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ABSTRACT

The formalism for computing the oscillation frequencies of rapidly rotating stars in the post-Newtonian
approximation is reviewed and extended. Numerical results are presented for the frequencies of the | =m
f-modes of rapidly rotating neutron stars. The ratios of the critical angular velocities (wWhere the mode fre-
quencies pass through zero) to ./nGp, (With p, the average density) are lower than their Newtonian counter-
parts by up to 10%. Thus post-Newtonian effects tend to enhance the gravitational-radiation-induced
instability in rotating stars.

Subject headings: radiation mechanisms: gravitational — stars: neutron — stars: oscillations — stars: rotation

1. INTRODUCTION

It is well known that gravitational radiation tends to make all rotating stars unstable (Chandrasekhar 1970; Friedman & Schutz
1978). Viscosity, however, tends to counteract this instability so that only sufficiently rapidly rotating stars are in fact unstable
(Lindblom & Detweiler 1977; Lindblom & Hiscock 1983). In order to determine which stars are stable, therefore, a detailed
calculation of the pulsations of rapidly rotating stars must be carried out which includes both the effects of viscosity and gravita-
tional radiation. Such calculations are very difficult. The problem of finding solutions to the pulsation equations for rapidly rotating
relativistic stellar models has never been seriously attempted, let alone solved. Various approximate calculations have been
completed however. For example, the equations that describe the pulsations of rapidly rotating Newtonian stars have been solved,
including the effects of viscosity and gravitational radiation (Ipser & Lindblom 1989, 1990, 1991). These calculations are unrealistic
due to their neglect of relativistic effects in the equations for the structure and pulsations of the stars and due to their use of very
idealized equations of state for the stellar matter. More realistic calculations have also been carried out using the full relativistic

* equations and using more realistic equations of state (Cutler & Lindblom 1987; Cutler, Lindblom, & Splinter 1990), but these

calculations are limited to nonrotating stars.

Although idealized, these calculations do give some approximate understanding of the gravitational-radiation instability in
rotating neutron stars. The shear viscosity of neutron-star matter scales with temperature like T ~2. Therefore, in sufficiently cold
neutron stars, the viscosity is so large that it completely suppresses the gravitational-radiation instability in all rotating stars. The
approximate calculations described above indicate that this complete suppression occurs when T < 107 K. In hotter stars the
instability may occur, but only in stars rotating faster than about 90% of the maximum equilibrium angular velocity. In the very
hottest stars, T > 5 x 10'® K, the bulk viscosity (which scales with temperature like T°) becomes very large and completely
suppresses the instability in all rotating stars. While the exact values of the neutron-star viscosities are not known with much
precision, the temperature scalings are probably correct. An error of an order of magnitude in the shear viscosity, therefore, would
result in an error of only a factor of 3 in the temperature below which the gravitational-radiation instability was suppressed.
Similarly an error of an order of magnitude in the bulk viscosity would result in only a 50% error in the suppression temperature.

In an attempt to improve our understanding of these instabilities, we present here the results of another approximate calculation
of the pulsation frequencies of rapidly rotating stars. In typical realistic neutron-star models the gravitational field is fairly weak in
the sense that GM/c?R is considerably less than one. Therefore we expect that the structure of the star and its gravitational field can
be reasonably well approximated in a post-Newtonian expansion of general relativity. A formalism for calculating the post-
Newtonian corrections to the modes of rotating stars has been developed by Cutler (1991) (Paper I). In particular, Cutler showed
how the post-Newtonian corrections to the mode frequencies can be determined without solving the full post-Newtonian mode
equations. In this paper we use this method to calculate numerically the oscillation frequencies of the I = m f-modes of rapidly
rotating polytropic neutron-star models. The f~modes are the lowest frequency p-modes (i.e., the modes that have significant density
and pressure perturbations) for given values of I and m. These are the modes that play the most significant role in the gravitational-
radiation instability.

The plan of this paper is as follows. In § 2 we review and somewhat extend the post-Newtonian formalism developed in Paper 1.
We also provide a more thorough discussion than in Paper I of the appropriate boundary conditions to be imposed on the
post-Newtonian mode solutions, and their role in determining the post-Newtonian correction to the mode eigenfrequency. In § 3 we
present our numerical results for the post-Newtonian oscillation frequencies. We estimate the accuracy of our method by comparing
the post-Newtonian frequencies for nonrotating stars with the full, general-relativistic mode frequencies. The post-Newtonian
results are found to agree with the exact ones to within a few percent for typical neutron stars. We then compute the frequency
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corrections for the | = m fmodes of rotating stars, and we determine, in the post-Newtonian approximation, the critical angular
velocities where these frequencies vanish. These are the angular velocities where these modes would become unstable to the
gravitational-radiation-induced instability in the absence of viscosity. We find that post-Newtonian effects lower, by up to 10%, the
ratios of these critical angular velocities to ./nGp , where p, is the average density of the star. Thus, post-Newtonian effects tend to
make the gravitational-radiation instability more important.

The numerical methods we use for solving the post-Newtonian equations are generally the same as those developed by Ipser &
Lindblom (1990) for solving the corresponding Newtonian problem. However some additional techniques are required for solving
the equation for the post-Newtonian gravito-magnetic vector potential, and these are described in the Appendix.

2. THE POST-NEWTONIAN APPROXIMATION

This section has a number of related purposes. The first is to review the formalism developed in Paper I for determining the
post-Newtonian corrections to the equilibrium structures and the pulsation modes of rotating stellar models. Our treatment is
somewhat more general than in Paper 1, in the following way. In approximating a given general relativistic star in a post-Newtonian
expansion, there exists the freedom to choose which “ corresponding ” Newtonian star to expand around. In Paper I, the Newtonian
stellar model was chosen to have the same angular velocity Q as the general relativistic star; that is, the post-Newtonian correction
to the angular velocity, AQ/c?, was set to zero. However, numerical experimentation has shown us that AQ/c? = 0 is not the most
useful choice when approximating rapidly rotating stars. Hence our second purpose is to write explicitly, without rederiving them, a
number of equations that are more general than the corresponding equations in Paper I, in that they include terms proportional to
AQ/c*. (Throughout this paper we use the convention that AQ/c? represents the post-Newtonian correction to some Newtonian
quantity Q.) Third, we use this section as an opportunity to discuss more thoroughly the appropriate boundary conditions to be
imposed on the post-Newtonian mode solutions. And finally, we derive some additional post-Newtonian formulae—expressions for
the kinetic energy, potential energy, and Keplerian angular velocity of rotating, equilibrium stars—that are useful for characterizing
these stars.

