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The dynamics of the fluid fields in a large class of causal dissipative fluid theories is studied.
It is shown that the physical fluid states in these theories must relax (on a time scale that is
characteristic of the microscopic particle interactions) to ones that are essentially
indistinguishable from the simple relativistic Navier�Stokes descriptions of these states. Thus,
for example, in the relaxed form of a physical fluid state the stress energy tensor is in effect
indistinguishable from a perfect fluid stress tensor plus small dissipative corrections propor-
tional to the shear of the fluid velocity, the gradient of the temperature, etc. � 1996 Academic

Press, Inc.

I. Introduction

A simple mathematical model provides an elegant and accurate description of
the common materials called fluids. The effects of internal dissipation in these
materials��viscosity and thermal conductivity��are also well modeled by a simple
generalization of the basic theory called the Navier�Stokes equations. Unfor-
tunately, the most straightforward approaches to constructing relativistic
generalizations of the Navier�Stokes equations result in rather pathological theories
(Eckart [1], Landau and Lifschitz [2]). These theories are non-causal, unstable,
and without a well posed initial value formulation (see for example Hiscock and
Lindblom [3]). Less straightforward approaches have succeeded more recently in
producing a class of causal dissipative fluid theories (e.g., Israel and Stewart [4],
Carter [5], Liu, Mu� ller, and Ruggeri [6], Geroch and Lindblom [7], etc.). These
theories have eliminated the pathologies of the straightforward relativistic
generalizations of the Navier�Stokes equations, but they do so at the expense of
increasing significantly the number of dynamical fields needed to describe the fluid.
Unfortunately the additional dynamical degrees of freedom associated with these
extra fields have never been directly observed in real fluids. This is probably why
these new theories have not found widespread acceptance.

In this paper the dynamics associated with these additional fluid fields are
analyzed in a very large class of causal dissipative fluid theories. It is shown that
the physical fluid states relax (on a time scale characteristic of the inter-particle
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interactions) to ones that are also well described by the simple relativistic Navier�
Stokes theory. For example, the stress-energy tensor in such a relaxed fluid state is
well described by the usual perfect fluid stress-energy tensor plus the Navier�Stokes
expressions for the dissipative corrections involving the shear of the fluid velocity,
the gradient of the temperature, etc. This result suggests that meaningful differences
between the causal theories and the non-causal Navier�Stokes theory can not be
observed. The complicated dynamical structure of the causal theories is necessary
to insure that the fluid evolves in a causal and stable way. But this rich dynamical
structure is unobservable, since the physical states of a fluid always evolve in a way
that is also well described by the Navier�Stokes expressions for the stress-energy
tensor, etc. The arguments which lead to these conclusions are extremely general:
they are based on a fully non-linear analysis of the equations and do not assume
that the fluid state is close to equilibrium. This analysis generalizes significantly the
studies of the analogous relaxation effect in the solutions of the hyperbolic heat
equation (see Nagy, Ortiz, and Reula [8]), and the studies of the relationship
between the relativistic Navier�Stokes and the causal fluid theories in the near equi-
librium fluid states (see Hiscock and Lindblom [9]).

Let us begin by recalling the theory of a perfect fluid: the mathematical descrip-
tion of a fluid having negligible internal dissipation. The state of such a fluid is
determined by three fields on spacetime: a future directed unit timelike vector field,
ua, and two scalar fields n and \. These fields are assumed to be solutions of the
differential equations

{mNm=0, (1)

{mT ma=0, (2)

where Na and T ab are given in terms of the fluid fields by

Na=nua, (3)

T ab=(\+p) uaub+p gab. (4)

Here p is a smooth function of n and \ (the equation of state), that is fixed once
and for all for a given type of fluid. The conserved vector Na is the particle current
of the fluid, and thus ua may be identified as the four-velocity and n as the number
density as measured by an observer co-moving with the fluid. The conserved tensor
T ab is the stress energy of fluid. Thus from Eq. (4), \ is identified as the mass-energy
density and p as the pressure of the fluid, both as measured by a co-moving
observer. These quantities are all directly observable because the particle current
N a and the stress energy T ab are themselves directly observable.

The theory of a perfect fluid, Eqs. (1)�(4), has a number of attractive mathemati-
cal properties. One of the most important of these is that Eqs. (1)�(2) form a sym-
metric-hyperbolic and causal system when suitable restrictions are placed on the
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equation of state. Let !:=(n, \, ua) denote the dynamical fluid fields. Then
Eqs. (1)�(2) are equivalent to

Mm
:; {m !;=0, (5)

where

Mm
:;=P:

�Nm

�!; +P:a
�T am

�!; . (6)

The quantities P: and P:a (functions of !: and the spacetime metric gab) may be
chosen so that these equations are symmetric in the sense that Mm

:;=Mm
;: (see

Ruggeri and Strumia [10], Geroch and Lindblom [7], and 9III below). When
suitable restrictions are placed on the equation of state these equations are also
hyperbolic and causal, because *m=M m

:; Z:Z; is past directed timelike for every
choice of Z:{0 in these theories.

