€
':Bcécpf*écpﬂvmcp%-(w AR .- )acpf'acpﬂv,,,@,,, (92)

) BC 8-0"_“ ABC E'@—m
using the fact (from Section IV) that an equilibrium solution " depends only on
a constant @ and a Killing field ©,. This term vanishes identically for those equi-
librium solutions in which V,0,=0, e.g., those for which @, is a translation Killing
field in flat space-time. Thus, these particular equilibrium solutions are always
stable in every causal fluid theory. For which causal fluid theories must every equi-
librium solution be stable? Since any timelike Killing field @, is possible on the
right in Eq. (92), this term will be non-positive for every equilibrium solution only
if it is zero, i.e., only if

~ O ~ o C
co Co
Jno R 93
ABC (’:0“ JA-I BC 60,” ( )

Thus, Eq. (93) is a sufficient condition that every equilibrium solution of a causal
fluid theory be stable.

To illustrate this condition, we consider the first example of Section I1I. As we
saw in Section IV, all of these theories satisfy Egs. (79) and (80). Thus, Eq. (93) is
evaluated using Egs. (77), (78). (23), and (5) and becomes

~ " jl 4
‘M .»IB_(‘ML 4B _

0. (94)

Cog Com

e, M" 5 =0X ,5/¢C, for some X p. Thus, causality implies stability for all of the
equilibrium solutions for certain of these theories, including via Eq. (31) all theories
of divergence type [6,7]. But Eq.(93) is not satisfied in general, even for the
theories of this example.

V1. SHOCK WAVES

Physical fluids are known to manifest shock waves—rapid transitions of the fluid
state that occur as fluid elements pass from one space-time region into another. A
stringent test of any macroscopic fluid theory is its ability to describe the behavior
of a fluid during such a severe non-equilibrium process. In the theory of a perfect-
fluid, for example, a shock wave is described by a solution of the fluid equations
that is discontinuous across a timelike three-surface—the shock front. Such a solu-
tion can, by virtue of the divergence form of the perfect-fluid equations, be given
mathematical meaning. In the Navier-Stokes-Fourier theory, in contrast, a shock
wave is described by a smooth solution of the fluid equations. What, if any, is the
appropriate description of shock waves within the general fluid theories of




412 GEROCH AND LINDBLOM

Section I[1? We argue in this section that, for most of these fluid theories, there is
no available description at all for sufficiently strong shock waves.

Consider a smooth, stationary [12], plane-symmetric solution of the fluid equa-
tions (1) in flat space-time. That is, fix a space-like unit translation, x“ = V“x, in flat
space-time, and demand that the derivative of the fluid fields be proportional to it:
V,0*=(dp?/dx)V x. Then Eq. (1) simply becomes

X M" 15(x“V,0%)=1,. (95)

The conservation laws for this solution can be completely integrated: the fields
N"x, and T“"x, must be constant throughout space-time. The entropy law
becomes x“V,,(S"x,,) =0.

We now impose, as a further condition on this solution, that, in each of the limits
x— o and x> — oo, the fluid goes to some perfect-fluid state: N¢=nu“, T =
(p+ p) uu® + pg*®, and S = snu®. The perfect-fluid states achieved in the two limits
will in general be different. But, by conservation, the combinations

Nex, = n(ux,), (96)
T“x,=(p + p)ux,)u + px*, (97)

must have the same values in the limit x —» oo as in the limit x » — co. Similarly,
the combination

S°x, = snu’x,, (98)

must be no smaller in the limit x » oo than in the limit x - — c0. These, the Taub
conditions (ie., the relativistic Rankine-Hugoniot conditions) [13], constrain the
asymptotic perfect-fluid states between which transitions are allowed. For example,
fix the perfect-fluid equation of state, s(p, n), and let there be given values of the
perfect-fluid fields, p, n, and u“ as x > —co. Then there will normally be just one
other set of values for these fields as x —» oo that preserves the combinations in
Egs. (96)—(97) while not decreasing the combination in Eq. (98).