We begin by reviewing our basic assumptions. We assume the stellar matter is a perfect fluid; that is, its stress-energy tensor has
the form

T = (¢ + p*v’ + pg*?* , )

where € is the energy density, p the pressure, and u® the four-velocity of the stellar fluid, and where g,; is the space-time metric. We
also assume the fluid has a one-parameter equation of state, p = p(e/c?). (We remark that while the bulk motions of matter are
required to be nearly Newtonian for the post-Newtonian approximation to be useful, no such requirement is placed on the
microscopic properties of matter. Even in Newtonian fluid theory we are free to use an equation of state that is derived using
relativistic quantum field theory. Hence the equation of state itself is not expanded in post-Newtonian fashion, but rather we
proceed as if we had in our possession the “correct ” equation of state, fixed once and for all.) Under these conditions the dynamics
of the stellar matter is determined completely by Einstein’s equation,

G¥=—"T%.
= @

Realistic neutron-star models typically have surface red-shifts of z & 0.3, and so we expect in this context the “post-Newtonian
solutions ” to equation (2) to be useful approximations. Following Chandrasekhar (1965) (and for the notation used here, Paper I)
we expand the spacetime metric and the fluid variables as formal series in inverse powers of the speed of light 1/c":

2 2
ds* = g,pdx*dx? = — l:l + 0—22 @ +3 (@ + %)+ @(c_"’):lc2 de? + [c—3 A, + @(c's)]cdtdx“

2
+ |:e,,,,< -5 <I>) + co(c"‘):l dx?dx? , )]
€=pc+ (6 4 2p® — pv?) + O(c7?), 4
1 dp 2 -4 »
P=p)+ g 0+ 200 = pod) + 07, 4
1 1 1
ct =1+ 5= (0 = 20) + 57 | ©* — 300 — 2% — — v* + 20°(4, + w,) | + O(c™9), (6)
2c 2c 4
1 1 s
U=+ W OcTY). ™
C C

Equations (3)(7) serve as definitions of the Newtonian fields p, v, and @, and of the post-Newtonian fields 6, w*, ¥, and 4,, which
represent the next-order “corrections” to the Newtonian quantities. Our convention is that Latin letters represent spatial indices
which are raised and lowered with the flat Euclidean metric e,, and its inverse e®®. We denote the derivative operator compatible
with e,, by D,, and we use the shorthand v? = v°v,.

Having expanded the metric and stress tensor as above, the next step is to expand Einstein’s equation (2) and the associated
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conservation law, V, T* = 0, as formal power series in 1/c, and then (following Gunnarsen 1991) to set the coefficient of each power
of 1/c in these expansions equal to zero. The coefficients of the lowest-order terms in this expansion give the standard Newtonian
equations for p, 1%, and ®@. The next-order terms give the post-Newtonian equations for the fields o, w* ¥, and A4° (eqs. [14]-[17] in
Paper I). Solutions of the Newtonian and post-Newtonian equations are to be combined as prescribed in equations (3)(7) to
produce an approximate solution of FEinstein’s equation (2).

We next summarize how to obtain the post-Newtonian corrections to the structure of any given stationary Newtonian
“background ” stellar model. We restrict our attention to uniformly rotating stars. In full general relativity, the condition of uniform
rotation is just that the fluid four-velocity have the form

woct® + ¢F Qgg » @®)
where t* = (9/0t)* and ¢f = (0/0¢)* are the timelike and rotational Killing fields, and, the angular velocity Qg is constant through-
out the star. Expanding Qg as
Qgr = Q + AQ/F + O(c™*) )]
and us;ng equations (8)—(9) in equations (6)(7), we find that the post-Newtonian correction w* to the Newtonian velocity v* = Q¢ is
given by

a__l_ 2 A(_l a
w—z(v —2(I>+ZQ>v. (10)

There are two free parameters to choose in selecting which (rigidly rotating) Newtonian stellar model to associate with a given
general-relativistic star. We like to use the post-Newtonian corrections to the mass and angular velocity of the star, AM/c? and
AQ/c?, as these two parameters. Given a choice of AQ (which determines w® by eq. [10]), the other fields characterizing the
post-Newtonian corrections to this stationary model, 4% o, and ¥, satisfy the equations:

D®D, A® = 167Gpv° , 11
D°D,¥ = 4nG(o + pv® + 3p), (12)
AQ  1dp , P pdp
— ——— (0 —pv* 4+ 2p®) + 92

Q pdp! N T

where AC is a constant. Equations (11)—(13) may be solved in two steps. First, solve the Poisson-type equation (11) for 4°. (Note that
A® is completely determined by the background Newtonian solution and the boundary condition 4*— 0 as r — 0.) Second, use
equation (13) to eliminate ¢ from equation (12). The resulting equation is

1
AC =70 =¥ =200 + v°A, + v 13)

dp dp |1 AQ P pdp
D*D,(¥Y + AC) + 4nGp — (¥ + AC) = 4rG(2pv? + 3p — 2p®) + 4nGp — {— v* =200 + "4, + v> — + - . (19
dp dp (4 Q o [p@1*
This is an elliptic equation for ¥ + AC whose right side depends only on the background Newtonian solution and the previously
determined post-Newtonian field 4% A boundary condition for this potential must be specified in order that this equation have a
unique solution. This boundary condition is equivalent to specifying the post-Newtonian correction to the mass, AM/c2, for

1
=— |n*D (¥ 2
AM 4nGJnDa( + AC)d2x , (15)

where the integral is to be performed over any closed two-surface which contains the entire star. Once ¥ + AC is known, the
post-Newtonian field o is determined by equation (13).

