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r-modes in superfluid neutron stars
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The analogues ofr-modes in superfluid neutron stars are studied here. These modes, which are governed
primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small
angular-velocity expansion used here. The equations that determine the next order terms are derived and solved
numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid
‘‘mutual friction’’ ~which vanishes at the lowest order in this expansion! is found to have a characteristic time
scale of about 104 s for them52 r-mode in a ‘‘typical’’ superfluid neutron-star model. This time scale is far
too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in
the r-modes. However, the strength of the mutual friction damping depends very sensitively on the details of
the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have
characteristic mutual friction damping times that are short enough~i.e., shorter than about 5 s! to suppress the
gravitational radiation driven instability completely.

PACS number~s!: 04.40.Dg, 04.30.Db, 97.10.Sj, 97.60.Jd
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I. INTRODUCTION

Recently Andersson@1# and Friedman and Morsink@2#
showed that ther-modes inall rotating stars would be driven
unstable by the emission of gravitational radiation in the
sence of internal fluid dissipation. Subsequent analysis
Lindblom, Owen, and Morsink@3# and then by Andersson
Kokkotas, and Schutz@4# showed that internal fluid dissipa
tion in hot young neutron stars is insufficient to suppress
gravitational radiation driven instability. Thus neutron sta
that are formed rapidly rotating are expected to spin do
within about one year to a relatively small angular veloc
~about 5–10 % of the maximum! by the emission of gravita
tional radiation. Owenet al. @5# constructed rough models o
this spindown process, and concluded that the gravitatio
radiation from these spindown events might be observa
by the second-generation Laser Interferometer Gravitatio
Wave Observatory~LIGO! gravitational wave detectors.

The purpose of this paper is to investigate the behavio
this gravitational-radiation instability in ther-modes of older
colder neutron stars@6–8#. Here the physics is more compl
cated and there are interesting observational constraints.
existence of the two 1.6 ms pulsars@9#, and numerous ex
amples of somewhat more slowly rotating neutron stars
low mass x-ray binaries~LMXBs! @10# show that some neu
tron stars are in fact rapidly rotating and stable. Unfor
nately uncertainty in the neutron-star equation of state me
that the minimum rotation periods for neutron stars are
presently well known, and so we cannot say exactly h
rapid ~in a dynamically meaningful sense! these rotations
really are. Values for the minimum rotation periods~when
mass shedding first occurs! of 1.4M ( models range from 0.5
ms to about 1.4 ms, depending on the equation of state@11#.
Any value in this range, however, implies that the 1.6
pulsars are rotating much more rapidly than is consis
with our present understanding of the gravitational wa
spindown due to ther-mode instability in hot young neutro
0556-2821/2000/61~10!/104003~15!/$15.00 61 1040
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stars. It is widely believed, however, that these 1.6 ms
jects are old cold recycled pulsars@12#, having been spun up
by accretion long after their initial cooldown. These neutr
stars are expected to have superfluid cores, and hence
fluid dynamics and dissipation mechanisms that govern t
r-modes are entirely different from those studied to d
@1–5#. The purpose of this paper is to develop the to
needed to study ther-modes in superfluid neutron stars. Th
challenge is to understand how ther-mode instability is sup-
pressed in the 1.6 ms pulsars in particular, and the m
numerous 3 ms objects in LMXBs more generally.

The superfluid dissipation mechanism called ‘‘mutu
friction’’ seems a likely candidate to provide the needed s
bility for the r-modes in old cold neutron stars. Mutual fric
tion arises from the scattering of electrons off the magne
fields entrapped in the cores of the superfluid neutron vo
ces@13,14#, and is known to play an important role in othe
aspects of the dynamics of superfluid neutron stars. Li
blom and Mendell@15# show, for example, that mutual fric
tion completely suppresses the gravitational radiation dri
instability in the f-modes of rotating neutron stars. Our r
sults here for ther-modes present a more ambiguous pictu
We find in Sec. VI that the characteristic damping time f
the r-modes due to mutual friction is about 104 s, for a typi-
cal model of the neutron-star core superfluid. This time sc
is far too long to have any appreciable effect on ther-mode
instability in these stars. However, we also find that t
mutual-friction damping time is extremely sensitive to t
parameters that define the core superfluid. Within the p
ently acceptable range of the parameters examined h
about 1% have mutual friction damping times so short~i.e.,
shorter than about 5 s! that the r-mode instability is sup-
pressed completely. A somewhat larger fraction of these
rameters in the acceptable range, about 3%, have dam
times short enough~i.e., shorter than about 58 s! that mutual
friction suppresses the instability in some sufficiently wa
©2000 The American Physical Society03-1
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and sufficiently slowly rotating neutron stars. Thus we co
clude that an appropriately fine-tuned superfluid dynam
could provide the needed stability for ther-modes in old cold
neutron stars through mutual friction. However given t
small fraction of superfluid models that provide the need
stability, other damping mechanisms need to be conside
~e.g., solid crust effects, strange quark matter, magn
fields, . . .!.

Regular shear viscosity is another mechanism that co
play a role in damping ther-modes of superfluid neutro
stars. We analyze this damping mechanism for the super
r-modes in Sec. VI and find a characteristic damping time
about 108(T/109 K) 2 s, whereT is the temperature of the
neutron-star core. This time scale is short enough to supp
the r-mode instability in stars cooler than about 106 K. Neu-
tron stars are spun up in the usual picture during an LM
phase, in which the core temperature is expected to exc
108 K @16#. This temperature is too hot to allow shear v
cosity to provide the needed stability even for the 3 ms n
tron stars observed in these systems. Levin@8# has shown
that when a neutron star is spun up to the point where
bility of the r-modes is lost, the star heats up and then sp
down to a very small angular velocity in a few months
emitting gravitational radiation. Thus, some robust inter
fluid dissipation mechanism must be identified to explain
stability of ther-modes in the observed LMXB systems.
mutual friction is the only mechanism capable of providi
the needed stability, then this fact would place interest
constraints on the parameters of the neutron-star core su
fluid. An alternate possibility in the case of the 1.6 ms p
sars would be a mechanism for spinning up these stars w
out raising their core temperatures above about 107 K ~e.g.,
by accretion at very low rates!.

In Sec. II we review the basic hydrodynamics of neutro
star core superfluids. We outline in Sec. III the derivation
the equations that govern the normal modes of a super
neutron star from this hydrodynamic theory. In Sec. IV w
take the small angular velocity expansions of these equat
that are needed to study ther-modes. In Sec. V we presen
our numerical solutions for ther-modes of rotating super
fluid neutron stars, up to the second order in the small an
lar velocity expansion. The effects of superfluid mutual fr
tion and shear viscosity on theser-modes are evaluated i
Sec. VI. The equations that determine the superfluid pu
tions are expressed in spherical coordinates in the Appen

II. SUPERFLUID HYDRODYNAMICS
IN NEUTRON-STAR MATTER

When the core temperature of a neutron star drops be
about 109 K, a phase transition to a superconductin
superfluid state is expected to occur@17–20#. The neutrons
in the core are expected to form3P2 Cooper pairs and the
protons to form1S0 pairs. The purpose of this section is
review briefly the equations that describe the behavior of
complicated superconducting-superfluid mixture on the m
roscopic scales needed here to describe ther-modes.