Next, let us turn to the main subject of this paper: theories of dissipative fluids.
Since there is as yet no universally accepted theory for such fluids, a rather broad
class of theories has been included in this discussion. The state of the fluid in these
theories is determined by two sets of fields, !: and .A, each representing some
collection of tensor fields (possibly subject to certain algebraic constraints) on
spacetime. The !: are to represent, as in the perfect fluid case, the dynamical fluid
fields. The .A are to represent additional `dissipation' fields that are needed to com-
plete an acceptable causal fluid theory. It seems reasonable to restrict the dimension
of the combined !: and .A spaces to be equal to the number of independent
observable fields in the theory.1 In the case of a simple dissipative fluid��the case
that is of primary interest here��the particle current Na and the stress-energy tensor
T ab are the independent observable fields. Hence the most appropriate choice for
the dimension of these combined spaces is fourteen in this case. For now, however,
neither the structures nor the dimensions of these spaces will be restricted.

The fields, !: and .A, are assumed to be solutions of the system of equations

Mm
:;{m!;+Mm

:A{m .A=0, (7)

Mm
AB{.B+Mm

:A{m!:=&IAB .B. (8)

The quantities Mm
:; , Mm

:A , M m
AB , and IAB are assumed to be smooth functions,

fixed once and for all for a given theory, of the fields !:, .A, and the spacetime
metric gab . Thus Eqs. (7)�(8) form a first-order system of partial differential equa-
tions for the fluid fields !: and .A. Three conditions are now imposed on this

3RELAXATION EFFECT

1 This restriction is not required in the analysis presented here however. If the number of fluid fields
were taken to be larger than the number of observables then some of the fluid fields would not be
observable. The results derived here would still apply, but some of them would change character from
experimentally testable predictions to mathematical identities.



File: 595J 551204 . By:CV . Date:07:02:00 . Time:11:48 LOP8M. V8.0. Page 01:01
Codes: 3624 Signs: 2669 . Length: 46 pic 0 pts, 194 mm

system of equations. These conditions are very general and should apply to essen-
tially any theory of fluids (including those describing superfluids, mixtures of dif-
ferent kinds of fluids, etc.).

Condition (i). The first condition is on the M's that appear on the left sides
of Eqs. (7)�(8). Assume that the M's are symmetric, Mm

:;=Mm
(:;) and

Mm
AB=M m

(AB) ; and assume that every vector *m given by

*m=M m
:;Z:Z;+2Mm

:A Z:ZA+Mm
ABZAZB, (9)

for some (Z:, ZA){0 is past-directed timelike. This is just the condition needed to
insure that the system (7)�(8) is symmetric, hyperbolic, and causal (see for example
Geroch and Lindblom [11] or Mu� ller and Ruggeri [12]).

Condition (ii). The second condition involves the tensor IAB that appears on the
right side of Eq. (8). Assume that IAB ZAZB>0 for every ZA{0.2 This condition is
adopted to insure, as will be seen more clearly below, that this fluid theory is
strictly dissipative. It is precisely analogous to requiring that the viscosity coef-
ficients and the thermal conductivity not vanish in the Navier�Stokes equation.

Condition (iii). The third condition concerns the conservation laws. Assume
that there exist specific smooth functions Na and T ab of the fields !:, .A, and gab ,
such that Eq. (7) implies the conservation laws, Eqs. (1) and (2). This condition
merely insures that the theory possesses a conserved stress energy tensor and
particle current.

The main result of this paper is derived in Sect. II. It is shown that physical states
of the fluid relax��on a time scale { that is characteristic of the inter-particle inter-
actions��to ones in which the dissipation field is determined in effect by the
dynamical field !: and its derivative. In particular, a bound is derived for the quan-
tity 2.A, defined by

.A=&[(I &1)AB Mm
:B {m!:].C=0+2.A, (10)

in the physical fluid states of any fluid theory which satisfies Conditions (i)�(iii).
This bound on 2.A is smaller by the factor b5�2({v�L)2 than it is expected to be.
The constant v is a characteristic sound speed, L is a macroscopic length scale that
characterizes the particular state of the fluid, and the constant b is a dimensionless
bound on Mm

AB , M m
:A , (I &1)AB and their derivatives (which will be defined

precisely in 9II). The constant b is expected to be of order unity for `reasonable'

4 LEE LINDBLOM

2 The somewhat more general function &IA (!:, .B, gab) could have been adopted for the right side
of Eq. (8) if it satisfied a few additional constraints. This more general form is equivalent to that given
in Eq. (8) if and only if IA satisfies the following three conditions: (a) IA=0 when .B=0, (b) IA .A>0
when .B{0, and (c) �IA��.B is not degenerate when evaluated at .C=0.
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fluid theories. Thus the factor b5�2({v�L)2 should be extremely small for real fluids.
For example in water ({v�L)2

r10&12 for fluid states with Lr0.1cm. Since the dis-
sipation field in a relaxed fluid state is determined in effect by the dynamical field
!: and its derivative, then so are all other functions of the fluid fields. In particular,
the particle current Na and stress energy tensor T ab are given by

Na=_Na&
�N a

�.A (I &1)AB M m
:B{m!:&.C=0

+2N a, (11)