Having found the corrections to the stationary stellar model, we want to calculate the post-Newtonian corrections to the
pulsation frequencies. Fortunately, the formalism developed by Ipser & Lindblom (1989, 1990) for solving the Newtonian pulsation
equations is readily adapted to the post-Newtonian equations. We begin by briefly summarizing that Newtonian formalism.
Restrict attention to a single mode, having time and angular dependence e ~***™®_ Define the scalar potential U by

1dp

5U§6®+;Eép, (16)
and the constant Hermitian tensor field Q*® by
05! = — (0 — mQ)e,, — 2iDy v, . (17
Then, the Euler equation for the fluid acceleration can be “solved ” explicitly:
° =iQ*D, U . (18)

Eliminating év” from the remaining equations in favor of 6U, the Newtonian mode equations are reduced to the following system of
second-order (typically elliptic) equations in U and é®:

dp
D (pQ?*Dy6U) — (0 — mQ)p —~ (6U — 6®)
P(6U> = dp -0. (19)

oD dp o—mQ
(0 — mQ)p i O6U — 6@) — G D°D,6®
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The frequency o plays the role of an eigenvalue in equation (19) since only for certain discrete values of w do the solutions satisfy
the appropriate boundary conditions. These boundary conditions are that rd® — 0 as r — co and that 6U be smooth on the surface
of the star. Since SU is not defined outside the star, by U being smooth at the surface we mean that there exists some smooth
extension of dU into the exterior of the star. This second condition implies the usual boundary condition: that the perturbed fluid
density vanishes at the surface of the perturbed star. This implication can be seen by evaluating equation (19) at the star’s surface.
While smoothness of U is almost certainly a stronger condition than is actually needed here (e.g., C? is probably sufficient), it
makes our discussion considerably simpler.

The post-Newtonian corrections to the pulsations of a star are described by the fields da, 6w?, 0¥, and §A4° which satisfy the
linearized (with respect to the amplitude of the pulsation) post-Newtonian equations. We seek a solution of these linearized
post-Newtonian equations that, when added to the Newtonian mode solution as prescribed in equations (3)«7), yields a mode
solution of the general-relativistic pulsation equations—up to higher-order terms in powers of 1/c. The frequency of the mode in full
general relativity, wgg, will not in general equal the Newtonian frequency, w, but rather

wgr = @ + Aw/c* + O(c™), (20)
where Aw/c? is the post-Newtonian correction to the frequency. This expression (20) determines, then, the time dependence of the
linearized post-Newtonian fields. For instance, the expansion of the general-relativistic equation, J,0€ = —iwgg 6€ to post-
Newtonian order,

0,8(pc? + 0 + 2p® — pv?) = —i(w + Aw/cH)d(pc® + 0 + 2p® — pv?) + O(c™?), (21)
implies that d¢ has time dependence:
0,00 = —iwdo — iAw dp . 22)

Thus, in order that the combined Newtonian and post-Newtonian terms have sinusoidal time dependence—up to higher order
terms in the expansion—the post-Newtonian terms themselves must have the nonsinusoidal time dependence given in equation (22).
Analogous results apply as well to the time dependencies of w* and 6.

The first step in obtaining the post-Newtonian mode solution is to solve the equation,

DD, A, = 16rnG(Spv, + p dv,) — iwD, 6 , (23)

for 6A4° Thus, A% is completely determined by the Newtonian mode solution and appropriate boundary conditions. (In the
Appendix we describe two “tricks ” that facilitate the numerical solution of eq. [23].) To solve for the remaining fields ds, 6w?, and
0¥, we begin by defining the scalar potential W :

1.dp

W =o¥ + ; i oo (24)
Then, in complete analogy with equation (18), the field éw” can be eliminated in favor of 6W :
Sw = iQ®[D, W — iAw v, — i(w — mQ)SA, — D,(*6A,) — 6B,] , (25)

where the quantity 6B, depends only on the previously determined Newtonian and stationary post-Newtonian fields,

2
53,,:/1)1),,{[(2 20) - <d”) dp ]5,7 2p (5<1> M,,)}-%”D\P <2<1>+ +”: )Daétb

dp dp
1 AQ
(o412 25U i —d—pép—(2co—3mQ)5(I>—[(a)—mQ)v,,+4iD,,(D]5u"
2 P Q p dp
-D (DI:ZU"(SU,,+25<D+(U +2(I)+dp>(S :|+D,,( "A,,)———lw—év v*D,v,| 2v, 6v° + 2(1."—@—2é—‘3 %
dp) p dp QJ)p
+ (D, A, — Dy A)50" . (26)

The post-Newtonian mode equations then reduce to two coupled (typically elliptic) equations in SW and 5P,

P(éW) 3 (Aw[ap + iD (pQ® dv,)] + dXW>
o) — (0 — mQ)6 Xy ’

where P is the operator defined in equation (19). Thus, the post-Newtonian pulsation equation (27) is just an inhomogeneous
generalization of the Newtonian equation (19). The right side of equation (27) depends only on the post-Newtonian correction to the
frequency Aw/c?, and the previously determined fields. In particular the quantities 6Xy and 6Xy depend only on previously
determined ﬁelds

@7

Xy = —plw + mQ)6® + D,{pQ®[B, + ilw — mQ)dA, + Dy(* 64,)]} + mQ[pv“ ov, — (jp + %)5/7]
p
1
+ iD,,l:<a +p+pd— 3 pvz)év"] , 28)

d
6Xy = <u2 +3 ;i%)ép + 2p0, 00 . (29)
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We now turn to the question of the appropriate boundary conditions to impose on the solutions of equation (27). We demand
that r6%¥ — 0 as r —» oo in order to ensure that the mass of the perturbed star is the same as the mass of the equilibrium model. We
also demand as a second boundary condition that §W have some smooth extension to the exterior of the star. This second condition
implies (for the class of equations of state of interest to us) the usual boundary condition: that the perturbed density vanishes on the
perturbed surface of the star to post-Newtonian order. We digress, briefly, to establish this implication.

We have assumed that the Newtonian potential U is smooth at the star’s surface, and so it follows that 6v* and 6 4* must also be
smooth as consequences of equations (18) and (23). The smoothness of W would imply the smoothness of the post-Newtonian
velocity perturbation dw* via equation (25), if §B* were smooth. The expression for 6B% equation (26), contains a number of terms
proportional to p~! that are not obviously bounded, let alone smooth, at the surface of the star. However, for the equations of state
of interest to us, these singular terms cancel. A sufficient assumption on the equation of state is that p ~!(dp/dp) is a strictly positive,
smooth function of p for p > 0. While this assumption is probably stronger than is needed, it includes the I = 2 polytropes that are
the subject of our numerical analysis in § 3. Under this assumption, it follows (after a fair amount of algebraic manipulation) that
0B® is smooth at the surface of the star. Thus, the smoothness of W implies the smoothness of dw® for the equations of state
considered here. We remark that for these equations of state the density p goes continuously to zero at the star’s surface while o, dp,
and D, p are finite but not zero at the surface.