Let vW n denote the velocity of the neutron superfluid, a

vW p the velocity of the proton superfluid. On small scal
10400
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these superfluid velocities,vW n and vW p , are related by the
London equations to the phases of the complex order par
eters,Sn andSp , that describe the neutron and proton co
densates; thus,vW n5(\/2mn)¹W Sn and vW p5(\/2mp)¹W Sp

2(e/mpc)AW , whereAW is the electromagnetic vector poten
tial. These equations imply that vorticity and magnetic fie
in this material are confined to vortices and flux tubes
microscopic dimension. In a typical neutron star the spac
between these neutron vortices is expected to be of o
1023 cm, while the spacing between magnetic flux tubes
expected to be about 10210 cm @19#. Our interest here is the
very large-scale motions of this material associated with
low-order r-modes. Thus, it is appropriate to consider
physical quantities, such asvW n andvW p , to be averaged ove
many vortices. The procedure for making this average is
scribed more fully by Bekarevich and Khalatnikov@21#,
Baym and Chandler@22#, Sonin@23#, Mendell and Lindblom
@24#, and Mendell@25,26#. Throughout the remainder of thi
paper, all quantities are assumed to be so averaged.

One of the interesting and unusual features of the neut
star core superfluid is the so called ‘‘drag effect’’@27,13,19#
or ‘‘entrainment effect’’ @28#. This effect is caused by the
fact that the conserved particle currents are not simply p
portional to the superfluid velocities. Instead these conser
currents are linear combinations ofvW n and vW p : rnnvW n

1rnpvW p for the neutron current, andrppvW p1rnpvW n for the
proton current. Thus a given neutron superfluid flowvW n is
accompanied by a certain~small! current of protons, and vice
versa. The mass-density matrix elementsrnn , rpp , andrnp
are determined by the micro-physics of the many-bo
strong interactions that occur between the neutrons and
tons. This entrainment effect plays a crucial role in mutu
friction ~perhaps the most important dissipation mechan
in this material! which we discuss in more detail in Sec. V
Unfortunately these mass-matrix elements are not well de
mined at the present time. These quantities are constra
by Galilean invariance:rnn5rn2rnp and rpp5rp2rnp ,
wherern andrp are the neutron and proton mass densiti
But, the independent elementrnp must be determined di
rectly from the micro-physics. We find it convenient to r
expressrnp in terms of the dimensionless entrainment p
rametere:

rnp52ern . ~2.1!

Borumand, Joynt, and Kluz´niak @29# estimate thate'0.04,
and that its value is known at present only to within abou
factor of two. Given this uncertainty we explore the prope
ties of the r-modes over the expected range of superfl
models with 0.02<e<0.06.

The material in the core of a neutron star is a complica
mixture of neutrons, protons, electrons, muons, etc. Wh
the general equations that describe the dynamics of this
of charged superconducting-superfluid mixture have b
studied@24#, these general equations are considerably m
complicated than are needed here. Our present interest i
dynamics of the superfluid analogues of ther-modes; thus
we are interested in dynamics having length scales com
3-2
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r -MODES IN SUPERFLUID NEUTRON STARS PHYSICAL REVIEW D 61 104003
rable to the size, and time scales comparable to the rota
period, of the star. Under these conditions the dynamics
the core superfluid material simplifies considerably. On ti
scales longer than the plasma time scale~about 10221 s! and
the cyclotron time scale~about 10215 s!, for example, this
material is well described by the magnetohydrodynamic li
of the exact equations@26#. In this limit the electrons and
muons maintain exact charge neutrality with the proto
Similarly the electrons and muons are forced by scatterin
move together as a single fluid on time scales longer t
about 1029 s @19#. Further, for dynamics on the time scal
of interest here, the bulk electrical currents are extrem
small @26#. Thus it is appropriate to simplify further an
require the charged species to move together without ge
ating any electrical current. The dynamical degrees of fr
dom of this material are reduced therefore to a pair of vel
ity vector fields—one for the neutrons and one for t
protons—and a corresponding pair of thermodynamic sc
densities.

In general there are forces in the complete dynam
equations~even for this reduced system! that describe the
interactions between the smoothed superfluid flow and
sheaf of vortices@24#. These additional forces are negligib
for fluid motions with time scales comparable to ther-modes
@25,26#, and we neglect them here. And finally, in gene
the dynamics would also include a ‘‘normal’’ component
this superfluid material; however, again we simplify by a
suming that the temperature is well below the superfl
transition and ignore these additional dynamical degree
freedom.

Our study is directed toward an exploration of the sup
fluid analogues of ther-modes. We are primarily intereste
therefore in examining the equations that describe the ev
tion of small departures from a uniformly rotating equili
rium neutron star. The dynamics of the neutron-star c
superfluid is described by two velocity vectors and two th
modynamic scalar fields. It will be convenient to express
equations for these velocity fields in terms ofdvW anddwW : the
average and relative velocities of the core superfluids. Th
quantities are defined as

r dvW 5rndvW n1rpdvW p ~2.2!

and

dwW 5dvW p2dvW n . ~2.3!

We use the prefixd to denote a small~Eulerian! perturbation
away from the equilibrium value of a quantity; while, qua
tities without prefix, such asr5rn1rp , denote the equilib-
rium values. The superfluid velocity fieldsdvW n anddvW p are
easily determined from Eqs.~2.2! and~2.3! oncedvW anddwW

are known. Similarly the velocity field of the electrons,dvW e ,
can be expressed in terms of these quantities from the
dition that there is no electrical current@25#. The electrical
current of protons is proportional to the mass current, wh
is rppvW p1rnpvW n because of the entrainment effect; thus t
perturbed electron velocity is given by
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dvW e5
rpp

rp
dvW p1

rnp

rp
dvW n5dvW 1

rn

r S 11e
r

rp
D dwW . ~2.4!

We note that for simplicity in these equations we have
nored terms of orderme /mp , the ratio of electron to proton
mass. And for simplicity in this discussion, we have al
ignored the presence of muons. A more complete discus
including the contributions of the muons is given by Mend
@25#.

The equations for the velocity fieldsdvW and dwW are ob-
tained by perturbing the full system of superconductin
superfluid evolution equations, subject to the assumpti
described above. These equations, when expressed in t
of dvW anddwW , have the remarkably simple forms@30#:

] tdva1vb¹bdva1dvb¹bva52¹adU1
1

r2 S ]r

]b D
p

db ¹ap,

~2.5!

] tdwa1vb¹bdwa1~2g21!dwb¹bva52¹adb.
~2.6!

The perturbed scalardU that appears on the right-hand sid
of Eq. ~2.5! is defined by

dU5
dp

r
2dF, ~2.7!

wheredp is the perturbed pressure, anddF the perturbed
gravitational potential. The potentialdb that appears on the
right-hand sides of Eqs.~2.5! and ~2.6! measures the degre
to which the perturbed fluid departs fromb equilibrium. The
thermodynamic functionb is related to the chemical poten
tials ~per unit mass! of the neutronsmn , protonsmp , and
electronsme by

b5mp2mn1
me

mp
me . ~2.8!

The quantityb vanishes in the equilibrium state.~For sim-
plicity we again neglect terms of orderme /mp .) Finally, the
velocity field va in Eqs. ~2.5! and ~2.6! represents the uni
form rotation of the equilibrium star, and the dimensionle
quantityg that appears in Eq.~2.6! is related to the determi
nant of the superfluid mass-density matrix:g5(rnnrpp

2rnp
2 )/rnrp .

The three perturbed scalar fields,dU, dF, anddb, that
appear on the right-hand sides of Eqs.~2.5! and~2.6! can be
used to determine all of the other scalars of interest in
problem; for example

dr5rS ]r

]pD
b

~dU1dF!1S ]r

]b D
p

db, ~2.9!

anddrp ~and thencedrn as well! can be determined from
3-3
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db5F S ]mp

]rn
D

rp

2S ]mn

]rn
D

rp

G ~dr2drp!

1F S ]mp

]rp
D

rn

2S ]mn

]rp
D

rn

1
me

2

mp
2

dme

dre
Gdrp . ~2.10!