T ab=_T ab&
�T ab

�.A (I &1)AB M m
:B{m!:&.C=0

+2T ab. (12)

It is shown that the quantities 2Na and 2T ab are also smaller than their expected
values by the factor b3({v�L)2. These results apply to any dissipative fluid theory
that satisfies Conditions (i)�(iii) above, and to any physical fluid state (i.e., as
defined more precisely below, a state in which the spatial and temporal variations
of the fluid fields are larger than the microscopic scales). This result explains why
the independent dynamics of the dissipation field .A is never observed: its value is
determined in effect by the dynamical field !: and its derivative, via Eq. (10), on
any time scale over which a macroscopic measurement of the system can be made.
Although measurements could in principle be carried out on fluid systems over very
short time and distance scales, it is not required or even expected that such
measurements will be modeled in detail by any macroscopic fluid theory.

The results of 9II show that a dissipative fluid quickly relaxes to a state in which
the particle current and stress-energy tensor are determined (in effect) by the
dynamical fluid field !: and its derivative {m!:. Such relationships are quite
familiar to us; for these are precisely the forms that the expressions for these quan-
tities take in the Navier�Stokes theory. Recall that in the relativistic Navier�Stokes
theory (as formulated by Eckart [1]) the particle current and stress-energy tensor
are given in terms of the fields !:=(n, \, ua) by

Na=nua, (13)

T ab=(\+p) uaub+pgab+{ab+{qab+2u(aqb), (14)

where

{ab=2'1[qamqbc& 1
3qabqcm] {(muc) , (15)

{='2{mum, (16)

qa=&}(qam{mT+Tum{mua). (17)

The quantities '1 , '2 , and } (positive functions of n and \) are the viscosities and
thermal conductivity respectively; and, the quantity T (a function of n and \) is the
thermodynamic temperature which satisfies the first law of thermodynamics,

d\=nT ds+
\+p

n
dn. (18)

5RELAXATION EFFECT
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In this theory the conservation laws, Eqs. (1)�(2), and Eqs. (15)�(17) are the dif-
ferential equations that determine the field !:. If the dissipation fields are defined as,
.A=({, qa, {ab), then this theory is of the same general form as those being con-
sidered here. The conservation laws are precisely in the form of Eq. (7), while
Eqs. (15)�(17) have the form of Eq. (8). This theory fails to be an acceptable theory
because Mm

AB=0 and thus it fails to satisfy Condition (i). Note that for this
relativistic Navier�Stokes theory, the quantities 2.A, 2N a, and 2T ab as defined in
Eqs. (10)�(12) vanish identically.

The vanishing (effectively) of 2Na and 2T ab for the general dissipative fluid
theories considered here implies that the particle current and stress-energy tensor
depend (in effect) only on !: and its derivative {m!: in any physical fluid state. In
the relativistic Navier�Stokes theory, however, only certain components of {m!:

appear in these expressions. For example, in the Navier�Stokes theory {mT
appears in these expressions but not the gradient of any other thermodynamic
scalar. It is natural to ask then, what class of fluid theories have the property that
their fluid states always relax to ones in which the particle current and stress-energy
tensor are in effect indistinguishable from those of the relativistic Navier�Stokes
theory? Or in particular, in which theories do Na and T ab depend on !: and {m!:

in precisely the same way as in the Navier�Stokes theory? The following two addi-
tional conditions are necessary and sufficient to guarantee that a theory will be
indistinguishable from Navier�Stokes in this way:

Condition (iv). The fourth condition concerns the space of dynamical fields !:.
Assume that Eq. (7) is precisely equivalent to the conservation laws, Eqs. (1)�(2).
This implies that the space of the !: consists of one vector and one scalar field
which may, without loss of generality (as shown in Sect. III), be taken to be
!:=(n, \, ua), where nua=N a (with uaua= &1) and \=ua ub T ab.

Condition (v). The fifth condition concerns the tensor Mm
:A that appears in

Eqs. (7)�(8). Assume that Mm
:A{m!: depends on {m n and {m\ only in the com-

bination {mT=(�T��n)\ {m n+(�T��\)n {m \ in the .A=0 states of the fluid. This
condition is required to insure that heat flow is generated by the gradient of the
thermodynamic temperature T and not the gradient of some other thermodynamic
scalar. This condition is equivalent to the requirement that the equilibrium states
of the fluid be `isothermal.'

The theories that satisfy these two additional conditions are the natural causal
generalizations of the Navier�Stokes theory: the causal theories of a simple dis-
sipative fluid.