We next introduce the vector field Ax?/c? that represents the post-Newtonian correction to the location of the star’s surface. It is
defined by the requirement that the density € vanishes on the surface of the general-relativistic star; thus, to post-Newtonian order

6+ Ax*D,p=0, (30)
evaluated on the surface of the Newtonian star. Using equation (30) and the Newtonian mass-conservation law, it follows that
AXPD,[6v°D, p — ilw — mQ)dp] = oD, 6v° , (31

also evaluated on the star’s surface. Now, the post-Newtonian energy-conservation law (eq. [46] of Paper I), evaluated at the surface
of the star where p = 0, reduces to the condition,

oD, 6v* + 6w°D,p + 6v°D, 0 — i(® — mQ)éc — (Aw — mAQ)sp + (® — $v*)0v°D,p =0 . 32)
Thus, combining equation (31) with (32) we obtain
Ax"D,[6v°D, p — (@ — mQ)dp] + 6v°D (o + 2p® — pv?) — i(w — mQ)Ev> — D)dp — i(w — mQ)d(a + 2p® — pv?)
+ ow’D,p — i(Aw — mAQ)op =0 . (33)

The motion of a fluid element on the star’s surface will follow the perturbed motion of this surface iff (u*V, €) = 0 on the surface.
This condition is equivalent to the usual boundary condition that the density remain zero on the perturbed surface of the star. Using
equations (4), (6), (7), and (10), the quantity 6(u*V, €) can be expanded to post-Newtonian order:

3wV, €) = c[6v°D, p — i(w — mQ)5p] + ¢ ~*AXPD,[6v°D, p — il — mQ)5p] + ¢ ~'[6v°D (o + 2p® — pv?)
—i(w — mQ)d(o + 2p® — pv?) — i(w — mQ)302 — ®)5p + WD, p — i(Aw — mAQ)Sp] + O(c ™ 3) . (34

The quantity 8(u*V,€) is to be evaluated on the surface of the general-relativistic star, while the expressions on the right side of
equation (34) are to be evaluated on the surface of the Newtonian star. We see that equation (34) implies that 5(u*V,€) = 0 as a
consequence of equation (33) and the Newtonian mass-conservation law. Thus, we conclude that the smoothness of W at the star’s
surface implies the usual form of the boundary condition: that the perturbed density vanishes on the perturbed surface of the star to
post-Newtonian order.

We can now derive an expression for the post-Newtonian change in the frequency, Aw/c?, of a pulsation mode. Note that the
operator P in the post-Newtonian mode equation (27) has a nontrivial kernel, namely the Newtonian solution (6U, 6®). Hence
equation (27) will not have any solution at all unless the source on its right side has a certain inner product with (6U*, 6®*). Take
the inner product of each side of equation (27) with the row vector (6U*, 6'¥*), and integrate over the interior of the star (where
p > 0). If the operator P acting on (6W, 6¥) were Hermitian, then the resulting left side would vanish. Consequently, the vanishing
of the integrals on the right side of equation (27) would fix the value of Aw. However, the boundary conditions on (6W, 6'¥) are such
that P is only “almost ” Hermitian.

The failure of P to be Hermitian when it operates on (6W, 6¥) can be traced to the failure of D, ¥ to be continuous at the
boundary of the star. Since ¢ jumps discontinuously to zero at the star’s boundary, the post-Newtonian mass-conservation law (e.g.,
eq. [32]) implies that o will behave there like a Dirac delta function. Equation (32) implies that

; D (o6

o0 ~ — , 35
’ o — mQ (33)
where “ ~ ” means that the difference between the two functions is everywhere finite. Then, from equation (27) it follows that
D (oov*
DD, 6% ~ —idnG 2al20%) (36)
o — mS)
Integrating this expression over a thin shell enclosing the star’s surface, we find by Stokes’s theorem that
6 a
n[D, 0%, — D, 0¥, ] = —i4nG ——a_ (37)
o — mQ
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where D, 0¥, is evaluated just outside the star’s surface, while D, 6¥;, and the right side of equation (37) are evaluated just inside;
and n“ is the outward-pointing normal to the surface. This condition implies, in turn, that 6%* and 6'¥ satisfy the identity,

j (6D*D°D, 6% — S¥DD, 50*) dPx = Jacb*n“[(z)a 8¥),, — (D, 0P), . Jd%x , (38)

where the integral on the left side is taken over the star’s interior, where p > 0. This identity is readily derived by using the fact that
o® and oY are solutions of the (source-free) Laplace equation in the exterior which fall to zero faster than 1/r. It is the nonvanishing
of the right side of equation (38) that is responsible for the non-Hermiticity of the operator P. Therefore, when we multiply equation
(27) by (6U*, 6®@*) and integrate over the stellar interior, the left side becomes

j((SU*, oD*) - P(?;)d% =i Jaé@*éva n“d*x . (39)

Combining this with equation (27) gives the following expression for Aw,
Aw j(p&u;" 60" + 6poU*)d3x = ‘[ [(w — mQ)6 Xy 60* — 6X3, SU*]d3x + i jaécb*éva n°d?x . (40)

These integrals completely determine Aw in terms of the previously determined functions which describe the equilibrium
structures of the Newtonian and post-Newtonian stars, and the Newtonian pulsation mode. This expression for Aw does not depend
on the functions 6W and é¥ which determine the structure of the post-Newtonian mode itself. It can be shown from this expression
that Aw is real whenever w is real. Once Aw has been determined, equation (27) can be solved for the potentials 6W and 6.
However, it is not necessary to determine these potentials if only the frequency of the mode is desired.