It is straightforward then to transform the mass conserva
laws ~for neutrons and protons! into forms depending only
on dU, dF, anddb @30#:

] tdr1va¹adr1¹a~rdva!50, ~2.11!

~] t1va¹a!F S ]r

]b D
p

~dU1dF!1
rn

2

r

]

]bS rp

rn
D

p

dbG
1

1

r S ]r

]b D
p

dva¹ap1¹a~ r̃ dwa!50. ~2.12!

The quantityr̃ that appears in Eq.~2.12! is defined asr̃
5(rnnrpp2rnp

2 )/r5rnrpg/r. These equations,~2.5!, ~2.6!,
~2.11!, and ~2.12!, together with the perturbed gravitation
potential equation,

¹a¹adF524pGdr, ~2.13!

determine the evolution of the material in the superfluid c
of a neutron star in the long length scale, long time scale,
low temperature approximation of interest to us here.

III. OSCILLATIONS OF SUPERFLUID NEUTRON STARS

A superfluid neutron star is a reasonably complica
structure consisting of a superfluid core surrounded b
solid crust, and probably a liquid ocean above that. For
purposes of our analysis here we use a simplified and id
ized representation of this structure. We consider a neut
star model that consists of a superfluid core~wherer.rs),
surrounded by an ordinary matter envelope~wherer,rs).
For simplicity we treat the material in this envelope as
perfect fluid. The dynamics of the material in the core
described by Eqs.~2.5!, ~2.6!, ~2.11!, ~2.12!, and~2.13!. And
similarly the material in our idealized envelope is describ
by Euler’s equation, Eq.~2.5! with db50, and Eqs.~2.11!
and~2.13!. In this section we show how the modes of such
rotating superfluid stellar model can be described comple
10400
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in terms of the three scalar potentialsdU, db, anddF @30#.
And we derive the equations that determine these potent
together with the appropriate boundary conditions.

We assume here that the time dependence of the pe
bation iseivt and that its azimuthal angular dependence
eimw, where v is the frequency of the mode andm is an
integer. The superfluid versions of the Euler equation, E
~2.5! and ~2.6!, determine the velocitiesdva and dwa in
terms of the scalarsdU and db much as they do in the
ordinary fluid case@31#. Given the temporal and angular de
pendence assumed here, Eqs.~2.5! and ~2.6! become linear
algebraic equations fordva and dwa which can be solved
directly:

dva5 iQabF¹bdU2
1

r2S ]r

]b D
p

db¹bpG , ~3.1!

dwa5 iQ̃ab¹bdb. ~3.2!

In these equationsQab and Q̃ab are tensors that depend o
the frequency of the modev, and the angular velocity of the
equilibrium starV. These tensors are given by

Qab5
1

~v1mV!224V2F ~v1mV!dab

2
4V2zazb

v1mV
22iV¹awbG , ~3.3!

Q̃ab5
1

~v1mV!224g2V2F ~v1mV!dab

2
4g2V2zazb

v1mV
22igV¹awbG . ~3.4!

In Eqs.~3.3! and~3.4! V is the angular velocity of the equi
librium star; the unit vectorza points along the rotation axis
wa is the vector field that generates rotations about theza

axis; anddab is the Euclidean metric tensor~the identity
matrix in Cartesian coordinates!.

The expressions for the velocity fields in Eqs.~3.1! and
~3.2! can be substituted into the mass conservation laws, E
~2.11! and ~2.12!, to obtain equations for the scalar field
alone. In general, the potentialsdU, db, anddF are solu-
tions then of the following system of partial differentia
equations@30#:
¹a~rQab¹bdU !1~v1mV!rS ]r

]pD
b

dU5¹aF1

r S ]r

]b D
p

db Qab¹bpG2~v1mV!F S ]r

]b D
p

db1rS ]r

]pD
b

dFG , ~3.5!

¹a~ r̃Q̃ab¹bdb!1~v1mV!
rn

2

r

]

]bS rp

rn
D

p

db2
1

r3 S ]r

]b D
p

2

Qab¹ap¹bp db

52S ]r

]b D
p
F1

r
Qab¹ap¹bdU1~v1mV!~dU1dF!G , ~3.6!
3-4
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¹a¹adF14pGrS ]r

]pD
b

dF

524pGrS ]r

]pD
b

dU24pGS ]r

]b D
p

db. ~3.7!

The functionsdU, db, anddF are also subject to appro
priate boundary conditions at the interface between the
perfluid core and the ordinary-fluid envelope, at the surf
of the star, and at infinity. First, we consider the boundary
the interface between the superfluid core and the ordin
fluid envelope of the star. Mass and momentum conserva
across this boundary place a number of constraints on
continuity of these functions@30#. In particular these condi
tions require that the functionsdU and dF be continuous
there. In addition,¹adF must be continuous, while¹adU
must have a discontinuity that is prescribed by

na@¹adU#s2
1

r2S ]r

]b D
p

na¹ap@db#s5na@¹adU#o .

~3.8!

The subscriptss ando in Eq. ~3.8! denote that the quantitie
are to be evaluated as limits from the superfluid or
ordinary-fluid side of the boundary, respectively, andna de-
notes the outward directed unit normal to the boundary s
face. The functiondb, which is of interest to us only within
the superfluid core, must satisfy the condition

na@¹adb#s2
4g2V2zbnb

~v1mV!2za@¹adb#s1
2mgVÃbnb

~v1mV!Ã
@db#s

50, ~3.9!

on the boundary of the superfluid core. Here we use
notationÃ for the cylindrical radial coordinate, andÃa to
denote the unit vector in theÃ direction.

Next consider the boundary conditions on the outer s
face of the star. The functiondU must be constrained at thi
surface in such a way that the Lagrangian perturbation in
10400
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pressure vanishes there:Dp50. This condition can be writ-
ten in terms of the variables used here by noting that

Dp5dp1
dva¹ap

i ~v1mV!
, ~3.10!

wheredva is given in this region by Eq.~3.1! with db50.
Thus using Eqs.~2.7! and ~3.1! this boundary condition can
be written in terms ofdU anddF as

05@r ~v1mV!~dU1dF!1Qab¹ap¹bdU#o .
~3.11!

Finally, the perturbed gravitational potentialdF must fall
off at infinity faster than 1/r in order that the mass of th
perturbed star remain the same as that of the equilibr
star: limr→`(rdF)50. In additiondF and its first deriva-
tive must be continuous at the surface of the star. The pr
lem of finding the modes of ‘‘uniformly’’ rotating superfluid
stars is reduced therefore to finding the solutions to E
~3.5!, ~3.6!, and ~3.7! subject to the appropriate bounda
conditions including in particular Eqs.~3.8!, ~3.9!, and
~3.11!.

The equations for the potentialsdU and db, Eqs. ~3.5!
and~3.6!, have complicated dependences on the frequenc
the mode and the angular velocity of the star throughQab

andQ̃ab, as given in Eqs.~3.3! and~3.4!. In the analysis that
follows it will be necessary to have those dependences
played more explicitly. Here we are interested in investig
ing the superfluid versions ofr-modes. Such modes hav
frequencies that go to zero linearly as the angular velocity
the star vanishes. Thus, it will be useful to define the dim
sionless frequency parameterk:

kV5v1mV. ~3.12!