In Section III the expressions for the relaxed forms of the particle current and
stress-energy tensor are evaluated for the theories of simple dissipative fluids, i.e.,
those satisfying Conditions (i)�(v). With the convenient choice of dynamical fields,
!:=(n, \, ua), Eqs. (11)�(12) reduce to

6 LEE LINDBLOM
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Na=nua, (19)

T ab=(\+p) uaub+pgab+2'1[qamqbc& 1
3qabqcm] {(muc)+'2{mumqab

&2}u(a[qb)m{m T+Tu |m|{m ub)]+2T ab, (20)

for suitably chosen functions (of n and \) p, '1 , '2 , and }. Since 2T ab is extremely
small in the physical fluid states of these theories, this shows that the particle
current and stress energy tensor are (in effect) indistinguishable from those of the
relativistic Navier�Stokes theory.3

II. The Relaxation Effect

The key result in this paper is that the physical states of the fluid relax to
ones in which the dissipation field .A is determined (in effect) by the dynamical
fluid field !: and its derivative {m !:. That some form of relaxation should occur in
the solutions of Eqs. (7)�(8) can be seen fairly easily. Consider the quantity
IAB .B+Mm

:A{m!:. If this quantity does not vanish at some point, then the first
term in Eq. (8) causes .A to evolve in the direction that tends to make it vanish.
The rate at which this evolution occurs is determined by the time scale that is
encoded in the tensor IAB . For fluids this time scale will be determined by the
viscosity and thermal conductivity coefficients contained in IAB , and therefore will
be characteristic of the inter-particle interaction times for the fluid. The demonstra-
tion that the quantity 2.A defined in Eq. (10) is small will be done in two steps.
First, it is shown that a related quantity .A+4A, defined below, is small using a
fairly simple and straightforward argument. Second, a slightly more elaborate
argument shows that quantities 2.A, 2Na, and 2T ab of Eqs. (10)�(12) are also
small.

Begin by obtaining the following equation for .A+4A from Eq. (8):

{m[M m
AB(.A+4A)(.B+4B)]

=&2IAB(.A+4A)(.B+4B)+(.A+4A)AA , (21)

where 4A and AA are defined by

4A=(I&1)AB (Mm
:B{m !:& 1

2.C{m Mm
BC), (22)

AA=4B{m M m
AB+2Mm

AB{m 4B. (23)

7RELAXATION EFFECT

3 Note that 2N m and ua ub 2T ab vanish identically as a consequence of the particular choice of !:

made here. Had a different choice been made, such as the one traditionally used in the Landau�Lifschitz
theory [2], then other components of these quantities would have vanished identically instead.
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Next consider S(0), a bounded open subset of some Cauchy surface. Use the
timelike vector field whose divergence appears on the left side of Eq. (21) to define
a map between the points on successive Cauchy surfaces. Let S(}) denote the image
of S(0) under this map into the Cauchy surface labeled by the time function }.
Choose this time function } so that it satisfies

IAB ZAZB� &ZAZBMm
AB{m } (24)

(for every ZA), in the spacetime region (0, }o)_S(}o). Next, define the following
L2 norm of .A+4A,

:2(})=|
S(})

GAB(.A+4A)(.B+4B) dV, (25)

where GAB=nm Mm
AB , and nm is the future directed unit vector proportional to

{m }. The evolution of this norm is determined by integrating Eq. (21) over the
spacetime region consisting of points in S(}) that lie between two nearby }=con-
stant slices. The integral along the timelike boundary of this region vanishes
because of the choice of S(}). The integral of the terms on the right in Eq. (21) may
be transformed using Eq. (24) for the first term and the Schwartz inequality for the
second. Taking the limit as the difference between } on these two slices goes to zero,
the following differential inequality is obtained for :,

d:
d}

�&:+
1
2

&A&, (26)

where

&A& (})=_|S(})

GABAA AB dV
&{m }{m} &

1�2

, (27)

and GAB denotes the inverse of GAB . This ordinary differential inequality, Eq. (26),
can be integrated to obtain the following bound on :,

:(}o)�:(0)e&}o+ 1
2 |

}o

0
e&(}o&}) &A& (}) d}. (28)

To proceed further a bound must be obtained for the quantity &A& that appears
in Eq. (28). To this end a norm is introduced on tensors: The positive definite
G:;=nm M m

:; and its inverse G:; are used for indices associated with the dynamical
field, !:; and the positive definite definite GAB=nm Mm

AB and its inverse GAB are
used for indices associated with the dissipation field .A. For spacetime indices the
positive definite metric Gab=na nb+v&2( gab+na nb) and its inverse G� ab=nanb+
v2( gab+nanb) are used. The constant v, with 0<v<1, is chosen to be an upper
bond on the speed (relative to na) of signal propagation, i.e., a number such that
(na *a)2�v&2( gab+na nb) *a*b for every *a given in Eq. (9). As examples of this

8 LEE LINDBLOM
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norm, the integrand in Eq. (25) can be written as |.A+4A| 2=GAB(.A+
4A)(.B+4B), while |AA| 2=GABAA AB and |{m }| 2=G� ab {a } {b }=&{a } {a}.
Note that |Mm

AB|�4d where d is the dimension of the space of dissipation fields.
Since d will be some relatively small integer, say d=9, the norm of the M's will be
of order unity in these fluid theories.