We now derive some formulae that are useful for characterizing the time-independent, rotating stellar models (see also Cutler &
Lindblom 1991). The rotation rates of stars are often parameterized by the dimensionless quantity © = — K/W, the ratio of the
rotational kinetic energy of the star to its gravitational potential energy. We use the general-relativistic definitions of these
quantities given by Friedman et al. (1986):

Q
Kor =7, J (€ + ptou’ dS,, @1

Wor = j {[2(e + pu + (€ — p)g**1t, — eu’}dSy — Kor , 42

where t, is the globally timelike Killing field, ¢, is the rotational Killing field, and the integrals are performed over a ¢t = constant
hypersurface with volume element dS;. Writing Kgg = K + AK/c* + 0(c™*) and Wgg = W + AW/c? + O(c™*), and using the
expansions in equations (3)~(7) for the various quantities that appear in these integrals, expressions may be obtained for K, W, AK,
and AW. The first-order terms in these expansions yield the standard Newtonian expressions for K and W:

K=1% Jpvzd3x , 43)

W = f(p@ + pv? + 3p)d3x = 1 ij dx . (44)

(The second equality in eq. [44] is a consequence of the equilibrium equations.) The post-Newtonian corrections to these quantities
are given by the second-order terms in the expansions of equations (41) and (42):

1 AQ
AK = > J[(a +p—4pd +2p H)v2 + pv“A,,]d3x , 45)

1 1
AW = —AK +5”p<—13u2c1>—<1>2+Zv4+2\P+602%Q+2u“A,,>

d
+ 4p(v? — 30) + o(3v* + 20) + 6 £ (0 + 2p® — pvz):ldax . (46)

We next consider the post-Newtonian correction to the terminal angular velocity of a sequence of rotating models. A sequence of
stellar models (Newtonian or general relativistic) terminates when the star’s angular velocity Q is equal to Qg (the angular velocity of
a test particle in orbit at the star’s surface in the equatorial plane), referred to as the “ Keplerian ” angular velocity. For Newtonian
stellar models the Keplerian angular velocity is given by the expression

14d®
rdr’

where the quantity on the right side is to be evaluated in the equatorial plane at the surface of the star. Expanding Qg gr = Qg
+ AQg/c* + O(c™*) and solving the geodesic equation for the metric in equation (3), we obtain the following expression for the

2 _
K =

47)
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post-Newtonian correction to the Keplerian angular velocity of such a test particle:

1 d® d¥ O d°A,) dr*®) (4o
AQ = — —_— - a4 22N ) e Y
K720, l:ZcI) dr + a Q adr + O dr + ar? Qg JAr |, (48)

where the quantities on the right side are evaluated in the equatorial plane at the surface of the Newtonian star, and Ar/c? represents
the post-Newtonian change on the surface of the star at the equator (as defined in eq. [30]).

3. NUMERICAL RESULTS

We have used the formalism described in the previous section to calculate-numerically the post-Newtonian corrections to the
pulsation frequencies of rapidly rotating neutron stars. The numerical methods used to solve the equations in this paper are
essentially the same as those described in Ipser & Lindblom (1989, 1990). (The extension needed to solve the vector Poisson
equation for the gravito-magnetic potential is described in the Appendix.) This numerical method takes advantage of the axisym-
metry and approximate spherical symmetry of the equilibrium stellar models, and the sinusoidal angular dependence and definite
parity of the pulsation modes. The equations were solved on a two-dimensional radial grid consisting of 1600 evenly spaced points
on each of 20 radial spikes having angles in the range 0 < 6 < 7/2.

For this study we have selected a simple polytropic equation of state,

p = ke?/c*, (49)

where « is a constant. While there are various definitions of “relativistic polytrope” in the literature, in this paper we refer to
equations of state having the form p = xe'/c?" as polytropic. The particular equation of state used here, with 2 =T =1+ 1/n, is
commonly referred to as an n = 1 polytrope. This value of I' produces stellar models having central condensations (i.e., the ratios
between the central and the average densities) that are similar to more realistic neutron-star models. The choice x = 10° (in cgs
units) results in stellar models that are similar in size to more realistic neutron-star models. However, the specific value of x does not
change our results in any significant way. Solutions to the equations having different values of k are related by a simple scaling.
Given a solution g, to the Einstein equation with a polytropic fluid source, p = ke"/c", the rescaled metric (x'/x)*/" ~ Vg, is a new
solution with fluid source satisfying p = x’e"/c?". Thus, all physical quantities scale in a simple way under the transformation x — «,
and many dimensionless quantities of interest are completely independent of k. This scaling applies to all solutions of Finstein’s
equation with polytropic fluid source, including those which may be approximated in a post-Newtonian expansion. Thus, equations
(1)H7) determine the appropriate scalings of each of the Newtonian and post-Newtonian fields under this transformation.

Consider a sequence of rotating equilibrium general-relativistic stellar models, all with the same mass Mgz and with angular
velocities ranging from zero to the terminal, Keplerian angular velocity. Our aim is to approximate these stellar models as some
appropriate sequence of rotating Newtonian stars plus post-Newtonian corrections. We begin by selecting the nonrotating Newto-
nian model to associate with the nonrotating general-relativistic star in this sequence. After some numerical experimentation (see
also Balbinski et al. 1985), we found it convenient to associate nonrotating models having the same GM/c*R ratios, where M is the
gravitational mass, and R is the radius of the star. Next, we fix the remaining Newtonian models in the sequence by requiring them
to have the same mass as this nonrotating model. Post-Newtonian corrections are now added to these Newtonian models to
approximate the original general-relativistic sequence. Thus, we constrain the post-Newtonian change in GM/c?R to be zero for the
nonrotating model. This constraint is imposed by adjusting the boundary condition to equation (14) so that AM/M = AR/R. And
finally, the remainder of the constant-mass sequence is fixed by requiring that the post-Newtonian change in the mass AM/c? be
independent of angular velocity.

So far, we have selected particular Newtonian and post-Newtonian constant-mass sequences to approximate our original
sequence of rotating general-relativistic stellar models. Except for the zero-angular-velocity members of the sequence, however, we
have yet to specify how individual members of the two sequences are to be identified. It might seem natural to identify the
Newtonian and the general-relativistic models having the same angular velocity: AQ = 0. However, numerical experimentation
shows that this is in fact a poor choice. The reason is, roughly speaking, that general-relativistic giavity is stronger than Newtonian
gravity. Thus, a general-relativistic star will be less distorted in shape by its rotation than its Newtonian counterpart rotating at the
same angular velocity. It is more appropriate, therefore, to associate models whose angular velocities are related in some more
dynamically meaningful way. Various studies (e.g., Friedman et al. 1986, 1989) have shown that sequences of rotating stellar models
all terminate when the ratio Q/Q, = 0.6, where Q2 = nGp, = 3GM,/4R3 (with M, the mass and R, the radius of the nonrotating
star in the sequence). This result applies to both Newtonian and general-relativistic stellar models and is essentially independent of
the equation of state of the stellar fluid. This ratio is, therefore, a dynamically meaningful measure of the star’s angular velocity.
Thus, we choose to associate the Newtonian stellar model with its general-relativistic counterpart having the same ratio Q/Q,. Thus,
to post-Newtonian order we set A(Q/Q,) = 0. (This condition is equivalent to AQ/Q = AQ,/Q,.) In summary, we approximate a
constant-mass sequence of relativistic stellar models by first constructing a constant-mass sequence of Newtonian models, and then
adding post-Newtonian corrections. The post-Newtonian corrections are chosen so that AM is independent of angular velocity and
satisfies AM/M = AR/R for the nonrotating model, and so that AQ satisfies AQ/Q = AQ,/Q,,.