Equation (95) is a system of ordinary differential equations to determine the
spatial variation of the fluid fields through the shock solution. We are guaranteed
a unique smooth solution of this system except where x,, M ,, becomes non-inver-
tible, i.e., except where

det[x,, M" 5] =0. (99)

This equation is precisely the condition that x,, be normal to a characteristic
surface of the system [8]. We expect that there will be no continuous solution of
Eq. (95) across any x-value at which Eq. (99) holds. We shall now argue that
X,,M" ,p must be non-invertible somewhere for all sufficiently strong shock solu-
tions in essentially all of these causal fluid theories. We shall thus conclude that
there exist no continuous solutions of the fluid equations for strong shocks in these

theories [14].
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There are two types of speeds associated with a fluid state in this problem. The
first is the characteristic speeds, 4, of the fluid equations, ie., the roots of

det[(— Aup, + W) M" 51 =0, (100)

where w¢ is any unit vector orthogonal to u® For a causal fluid theory each 4 is
real (since these tensors are symmetric in A and B, and —u,, M" 5 is positive
definite) and satisfies || < 1. The other type of speed is the physical speed v of a
fluid element, relative to the shock front, given by

v
= . 101
(1-—1)2)12 ux, ( )

It is a general feature of these theories that Eq. (99) is satisfied precisely when the
physical fluid speed is equal to one of the characteristic speeds. To see this, compare
Egs. (99) and (100), using that

— I_.l(‘l + \1.(,
XY= -(1’_12—)1—2— (102)

for some unit vector w* orthogonal to u*.

We now consider a causal fluid theory in which: (a) all the characteristic speeds
are strictly less than the speed of light. ie., |7] < 1: and (b) the equation of state for
the perfect-fluid states is such that the solutions to the Taub conditions satisfy
v, >ct and ¢, >v_ >0, where ¢, and r_are the physical fluid speeds in the
asymptotic perfect-fluid states before and after the shock. and ¢ and ¢, are the
corresponding adiabatic sound-speeds. each given by c2=(cp/cp),. The first condi-
tion holds in a generic fluid theory. while the second is known to hold for
numerous specific equations of state [15] (and may well hold in general).

Consider a solution of Eq. (95) whose incoming {luid speed ¢, is larger than the
largest characteristic speed of the system. For this solution the matrix x,M"™ 5
must be positive definite when evaluated in the asymptotic perfect-fluid state
preceding the shock. This follows because x,,M" 5 is positive definite (by assump-
tion) for x,, on the past light cone. and in this case x,, will by Eq. (102) be “closer
to the past light cone” than the normal to any characteristic surface. Consider next
the sub-matrix that is formed from the inner products of N4 and T+* with
x,,M" 5. In the asymptotic perfect-fluid states, this sub-matrix is just the matrix
that appears in the usual perfect-fluid equations. It is staightforward to verify that
this perfect-fluid sub-matrix is positive definite whenever v >c,, while its signature
contains at least one minus when v < ¢,. Whenever the signature of this sub-matrix
contains a minus, then so must the full matrix x,, M" 5 [16]. But we have assumed
that the fluid speed v_ is smaller than c, in the asymptotic region following the
shock. Thus the perfect-fluid sub-matrix, and also the full matrix x,, M 5, cannot
be positive definite in this asymptotic region.

Thus, we have shown that under these conditions the matrix x,,M" ,; must be
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positive definite in the incoming asymptotic region, and not positive definite in the
outgoing. It follows that this matrix must be non-invertible somewhere in between.
We therefore expect that there will be no continuous solution of Eq. (95} in this
case.