In the fluid theories considered here the quantities Mm
AB , M m

:A and IAB are
assumed to be smooth functions of the fluid fields. Therefore, these quantities and
their derivatives with respect to the fluid fields are bounded. It is convenient to
quantify these bounds in terms of three constants b, { and `. Consider fluid fields
!: and .A that are bounded by the constant `:

|.A|�`, |!:|�`. (29)

Next define the dimensionless constant b to be a bound on the M's and their
derivatives. In particular assume that

|Mm
AB |�b, }�Mm

AB

�!: }�b
`

, } �Mm
AB

�.C }�b
`

,

(30)

}�
2Mm

AB

�!:�!; }� b
`2 , } �

2Mm
AB

�!:�.C }� b
`2 , } �

2Mm
AB

�.C�.D }� b
`2 ,

and

|Mm
:A |�b, } �Mm

:A

�!; }�b
`

, } �M m
:A

�.B }�b
`

. (31)

Finally, the constant { is defined as a bound on (I &1)AB and its derivatives

|(I &1)AB|�b{, } �(I &1)AB

�!: }�b{
`

, } �(I &1)AB

�.C }�b{
`

, (32)

for b given above. The constant { that appears in these bounds is the characteristic
time scale on which the dissipative term IAB influences the evolution of the fluid in
Eq. (8). This constant also fixes the relationship between physical time and the time
function } because of Eq. (24). The time function } can be chosen so that

|{m }|�
1
{

. (33)

This } in effect measures time in units of {.
To proceed further bounds must now be placed on the spatial derivatives of the

fluid fields. Assume that there exists a constant L such that

|{m !:|�
v`
L

, |{m .A|�
v`
L

, |{m {n !:|�
v2`
L2 , |{m {n .A|�

v2`
L2 . (34)

9RELAXATION EFFECT



File: 595J 551210 . By:CV . Date:07:02:00 . Time:11:48 LOP8M. V8.0. Page 01:01
Codes: 3697 Signs: 2884 . Length: 46 pic 0 pts, 194 mm

These inequalities restrict the solutions to the fluid equations4 to those which do
not vary appreciably on length scales shorter than L and on time scales shorter
than L�v. These inequalities select, therefore, the set of solutions that represent real
physical fluid states. Fluid states in which rapid variations of the fluid fields occur
on time and length scales smaller than the microscopic particle interaction scales
probably can not be adequately modeled by any macroscopic fluid theory. Thus,
solutions to the fluid equations having these properties are not considered physical.
The inequalities in Eq. (34) therefor select out the physical solutions of the fluid
equations when L is larger than the microscopic interaction length scale. For these
solutions the quantity &A& can be bounded by using Eqs. (30)�(34) in Eq. (27):

&A& (})�26b3` \{v
L+

2

V1�2(}), (35)

where V(}) is the volume of the region S(}):

V(})=|
S(})

dV. (36)

Including this bound into Eq. (28) the following bound is then obtained for ::

:(}o)�:(0)e&}o+13b3` \{v
L+

2

|
}o

0
e&(}o&}) V 1�2(}) d}. (37)

This bound consists of two pieces. The first is simply the initial value of : multiplied
by e&}o. This term falls exponentially to zero on the characteristic time scale {. The
second term is a constant multiplied by the time average of the spatial volume over
which the norm : is defined. This second term, the asymptotic bound on the norm
:, is smaller than the a priori expectation of its value, `(bV)1�2, by the factor
b5�2({v�L)2. This factor will be extremely small, being proportional to the square of
the ratio of the characteristic dissipation time scale { to the characteristic dynamical
time scale L�v, as long as the constant b is of order unity and the constant v is com-
parable to the sound speed in the material. The constant b is a measure of the M's
and I and their derivatives with respect to the fluid fields. This constant will be of
order unity unless these quantities depend on the fluid fields in a very perverse way
(e.g. if the M's dependence on the fields were highly oscillatory). The constant v will
be comparable to the sound speed of the material as long the foliation of Cauchy
surfaces is chosen so that the fluid motion is not highly supersonic, and as long as
the characteristic speeds associated with the dissipation fields are comparable to the
usual sound speed. In this case the bound on : derived in Eq. (37) implies that the

10 LEE LINDBLOM

4 It is expected that large numbers of solutions to the fluid equations exist which satisfy these condi-
tions. In particular, it is expected that initial data satisfying these conditions on a Cauchy surface will
evolve (for some macroscopic time) as a solution that satisfies these conditions everywhere in the
development of these data. There do not exist theorems at present, however, which prove the existence
of solutions having these properties.
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dissipation field .A relaxes in the physical states of these fluid theories in such a
way that the quantity .A+4A becomes extremely small.