In this paper we are primarily interested in determining the frequencies w,, of the | = m f-modes (with 2 < m < 6) since these are
the modes that are most likely to participate in the gravitational-radiation induced secular instability. It is convenient to express
these frequencies as ratios with Q. For Newtonian polytropic stellar models w,,/Q, depends only on the angular velocity of the star,
Q/Q,, and the polytropic exponent I'. The post-Newtonian corrections to these ratios may also be written in an analogous invariant
form for polytropic stellar models. For the sequences of rotating stellar models described above, the post-Newtonian correction to
the frequency of the mode ,,/Q, (for a given value of Q/Q,) is directly proportional to GM,/c*R,, that is, the dimensionless
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quantity (R,/GM ,)A(w,,/Q,) depends only on Q/Q, and the polytropic exponent I" (where M, is the mass and R, is the radius of the
nonrotating star in the sequence). This result follows directly from the following scaling relations for post-Newtonian polytropes.
Let the equation of state be p = xe'/c?T, and let (p, @, v°; 0, ¥, w", A% represent a solution of the Newtonian and post-Newtonian
equations. Then (p, @, t°; 6, ¥, w*, A% defined by

p(%, £) = A2p(A2~Tx, A1), &(x, t) = ATa(A27T%, At
B(x, ) = AT 202 Tx, At), P, 1) = AT WA TR, Ar),
DA%, £) = AT 19027 T%, At), WAk, £) = A3T T 3wAA Tk, A1) (50)

A%, t) = AT3492T%, Af)

is also a solution for any value of the constant A with the same (including ) equation of state. Now consider the affect of this scaling
on the constant-mass sequences of Newtonian and post-Newtonian models described above. Under this scaling M = 43" ~*M and
Q/Q, = Q/Q,, so this scaling maps a constant-mass Newtonian sequence into another constant-mass sequence. Moreover, AM =
MST=0AM, AQ/Q,) = A2T~2A(Q/Q,), and A(M/R) = A*T ~*A(M/R). These last three relations insure that this scaling preserves the
conditions that defined the post-Newtonian sequence described above: that AM is constant along the sequence, that A(Q/Q,) = 0
along the sequence, and that A(M/R) = 0 for the zero-angular-velocity model. For rigidly rotating stars there is only a one-
parameter family of constant-mass sequences, parameterized by the value of GM,/c?R,, for the nonrotating model in the sequence.
Since M/R = A2 ~2M/R, this simple scaling suffices to map any sequence to any other sequence (for I' # 1). Now, examination of
the integral expression for Aw, equation (40), reveals that A(@,,/Q) = 4*F ~2A(0,,/Qo). That is, A(w,,/Q) scales in the same way as
M,/R,. Hence, (Ro/GM z)A(®,,/Q,) is independent of A and so may depend only on Q/Q, and T".

For the case of nonrotating stars, we can explore the range of validity of the post-Newtonian approximation for the frequencies of
these modes. In Figure 1 we compare the post-Newtonian estimates and the full, general-relativistic values of w,/Q, for the
2<l=m<6 f-modes of I' = 2 polytropes. The full, general-relativistic values were obtained using the numerical methods
described in Lindblom & Detweiler (1983) and Detweiler & Lindblom (1985). We are primarily interested in the modes that
propagate in the direction opposite the star’s rotation (since these are the ones responsible for the gravitational-radiation secular
instability), so w,, is taken to be negative. The post-Newtonian estimates ®,,/Q, + ¢~ 2A(w,/Q,) are linear in M/R and are
represented here as the solid lines; the dots represent the general-relativistic values. The post-Newtonian frequencies are tangent to
the general-relativistic values at M/R = 0 to the level of the numerical accuracy. The post-Newtonian estimates agree with the exact
general-relativistic values to within 3%-8% for GM/Rc? = 0.20. This discrepancy is consistent with the expected magnitude of the
second-order post-Newtonian corrections. For further comparison, in Table 1 we list several parameters of the nonrotating
Newtonian, post-Newtonian, and general-relativistic I" = 2 polytropes (with x = 10° in cgs units) having M + ¢ "2AM = 1.400 M.
In this case GM/Rc? = 0.167, and we see that the nonrotating post-Newtonian parameters agree with the general-relativistic ones to
within about 4%.

In Figure 2 we illustrate the angular-velocity dependence of the frequencies of the I = m f~modes for the I' = 2 polytropes with
GM,/c?R,, = 0.20 (where M, is the mass and R,, the radius of the nonrotating star in the sequence). For clarity of presentation we
plot the frequencies as measured in the rotating frame of the star: (w,, — mQ)/Q,. We note that the post-Newtonian corrections tend
to lower the absolute values of the frequencies, with this effect being somewhat more pronounced at the higher angular velocities.
We estimate that the accuracy of the Newtonian frequencies presented here is better than 0.1%, while the post-Newtonian

-1 ' T 2
m=2 m;
m=4 1
i -m=31 m=5
o pb——"" ‘md i
g 7] . —es]
~ '/——/M
O /
hrd [ ]
3 ’_3 B 1 4
-+ General Relativistic ] I - - Newtonian )
— post—Newtonian : — post—Newtonian
__4 PP S S S SR VNS S S R S S S ___4 PR ST AN VU S S SR WS SN S SR Wt
0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.6
GM/c’R 0/
Fic. 1 Fic. 2

FI1G. 1.—The exact general-relativistic frequencies (w,,/Q,)r and the corresponding post-Newtonian estimates ,,/Q, + ¢~ 2A(w,,/Q,) are plotted vs. GM/c?R for
the | = m f~modes of nonrotating I = 2 polytropes.

