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ABSTRACT

A method is developed for determining the nuclear equation of state directly from a knowledge of the
masses and radii of neutron stars. This analysis assumes only that equilibrium neutron-star matter has the
stress-energy tensor of an isotropic fluid with a barotropic equation of state, and that general relativity
describes a neutron star’s internal gravitational field. We present numerical examples which illustrate how well
this method will determine the equation of state when the appropriate observational data become available.

Subject headings: equation of state — numerical methods — relativity — stars: interiors — stars: neutron

1. INTRODUCTION

The structure of a neutron star is determined by the local
balance between the attractive gravitational force and the pres-
sure forces of the neutron-star matter. While the structure of
the gravitational field in a neutron star is quite simple, the
nuclear interactions that determine the pressure forces are not.
These many-body interactions have yet to be fully understood,
and consequently the nuclear equation of state at the densities
relevant for neutron-star interiors is not well known. In the
standard analysis an equation of state must be supplied before
the structure equations can be integrated to determine the
various observable macroscopic parameters of neutron stars,
for example, masses, radii, moments of inertia, surface red-
shifts, etc. Since the equation of state is not well known,
however, it is not possible to make accurate predictions of
these observable neutron-star parameters. This paper presents
an alternative analysis of the neutron-star structure equations.
A method is developed for determining the equation of state of
neutron-star matter directly from a knowledge of the observa-
ble masses and radii of these stars. Accurate simultaneous mea-
surements of the mass and radius have yet to be made on any
individual neutron star, although this situation could change
dramatically when data from LIGO (the Laser Interferometer
Gravitational-Wave Observatory) become available (see Abra-
movici et al. 1992). Whenever and however such data—even
from a single neutron star—do become available, the analysis
described here will provide interesting information about the
nuclear equation of state.

Before discussing this alternative analysis of the neutron-star
structure equations, it is appropriate to review briefly the stan-
dard. For simplicity, the effects of rotation are neglected here.!
Thus, the gravitational field of an equilibrium neutron star is
taken to be static and spherically symmetric. The equations
that determine the structures of these stars were first deduced
from Einstein’s equation by Tolman (1934) (if not implicitly by
Schwarzschild 1916). Those equations were subsequently

! Rotational effects scale as the angular velocity squared, and so are insig-
nificant except in the most rapidly rotating stars. For neutron stars of about
1.4 M ;, which have rotation periods that exceed 15 ms (i.e., at least 10 times the
minimum), the magnitudes of the rotational effects are less than 1% (Friedman,
Ipser, & Parker 1986).
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transformed by Oppenheimer & Volkoff (1939) into the
simpler and more useful form that is commonly used today:

dm 2
ar =4nr‘p , (1)
m + 4nr’p
R L el @

where p and p are the total energy density and pressure of the
matter and m is the “ mass ” within a given radius r. Since these
two equations are consequences of Einstein’s equation alone, it
is not surprising that they are not sufficient to determine the
three functions: p, p, and m. Obviously, some microscopic
information about the nature of the stellar matter must be
supplied before the structure of the star is determined. In the
simplest case (which is probably sufficient for neutron stars)
this additional information may be given as a barotropic equa-
tion of state, that is a nonnegative increasing function

p=p(p). 3)

This completes the system of equations (1)—(2)—commonly
referred to as the Oppenheimer-Volkoff (OV) equations—
whose solutions are the general-relativistic descriptions of non-
rotating neutron stars.

The OV equations (1)—(2) are traditionally solved as an
initial value problem when an equation of state (3) is given.
This is accomplished by specifying the values of the pressure
p = p. and the mass m = 0 at the center of the star r = 0. Then
equations (1)—(2) are integrated outwardly until the surface of
the star (where the pressure vanishes) is reached. From the
functions m(r) and p(r) obtained in this way it is possible to
determine any of the macroscopic properties of the neutron
star. For example, the radius of the star R is defined by the
expression p(R) = 0, and the mass of the star by M = m(R). For
a given equation of state, then, the mass M(p,) and radius R(p,)
may be determined for any value of the central pressure p,.
Thus, the equation of state determines—through the OV
equations—the mass-radius relationship for neutron stars.