To complete the argument that the quantities 2.A, 2Na, and 2T ab of
Eqs. (10)�(12) are small, additional L2 and L4 bounds are needed on the dissipa-
tion field .A. To obtain these bounds the following identities are derived from
Eq. (8),

{m[Mm
AB .A.B]=&2IAB .A.B+.ABA , (38)

{m[Mm
AB GCD .A.B.C.D]=&2IAB GCD .A.B.C.D+.A.B.CCABC , (39)

where BA and CABC are defined by

BA=.B{m Mm
AB&2Mm

:A {m!:, (40)

CABC=GAB BC+2Mm
AB GCD {m .D+Mm

AB .D{m GCD . (41)

Next an integral norm, analogous to : above, is defined for the field .A:

;2(})=|
S� (})

[K 2
1 |.A+4A| 2+K 2

2 |.A| 2+K 2
3 |.A| 4] dV, (42)

where K1>0, K2>0, and K3>0 are constants whose values will be specified later.
The time evolution of ; is determined in analogy with Eq. (26) by integrating K 2

1

multiplied by Eq. (21), plus K 2
2 multiplied by Eq. (38) plus K 2

3 multiplied by
Eq. (39), over the spacetime region consisting of points in S� (}) that lie between two
nearby }=constant slices. The sequence of spatial sections S� (}) is chosen in this
case so that the timelike boundary integral vanishes identically here as well. The
integrations on the right side of this equation may be simplified, again in analogy
with Eq. (26), by using Eq. (24) and the Schwartz inequality. The result is the
following differential inequality on ;,

d;
d}

�&;+
1
2

(K1 &A&+K2 &B&)+
1
2

K3 _|S� (})

|CABC | 2 |.D| 2 dV
|{m }| 2 &

1�2

, (43)

where &A& is given by Eq. (27) and &B& is

&B& (})=_|S� (})

|BA | 2 dV
|{m }| 2 &

1�2

. (44)

The quantities that appear on the right side of Eq. (43) can be bounded if one addi-
tional restriction is made on the physical solutions of the fluid theory. Assume that
the extrinsic curvature and acceleration of the }=constant surfaces are bounded by

|{a nb |�
v
L

. (45)

11RELAXATION EFFECT
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Using the bounds given in Eqs. (29)�(33), (34), and (45), the following bounds can
be obtained for the quantities that appear on the right side of Eq. (43):

&B&�4b`
{v
L

V� 1�2(}), (46)

_|S� (})

|CABC | 2 |.D| 2 dV
|{m }| 2 &

1�2

�9b2`
{v
L

;
K2

. (47)

Combining these bounds with Eq. (35), the differential inequality for ; can be
simplified to the following

d;
d}

�&_1&
9
2

b2`
{v
L

K3

K2& ;+_13b2 \{v
L+ K1+2K2& b` \{v

L+ V� 1�2(}). (48)

The constants K1 , K2 and K3 are now chosen to be

K1=
1

13b2 , K2=
1
2 \

{v
L+ , K3=

1
18b2`

. (49)

With these choices Eq. (48) becomes

d;
d}

� &
;
2

+2b` \{v
L+

2

V� 1�2(}). (50)

Integrating this inequality, the desired bound on the norm ; is obtained:

;(}o)�;(0)e&}o�2+4b` \{v
L+

2

(V� 1�2) , (51)

where (V� 1�2) denotes the time average of the spatial volume,

(V� 1�2)= 1
2 |

}o

0
e&(}o&})�2V� 1�2(}) d}. (52)

This bound on ; implies an L2 bound on .A+4A, and simultaneously L2 and L4

bounds on .A. The asymptotic values of these bounds are given by

_|S� (})
|.A+4A| 2 dV&

1�2

�52b3` \{v
L+

2

(V� 1�2), (53)

_|S� (})
|.A| 2 dV&

1�2

�8b` \{v
L+ (V� 1�2) , (54)

_|S� (})
|.A| 4 dV&

1�2

�72b3`2 \{v
L+

2

(V� 1�2). (55)

12 LEE LINDBLOM
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These bounds on .A are smaller by the factor {v�L than their a priori expected
values. The bound on .A+4A is even smaller, however, being reduced from its a
priori expected value by the factor ({v�L)2. Thus .A+4A becomes small not simply
because .A and 4A get small individually. Rather, this quantity becomes small
because .A approaches 4A asymptotically. Note that the region S� (}) over which
these norms are computed may be chosen arbitrarily on any particular slice.5

Also note that (V� 1�2(})) rV� 1�2(}) if V� (})r({v)3. The time average used here is
exponentially weighted and hence only those slices within about one microscopic
interaction time { of } contribute significantly.

The main results of this section are bounds on the quantities 2.A, 2Na, and
2T ab defined in Eqs. (10)�(12). These bounds are obtained beginning with the
quantity 2.A,

2.A=.A+[(I &1)AB Mm
:B{m !:].C=0. (56)

This quantity can be re-written as the sum of .A+4A, a quantity whose bound was
established above, plus =A:

2.A=.A+4A+=A, (57)

where =A may be written (using the standard expression for the remainder in a
Taylor expansion) as

=A=
1
2

(I &1)AB .C{m Mm
BC

&.C{m !: |
1

0 { �
�.C [(I &1)AB M m

:B](!;, *.D)= d*. (58)

Now, using Eqs. (30)�(32) and (34) it is straightforward to obtain the following
bound on =A,

|=A|�3b2 \{v
L+ |.A| . (59)

Using the triangle inequality for L2 norms, the norm of 2.A can be expressed as
the sum of the norms for .A+4A, from (53), and the norm of =A, using (54) and
(59):

_|S� (})
|2.A| 2 dV&

1�2

�38b3` \{v
L+

2

(V� 1�2). (60)

Thus, the norm of 2.A is smaller than its a priori expected value by the factor
b5�2({v�L)2.

