NG 7 - (02 o

R

FT9O5A

THE ASTROPHYSICAL JOURNAL, 444:804-809, 1995 May 10
© 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A.
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ABSTRACT

The gravitational radiation instability which limits the rotation rates of normal neutron stars is studied
using superfluid hydrodynamics and dissipation mechanisms. The influences of these superfluid effects on this
instability are evaluated using simple analytical solutions to the superfluid pulsation equations. The superfluid
dissipation mechanism “mutual friction” overwhelmingly suppresses the gravitational radiation instability
according to these estimates. Thus, gravitational radiation does not limit the angular velocities of superfluid
neutron stars.

Subject headings: gravitation — hydrodynamics — radiation mechanisms: nonthermal — relativity —
stars: neutron — stars: rotation

1. INTRODUCTION

Gravitational radiation tends to make all rotating stars unstable (Chandrasekhar 1970a, b; Friedman & Schutz 1978; Friedman
1978). Internal fluid dissipation (e.g., viscosity) also influences the stability of rotating stars, and it tends to suppress the gravitational
radiation instability (Lindblom & Detweiler 1977; Lindblom & Hiscock 1983). In stars having very little internal dissipation all but
the most slowly rotating are unstable to the gravitational radiation instability, while in stars with extremely large internal
dissipation the instability may be suppressed completely. This secular instability may have important astrophysical consequences: it
has been proposed as the mechanism that limits the rotation rates of neutron stars (Friedman 1983; Wagoner 1984). The current
ordinary-fluid models of neutron stars show that the gravitational radiation instability can occur in sufficiently rapidly rotating
stars only if the internal temperatures are between about 10”7 and 2 x 10!° K (Ipser & Lindblom 1989, 1990, 1991; Lindblom 1992,
1995). Thus, gravitational radiation could limit the angular velocities of ordinary-fluid neutron stars with internal temperatures in
this range.

Howgver, below ~10° K the bulk of the material in the interior of a neutron star is expected to undergo a transition into a
superconducting superfluid state (Migdal 1959; and for reviews of superfluidity in neutron stars see Epstein 1988; Sauls 1989; Pines
& Alpar 1992). Since the dynamics and the dissipation mechanisms present in a superfluid are qualitatively different from those of
an ordinary fluid, it is necessary to reinvestigate completely the gravitational radiation instability in these cool neutron stars. For
the past several years we have been developing the fundamental superfluid hydrodynamics needed to study this problem (Mendell &
Lindblom 1991; Mendell 1991a, b; Lindblom & Mendell 1994). In summary, Mendell (1991a) derived the equations for the
superfluid hydrodynamics (averaged over vortices) needed to describe the macroscopic pulsations of neutron stars. The superfluid
version of the magnetohydrodynamic limit of these equations was then taken so that the low-frequency (e.g., relative to the ~ 10?2
s~! plasma frequency) and long-wavelength oscillations that participate in the gravitational radiation instability could be studied.
Mendell (1991b) has also developed the theory of dissipation for the complicated superfluid mixture that occurs in neutron star
cores. Lindblom & Mendell (1994) have transformed the basic hydrodynamic equations of Mendell (1991a) into a simplified form in
which the global pulsations of superfluid neutron stars can more easily be studied. Numerical methods are also developed there for
determining the modes of rapidly rotating superfluid neutron stars, neglecting the effects of dissipation.

In this paper we extend these studies to obtain the first realistic estimates of the effects of the superfluid dissipation mechanisms
on the gravitational radiation instability. The most important dissipation mechanism in these stars is a superfluid effect called
“mutual friction.” In rotating neutron star matter mutual friction is caused by the scattering of electrons off the cores of the neutron
vortices. This scattering is greatly enhanced by nuclear interactions between the neutrons and protons that induce proton super-
currents and hence strong magnetic fields within the neutron vortices (see Alpar, Langer, & Sauls 1984; Alpar & Sauls 1988). In this
paper we estimate the effects of this (and other) dissipation mechanisms on the pulsations of neutron stars using simple analytical
models for these pulsations. These estimates indicate that mutual friction completely suppresses the gravitational radiation insta-
bility in all neutron stars cooler than the superfluid transition temperature. Furthermore, the suppression is so strong in these
estimates that we believe that more realistic calculations will agree qualitatively with these results. Thus, we conclude that
gravitational radiation does not limit the angular velocities of superfluid neutron stars.

