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ABSTRACT

The critical angular velocities associated with the gravitational radiation secular instability of rotating neu-
tron stars are computed. Corrections are given for some errors in previously published work, and new calcu-
lations are presented of the effects of post-Newtonian gravitation and hydrodynamics on these critical angular

velocities.
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1. INTRODUCTION

The maximum angular velocities of rotating neutron stars
(and hence the minimum pulsation periods of pulsars) are
probably determined by a secular instability driven by gravita-
tional radiation reaction (Friedman 1983; Wagoner 1984).
This instability has been studied (Ipser & Lindblom 1989;
1990, hereafter Paper I; 1991, hereafter Paper II) by evaluating
the appropriate modes of rotating neutron stars, and testing to
see whether the imaginary parts of their frequencies are posi-
tive (stable) or negative (unstable). The imaginary part of the
frequency, Im (w) = 1/, of any particular mode is influenced
by gravitational radiation reaction and by internal fluid dissi-
pation processes: bulk and shear viscosity. For very weak dis-
sipation, it is possible (and convenient) to represent the
imaginary part of the frequency as a sum of separate contribu-
tions from each dissipative process:
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where 1/7gg represents the contribution due to gravitational
radiation, while 1/7, and 1/7, represent the contributions due
to shear and bulk viscosity respectively. Explicit expressions
for each of these dissipative contributions are given, for
example, in Paper II in terms of the eigenfunction of the partic-
ular mode and the structure of the equilibrium rotating star.
For sufficiently small angular velocities, the imaginary parts
of the frequencies of all modes are positive (in most stars), and
therefore (almost all) slowly rotating stars are stable (Lindblom
& Hiscock 1983). In rapidly rotating stars, however, 1/ may
become negative for some mode(s), signaling the onset of an
instability. The critical angular velocity associated with a par-
ticular mode is defined, then, to be the smallest angular veloc-
ity where that mode is unstable, i.e., the smallest positive root
of the imaginary part of the frequency of that mode
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Since it is not known a priori which mode will be responsible
for limiting the angular velocity of a star, however, a somewhat
more elaborate definition of the critical angular velocity of a
star is actually needed. The idea is that the critical angular
velocity of a rotating star be defined as the maximum angular
velocity at which a stable star of given mass may rotate. The
critical angular velocity of a rotating star may be defined,
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therefore, to be the minimum (actually the greatest lower
bound) solution to the set of equations (2) for all pulsation
modes of the star.

The problem of solving the set of equations (2) explicitly to
find the critical angular velocity of a particular stellar model is
made simpler by considering the modes having angular depen-
dence ¢™¢ separately for each value of the integer m. For these
modes it is possible to reexpress equation (2) in a form that is
better suited to numerical solution (Lindblom 1986; Paper II),
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The functions «,,(Q), 7,(Q), and €,(Q) describe the angular
velocity dependence of the frequency (and its imaginary part)
of the mode in question. These functions are defined by
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where w,(Q) represents the real part of the frequency of the
mode. The functions «,,(€), 7,(Q), and &,(Q) are defined to be
dimensionless and have numerical values that are of order
unity. Graphs of these functions are given in Paper II.

It is straightforward to determine the critical angular veloc-
ity associated with a particular mode by solving equation (3)
once the frequency (and its imaginary part) of the nonrotating
star [@,,(0), 76r(0), and 7,(0)] and the functions «,,(Q), y.(Q),
and €,,(Q) describing the angular velocity dependence of these
frequencies are known. The techniques for determining these
quantities are described in detail in Paper II. The purpose of
this paper is to present corrections to some errors contained in
the results presented in Paper II and to estimate the effects of
post-Newtonian gravitation and hydrodynamics on the critical
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angular velocities based on the analysis of Cutler & Lindblom
(1992).

2. CORRECTIONS

The techniques developed in Paper II for evaluating the
effects of dissipation on the modes of rotating stars are correct
(as far as I know). And the computer program written to imple-
ment those techniques computes correctly (as far as I know)
the frequencies and damping times of the modes of rotating
stars. However, the portion of the code that printed out the
dissipative damping times of nonrotating stars mislabeled
some of the output. In the printed output the actual dissipative
damping times were confused with a “back of the envelope”
estimate of these quantities (see e.g., Cutler & Lindblom 1987).
Unfortunately, the printed output was interpreted liferally in
compiling the data contained in Table 2 of Paper II. Thus, all
of the dissipative damping times contained in that table-are
incorrect (except for the n =0 polytropes which were com-
puted analytically). The correct values (recomputed using the
techniques described in Paper II) are given here in Table 1.