The parameterk remains finite in the zero angular-velocit
limit for these modes. Using this parameter and the exp
sions forQab andQ̃ab from Eqs.~3.3! and~3.4!, we re-write
Eqs.~3.5! and~3.6! to obtain the following equivalent forms
¹a@r~k2dab24zazb!¹bdU#1
2mk

Ã
Ãa¹ar dU52k2~k224!V2FrS ]r

]pD
b

~dU1dF!1S ]r

]b D
p

dbG
1¹aF1

r S ]r

]b D
p

db ~k2dab24zazb!¹bpG2
2mk

rÃ S ]r

]b D
p

db Ãa¹ap,

~3.13!

¹aF r̃

k224g2
~k2dab24g2zazb!¹bdbG1F2mk

Ã
Ãa¹aS gr̃

k224g2D 1k2V2
rn

2

r

]

]bS rp

rn
D

p
Gdb

2
1

r3~k224!S ]r

]b D
p

2

~k2dab24zazb!¹ap¹bp db

52S ]r

]b D
p
Fk2dab24zazb

r~k224!
¹ap¹bdU1

2mk

r~k224!Ã
Ãa¹ap dU1k2V2~dU1dF!G . ~3.14!
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The boundary conditions, Eqs.~3.9! and ~3.11!, are similarly transformed into the forms:

k2na@¹adb#s24g2zbnbza@¹adb#s1
2mkgÃbnb

Ã
@db#s50. ~3.15!

F ~k2dab24zazb!¹ah¹bdU1
2mk

Ã
Ãa¹ah dU1k2~k224!V2~dU1dF!G

o

50. ~3.16!
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In Eq. ~3.16! we have expressed the boundary condition
terms of the thermodynamic enthalpy,h, which is defined as

h~p!5E
0

p dp8

r~p8!
. ~3.17!

The enthalpy is the appropriate thermodynamic function
use in Eq.~3.16! because its gradient,¹ah, is well-defined
and nonzero at the surface of the star.

IV. SUPERFLUID r-MODES IN THE SLOW ROTATION
APPROXIMATION

The r-modes of rotating ordinary-fluid stars have trad
tionally been studied using a small angular-velocity exp
sion@32#. Our goal here is to perform a similar expansion f
the superfluid generalizations of ther-modes. Thus, we see
solutions to Eqs.~3.13!, ~3.14!, and~3.7! as power series in
the angular velocity of the star.

We begin first with the structure of the equilibrium supe
fluid star. This structure is identical to its ordinary-flu
counterpart in the large-scale averaged-over-vortices hy
dynamics used here. We expand each of the equilibr
functions of interest:

r5r01r2

V2

pGr̄0

1O~V4!, ~4.1!

p5p01p2

V2

pGr̄0

1O~V4!, ~4.2!

h5h01h2

V2

pGr̄0

1O~V4!. ~4.3!

The location of the surface of the starR(m) is also expressed
as such an expansion:

R5R01R2

V2

pGr̄0

1O~V4!. ~4.4!

Here and throughout the remainder of this paper we use
subscripts 0 and 2 to denote the lowest- and the second-o
terms respectively in these expansions; and we user andm
5cosu to denote the standard spherical coordinates. We

introduce here the angular velocity scaleApGr̄0, wherer̄0
is the average density of the star in the non-rotating lim
10400
o

-
r

o-
m
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der
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t.

~Equilibrium neutron-star models do not exist forV

* 2
3
ApGr̄0.! The techniques needed to evaluate the term

these series for the equilibrium structure are identical
those described for example in Lindblom, Mendell, a
Owen @33#.

Next, we define expansions for the quantities that de
mine the perturbations of a superfluid star,dU, db, dF,
andk:

dU5R0
2V2FdU01dU2

V2

pGr̄0

1O~V4!G , ~4.5!

db5R0
2V2Fdb01db2

V2

pGr̄0

1O~V4!G , ~4.6!

dF5R0
2V2FdF01dF2

V2

pGr̄0

1O~V4!G , ~4.7!

k5k01k2

V2

pGr̄0

1O~V4!. ~4.8!

We have normalized the eigenfunctions usingR0, the radius
of the star~in the nonrotating limit!, and V, the angular
velocity of the star. Using these expressions for the per
bations, together with those for the structure of the equi
rium star, it is straightforward to write down order-by-ord
the equations that determine the superfluidr-modes. This
expansion is completely analogous to that given by Lin
blom, Mendell, and Owen@33# for the ordinary-fluid modes.

It is straightforward to verify that the functions

dU05aS r

R0
D m11

Pm11
m ~m!eimw, ~4.9!

db050, ~4.10!

with

k05
2

m11
, ~4.11!

satisfy the lowest-order terms from the expansion of the p
sation Eqs.~3.13! and ~3.14!. Inspection of the equation fo
db, Eq. ~3.14!, reveals that the right side is proportional
V3: the first term on the right vanishes identically fordU0
given by Eq.~4.9!, while the lowest-order contribution to th
3-6
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second term is proportional toV3. Thus the functiondb0
50 satisfies Eq.~3.14! to lowest order.

With the lowest-order contribution todb vanishing, the
lowest-order equations fordU anddF from Eqs.~3.13! and
~3.7! reduce to the following,

¹a@r0~k0
2dab24zazb!¹bdU0#1

2mk0

Ã
Ãa¹ar0 dU050,

~4.12!

¹a¹adF0524pGS dr

dhD
0

~dU01dF0!. ~4.13!

The lowest-order boundary conditions at the superfl
ordinary-fluid interface, Eqs.~3.8! and ~3.9!, merely require
thatdU0 and¹adU0 are continuous there. The lowest-ord
contribution from the boundary condition fordU0 at the sur-
face of the star is
10400
d

F ~k0
2dab24zazb!¹ah0¹bdU01

2mk0

Ã
Ãa¹ah0 dU0G

r 5R0

50. ~4.14!

These equations are identical to the lowest-order terms in
ordinary-fluid r-mode equations@33#. The functiondU0 to-
gether withk0 given in Eqs.~4.9! and ~4.11! satisfy Eqs.
~4.12! and ~4.14! identically because these are in fact t
lowest-order expressions for the classicalr-modes as studied
for example by Papaloizou and Pringle@32#. ~However, they
are expressed here in a form that was introduced more
cently @34#.! Thus to lowest order the superfluidr-modes are
identical to their ordinary-fluid counterparts.

Continuing on to second order, the equations for the
tentials are
uperfluid
¹a@r0~k0
2dab24zazb!¹bdU2#1

2mk0

Ã
Ãa¹ar0 dU21¹a@r2~k0

2dab24zazb!¹bdU012k0k2r0¹adU0#

1
2m

Ã
Ãa~k2¹ar01k0¹ar2!dU0

52pGr̄0k0
2~k0

224!r0S ]r

]pD
b

~dU01dF0!1¹aF 1

r0
S ]r

]b D
p

db2 ~k0
2dab24zazb!¹bp0G

2
2mk0

Ã

1

r0
S ]r

]b D
p

db2 Ãa¹ap0 , ~4.15!

¹aF r̃0

k0
224g0

2 ~k0
2dab24g0

2zazb!¹bdb2G1
2mk0

Ã
Ãa¹aS g0r̃0

k0
224g0

2D db22
1

r0
3~k0

224!
S ]r

]b D
p

2

~k0
2dab24zazb!¹ap0¹bp0 db2

52
1

r0~k0
224!

S ]r

]b D
p
F ~k0

2dab24zazb!¹ap0¹bdU21
2mk0

Ã
Ãa¹ap0 dU212k0k2¹ap0¹adU01

2mk2

Ã
Ãa¹ap0 dU0

1
2mk0

Ã
Ãa¹ap2 dU01~k0

2dab24zazb!¹ap2¹bdU0G2k0
2pGr̄0S ]r

]b D
p

~dU01dF0!, ~4.16!