In § 2 we present the simple analytical approach used here to estimate the frequencies and eigenfunctions of the modes of
superfluid neutron stars. We present in § 3 the methods used to determine the various dissipative timescales that influence the
pulsations of superfluid neutron stars. And in § 4 we use these results to analyze the gravitational radiation instability in rotating
neutron stars. We also present there our conclusions and a few caveats.
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2. SIMPLE SUPERFLUID PULSATIONS

The bulk of the matter in a cool neutron star will exist in a superfluid state in the core of the star where the density exceeds nuclear
density (assuming that the equation of state is fairly stiff). This core superfluid material is a mixture composed primarily of superfluid
neutrons, superconducting protons, and ordinary electrons. The global oscillations of such a neutron star are completely described
by just three scalar potentials: U, §f, and 5®. The first two potentials are thermodynamic scalars: 8U is related to the pressure
perturbation 6p (and the equilibrium mass density p) by 6U = dp/p + 5@, while 6f is the deviation of the perturbed state from
B-equilibrium. The third scalar, @, is the Newtonian gravitational potential. The effects of superfluidity on the dynamics and
dissipation are governed by the potential d8. These scalars are determined by solving a system of three coupled second-order
(typically elliptic) differential equations with appropriate boundary conditions. The derivation of this representation of the super-
fluid pulsation problem for neutron star matter is given in Lindblom & Mendell (1994). These equations reduce to those of an
ordinary perfect fluid when the potential §§ vanishes.

Here we limit our consideration to a simple idealized situation. We assume that the equilibrium configuration is nonrotating and
spatially uniform. In this case the equations that determine U, 0p, and 6@ reduce to the following system of coupled Helmholtz

equations:
V235U = —w2<g—z>ﬂ(6U — 60) — %2 <2—Z>F o8, )
V35D = 4nGp<%§>ﬂ(6U — 00) + 41:G<g—;)p op, 3)

where  is the frequency of the oscillation; p, and p,, are the mass densities of the neutrons and protons, respectively; and G is
Newton’s gravitational constant. The various thermodynamic quantities that appear in equations (1)—(3) are to be evaluated in the
spatially uniform equilibrium state. The values of these quantities for realistic superfluid matter are given in Lindblom & Mendell
(1994). Finally, the quantity det p in equation (2) describes the nuclear interaction between the superfluid neutrons and protons.
This interaction plays a crucial role in determining how superfluidity influences the dynamics and the dissipation in neutron star
matter. In the absence of any nuclear interactions det p = p, pp, while most models of the nuclear coupling between the neutron and
protons yield a value several times this. The values for det p as a function of the total mass density are given in Lindblom & Mendell
(1994) for two models of the nuclear interaction.

The general solution to equations (1)—(3) is an arbitrary linear combination (over the allowed values of the integers | and m, and
the frequency w) of the following elementary solutions (see Lindblom & Mendell 1994):

0U = [6AF + 6Bk, 1) + 5Cj(k_ r)]Y;,(6, d)e ", @
0p = [0BD ,(w)jik+ 1) + 6CD _(w)idk - )1 Y;(6, dle™* , (©)
oD = {Mr' - 4—7;@ [0Bjik. 1) + 6Cjik - r)]}Ylm(09 ple ', (6)

where the functions j; are spherical Bessel functions; the Y, are spherical harmonics; r, 6, and ¢ are the standard spherical
coordinates; and k. are the two roots of the “ dispersion relation,”

= wason|(5) = G) 35 () ]+ ol o(3), + 02 5 (02) Jo s e oo 2)
0= w¥w +4nGp)[<aﬂ>p p? o), 3 ;f,, + w?| det p 0p,+p36ﬂ ;fpk2+detp 4nGp 6p,,_k2 k2. (7

The quantities 64, 6B, and 6C in equations (4)(6) are arbitrary constants, and D ;(w) are defined by

2
peior= ()= ()0 + )] ®

Appropriate boundary conditions must be imposed on equations (4)—(6) in order to determine the “ physical ” oscillations in this
simple model. We consider solutions in the interior of a sphere, r < R, that satisfy the following boundary conditions at r = R