Fic. 2—Display of the frequencies of the I = m f-modes as viewed in the rotating frame of the star. Both the Newtonian (w,, — mQ)/€, and post-Newtonian
frequencies (w,, — mQ)/Q, + ¢ *Al(w,, — mQ)/Q,] are given as functions of the star’s angular velocity Q/Q,. Results shown here are for the sequence of T’ = 2
polytropes with GM o/c*R, = 0.20.
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TABLE 1
PARAMETERS FOR A NONROTATING STAR WITH M + ¢™2AM = 1400 M o
On On + ¢ ?AQpy Qor

M/Mg oo 1.736 1.400 1.352
R(km) ..oooovvvvinniiinnnnn, 15.343 12.374 11.959
Qo™ s 6917 8256 8871

— W/ Qg e 1.416 1.423 1.374
—@3/Qp e 1.960 1.854 1.801
— 04 Qp e 2.351 2177 2.124
—@D5/Qp i 2.667 2.448 2.393
— W/ e, 2.939 2.684 2.629

2 The Newtonian (Qy), post-Newtonian (Qy + ¢~ 2AQqy), and general-
relativistic (Qgg) value is given for each quantity.

corrections to these frequencies are estimated to be accurate to about 1%. Since the post-Newtonian corrections are about 10% of
the Newtonian values for the GM,/c?R, = 0.20 models depicted here, the post-Newtonian frequencies (obtained by adding the
post-Newtonian corrections to the Newtonian values) are expected to be accurate to roughly 0.1% as well. These accuracy estimates
are based on several computations of the frequencies on grids having different numbers of radial points and spokes. The frequencies
presented here were obtained by solving the equations on the largest such grid, which contained 1600 radial points on each of 20
spokes covering the quadrant 0 < 6 < n/2. These accuracy estimates refer to the precision with which the post-Newtonian equa-
tions have been solved, not to the accuracy with which the post-Newtonian frequencies approximate the true, general-relativistic
frequencies.

For many purposes it is convenient to describe the frequencies of the modes of rotating stars in terms of the dimensionless
function a,, (Lindblom 1986; Ipser & Lindblom 1990), defined by

On(€/Qp) — mQ
0.0 . (51)

The post-Newtonian correction to this function, ¢ ~?Aa,,, is related to the post-Newtonian change in the frequency of the mode by

2 [ A 2al2/20)
wm(o) QO

It follows immediately from equation (52) that A, like A(®,,/Q,), is proportional to GM,/c*R,, for polytropes. In Figure 3 we
display the Newtonian a,, and their post-Newtonian counterparts a,, + ¢~ *Aa,, as functions of Q/Q, for the I = m f-modes of I" = 2
polytropes having GMo/c?R,, = 0.20. We note that the post-Newtonian functions are smaller than their Newtonian counterparts by
as much as 12% for this case. The post-Newtonian function a,, + ¢~ ?Aa,, for any other value of GM,/c*R, can be obtained from
Figure 3 simply by scaling the difference between the Newtonian and the post-Newtonian functions.

In the absence of viscosity, the [ = m f-modes are unstable to the emission of gravitational radiation when the angular velocity of
the star exceeds the critical angular velocity where the frequency of the mode passes through zero. Thus it is of great interest to
determine the values of these critical angular velocities. The Newtonian equation for the critical angular velocities w,(€./Q,) = 0

%/ Q) =

A (@) = — 0 @/Q)A “’Q—(O)] . 52

1.2 v M M T T v : : T : T -1 +~—
1.0 -
0.8 r -+ Newtonian X3 1

— post—Newtonian Oy
Os 1

Ag

0.6 . . L L 4 s L 1 n n " S

0.0 0.2 0.4 0.6
Q/Qo

FIG. 3.—Comparison of the Newtonian, a,,, and the corresponding post-Newtonian, a,, + ¢~ *Aa,,, functions of Q/Q, for the | = m f-modes of the sequence of
' = 2 polytropes with GM o/c*R, = 0.20.
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TABLE 2
CRITICAL ANGULAR VELOCITIES
Q R
—= 0 a2 R Az,
I=m Q, GM, \Q, T, GM,

3o 0.610 —0.169 0.0797 —0.113

4......... 0.560 —0.236 0.0581 —0.088

S 0.515 —0.245 0.0453 —0.067

6..cen... 0.477 —0.244 0.0368 —0.055

can be expressed in the form
Qw0
Q mQ,
This equation is easily solved numerically since the function a,, as defined in equation (51) is slowly varying. The post-Newtonian

correction to the critical angular velocity ¢ ~2A(€,/Q,) is obtained by finding (to post-Newtonian order) the angular velocities where
®, + ¢ *Aw,, = 0:

%n(Q./Q0) - (3

e _ _A L

o, Q Q,  dQ)
We find that the angular velocity reaches its terminal value, Qy, before the frequency of the | = m = 2 mode, w,, goes through zero.
The values of the Newtonian critical angular velocities and their post-Newtonian corrections are listed in Table 2 for the
3 <! =m < 6 modes. The ratios Q./Q, are lowered by post-Newtonian effects by up to about 10% for the sequence of rotating
I" = 2 polytropes with GM,/c2R, = 0.20. Thus, post-Newtonian effects tend to reduce this measure of the maximum angular
velocity of rotating neutron stars (set by the gravitational-radiation instability) by up to 10%. The lowering of this measure of the
critical angular velocities by post-Newtonian effects may be contrasted with the fact that the post-Newtonian Q. may nevertheless
be larger than its Newtonian counterpart since the post-Newtonian €, is larger. In order to determine the actual upper limit on
these angular velocities, however, a more complicated calculation that includes the effects of gravitational-radiation reaction and
viscous dissipation on these modes would have to be carried out. The results of such calculations in the Newtonian case (Ipser &
Lindblom 1991) suggest, however, that the purely gravitational critical angular velocities associated with the ] = m = 4 or 5 modes
are close to the actual limiting angular velocities of neutron stars whose temperatures are near 10°-101° K. For those stars whose
temperatures lie significantly outside this range, however, the limiting angular velocities are near Q.