All frequencies and damping times in Table 1 are given in
units of Q, = (3GM/4R3)/2, where M is the mass of the star; R
is its radius; and G is Newton’s constant. We recall that for
polytropes the frequency-of the mode w,,/Q, is independent of
M and R. In contrast the gravitational damping time tgg Q,
scales as (R/M)?'* 112 All of the stellar models used in com-
puting Table 1 have M = 1.5 My and R = 17.171, 14.245,
12.533, and 9.822 km for the n = 0, 3/4, 1, and 5/4 polytropes,
respectively. The viscosities of neutron star matter are tem-
perature dependent (see Paper II). The damping times reported
here in Table 1 assume a temperature of T = 10° K. The
viscous damping time due to neutron-neutron scattering 7,, Q,
scales as R!74T2/M?3/*; the damping time due to electron-
electron scattering t, Q, scales as R”2T2/M*/?; and the bulk
viscous damping time 7, Q, scales as M*/?R*?/T®, These scal-
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ings can be deduced from the analytical expressions for the
various quantities given in Paper II, and these scalings have
been verified in the numerical output of the computer program.

The error in the dissipative damping times of nonrotating
stars did not affect any of the results pertaining to the functions
%(Q), Ym(Q), or €,(Q) that were presented in Paper II. Thus,
Figures 1-16 of Paper II are correct (as far as I know). I also
point out that the formula used in this work (and previously in
Cutler, Lindblom, & Splinter 1990, and in Paper II) for the
bulk viscosity is { = 6.0 x 10%% (p,s/w)>T§. Sawyer’s (1989)
published version of this formula contains a typographical
error (Sawyer 1994). Fortunately the formula used in our work
was free of that error.

The critical angular velocities of rotating neutron stars pre-
sented in Paper II were determined by finding the smallest root
of equation (3) above for the modes that are expected to con-
tribute most to the gravitational radiation secular instability:
the | = m modes with 2 < m < 6. Equation (3) depends on the
damping times of nonrotating stars 7sg(0), 7,(0), and 7,(0) and
consequently the critical angular velocities reported in Paper
II are incorrect. Figures 1-3 give corrected representations of
the critical angular velocities presented originally as Figures
17-19 of Paper II. These figures give the critical angular veloc-
ities as functions of the temperature of the neutron star matter.
The critical angular velocities are given in units of Q,,,, the
maximum angular velocity for which an equilibrium stellar
model exists. These maximum angular velocities have the
values Q_,, = 0.648Q,, 0.639Q,, and 0.626Q, for the n = 3/4,
1, and 5/4 polytropes, respectively. The revised curves are qual-
itatively similar to those given in Paper II. However, the
revised critical angular velocities are somewhat larger (by
about 2% of Q,,,) and the temperature where the critical
angular velocity is smallest has been lowered from about
5 x 10° to about 2 x 10° K. The main reason for these
changes is that the bulk viscous damping times reported in

TABLE 1
DAMPING TIMES AND PULSATION FREQUENCIES FOR 1.5 M, NONROTATING POLYTROPES

(0)®

I=m n* Q, T6r Qo 7, Qo 7,. Qo 7.Qp
2. 0 1.033 2.84 x 103 1.07 x 10'3  3.80 x 10!2

3/4 1.291 9.79 x 10% 4.13 x 102 105 x 102 4.55 x 10'3

1 1416 5.60 x 102 1.73 x 10*2 5.08 x 10! 1.49 x 10'*

5/4 1.543 243 x 10? 439 x 10! 1.63 x 10! 5.90 x 104
3. 0 1.512 1.65 x 10° 3.81 x 10'2 1.36 x 10'2

3/4 1822  4.66 x 10* 2.19 x 10'2 5.25 x 10! 3.38 x 10'3

1 1960 240 x 10* 1.05 x 10'2 2.85 x 10! 1.19 x 10'3

54 2.095 8.49 x 103 3.06 x 10*! 1.03 x 101 5.12 x 104
4...... 0 1.886 1.03 x 107 198 x 10'2  7.04 x 10!

3/4 2212 244 x 10° 1.52 x 10*2 348 x 10! 3.34 x 103

1 2.351 1.14 x 108 8.05 x 10! 2.06 x 10! 121 x 10*3

5/4 2480  3.28 x 10° 2.61 x 10! 816 x 10'° 561 x 104
5...... 0 2.202 735 x 108 121 x 10'2 432 x 10!