4nGp _ 36U
6U — 60 — =" R &> =0 )
060 I+ 1)
> TR 00=0, (10)
a4p
5 =0- (11)

These boundary conditions are the analogues of those derived for more realistic superfluid neutron stars in Lindblom & Mendell
(1994). In the more realistic case these conditions enforce the appropriate continuity conditions on the pressure, gravitational

potential, and mass currents at the stellar surface and at the boundary between the core superfluid and the “crust” of the neutron
star.
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When the boundary conditions, equations (9)-(11), are applied to the elementary solutions, equations (4)—(6), they become a
system of linear homogeneous equations for the three constants A4, 6B, and C. These equations have nontrivial solutions only if
the determinant of the matrix of coefficients of 64, 6B, and 4C vanishes. This condition is equivalent to the following equation that
determines the allowed values of the frequency w in this simple model:

0= g (21 +1+1 4iG—"f)(ki — k2 )k, k_jik+ R)jik_ R) — [(21 + 1)(1 +

wz

4nGp

? 3w?

) — Il +1) 4"6"]

x {[ki - (‘;—”) (@ + 4nGp):|k+ jilke_ Rk + R) — [k’. - (‘;—”) (@ + 4nGp)]k_ jike s Rtk R)} )
P/s P/g

For these allowed values of the frequency, the constants 4, B, and 6C are given (up to an overall scale) by

oA = (2—1;‘;”—35@ {D (@) Rji(k. R)[k_ Rji(k_ R) + (I + 1)jk— R)] — D_(wk - Rji(k - R)[k+ Rjilk+ R) + (I + ks R}, (13)
0B = —D_(w)k- Rj{k-R), (14)
6C = D (w)k. Rjik R) . (15)

It is straightforward to solve equation (12) to determine the frequencies and to evaluate equations (13)—(15) to determine
the eigenfunctions which describe the oscillations of superfluid neutron stars in this simple approximation. We have evaluated
these modes using typical neutron star values for the parameters: p = 4 x 10'* g cm ™3, and R = 15 km. For the thermo-
dynamic quantities we use the Serot (1979) relativistic-mean-field equation of state, which for this value of the density gives:
Pn=3.726 x 10'* g cm™3, (3p/dp); = 4819 x 10~ 2! (s cm~*)?, (9p/0p), = 1.911 x 1077 g s? cm~%, and Ap,/p,)/0B = 1.076
x 10721 (s cm~!)% The parameter det p that describes the neutron-proton interactions is related to the parameter m3/m, (the ratio
of the effective mass m} to the bare mass m, of the proton) by

m m
det p = p,p, ;;lf + pf,(;; - 1) (16)
(see Lindblom & Mendell 1994). We evaluate the oscillations in our simple model using the minimum and maximum published
values of this parameter (see Sjoberg 1976; Wambach, Ainsworth, & Pines 1991; and discussions in Pines & Alpar 1992; Alpar
1992): mg/m, = 0.3 and m}/m, = 0.8. Using equation (16) therefore we take det p = 3.581 x 1028 (g cm~3)? for m*/m, = 0.3 and
det p = 1.296 x 10?® (g cm~3)? for m¥/m, = 0.8.

The frequencies of the fundamental modes, for 2 < I < 6, in our simple model of the oscillations of superfluid neutron stars are
presented in Table 1 in units of Q, = (nGp)'/2. The frequencies obtained in this way agree to within ~ 15% with the more realistic
oscillation frequencies computed in Lindblom & Mendell (1994). In our simple model these modes have no nodes in the radial parts
of the eigenfunctions 6U or 8B. The magnitude of 58 is smaller than U in these modes: | 38|/|U | < 4 as shown in Table 1. This
shows that superfluid effects are relatively unimportant in the dynamics of these particular modes.