I find it helpful to visualize the action of the OV equations in
determining the mass-radius relationship as a map that takes
the curve [p(p), p] in the (p, p)-plane—the equation of state—
into the curve [M(p,), R(p.)] in the (M, R)-plane—the mass-
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F16. 1.—A schematic representation of the map—generated by the OV
equations—that takes equations of state into mass-radius relationships.

radius relationship. This nonlinear and nonlocal map ¥y is
illustrated schematically in Figure 1. Arnett & Bowers (1977)
were the first to study systematically the properties of this map
for a variety of nuclear equations of state. And they were the
first to infer—at least qualitatively—information about the
equation of state from the observable macroscopic properties
of neutron stars. This paper advances their work by showing
how a knowledge of the mass-radius relationship can be used
to determine the equation of state quantitatively. Or in more
mathematical terms, this paper shows how to find Wgy, the
inverse of the OV map.

2. INVERTING THE OPPENHEIMER—VOLKOFF MAP

The iterative inversion of the OV map can be accomplished
as follows. Assume that p(p) is already known for values of
p < p; for some p;. And, assume that the mass-radius relation-
ship generated by this partial equation of state agrees with the
given mass-radius relationship up to the point (M;, R;) corre-
sponding to the stellar model with p, = p;. To extend the equa-
tion of state beyond p; = p(p;), choose a point (M;., R;;;)
that lies slightly beyond (M, R;) along the given mass-radius
relationship. Next, use m = M,,, and p = 0 as initial condi-
tions at r = R, for the OV equations (1)—(2). These equations
may now be integrated inwardly through the outer layers of
the stellar model where the equation of state has already been
determined, that is, up to the point r = r; where p = p;. This
integration determines, therefore, the mass m; = m(r;) and
radius r; of a small otherwise undetermined stellar core. Two
things are known, however, about this stellar core: First, the
core is nonsingular, and second, the value of p = p, at the
center of this core exceeds p; by only a small amount. This
second fact is a consequence of the continuity of the stellar
model with respect to changes in p,., and the closeness of the
point (M; ., R;.,) to (M;, R)) along the mass-radius relation-
ship. These two conditions guarantee that the structure of this
stellar core is described by a nonsingular power-series solution
to equations (1)—(2). The coefficients in that power series (given
explicitly below) are functions of the central density p. and
pressure p, of this core. The quantities p, and p, may be deter-
mined, therefore, by “inverting” those series. Thus, the equa-
tion of state may be extended in this way up to the point (p,,
p.). By iteration, then, the entire equation of state may be
determined from a given mass-radius relationship.

To implement the numerical inversion of the OV map out-
lined above, it is convenient to introduce slightly transformed
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versions of the OV equations. First, introduce the function h(p)
defined by the integral

p dl')
h(p) = . 4
(?) Lp(i))ﬂ’) @

(While this function is not defined for every equation of state, it
is easy to show that it is well defined for those equations of
state that produce finite-sized stellar models.) This function is
used to reexpress equation (2) as an equation for dh/dr. Second,
make m and r the independent variables and h the dependent
variable in these equations.2 In terms of these variables, then,
the OV equations (1)—(2) become

dm Anp(hyr3(r — 2m) )

dh m + 4nr3p(h)

dr rr — 2m)
= T mt amio) (6)
m + 4nr°p(h)

where the functions p(h) and p(h) are determined by equations
(3)—(4). This form of the OV equations has several advantages
over the original: (1) The mass m and radius r each enter as
dependent variables. Thus, the total mass M and total radius R
are simply the boundary values of the functions m(h) and r(h) at
the surface of the star h = 0. This eliminates the need to solve
the equation p(R) = 0 to locate the surface. (2) The domain of
integration (from h = h, at the center of the star to h = 0 at the
surface) is fixed before the equations are solved rather than
being fixed as part of the solution. (3) These equations are
easier to integrate numerically near the surface of the star since
dr/dh is finite there unlike dr/dp.