¹a¹adF214pGr0S ]r

]pD
b

dF2524pGr0S ]r

]pD
b

dU224pGS ]r

]b D
p

db224pGS ]r

]pD
b

21 ]

]p Fr0S ]r

]pD
b
G

b

r2~dU01dF0!.

~4.17!

It will be helpful to express Eqs.~4.15! and ~4.16! in the following shorthand forms:

D~dU2!5E~db2!1F, ~4.18!

D̃~db2!5Ẽ~dU2!1F̃, ~4.19!

whereD andD̃ are second-order partial differential operators,E andẼ are first-order operators, andF andF̃ are functions that
depend on the lowest-order eigenfunctionsdU0 anddF0.

We next consider the second-order boundary conditions. The boundary conditions that must be satisfied at the s
ordinary-fluid boundary, Eqs.~3.8! and ~3.9!, have the following second-order forms on the surfacer 5Rs :
3-7
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F]dU2

]r G
s

2
1

r0
2 S ]r

]b D
p

dp0

dr
@db2#s5F]dU2

]r G
o

, ~4.20!

~k0
224g0

2m2!F]db2

]r G
s

2
4g0

2

Rs
m~12m2!F]db2

]m G
s

1
2mk0g0

Rs
@db2#s50. ~4.21!

The second-order boundary condition for the potentialdU, Eq. ~3.16!, is identical to that derived by Lindblom, Mendell, an
Owen @33# for the perfect-fluid case:

H ~k0
2dab24zazb!¹ah0¹bdU21

2mk0

Ã
Ãa¹ah0dU21~k0

2dab24zazb!¹ah2¹bdU01
2mk0

Ã
Ãa¹ah2dU0

12k0k2¹ah0¹adU01
2mk2

Ã
Ãa¹ah0dU01k0

2~k0
224!pGr̄0~dU01dF0!J

r 5R0

50. ~4.22!

It will be useful in our numerical solution of the pulsation equations to have an expression for the second-order cont
to the frequency of the mode,k2, as integrals over the eigenfunctions. Such an expression can be obtained by multiplyi
~4.18! by dU0* and integrating over the interior of the star. SincedU0* is an element of the kernel of the operatorD, this part
of the integral reduces to a boundary integral. This boundary integral is nonvanishing because¹adU2 is discontinuous at the
superfluid boundary as a consequence of the boundary condition Eq.~4.20!. The result of integrating the left-hand side of E
~4.18! can be expressed in the following way:

E dU0* D~dU2!d 3x52pF r 2S ]r

]b D
p

dh0

dr E21

1

~k0
224m2!db2dU0* dmG

r 5Rs

. ~4.23!

Combining this result with the more straightforward integrals of the right-hand side of Eq.~4.18!, we obtain the following
expression for the second-order change in the frequency of the superfluidr-mode:

k2E 1

r

dr0

dr
udU0u2d 3x5

6m

~m11!2E r22

r 2
udU0u2d 3x1

8pGr̄0m

~m11!4 E S dr

dhD
0

~dU01dF0!dU0* d 3x

1E ~k0
224m2!r

2~m12!

d

dr F1

r

dh0

dr S ]r

]b D
p
Gdb2dU0* d 3x1E dh0

dr S ]r

]b D
p

3Fk0
224m2

2~m12!

]db2

]r
2

2m~12m2!

~m12!r

]db2

]m GdU0* d 3x1
3k0

222mk024

2~m12!
E 1

r

dh0

dr S ]r

]b D
p

db2dU0* d 3x

2Fpr 2
dh0

dr S ]r

]b D
p
E k0

224m2

m12
db2dU0* dmG

r 5Rs

. ~4.24!
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In Eq. ~4.24! the integrations are to be performed over t
interior of the superfluid core, 0<r<Rs , for those integrals
involving db2 and throughout the interior of the star, 0<r
<R0, for those integrals that do not. Even though this e
pression fork2 depends on the second-order eigenfunct
db2 it is nevertheless very useful in determiningk2 numeri-
cally. This is due to the fact that the integrals involvingdb2
are typically quite small.

V. NUMERICAL SOLUTIONS FOR THE SUPERFLUID
r-MODES

In order to solve the equations for the superfluidr-modes
we must adopt a specific model for the equilibrium struct
10400
-
n

e

of the neutron star, and explicit expressions for the vario
thermodynamic functions that appear in the equations.
the equilibrium structure of the neutron star, we use
simple polytropic equation of state:p5Kr2, with K chosen
so that a 1.4M ( model has a radius ofR0512.533 km. We
choose this simple model because our method of solving
~4.18! to determinedU2 seems to be rather unstable for mo
realistic equations of state. We also use this simple equ
rium equation of state to evaluate the thermodynamic der
tive (]r/]p)b5r/2p that appears in the pulsation equation
We adopt the fiducial valuers52.831014 g/cm3 for the su-
perfluid transition density. However, we examine the sen
tivity of our results to variations in this parameter.

In order to evaluate the other thermodynamic proper
3-8
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of neutron star matter needed in the pulsation equations
use the recent semi-empirical equation of state, A181dv
1UIX, of Akmal, Pandharipande, and Ravenhall@35#. The
derivative (]r/]b)p is determined from this equation of sta
using the formula, Eq.~70!, in Lindblom and Mendell@30#
that expresses this derivative in terms of the more ea
evaluated derivatives of the chemical potentials. For the d
sity range of primary interest to us (2.831014<r
<1015 gm/cm3), we find that

S ]r

]b D
p

'1.43102721.1310222r, ~5.1!

where all quantities are expressed in cgs units. Similarly,
find that the proton fractionrp /r for this equation of state is
given approximately by

rp

r
'0.03118.8310217r. ~5.2!

These expressions are accurate to within about 20% in
indicated density range.

The thermodynamic quantitiesr̃ andg can be expresse
in terms of the baryon densitiesrn and rp , and the mass-
density matrix elementrnp quite generally using the con
straints on the mass-density matrix from Galilian invarian
and Eq.~2.1!:

g511e
r

rp
, ~5.3!

r̃5rS 12
rp

r D S e1
rp

r D . ~5.4!

Thus using Eq.~5.2! for the proton fraction, we obtain
simple smooth expressions for the superfluid thermodyna
functions needed in Eqs.~4.18! and ~4.19!.

In order to evaluate the potentialsdU2 anddb2, we con-
vert the operators in Eqs.~4.18! and ~4.19! into matrix op-
erators by making the usual discrete representations of
various derivatives that appear. To this end we have gi
expressions for these operators in spherical coordinates in
Appendix. We convert the radial derivatives into discre
form using the standard three-point differencing formul
For the angular derivatives, we have written separate co
that use either the higher-order angular differencing formu
discussed in Ipser and Lindblom@31# or the standard three
point formulas. We find that the results of our two separ
codes agree very well. The code that uses the higher-o
angular differencing formulas requires far fewer angu
spokes in order to achieve a given accuracy, and it appea
be somewhat more stable.

The operatorD that appears in Eq.~4.18! is a hyperbolic
differential operator with a nontrivial kernel. Thus, E
~4.18! is solved using the numerical relaxation technique
veloped in Lindblom, Mendell, and Owen@33#. The stability
and convergence properties of this technique were discu
at length in that work. The operatorD̃ is also hyperbolic, but
~generically! it does not have a nontrivial kernel. We fin
10400
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that D̃ can be inverted numerically without difficulty. Thus
Eq. ~4.19! can be solved by straightforward numerical tec
niques.