3/4 2531 147 x 108 118 x 102 2.59 x 10! 3.24 x 10'*

1 2.667 6.17 x 107 6.73 x 10! 1.63 x 10! 1.32 x 10'S

5/4 2789 1.45 x 107 2.38 x 10! 696 x 10'°  6.53 x 10'*
6...... 0 2481 594 x 10'° 823 x 10! 292 x 10!

3/4 2806 1.00 x 10'°  9.63 x 10! 2.05 x 101! 3.58 x 10!

1 2939 3.82 x 10° 5.88 x 10! 1.37 x 10! 1.48 x 103

5/4  3.053 7.27 x 108 223 x 10! 6.17 x 101° 772 x 104

® The index n is the parameter in the polytropic equation of state: p = kp* * 1/,

® The frequencies and damping times are given in units of Q, = (nGj,)!/?, where p,, is the

average density of the nonrotating star.
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F1G. 1.—Critical angular velocities Q. as functions of the temperature for
1.5 M, polytropes of indices n = 0, 3/4, 1, and 5/4. The angular velocities are
given in units of Q_,,, the maximum angular velocity for which an equilibrium
stellar model exists of the same mass. The dashed curves ignore the effects of
bulk viscosity.

Paper II were considerably too large. Thus, bulk viscosity is
more efficient in suppressing the gravitational radiation insta-
bility than reported previously, and this leads to larger critical
angular velocities.

3. POST-NEWTONIAN EFFECTS

The mathematical techniques needed to incorporate the
effects of general relativity theory (in the post-Newtonian
approximation) into the description of the pulsations and sta-
bility of rotating stellar models have been developed by Cutler
(1991) and by Cutler & Lindblom (1992). And those mathe-
matical techniques have been used to compute the angular
velocity dependence of the frequencies, w,(Q), of the modes
that contribute strongly to the gravitational radiation secular
instability. In particular w,(0) and the functions «,(Q) were
determined for n =1 polytropes in the post-Newtonian
approximation (Cutler & Lindblom 1992) for the I = m modes
with 2 < m < 6. These improved frequencies can be used along
with the Newtonian values for the dissipative damping times
[t6r(0), 7,(0), and 7,(0)] and the functions y,(Q) and &,(Q) to
determine “improved ” estimates of the critical angular veloc-
ities of rotating neutron stars from equation (3). The results of
such a calculation are shown in Figure 4.

The post-Newtonian effects included here cause the gravita-
tional radiation secular instability to set in at significantly
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FiG. 2—Critical angular velocities Q, as functions of the temperature for
1.0, 1.5, and 2.0 M, polytropes of index n = 1. The angular velocities are given
in units of Q,,,, the maximum angular velocity for which an equilibrium
stellar model exists of the same mass. The dashed curves ignore the effects of
bulk viscosity.
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FiG. 3—Critical angular velocities Q, as functions of the temperature
based on two different expressions for the shear viscosity: neutron-neutron
scattering viscosity #, and electron-electron scattering viscosity #n,. The
angular velocities are given in units of Q_,,, the maximum angular velocity for
which an equilibrium stellar model exists of the same mass. The dashed curves
ignore the effects of bulk viscosity.

lower angular velocities than suggested by the purely Newto-
nian calculation! This additional instability is caused by the
frequencies of the modes ®,,(2) passing through zero at lower
angular velocities, Q/Q,, in the post-Newtonian calculation.
This change in sign of the frequency is what drives the gravita-
tional radiation secular instability. The results presented in
Figure 4 are not a complete post-Newtonian description of the
pulsations, however. Post-Newtonian effects should also be
included in the calculation of the dissipation timescales [75g(0),
7,(0), and 7,(0)] and the functions y,,(Q) and €,(Q). Although it
is impossible to predict a priori whether these additional post-
Newtonian effects will tend to strengthen or to suppress the
secular instability, these preliminary results do provide a
strong incentive for completing the post-Newtonian analysis.
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ing to my attention the discrepancies between the damping
times computed using their codes and those presented in Paper
IL. T also thank C. Cutler, J. Ipser, and D. Skinner for their
comments on a preliminary draft of this paper. This research
was supported. by grant PHY-9019753 from the National
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FiG. 4—Critical angular velocities Q, as functions of the temperature for
1.4 and 2.0 M, polytropes of index n = 1 using electron-electron scattering
shear viscosity. The dashed curves use Newtonian gravitation and hydrody-
namics to evaluate the modes while the solid curves use post-Newtonian gravi-
tation and hydrodynamics. The angular velocities are given in units of Q_, =
0.639Q,, the maximum angular velocity for which an equilibrium stellar model
exists in the Newtonian theory.
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