3. DISSIPATION

The effects of dissipation on the evolution of superfluid neutron star matter can be studied conveniently with the use of the
following energy functional (Mendell 1991b):

1 det 20 0 d
E== Hpav oot + =L sw - owt + 22 2 (L) 55t + (22) Re [26U — 60881 + p( L) Re [(5U — s0)5U bdx ,
2 p p aﬁ pn P aﬁ ) 4 ap B
(17
TABLE 1
FUNDAMENTAL FREQUENCIES AND DAMPING TIMES
I=m {0)/Q Tar o Tmr Qo < 16B/6U |
my/m, = 0.3
2 1.407 2.685 x 103 1.071 x 10* 7.371 x 10! 0.082
3o, 1.809 1.303 x 10° 1.638 x 10* 2.887 x 10! 0.064
4.......... 2.141 5.711 x 108 2.347 x 10* 1.551 x 10! 0.052
S, 2.430 2.614 x 108 3.195 x 10* 9.677 x 101° 0.044
6.eevnnnnn 2.689 1.291 x 10'° 4.182 x 10* 6.609 x 101° 0.038
m}/m, = 0.8
20 1.401 2.660 x 10° 1.127 x 10° 6.407 x 10! 0.315
K JTURT 1.805 1.287 x 10° 1.854 x 10° 2.656 x 10! 0.235
4.......... 2.139 5.637 x 10° 2.861 x 10° 1.469 x 10! 0.183
S 2428 2.582 x 108 4.143 x 10° 9.326 x 10'° 0.149
6.evnrnnnn 2.687 1.277 x 10*° 5.700 x 10° 6.435 x 10'° 0.125
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where t denotes complex conjugation. The velocity perturbations that appear in equation (17) are determined by the scalars U and
4p. For the case of the simple pulsations described in § 2, these velocities are given by

i
bv=—=VoU, (18)

i
ow=——~Vop, (19)

where v is the average velocity of the superfluid mixture and éw is the relative velocity between the neutron and proton superfluids.
Thus the energy E defined in equation (17) is a real quadratic functional of the scalars U, 88, and 6®.

While the energy functional E is conserved in the absence of dissipation, it will evolve with time if d1ss1patlon is present in any of
its various forms. The resulting time dependence of E is very simple for the case of a mode: i.e., a solution in which éU, 6, and 6®
have the time dependence e~ Since E is a real quadratic functional of these quantities its time dependence will have the form
E oc exp (—2t/t), where 1 is related to the imaginary part of the frequency of the mode by Im (w) = — 1/z. The quantity 7 is in effect
the damping (or growth) time of the mode. Thus we may evaluate the damping time t (and hence the imaginary part of the frequency
of a mode) from a knowledge of E and its time derivative:

1 1 (dE
. -Ei(dt>- (20

Expressions for the evolution of the energy functional E under the influence of the various types of dissipation that are present in
superfluid neutron star matter have been derived by Mendell (1991b). Of particular interest to us here is a dissipative effect called
mutual friction. In rotating superfluid neutron star matter, mutual friction is caused by the scattering of the electrons off the cores of
the neutron vortices. The damping time due to mutual friction for a superfluid neutron star rotating about the z-axis with angular
velocity Q is (Mendell 1991b)

1 1 (dE 1 det p\2 t s s 2y a3
TMF__zE(dJ =5F 20B, (pn ,,) (6w - ow' — |2 - ow|H)d3x, (P2

where the quantity B, is the mutual friction coefficient. It characterizes the strength of the electron-vortex scattering process and is

given by
m# 2 m 1/2 p 7/6 p -1 p 1/6
~ hids 2 e _bE —F )
0011( m ) (m*> (p) (1 p) \10*gem™? @2

Note that B, is strongly dependent on the parameter m¥/m,. This parameter measures the strength of the neutron-proton coupling
in the superﬂuld This coupling influences the magmtude of B, because it induces proton supercurrents around the neutron vortices
(see Alpar et al. 1984; Alpar & Sauls 1988). These supercurrents cause a substantial magnetic flux within the neutron vortices which
greatly enhances their scattering with electrons. The values of B, for the simple model pulsations studied here are B, = 5.84 x 10™*
for m}/m, = 0.3 and B, = 2.92 x 107 for m¥/m, = 0.8. We also note that the mutual friction damping time tyg dlverges when the
angular veloc1ty of star vamshes It is convenient, therefore, to define a related quantity

Q) » (23)

. Q
Tur(Q) = lﬂ_o

which is finite even at Q = 0.