The transformed OV equations (5)—(6), like the standard
equations (1)—(2), are singular at the center of the star. There-
fore it is necessary to evaluate the nonsingular solutions near
h = h, analytically. The following are the first two nontrivial
terms in the power-series solutions for r(h) and m(h) near h =
h,:

_ 1/2
EECN
2n(p. + 3p.)

1 3(dp\ | h.—h
x{1‘4[""3”“5<dh)c]pc+3pc}’ @

_4n _3(de) h=h
m(h) =~ pcr3(h)[1 5( dh>c . ] ®

The coefficients in these series are the indicated functions of k.,
p. = p(h.), and p, = p(h,). These series play two useful roles in
the numerical solution of the OV equations. When the equa-
tion of state is given, these series determine r(h) and m(h) in a
small neighborhood of the center of the star. A numerical inte-
gration can then be used in this case to extend the solution to
the remainder of the domain h, > h > 0. Alternatively, when
the equations are being integrated inwardly from the surface of
the star toward the center—to invert the OV map—these series
determine the structure of the small “undetermined ” stellar

2 Hartle (1978) showed that r > 2m in any nonsingular stellar model. It
follows from equation (2) that dh/dr < 0, and so h is a monotonic decreasing
function of r. Thus the roles of r and k as independent/dependent variables
may be reversed.
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core. These series can be “inverted ” in this case to determine
p. and p, in terms of the mass m; and radius r; of this core:

S (3m;
Pc=pi+§<m—m>, )

2 2
p.=pi+ ?n (p; + P)p; + 3pi)r.-2[1 + ?n (4p; + 3pi)r?]

T 3m, 2
+ 3 (6p; + 11pi)(47rr?‘ pi>ri . (10

The value of h, may also be determined from a series expansion
of equation (4):

h, = _&.‘t&)

Dc — Di

hy+——(3 11
2(p.-+p,-)< pi+ i ()
With these mathematical tools in place, the algorithm for
inverting the OV map can now be stated explicitly. Assume
that a mass-radius relationship is given and that the equation
of state is already known for h < h;. Let M; and R; be the total
mass and radius of the star with h, = h;. Now perform the
following sequence of steps iteratively: (1) Choose M;,, and
R, that lie slightly beyond M; and R; along the mass-radius
relationship. (2) Use M,,, and R;,, as initial conditions for
equations (5)—(6) at h =0, and integrate these equations
through the outer layers of the star (where the equation of state
is already known) to the point h = h;. This determines the
quantities m; = m(h;) and r; = r(h;) that characterize a small
otherwise undetermined stellar core. (3) Use m; and r; in equa-
tions (9)—(10) to determine p, and p,. This extends the equation

of state up to the point h = h, given in equation (11).

3. NUMERICAL EXAMPLES

How well does this algorithm work in practice? This ques-
tion can be explored as follows. First, compute a set of mass-
radius data from one of the “realistic” nuclear equations of
state. Next, use the algorithm described above to determine a
new equation of state from these mass-radius data. And finally,
assess the accuracy of the new equation of state by comparing
it with the original. Figure 2 displays the two “realistic”
nuclear equations of state that are used here for these compari-
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FiG. 2—The equations of state used to study the inversion of the OV map:

BJ is the Bethe & Johnson (1974) equation of state (model 1); and RMF is the
relativistic-mean-field equation of state of Serot (1979).
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sons. The first, referred to as BJ, is based on the Bethe &
Johnson (1974) model 1 equation of state (as tabulated in
Pandharipande, Pines, & Smith 1976) for the highest density
regime: p > 10'! g cm™3. For lower densities the Baym,
Pethick, & Sutherland (1971) equation of state is used. The
second equation of state, referred to as RMF (relativistic mean
field), is based on the Serot (1979) equation of state for pure
neutron matter in the highest density regime: p > 3.1 x 10'* g
cm 3. For lower densities the BJ equation of state described
above is used. The BJ equation of state is relatively smooth and
devoid of structure around nuclear density where most
neutron-star matter exists. In contrast the RMF equation of
state has a large discontinuity in its derivative just at nuclear
density where it has been artificially patched onto the BJ equa-
tion of state. This discontinuity simulates a second-order phase
transition, and this second example was selected to be a more
severe test of these methods for determining the equation of
state. Figure 3 illustrates the mass-radius curves that are deter-
mined from these two equations of state by the OV equations.