13RELAXATION EFFECT

5 The regions S� (}) on the other slices in the foliation are then fixed, however, in order to eliminate
the spatial boundary terms from the integration.
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Turn next to the quantity 2T ab,

2T ab=T ab&_T ab&
�T ab

�.A (I &1)AB Mm
:B {m !:&.C=0

. (61)

This quantity may be re-written (using Eq. [56] and again the standard expression
for the remainder in a Taylor expansion) as

2T ab=2.A _�T ab

�.A &.C=0

+.A.B |
1

0 {(1&*)
�2T ab

�.A�.B (!:, *.C)= d*. (62)

The norm of this quantity can easily be bounded by

|2T ab|�
=
`

|2.A|+
=

2`2 |.A| 2, (63)

if the field derivatives of T ab satisfy the following bounds

}�T ab

�.A }�=
`

, } �2T ab

�.A�.B }� =
`2 . (64)

The constant = is a characteristic internal energy density. Using the expressions
for the bound on 2.A from Eq. (60) and the bound on |.A| 2 from Eq. (55), the
following bound on 2T ab is obtained,

_|S� (})
|2T ab| 2 dV&

1�2

�112b3 \{v
L+

2

=(V� 1�2). (65)

This equation provides a bound on 2T ab that is smaller than its a priori expected
value, =(V� 1�2) , by the factor b3({v�L)2.

An exactly analogous bound can be obtained for 2N a if the field derivatives of
Na are bounded by

}�Na

�.A }�&
`

, } �2Na

�.A�.B }� &
`2 , (66)

where & is a characteristic number density. The bound on 2Na is obtained in
precisely the same way as the bound on 2T ab, with the result

_|S� (})
|2Na| 2 dV&

1�2

�112b3 \{v
L+

2

&(V� 1�2) . (67)

Thus the bound on 2Na is also smaller than its a priori expected value by the factor
b3({v�L)2.

14 LEE LINDBLOM
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III. Simple Dissipative Fluids

In this section the relaxed expressions for the particle current and stress energy
tensor, Eqs. (11)�(12), are evaluated for the theories of a simple dissipative fluid.
Condition (iv) guarantees that Eq. (7) is equivalent to the conservation laws in this
case. This implies that the space of the !: must consist on one vector and one scalar
field. The form of Eqs. (7)�(8) is unchanged if the fluid fields are transformed in the
following way: !� :=!� :(!;, .B) and .̂A=.̂A(.B). The choice !� :=(n, \, ua) and
.̂A=.A, where

nua=Na(!;, .B, gbc), (68)

\=ua ub T ab(!;, .B, gcd), (69)

is a transformation of this form. Thus !: may be chosen to be !:=(n, \, ua),
without loss of generality. With this choice �N a��.A=0 and uaub �T ab��.A=0.
Evaluating Eq. (11) for this case we obtain Na=nua+2Na, hence Eq. (19). The
quantity 2Na vanishes identically as a consequence of the choice of !: used here.
Condition (iv) also implies that the tensors Mm

:; and Mm
:A of Eq. (7) must be

given by

Mm
:;=P:

�Nm

�!; +P:a
�T am

�!; , (70)

Mm
:A=P:a

�T am

�.A , (71)

where P: and P:a are suitably chosen functions of !:, .A and gab . Note that the
term proportional to P: is missing from Eq. (71) because �Na��.A=0 for our
choice of !:. Using this expression for M m

:a , the general expression for T ab in
Eq. (12) reduces to

T ab=_T ab&
�T ab

�.A (I &1)AB �T cm

�.B P:c {m !:&.C=0

+2T ab. (72)

Condition (v) places restrictions on the allowed forms of Mm
:A {m !: in the fluid

states where .A=0. From Eq. (71) it follows that this quantity is determined by
P:a . In the .A=0 fluid state the tensor Mm

:; is identical to the tensor that governs
the evolution of a perfect fluid via Eqs. (5)�(6). The most general P's that make
Mm

:; symmetric in this case are given by

P: d!:= &Q1 _\�p
�n+

2

\
+Q2 \\+p

n +
2

& dn

&Q1 _\�p
�\+n \

�p
�n+\

&Q2

\+p
n & d\, (73)

15RELAXATION EFFECT
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P:a d!:=ua Q1 _\�p
�\+n \

�p
�n+\

&Q2

\+p
n & dn+ua Q1 _\�p

�\+
2

\
+Q2& d\

&Q1(\+p) \�p
�\+s

qab dub, (74)

where Q1 and Q2 are arbitrary functions of n and \, and qab=gab+uaub (see
Geroch and Lindblom [7]). The hyperbolicity and causality conditions for Mm

:;

in this case are simply, Q1>0 and Q2>0, and the equation of state must satisfy

0<\�p
�\+s

�1, (75)

with n>0 and \+p>0. Thus the tensors Mm
:; and Mm

:A are determined com-
pletely (up to the arbitrary overall factor Q1) in these fluid states by the function
Q2 .