The evolution of the modes of superfluid neutron stars will also be influenced by shear viscosity. (The influences of bulk viscosity
and normal thermal conductivity are negligible by comparison below the superfluid transition temperature; see Cutler & Lindblom
1987; Cutler, Lindblom, & Splinter 1990; Lindblom 1995). In superfluid neutron star matter shear viscosity is caused by electron-
electron scattering. The damping time due to this process is given (see Mendell 1991b; Ipser & Lindblom 1991) by

1 1 (dE 1 w
Pl (dt) F f2 60750}, (24)
where the shear @, of the electron velocity field, du, is given by

04, = H(V, 8, + V, 0u, — 36, V. 6u), (25)

and ¢, is the Euclidean metric (the identity matrix in Cartesian coordinates). The velocity field of the electrons is also determined by
the scalar potentials U and . For the simple oscillations considered here du is given by (Mendell 1991a; Lindblom & Mendell
1994)

i det p
ou=—— V(éU ) ) 26
p o0, B (26)
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The viscosity due to electron-electron scattering is given approximately by the expression (Cutler & Lindblom 1987)

2(10° K\?
. =60 x 1016 -1 -1 P
n x gemls (10‘4gcm‘3)( T ) . @7

In the simple model considered here we take the temperature to have the value T = 10° K, the superfluid transition temperature.
= Thus the viscosity in this simple modelis 7, = 9.6 x 10'” gcm ™! s~ 1. We choose this value for the temperature because it minimizes
the effect of vnscos1ty on the gravntatlonal radiation secular mstablhty For smaller values of the temperature, the shear viscosity will
play a larger role in suppressing the instability.

Finally, the evolution of the superﬂuld state is influenced by the emission of grav1tat10na1 radiation. The effect of this dissipative
process on the damping time is given by (see Ipser & Lindblom 1991)

NG 7 - (02 o

]
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1 __1(d) _o-md ¢ 2041 1
Tar - 2E (dt )GR - 2E ,=Z'm|le 6Dlm5Dlm s (28)
where

oD, = j [ <" )(w <5<1>)+(a ﬁ> 5ﬂ]rY Px, 29)
and

4G (+1)(1+2)
A — DIl + DN

These equations are equivalent to those for the ordinary fluid case given in Ipser & Lindblom (1991), except the superfluid
expression for dp has been used in equation (29).

The damping times for the modes of superfluid neutron stars have been expressed as a set of integrals over the eigenfunctions of
the modes, 6U, 48, and d® in equations (17), (21), (24), and (29). In the general case, these eigenfunctions depend on the dissipation,
and so these integrals cannot easily be evaluated. In neutron stars, however, the dissipation is relatively weak in the sense that the
Q’s of the modes are extremely large: 7 Re (w) > 1. Thus, it is possible to obtain first approximations to the damping times of the
modes by using in equations (17), (21), (24), and (29) the nondissipative eigenfunctions 6U, 68, and 6®. We have evaluated these
quantities using the simple oscillation eigenfunctions described in § 2. In Table 1 we list these damping times for the fundamental
2 <l = m < 6 modes using the extreme values, m}/m, = 0.3 and m}/m, = 0.8, for the parameter that characterizes the interactions
between the protons and the neutrons.

In a real neutron star all of the dissipative processes act together simultaneously. The time derivative of the energy E under this
simultaneous action is merely the sum of the expressions given in equations (21), (24), and (28). Thus the total dissipative damping
time is given by

N,=

(30)

1
S=— . @1)

4. CRITICAL ANGULAR VELOCITIES

Although the various dissipative damping times defined in § 3 are positive for nonrotating stars, the gravitational radiation
damping time, tgg, may change sign for larger values of the angular velocity. In fact in every rotating star there is some mode for
which 74 is negative (see Friedman & Schutz 1978). Unless the internal fluid dissipation processes are sufficiently strong, therefore,
1/t may become negative and the star unstable. We are interested here in exploring the values of the angular velocity of the star
where 1/t changes sign from positive (stable) to negative (unstable). These critical angular velocities are defined then by

1 pr—
Q)

To begin the process of solving equation (32) we define three functions a,,(Q), 7,,(€), and u,(Q) that describe the angular velocity
dependence of the real part of the frequency, w, and the damping times of the modes