When equations (9)—(10) are used to determine p, and p,
from the mass-radius data illustrated in Figure 3, these quan-
tities are determined quite accurately in the first step. Unfor-
tunately, when this procedure is iterated by updating the
equation-of-state table at each step by setting p;,, = p.,
DPi+1 = D., and h;,, = h,, the error after n steps is approx-
imately (—2)"e. The first-step error € may be made arbitrarily
small by choosing a small step size, however, the error inevita-
bly grows unacceptably large after many iterations. Thus, the
simplest application of the procedure for evaluating the equa-
tion of state from neutron star masses and radii fails.

Fortunately, a simple modification of the naive algorithm is
stable and accurate. The equation of state computed with
equations (9)—(11) falls alternately above and below the correct
one. Thus, a line drawn between (p;, p;) and (p., p.) always
intersects the correct equation of state. And, this intersection
always occurs at a point about one-third of the way between
the two since the magnitude of the error doubles
(approximately) at each step. Thus, the algorithm is improved
by taking this (approximate) intersection point to update the
equation-of-state table: '

Pis1=p;+ (0. — p)/3, (12)
Di+1 =pl+(pc _pl)/3 s (13)

) Pe — Di Pc + D
hiy1="h; + <7 — ) . 14
i 18(p; + p) pi+p; a9

The equation of state generated iteratively from the data in
Figure 3 using equations (12)—(14) has a fractional error, given
approximately by e(h;,, — h))*/, that is essentially indepen-
dent of the number of steps taken. So, this algorithm is stable.
The coefficient € that determines the magnitude of this error
has the value € ~ 8 for the BJ equation of state, and the some-
what larger value € ~ 12 for RMF. In order to advance the
equation of state studied here from p ~ 10!'* g cm ™3 (where
h ~ 0.03) to the central density of a 1.4 M neutron star (where
p~11x 10 gcm™3 and h = 0.26 for BJ, or p = 5.1 x 104
g cm ™3 and h ~ 0.18 for RMF) with 1% accuracy requires
about 10 steps using this algorithm. Thus, the equations of
state determined in this way would be indistinguishable from
the original curves in Figure 2 if more than about 25 equally
spaced points were used to advance the equation of state from
10*# g cm ™3 to the central density of a 1.4 M neutron star.
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FiG. 3—The mass-radius relationships determined by the OV equations
from the BJ and the RMF equations of state.

The algorithm described above determines the equation of
state from a complete mass-radius relationship. This method is
not very effective, however, when mass-radius data are avail-
able from only a few neutron stars. Since the mass and radius
have yet to be measured simultaneously for any individual
neutron star, this method is not likely to play a useful role in
interpreting observational data in the near future. What will be
needed is an algorithm that is capable of deducing some inter-
esting information about the equation of state from the mass
and radius of a single neutron star. Since the entire mass-radius
relationship is required to determine a complete equation of
state, however, this is obviously impossible without making
some severe assumptions.

A method is now presented for estimating the nuclear
density equation of state from a single neutron-star mass and
radius. This method is based on the following two assump-
tions: First, the equation of state is assumed to be known for
densities below some cutoff density p;, taken here to be some-
what below nuclear density. Second, the adiabatic index of the
equation of state at higher densities is assumed to be a slowly
varying function of the density. This second condition is satis-
fied by the majority of the “realistic” equations of state that
have been published in the literature. However, if there is a
phase transition to some other form of matter in the interiors
of neutron stars (say to pion or strange-quark condensations),
then this second assumption might be violated. When the
second condition is satisfied, the equation of state can be
approximated for densities between p; and p, by