This breakdown of the shock equations for strong shocks (i.., those with suf-
ficiently large fluid speeds) was first noted by Grad [17], in the context of a non-
relativistic fluid theory, and by a number of authors [14, 18, 19, 20], in the context
of the Israel-Stewart theory. For the Israel-Stewart theory’s version of a classical
Maxwell gas [21] the largest characteristic speed is only about 1.76¢,, so this
breakdown is a severe limitation on the theory’s ability to describe shocks.

Finally, we remark that it is not clear what it means for a discontinuous @ to
be a “solution” of Eq. (1). For example, since Eq. (1) is non-linear, distributional
solutions of that equation do not, as the equation is written, make sense. Thus, it
appears that in general, the causal fluid theories of Section II have no solutions at
all capable of describing strong shocks. But note that, for those theories whose
equations can be written as divergences [6, 7], distributional solutions—and also
shock solutions—presumably can (in analogy with those for perfect ftuids) be
defined.

VII. CONCLUSION

In this section, we discuss a number of open questions .and areas for further
work. For the fluid theories constructed in Section II, it is generally appropriate on
physical grounds to restrict the fluid fields ¢“ by various algebraic inequalities.
Examples of such restrictions are that the particle-number current N™ be future-
directed timelike, that the stress-energy tensor 7" satisfy a suitable energy condi-
tion, or that the thermodynamic variables satisfy various inequalities. Some such
restriction is always necessary in order that the theory be causal, since, e.g., no
theory of Section II is causal for the fluid state ¢ =0. What is the complete list of
physically reasonable restrictions on the ¢“? Is there a fluid theory that is causal
for all ¢ allowed by these conditions? _

A major complication is writing down examples of fluid theories, via the con-
struction of Section II, is the fact that the perfect-fluid and the imperfect-fluid states
were treated differently there. Is there some way of reformulating this subject, e.g.,
by a specific choice of variables, such that the two types of states are treated on a
more equal footing? Does there exist a simple, systematic procedure for explicitly
writing out all the fluid theories introduced in Section I1? Does there exist a simple
systematic procedure for determining whether a given fluid theory (e.g., the Israel-
Stewart theory) is symmetric in the sense of Section I1? » :

In Section IV, we briefly discussed the issue of whether in equilibrium the
@-variables (those that satisfy simple space-time equations, (75) and (76)) must be
identical to the {-variables (those directly linked to the thermodynamics, Egs. (71)
and (72)). For many theories of interest—in particular, all, of .the theories of
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divergence type—these two are identical. But, as we saw in Section I, there are
examples of theories for which these variables differ. Is there a solid physical
argument that rejects such theories? Is there a simple characterization of those
theories for which the two types of variables are identical?

In Section V, we gave a sufficient condition, Eq. (93), that the equilibrium states
of a causal theory be stable. Is this condition also necessary? As it stands, Eq. (93)
is quite complicated. Is there some simpler version or physical interpretation of this
equation?

In Section VI, we argued that causal theories admit no continuous solutions to
represent sufficiently strong shocks. Thus, if shocks are to be described at all within
these theories, it will have to be by discontinuous solutions of Eq. (1). What is this
to mean mathematically? Can, for example, a “solution, not necessarily continuous”
of Eq. (1) be defined in such a way that the system has a well-posed initial-value
formulation? Such a definition appears more feasible for theories of divergence type
than for a general theory. Even after shock solutions have been given mathematical
meaning, there remains a related question. Do there exist solutions, suitable in
terms of number and character, to describe shocks in all situations of physical
interest?

All of the theories of Section Il generalize, in some sense, the Navier-Stokes—
Fourier theory. Is it true, in some precise sense. that these theories give rise to the
Navier-Stokes-Fourier theory as an appropriate (e.g., low velocity and large
length-scale) limit? Is there a systematic procedure for taking this limit? Are there
observations that will distinguish these theories from their limits—and from each
other? Are there, for example, observation-based conditions on the M™ ,p other
than those already incorporated in this paper?

Finally, it would be of great interest to find a rigorous derivation, starting from
a microphysical description of the matter. of any relativistic theory of a dissipative
fluid.
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