Another common measure of the angular velocities of rotating stars is the ratio of the rotational kinetic energy of the star to its
gravitational potential energy, t = — K/W, (i.e,, eqs. [41]-[46]). We have evaluated this ratio, and its post-Newtonian correction
At/c?, for the stars rotating at the critical angular velocities of the | = m f-modes. For the sequences of rotating post-Newtonian
polytropes considered here, At, = At(Q,/Qp) + [dT(Q./Q0)/d(Q/Q)] A(Q./Q,) is proportional to GMy/c2R,,. In Table 2 we present
the Newtonian critical value, 7., and its post-Newtonian correction, (Ro/GM)At,. We note that the values of 7, + ¢~ %A1, are
reduced from their Newtonian counterparts by almost 25% for GMy/c2R, = 0.20. This large discrepancy is due to the fact that
T = 1(Q/Q,) is a rather nonlinear function of Q/Q,.

We have also evaluated the terminal, Keplerian angular velocities for the sequences of rotating I' = 2 polytropes considered in
this paper. We find that the Newtonian value of the Keplerian angular velocity is Qg/Q, = 0.635, while its post-Newtonian analog,
Q/Q, + ¢ 2A(Q/Q,) = 0.634 for the sequence with GMo/c*R,, = 0.20. We have also evaluated the corresponding values of 7. We
find 7, = 0.1026 for the Newtonian sequence, and tx + ¢~ *Aty = 0.1036 for its post-Newtonian counterpart. That is, to post-
Newtonian order, the Newtonian and general relativistic stellar sequences terminate at almost precisely the same values of Q/Q, and
of 7. Since post-Newtonian effects lower the critical values of Q/Q, for the I = m modes, this implies that the post-Newtonian values
of the ratio Q,/Qy are also smaller than their Newtonian counterparts.

Q 0n(Q:/ Q) [m 4 ©ul0) M&/B_)] (54)
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APPENDIX

The purpose of this Appendix is to describe our method of solving equations (11) and (23) for the stationary and perturbed
gravito-magnetic potentials:

D°D, A® = 16nGpv® , (55
D°D,8A® = 16nG(Sp v® + pdv®) — iwD?® . (56)

Since the perturbed quantities on the right sides of these equations are assumed to have angular dependence e™¢, the solutions will
depend in a nontrivial way only on the spherical coordinates r and p = cos 6. However, there are two difficulties encountered in
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formulating equations (55) and (56) as difference equations on a two-dimensional grid in a compact region of the (r, u)-plane. First,
the source term —iwD®S® in equation (56) does not have compact support. Second, while the Cartesian components of 4° and 64°
satisfy simple scalar Poisson equations, these components do not have simple (i.e., sinusoidal) ¢-dependence.

The first problem is obviated by the following clever trick, due to Blanchet, Damour, & Schifer (1990). Let §45 and A% be the
solutions of

DD, 8A% = 16nG(dp v* + pov?) , (57
DD, 545 = iw2nGdp x® , (58)

where x? is the radial position vector, that is, the vector whose components in Cartesian coordinates are (x, y, z). It is readily verified
that

54" = 648 + 648 — Lin 50 %, (59)

is a solution to equation (56). Thus, the problem of finding a solution to equation (56)—which has a noncompact source—is
replaced by the problem of finding solutions to equations (57) and (58)}—each of which has a compact source.

The second difficulty arises when we attempt to factor out the “trivial ” g-dependence and express equations (55) and (57)<58) as
two-dimensional scalar equations on the (r, ) plane. The Cartesian components of the sources on the right sides of equations (57)
and (58) do not have simple ¢-dependence, and hence neither do the Cartesian components of 4” and §4°. This second problem may
be overcome by expressing these equations in terms of a basis which is more intimately related to the rotational symmetry of this
problem. The Newtonian mode solutions may be written in the form p = dp(r, n)e™® and 5@ = 6®(r, we™?, where dp(r, 1) and
O®(r, ) are real functions. It follows, then, from equation (18) that 5v° has the form

0v® = e Lov"(r, wr® + SvH(r, WK’ + Sv°r, W], (60)

where 6v" and 6v* are imaginary, v is real, and r* = (3/0r)’, ub = (8/01)° and ¢® = (6/0¢)>. Thus, equations (55) and (57)«58) each
have the general form

DD, & = e™®Lia(r, wyr® + if(r, pu® + ¥(r, W71, (61)
where o, f, and y are real functions of (r, u). We proceed to reexpress this equation in terms of its components with respect to an
“irreducible” basis. Define ¢* = & — i£¥, £° = —i¢?, and &~ = & + i&*, where &%, &, and & are the Cartesian components of &2,
Then, we find that ¢*, £°, and ¢~ obey the equations

DD, &* = e et —/f)m[a tor— 2], (62)

DD, &0 = e™[ap + Br] , (63)
DD, ¢ = eimmDy(] — /‘2)1/2[ — o+ yr+ lﬂrl;2:| . (64)

The sources on the right sides of these equations have simple sinusoidal ¢-dependence, and therefore so do ¢%, £°, and £~. Thus,
equations (62)+(64) become two-dimensional Poisson equations for the real functions &*(r, ), E%r, p), and &~ (r, u) defined by
EY = EN(r, Wm0 = EOr, we™?, and ¢ = & (r, w)e'™ 2. We also note that in the solution of equation (55) there is a further
simplification: E%r, u) = 0, and & (r, u) = & (r, p) since « = f = m = 0. Thus, equation (55) is reduced to a single two-dimensional
real-scalar Poisson equation.

For the problem of interest here, the functions on the right sides of equations (62)(64) have definite parity under the transfor-
mation u — —u (i.e., reflection about the star’s equatorial plane). This implies in turn that the functions ¢, £ and ¢~ also have
definite parity. Thus, equations (62)«64) need only be solved in one quadrant of the (r, x)-plane: 0 <r < R,,, 0 < u < 1, where
R,.., is somewhat larger than the star’s equatorial radius. The parity of these functions is inherited from the parity of the Newtonian
pulsations:

op(r, —p)=(—1)'""dp(r, 1), 8®(r, —p) = (— 1) ""5Q(r, ), (65)

where the integers [ and m are the spherical-harmonic indices of the zero-angular-velocity limit of these perturbation functions. It
follows from equations (18) and (65) that 6v" and v® have parity (—1)'~™ while 6v* has parity (—1)' ™" 1. These transformations
imply in turn that the functions «, f, and y that appear in equations (55) and (57)«(58) also have definite parity:

ar, =) = (=1)"""alr, ), B, =) =(=D""Br ), oy —p=(—D""w . (66)
And finally, it follows from equations (64)66) that £*, and ¢~ have parity (— 1)’ "™ while £° has parity (—1)' "™+ 1.
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