The Eqs.~4.18! and~4.19! are solved iteratively to deter
mine the potentialsdU2 anddb2. We begin the process b
settingdb250. Then we iterate the following sequence
calculations. First, we evaluatek2 from Eq. ~4.24!; then we
solve Eq.~4.18! for dU2; and finally we solve Eq.~4.19! for
db2. This sequence of calculations is iterated until the fun
tionsdU2 anddb2 converge. This generally takes only a fe
steps. We find that the second-order eigenvaluek2 has the
value 0.29879 for this model, essentially independent of
entrainment parametere and the superfluid-transition densit
rs . This value ofk2 differs only slightly from the value
0.29883 found by Lindblom, Mendell, and Owen@33# for the
analogous ordinary-fluidr-modes.

The eigenfunctiondU2 for the casee50.04 andrs52.8
31014 g/cm3 is illustrated in Fig. 1. This function was com
puted on a grid having 2000 radial grid points and 10 angu
spokes using the higher-order angular differencing co
Each curve represents the radial dependence ofdU2 along
one of the angular spokes. This function is essentially id
tical to that obtained by Lindblom, Mendell, and Owen@33#
for the ordinary-fluid case. Figure 2 illustrates the associa
function db2 that was evaluated together with thedU2 of
Fig. 1. We note thatdb2 is only defined within the core o
the star where the neutron-star matter is superfluid. We
note thatdb2 is about an order of magnitude smaller th
dU2. Thus even at the second-order, the superfluidr-modes
differ little from their ordinary-fluid counterparts.

Figures 3 and 4 illustrate howdb2 changes ase varies. In
particular Figs. 3 and 4 illustratedb2 for the extreme values
of e considered here:e50.02 ande50.06, respectively.
While the differences in these three functions, Figs. 2, 3,
4, are significant, they do not really illustrate the most int
esting feature of their dependence one. The most interesting
and unexpected feature that we find in the solutions fordb2
is a kind of resonance phenomenon. We find that there
certain ‘‘critical’’ values of e (ec50.02294 and ec
50.04817 for thers52.831014 g/cm3 case! near which the
function db2 becomes extremely large. Near these spe
values ofe the character of the second-order terms in
expansion for the mode change from being dominated by
ordinary-fluid like correlated motion of the neutrons and p
tons, to the uniquely superfluid anti-correlated motion, wh
the neutrons and protons have opposite velocities. We s
hint of this behavior, perhaps, in Fig. 3 where the magnitu
of db2 for e50.02 is considerably larger than its value
e50.04 or 0.06.

Mathematically we find that the reason for this resonan
phenomenon is that the operatorD̃ that determinesdb2 in
Eq. ~4.19! becomes singular at these critical values ofe. This
singular behavior is illustrated in Fig. 5, in which we dep
the dependence of the smallest~in absolute value! eigenvalue
of the operatorD̃ as a function ofe. We see that this smalles
eigenvalue vanishes for the two critical values ofe noted
above:ec50.02294 andec50.04817. In a sufficiently smal
neighborhood of these points the functiondb2 must be pro-
3-9
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portional therefore tocmin /lmin wherecmin is the eigenfunc-
tion of D̃ that corresponds to this smallest eigenvalue,lmin .
Sincelmin vanishes for the singular values ofe, this forces
the functiondb2 to become very large in sufficiently sma
neighborhoods of these points.

To paint a more physical picture of this resonance p
nomenon, we note that the pulsation Eqs.~4.18! and ~4.19!
are analogous to the equations that describe a pair of cou
driven oscillators. The operatorsD and D̃ are analogous to
the kinetic and potential terms of these oscillators;E and Ẽ

are the coupling between the oscillators; andF andF̃ are the
driving terms. As the parametere changes, the operatorD̃
changes while the other terms remain unchanged in th
equations. Thus, varyinge is analogous to changing th
spring constant of one of the oscillators while keeping
other oscillator and the coupling and driving terms fixed.
the case of coupled driven oscillators we know that the a
plitude of one oscillator may be made large compared to
other if its spring constant is tuned to the appropriate criti
value. This ‘‘resonance’’ behavior in coupled oscillators
analogous to the enhancement ofdb2 relative todU2 ase is
varied through one of its critical points. The modes in whi
db2 dominatesdU2 are somewhat analogous, therefore,

FIG. 1. EigenfunctiondU2 for the m52 r-mode based on a
superfluid model withe50.04 andrs52.831014 g/cm3.

FIG. 2. Eigenfunctiondb2 for the m52 r-mode based on a
superfluid model withe50.04 andrs52.831014 g/cm3.
10400
-

led

se
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e
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the superfluid dominateds-modes discovered by Lindblom
and Mendell@30#, and studied subsequently by Lee@36# and
by Comer, Langlois, and Lin@37#. The analogy is only su-
perficial however. In ther-modes the fluid motion is alway
dominated by the potentialdU0, since the effects ofdb2
only enter at higher order inV. Further, the frequencies o
ther-modes vanish in the limit of nonrotating stars, while t
frequencies of thes-modes do not.

VI. DISSIPATION IN SUPERFLUID r-MODES

The primary motivation for our study here is to inves
gate how the transition to a superfluid state at low tempe
tures effects the stability of ther-modes in older colder neu
tron stars. Ther-modes are driven towards instability b
gravitational radiation@1,2#, but internal fluid dissipation
tends to suppress this instability@3,4#. Internal fluid dissipa-
tion can stabilize ther-modes completely, if it is sufficiently
strong. In this section we investigate the importance of
two types of internal fluid dissipation considered most like
to have a substantial influence on ther-modes in superfluid
neutron stars: mutual friction caused by the scattering
electrons off the cores of the neutron vortices, and sh
viscosity due to electron-electron scattering.

The effects of dissipation on the evolution of a fluid a

FIG. 3. Eigenfunctiondb2 for the m52 r-mode based on a
superfluid model withe50.02 andrs52.831014 g/cm3.

FIG. 4. Eigenfunctiondb2 for the m52 r-mode based on a
superfluid model withe50.06 andrs52.831014 g/cm3.
3-10
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most conveniently studied using an appropriate energy fu
tional. For the case of a neutron-star superfluid whose e
lution is determined by Eqs.~2.5!, ~2.6!, ~2.11!, ~2.12!, and
~2.13!, the following is the appropriate energy function
@38#

E5
1

2 E H r dva* dva1rS ]r

]pD
b

Re@~dU1dF!dU* #

1 r̃ dwa* dwa1
rn

2

r

]

]bS rp

rn
D

p

db* db

1S ]r

]b D
p

Re@~2dU1dF!db* #J d 3x. ~6.1!

The integrals of the first two terms on the right-hand side
Eq. ~6.1! are to be performed throughout the star, while t
last three terms~those proportional todwa or db) are to be
integrated only within the superfluid core. In the absence
dissipation, the energyE is conserved. When we evaluate th
small angular-velocity expansion of the energy in Eq.~6.1!,
we find that only the first term on the right contributes at t
lowest order. Thus, the lowest-order expression for the
ergy,

FIG. 5. Eigenvalue of the operatorD̃ having the smallest abso
lute value as a function ofe, for m52 perturbations withrs52.8
31014 g/cm3.
10400
c-
o-

f
e

f

n-

E5a2
p~m11!3

2m
~2m11!!

3R0
4V2E

0

R0
rS r

R0
D 2m12

dr1O~V4!, ~6.2!

is identical to its ordinary-fluid counterpart@33#.
Mutual friction tends to damp out any relative motio

between the proton and neutron superfluids. This dissipa
is caused by the scattering of electrons~whose motion tracks
that of the proton superfluid in our approximation! off the
magnetic fields that are entrapped within the cores of
neutron vortices. The presence of these magnetic field
due to the entrainment effect, and hence the magnitud
this dissipation mechanism depends strongly on the po
known mass-matrix elementrnp . The rate at which energy is
dissipated by mutual friction in the neutron-star superflu
considered here is given by@38#

S dE
dt D

MF

522VE Bnrng2~dab2zazb!dwadwb* d 3x,

~6.3!

where the dimensionless mutual friction scattering coe
cient,Bn , is given by,

Bn'
e2rp

1/6

1.963104 S r

rp
21D S 12e1e

r

rp
D 23/2

. ~6.4!