(32

_ On(@) — mQ
am(Q) = o, (0) , (33)
_ 0,Q) [ 10 Ter(@) VY
() = ©n(0) [‘tGR(O) r,,(Q)] , (34)
ym(Q) = ‘EM_F(O) TV(Q) (35)

7{0) Twr(@)’

where Ty is defined in equation (23). These quantities are defined so that for nonrotating stars a,,(0) = 7,,(0) = u,,(0) = 1.
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With these definitions, equation (32) for the critical angular velocity can be rewritten in the form

76r(0) Q, 16(0) [V
Am(€2) + vm(Qc)[— Q)5 = oy .
{ 7/(0) Qo Tme(0)

This equation is easily solved once the frequencies and damping times of nonrotating stars are known, plus the functions «,,, 7,,, and
U,,- While these functions are not easy to determine, our experience with their ordinary fluid counterparts suggests that they will
have values near one for all values of the angular velocity. Thus equation (36) may be approximated as

_ 0,0)] 16r(0) | @ TGr(0) VY
AR {1 i |: 7(0) * Q 'EMF(O)] } ‘ 37

This equation can easily be solved numerically for the critical angular velocity of a particular model knowing only the frequency
@,,(0) and the damping times 7t5g(0), 7,(0), and Tyx(0) associated with the nonrotating model. In perfect-fluid stars the analogous
approximation for the critical angular velocities agrees with the exact results to within ~ 15% (Lindblom 1986).

Critical angular velocities Q. can be found by solving equation (37) for any values of I, m, and w. However, these solutions are not
physically meaningful if the resulting Q. exceeds the maximum allowed angular velocity of the star. Above the maximum angular
velocity, Quax, equilibrium stellar models do not exist. For the uniform-density stellar models Qy,x = 0.67Q, (see, e.g., Chandra-
sekhar 1969). A number of studies (Friedman, Ipser, & Parker 1986; Ipser & Lindblom 1991) have shown that Qy,x is close to this
value for a wide range of equations of state and stellar masses. We find no solutions to equation (37) with Q. < 0.68Q,. The smallest
Q. that we find using the values of the damping times from Table 1 is Q. = 1.03Q,, for the I = m = 2 mode. The effects of mutual
friction are probably overestimated, however, in the simple model of the oscillations used here. The ratio | §5/6U |, for example, is
larger in these simple modes by a factor of ~ 100 over the more realistic modes studied by Lindblom & Mendell (1994). Reducing
the effects of mutual friction (by increasing the values of #y;) by a factor of 10° over those given in Table 1 still gives no Q, < 0.68Q,,
however. Thus we find no physical solutions to equation (37): mutual friction (due to superfluidity) suppresses the gravitational
radiation instability in all modes and for all temperatures below the superfluid transition temperature. Thus, we conclude that
gravitational radiation will not limit the angular velocities of superfluid neutron stars. We note that this conclusion confirms the
prediction of Lindblom & Mendell (1992).

Although the suppression of the gravitational radiation instability by mutual friction in the estimate given here is overwhelming,
the physics of the superfluid interiors of neutron stars is only poorly understood. Thus we thought it would be appropriate to
summarize here the basic superfluid effects that contribute crucially to our conclusion.

Q

_ | o,0)]
T m

(36)

1. The mutual friction damping of the gravitational radiation instability depends strongly on m}/m,. If this parameter were
significantly larger than 0.8, the maximum value used in our estimates, then the effects of mutual friction are reduced perhaps to the
point where the gravitational radiation instability could again become a factor.

2. In our simple estimates we assume that the entire neutron star is in the superfluid state. More realistic estimates (Lindblom &
Mendell 1994) have ~66% of the star by mass in the core superfluid. If real neutron stars had a substantially smaller superfluid core,
then the effects of mutual friction would again be reduced perhaps to the point where the gravitational radiation instability could be
a factor.

3. In the estimates given here we have assumed that the function u,, that describes the angular velocity dependence of the mutual
friction damping time is nearly constant: p,, & 1. If, contrary to our expectations, this function is extremely small for large angular
velocities, then the gravitational radiation instability could again become a factor.

This research was supported by grant PHY-9019753 from the National Science Foundation, and by the Centre National de la
Recherche Scientifique (UPR 176).
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