Condition (v) fixes Q2 by demanding that Mm
:A {m !: and hence P:(a{m) !:

depend on {m n and {m \ only in the combination {m T=(�T��n)\ {m n+
(�T��\)n {m \. The unique Q2 which insures this is

Q2=
1

nT \�p
�\+n \

�T
�s +p \

�p
�T+s

=
1

n2T 2 \�p
�\+ s \

�\
�s+p \

�p
�s+3

, (76)

where T and s are the temperature and entropy that satisfy the first law of thermo-
dynamics, Eq. (18), and 3=(\+p)�nT&s. The second equality in Eq. (76) shows
that the condition Q2>0, needed to insure hyperbolicity of the equations, is
equivalent to a well known condition for thermodynamic stability (see Hiscock and
Lindblom [13]). With this choice of Q2 the quantity P:(a{m) !: reduces to

P:(a{m)!:=Q1

\+p
T \�p

�\+ s
[u(a{m) T&T {(m ua)]. (77)

The tensor �T ab��.A(I &1)AB �T cd��.B that appears in Eq. (72) depends only on !:

and gab . The most general such tensor (having the appropriate symmetries, etc.)
depending only on !: and gab is given by

�T ab

�.A (I &1)AB �T cd

�.B

=
1

Q1(\+p) \
�\
�p+s {2'1 _qa(cqd)b&

1
3

qabqcd&+'2 qabqcd&2}Tu(aqb)(cud )= . (78)

The arbitrary functions '1 , '2 , and } (of n and \) that appear in Eq. (78) must be
positive as a consequence of the positivity of IAB , from Condition (ii), and the
positivity of Q1 and (�p��\)s , from the hyperbolicity and causality of the equa-

16 LEE LINDBLOM
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tions.6 Combining this expression, Eq. (78), with Eq. (77) in Eq. (72) results in the
desired form, Eq. (20). Thus, the relaxed form of the stress energy tensor is
indistinguishable in these general causal theories from that of the relativistic
Navier�Stokes theory.

IV. Concluding Remarks

The argument presented here demonstrates that a relaxation effect takes place in
virtually every causal theory of dissipative fluids. In the relaxed fluid states the
stress energy tensor and particle current are well described by expressions that
depend only on a subset of the fluid fields (referred to here as dynamical fluid fields)
and their derivatives. For those theories that represent simple dissipative fluids,
these expressions are identical to the ones given by the relativistic Navier�Stokes
theory. This implies that any measurement of the stress-energy tensor or particle
current in these theories (made on any time and length scale that exceeds the
microscopic particle interaction scales) will give results that are in effect
indistinguishable from those of the Navier�Stokes theory. Of course the Navier�
Stokes theory is not really a proper physical theory at all since it is non-causal,
unstable, etc. It is incapable of predicting the future evolution of initial fluid states.
The argument presented here shows, nevertheless, that the evolution of any physical
fluid state according to any causal theory results in stress-energy tensors and
particle currents that are experimentally indistinguishable from the Navier�Stokes
expressions for these quantities. Further, this argument shows that the independent
dynamics associated with the dissipation fields of the fluid (i.e., those additional
fluid fields that are added to the theory to make it causal ) is not directly observable
in the physical fluid states. On a time scale that is characteristic of the inter-particle
interaction times, these dissipation fields evolve to a relaxed state in which they are
determined in effect by the dynamical fields and their derivatives.

A number of technical improvements could be made to strengthen the arguments
presented here. The physical fluid states for which this result applies are those
whose gradients are bounded locally to insure that they are not rapidly changing
on microscopic scales. These local constraints are much stronger than are actually
needed to complete the proof. All that is really needed are the L2 bounds on the
fluid fields and their derivatives implicit in Eqs. (35), (46), and (47). These bounds
could undoubtedly be derived using far weaker L2 conditions on the fluid fields
and their derivatives than the local conditions used here. A more serious limitation
of the present work is its failure to demonstrate the existence of any solutions at all

17RELAXATION EFFECT

6 The only requirement on the dissipation fields needed to obtain Eq. (78) is that the space of the .A

be large enough to insure that none of the coefficients '1 , '2 , or } vanishes identically. This requires in
particular that this space be at least as large as the nine-dimensional space of symmetric trace-free
tensors. This is precisely the dimension that is appropriate for a theory in which the particle current N a

and stress energy tensor T ab are the only independent observable fields.
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of the fluid equations which satisfy these conditions. The expectation is that essen-
tially every `physically relevant$ solution to the fluid equations does satisfy these
conditions. In particular it is expected that `almost all' initial data which are
suitably slowly varying on the relevant microscopic length and time scales will
evolve in such a way that these conditions are preserved for some amount (large on
microscopic scales) of time. At present, however, theorems of this sort do not exist
for these theories.

Shock waves are one class of physical phenomena that do violate the conditions
imposed on the fluid states in this work. Significant differences probably do exist in
the descriptions of this type of fluid phenomenon among the various causal theories
and the non-causal Navier�Stokes equations. Can meaningful experimental differen-
tiation among the various theories be found by observing shock waves? Or, do the
predictions of all macroscopic fluid theories become meaningless when applied to
shocks, since these fluid states all contain rapid variations on microscopic particle
interaction scales?
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