)3 ( P >108 (pc/pi)/log (pc/pi)

= (15)
Pi

Di

Using this expression for the highest-density portion of the
equation of state, it is possible to determine the structure of a
not-so-small stellar core far more accurately than the power-
series expressions in equations (7)—(8). Consequently it is pos-
sible to determine the central density and pressure of such a
core far more accurately than was possible using equations
(9)—(11). This determination may be implemented numerically
as follows. First, given a neutron star mass M and radius R,
make initial estimates of p, and p, using equations (9)—(11).
Second, integrate the full nonlinear OV equations (5)—(6) out-
wardly from h = h, using equation (15) as the highest-density
portion of the equation of state. Compare the mass and radius

LINDBLOM

Vol. 398

of the stellar model obtained in this way with M and R. If they
do not agree to the desired degree of accuracy, then third,
adjust p. and p, with the aid of the numerically evaluated
Jacobian matrix d(M, R)/d(p,, p.). Finally, iterate this pro-
cedure until values of p, and p_ are found that reproduce the
given M and R.

This ' one-point method of determining points on the
equation-of-state curve works remarkably well. For masses
and radii obtained from the BJ equation of state, and using the
cutoff density p; = 10** g cm 3, this method predicts values of
p. and p, that lie within 5% of the original BJ equation of state
for every stellar model in the sequence. (The maximum devi-
ation is less than 3% for stars having masses smaller than 1.8
M ). This remarkable agreement is due of course to the fact
that the BJ equation of state is very well approximated by
equation (15) in this density range. For stellar models based on
the RMF equation of state the agreement is also fairly good.
Figure 4 illustrates the values of p. and p, determined from a
number of different masses and radii using this one-point
method with three different values of the cutoff density: p; =
10'4, 2 x 10*4, and 3.1 x 10'* g cm~3. The maximum devi-
ations of the p, and p, so obtained are 17%, 14%, and 15%
from the original RMF equation of state for the three different
cutoffs, respectively. As expected, the presence of the artificial
phase transition at p = 3.1 x 10'* g cm ™3 in the RMF equa-
tion of state makes the errors far larger than they were for the
BJ equation of state. This example shows, nevertheless, that
meaningful distinctions between the BJ and the RMF equa-
tions of state can be made using this method for densities
greater than about twice the phase-transition density. These
examples suggest, then, that interesting information can be
learned about the nuclear equation of state even from a know-
ledge of the mass and radius of a single neutron star.

In conclusion I would like to make a few comments about
potential generalizations of this work. First, this paper shows
how the equation of state may be determined from a know-
ledge of the masses and radii of stars. I point out that this
analysis is applicable to any population of stars composed of
fluid having a barotropic equation of state. Thus, it should
apply to any population of white-dwarf stars that have
uniform chemical composition, for example, pure carbon stars.
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FiG. 4—The equation of state inferred from the RMF mass-radius data
using the “one-step” algorithm. Each equation-of-state point is determined
from a single neutron star mass and radius, and a knowledge of the equation of
state below the specified cutoff density. For comparison the original RMF
equation of state is plotted as the dashed curve.
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This analysis will not apply, however, to stars having signifi-
cant internal thermal gradients, for example, main-sequence
stars. Second, the equations for the inversion of the OV map
are presented here as finite difference equations. While a finite
difference form of the equations is needed to implement the
inversion numerically, it would be interesting to find an analy-
tic expression for the inversion—for example as an integral-
differential equation. Third, the present analysis shows how the
equation of state may be deduced from a knowledge of the
masses and radii of neutron stars. A similar analysis could be
performed to determine the equation of state from (almost) any
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other pair of observable neutron star parameters, for example,
including moments of inertia or surface redshifts. Thus, if other
parameters turn out to be easier to observe than the mass and
radius, those other parameters could be used to deduce inter-
esting information about the equation of state as well.

I thank Curt Cutler and Steve Detweiler for contributing a
number of useful insights on this problem. This research was
supported by NSF grant PHY-9019753 and NASA grant
NAGW-2951.
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