We note that unlike regular viscosity, the mutual frictio
scattering coefficient does not depend on temperature~at
least at the lowest order!. This independence is due to th
fact that mutual friction involves the scattering of two diffe
ent fluids in relative motion. Thus, even at zero temperat
some electrons acquire sufficient energy from their collisio
with the vortices to scatter into available energy states
cated above the Fermi surface.

In order to evaluate the effects of mutual friction on t
superfluidr-modes, it is necessary to re-express Eq.~6.3! in
terms of the eigenfunctiondb2 that determines the relativ
superfluid motion. To lowest order in the angular veloc
then, we find
nd
ms of a
S dE
dt

D
MF

522R0
4~pGr̄0!3/2S V

ApGr̄0

D 7

E Bnr0g0
2~12m2!

~k0
224g0

2!2 S 12
rp

r
D

0

FUk0S ]db2

]r
2

m

r

]db2

]m
D 1

2mg0db2

r ~12m2!
U2

1U2g0S ]db2

]r
2

m

r

]db2

]m
D 1

mk0db2

r ~12m2!
U2Gd 3x. ~6.5!

It is straightforward to perform these integrals numerically using the superfluidr-mode eigenfunctions described in Sec. V, a
so determine the energy dissipation rate caused by mutual friction. It is convenient to express this rate in ter
mutual-friction damping time,tMF :
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1

tMF

52
1

2E S dE
dt

D
MF

5
1

t̃MF
S V

ApGr̄0

D 5

. ~6.6!

The characteristic mutual-friction damping timet̃MF , also
defined in Eq.~6.6!, is independent of angular velocity an
temperature~to lowest order!. The V5 scaling of 1/tMF fol-
lows directly from Eqs.~6.2! and ~6.5!. The V7 scaling of
dE/dt in Eq. ~6.5! follows in turn from Eq.~6.3! and the fact
thatdwa scales asV3 to lowest order. We present in Figs.
and 7 the numerically determined characteristic damp
times t̃MF for the m52 superfluidr-modes. Figure 6 illus-
trates how sensitivelyt̃MF depends on the entrainment p
rametere. We see thatt̃MF has a typical value of about 104

s, but that it becomesmuchsmaller for a few narrow range
of e. These spikes in thet̃MF(e) curves are caused by th
‘‘resonance’’ phenomenon that we discuss in Sec. V. T
mutual friction damping timet̃MF becomes very small whe
the eigenfunctiondb2 becomes large. This occurs at th
points where the operatorD̃ has a vanishing eigenvalue. W
see from Fig. 5 that the locations of these vanishing eig
values coincide exactly with the location of the spikes in
rs52.831014 g/cm3 curve in Fig. 6. We find that near thes
spikes the curvet̃MF(e)}(e2ec)

2. This quadratic depen
dence is exactly what is expected given thatdb2
}cmin /lmin near these spikes. Figure 6 also illustrates t
the exact location of these spikes depends on the value o
superfluid transition densityrs . Figure 7 illustrates thatt̃MF
changes smoothly asrs is varied: the locations of thes
spikes move smoothly to larger values ofe asrs increases.
Figure 6 also illustrates that the probability of having a sm
t̃MF does not depend strongly onrs . For example, we find
that about 1% of the values ofe in the acceptable range
0.02<e<0.06, havet̃MF(e)<5 s, and this percentage
relatively insensitive tors .

The other important internal fluid dissipation mechani
in superfluid neutron stars is expected to be regular sh

FIG. 6. Characteristic damping timet̃MF due to superfluid mu-

tual friction. These curves show the dependence oft̃MF as a func-
tion of the superfluid entrainment parametere for three values of
the superfluid transition densityrs .
10400
g

e
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e
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viscosity. In the superfluid core this viscosity is due
electron-electron scattering, while in the surroundi
ordinary-fluid envelope the standard neutron-neutron sca
ing dominates. The rate at which energy is dissipated
shear viscosity is given by

S dE
dt D

V

52E 2hdsab* dsabd 3x1E
s
2hnadve

bdsab* d 2x

2E
o
2hnadvbdsab* d 2x. ~6.7!

The volume integral in Eq.~6.7! is to be evaluated within the
superfluid core, and within the ordinary-fluid envelope, b
not over the boundary surface between the two. The sur
integrals are to be evaluated over the interior~superfluid
side! and exterior ~ordinary-fluid side! of the superfluid
boundary, respectively. The tensordsab that appears in thes
integrals is the shear of the electron velocitydve

a of Eq. ~2.4!
within the superfluid core, and the ordinary-fluid veloci
dva in the envelope. In the small angular velocity expans
the electron velocitydve

a is the same asdva, to lowest order.
Thus to lowest order the energy dissipation rate due to sh
viscosity is given by

S dE
dt D

V

52a2
p~m11!3

m
~m21!~2m11!!R0

2V2

3H ~2m11!E
0

R0
hS r

R0
D 2m

dr

2~hs2ho!RsS Rs

R0
D 2mJ , ~6.8!

wherehs and ho are the limits of the viscosity taken from
the superfluid and the ordinary-fluid side of the bounda
respectively.

In the superfluid core of the neutron star,r<Rs , the ap-
propriate viscosity to use in Eq.~6.8! is due to electron-

FIG. 7. Characteristic damping timet̃MF due to superfluid mu-

tual friction. This curve shows the dependence oft̃MF as a function
of the superfluid transition densityrs for e50.04.
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electron scattering. This electron-electron scattering visc
ity is given approximately by the expression@39#

h56.03106S r

TD 2

, ~6.9!

where all quantities are given in cgs units. Similarly, in t
ordinary-fluid envelope, neutron-neutron scattering visco
dominates at the densities where most of the dissipation
curs. This neutron-neutron scattering viscosity is given
proximately by the expression@39#

h5347
r9/4

T2
. ~6.10!

Using these expressions for the viscosity it is straightforw
to evaluate the energy dissipation rate for shear visco
using Eq.~6.8!. As in the case of mutual friction, it is con
venient to express the result as a viscous time scale:

1

tV
52

1

2E S dE
dt D

V

5
1

t̃V
S 109 K

T D 2

. ~6.11!

The characteristic viscous time scalet̃V , also defined in Eq.
~6.11!, is independent of the angular velocity and the te
perature of the neutron star. We find thatt̃V51.013108 s for
our superfluid neutron-star model with rs52.8
31014 g/cm3. This value is somewhat shorter than that o
tained for hot neutron stars, 2.523108 s, by Lindblom,
Owen, and Morsink@3# using neutron-neutron scattering vi
cosity @Eq. ~6.10!# throughout the star; and for cold neutro
stars, 2.253108 s, by Andersson, Kokkotas, and Schutz@4#
using electron-electron scattering viscosity@Eq. ~6.9!#
throughout.

Gravitational radiation is the final form of dissipation e
pected to have a significant influence on ther-modes of su-
perfluid neutron stars. Since the superfluidr-modes are iden-
tical to their ordinary-fluid counterparts to lowest order in t
angular velocity, the gravitational radiation coupling is t
same to this order. The characteristic gravitational radia
time scalet̃GR for the m52 r-mode,

1

tGR

52
1

2E S dE
dt

D
GR

52
1

t̃GR
S V

ApGr̄0

D 6

, ~6.12!

therefore has the same value,t̃GR53.26 s, as in the ordinary
fluid case@3#.

The effects of mutual friction, shear viscosity, and gra
tational radiation act together simultaneously to influence
evolution of the superfluidr-modes. Their combined effect
on the evolution of the energy of the mode are convenie
described by the overall dissipative time scale,t:

1

t
52

1

2E H S dE
dt D

GR

1S dE
dt D

MF

1S dE
dt D

V
J . ~6.13!
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Since the energyE is a real functional, the quantity 1/t is in
fact just the imaginary part of the frequency of the mod
The sign of t therefore determines whether the mode
stable. Ift.0 then dissipation decreases the energy of
mode and it is stable, while ift,0 then dissipation cause
the energy~and hence the mode itself! to increase exponen
tially. We can explore the conditions under which mutu
friction and viscosity are effective in suppressing the gra
tational radiation driven instability by giving the explic
temperature and angular-velocity dependence oft using Eqs.
~6.6!, ~6.11!, and~6.12!:

1

t~V,T!
52

1

t̃GR
S V

ApGr̄0

D 6

1
1

t̃MF
S V

ApGr̄0

D 5

1
1

t̃V

S 109 K

T
D 2

. ~6.14!

Gravitational radiation tends to drive ther-modes un-
stable while mutual friction and shear viscosity tend to s
bilize these modes. From Eq.~6.14! we see thatt.0, and
mutual friction will completely suppress the gravitational r
diation driven instability whenever

t̃MFS V

ApGr̄0

D <t̃GR . ~6.15!

Since neutron stars have angular velocities that are lim

by V& 2
3
ApGr̄0, we see that mutual friction will suppres

the gravitational radiation instability for all angular velocitie
whenevert̃MF&1.5t̃GR'4.89 s. From Fig. 6 we see that th
may occur, but only if the entrainment parametere of
neutron-star matter is limited to a very narrow range. O
about 1% of the values ofe in the expected range, 0.02<e

<0.06, have sufficiently shortt̃MF to suppress the instability
completely.

From Eq.~6.15! we see that mutual friction will always
suppress the gravitational radiation driven instability in t
r-modes of neutron stars with sufficiently small angular v

FIG. 8. Critical angular velocities for superfluid neutron sta

having a range of characteristic mutual friction time scalest̃MF .
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locities. However, this suppression is not physically relev
if t̃MF is too large. If the angular velocities needed in E
~6.15! are sufficiently small, then shear viscosity will als
play a significant role in suppressing ther-mode instability in
these stars. In particular shear viscosity alone will suppr
the r-mode instability if

V

ApGr̄0

<S t̃GR

t̃V
D 1/6S 109 K

T
D 1/3

'0.0564S 109 K

T
D 1/3

.

~6.16!

Mutual friction then is capable of further suppressing t
r-mode instability in more rapidly rotating neutron stars on
if

t̃MF& t̃GRS t̃V

t̃GR
D 1/6S T

109 K
D 1/3

'57.7 sS T

109 K
D 1/3

.

~6.17!

We see that mutual friction will be primarily responsible f
the suppression of ther-mode instability in some~suffi-
ciently warm! superfluid neutron stars only ift̃MF&57.7 s.
Such small values oft̃MF occur in only about 3% of the
values ofe in the expected range: 0.02<e<0.06.
10400
t
.

ss

It is also informative to examine the critical angular v
locities, Vc , that mark the dividing line between stable an
unstable neutron stars:t(Vc ,T)50. Stars rotating more rap
idly than Vc are unstable, while those rotating more slow
are stable. Figure 8 illustrates the temperature dependen
Vc for a range of possible mutual friction time-scales. Fro
Fig. 8 we see that shear viscosity completely suppresses
gravitational radiation instability in all neutron stars cool
than about 106 K. We also see that the mutual friction tim
scale must be shorter than 10 or 15 s in order for mut
friction to play a significant role in suppressing the gravi
tional radiation instability in neutron stars with temperatur
that are typical of low mass x-ray binaries~about 108 K!.
Since only about 2% of the expected range ofe have time
scales this short, it appears unlikely that mutual friction
acting to suppress the gravitational radiation instability
these stars.
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APPENDIX: PULSATION EQUATIONS IN SPHERICAL COORDINATES

In order to solve the superfluid pulsation equations numerically, it is necessary to express them in some particula

nate representation. We find it useful to work in spherical coordinate:r, m5cosu, andw. The operatorsD, E, F, D̃, Ẽ, andF̃
that appear in Eqs.~4.18! and ~4.19! have the following representations in spherical coordinates:

D~dU2!5k0
2 r0F]2dU2

]r 2 1
12m2

r 2

]2dU2

]m2 1
2

r

]dU2

]r
2

2m

r 2

]dU2

]m
2

m2dU2

r 2~12m2!G
24r0F2m~12m2!

r

]2dU2

]r ]m
1m2

]2dU2

]r 2 1
~12m2!2

r 2

]2dU2

]m2 1
12m2

r

]dU2

]r
2

3m~12m2!

r 2

]dU2

]m G
1

dr0

dr F ~k0
224m2!

]dU2

]r
1

2mk0

r
dU22

4m~12m2!

r

]dU2

]m G , ~A1!

E~b2!5~k0
224m2!r

d

drF1

r

dh0

dr S ]r

]b D
p
Gdb21

dh0

dr S ]r

]b D
p
F ~k0

224m2!
]db2

]r
2

4m~12m2!

r

]db2

]m G
1~3k0

222mk024!
1

r

dh0

dr S ]r

]b D
p

db2 , ~A2!

F5
12m~m12!

~m11!2

r22

r 2
dU022~m12!k2

1

r

dr0

dr
dU0116pGr̄0

m~m12!

~m11!4 S dr

dhD
0

~dU01dF0!, ~A3!
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D̃~db2!5
k0

2 r̃0

k0
224g0

2 F]2db2

]r 2 1
12m2

r 2

]2db2

]m2 1
2

r

]db2

]r
2

2m

r 2

]db2

]m
2

m2db2

r 2~12m2!G
2

4g0
2 r̃0

k0
224g0

2 Fm2
]2db2

]r 2 1
2m~12m2!

r

]2db2

]r ]m
1

~12m2!2

r 2

]2db2

]m2 1
12m2

r

]db2

]r
2

3m~12m2!

r 2

]db2

]m G
1

d

dr S k0
2 r̃0

k0
224g0

2D ]db2

]r
2

d

dr S 4g0
2 r̃0

k0
224g0

2D Fm2
]db2

]r
1

m~12m2!

r

]db2

]m G
2

k0
224m2

r0~k0
224!

S ]r

]b D
p

2S dh0

dr D 2

db21
2mk0

r

d

dr S g0 r̃0

k0
224g0

2D db2 , ~A4!

Ẽ~dU2!52
1

k0
224

dh0

dr S ]r

]b D
p
F ~k0

224m2!
]dU2

]r
2

4m~12m2!

r

]dU2

]m
1

2mk0

r
dU2G , ~A5!

F̃5S ]r

]b D
p
F ~m11!2k2

2mr

dh0

dr
2

3h22

r 2 GdU02
4pGr̄0

~m11!2 S ]r

]b D
p

~dU01dF0!. ~A6!

We note that the functionsr22 andh22 that appear on the right-hand sides of Eqs.~A3! and~A6! are parts of the second-orde
expansions of these quantities. In general the second-order density function has the form:r2(r ,m)5r20(r )1r22(r )P2(m),
wherer20(r ) andr22(r ) are functions ofr andP2(m) is the l 52 Legendre polynomial. A similar expression is satisfied
h2. These functions may be determined using the techniques described in Lindblom, Mendell, and Owen@33#.
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