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The analogues af-modes in superfluid neutron stars are studied here. These modes, which are governed
primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small
angular-velocity expansion used here. The equations that determine the next order terms are derived and solved
numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid
“mutual friction” (which vanishes at the lowest order in this expangisriound to have a characteristic time
scale of about 10s for them=2 r-mode in a “typical” superfluid neutron-star model. This time scale is far
too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in
ther-modes. However, the strength of the mutual friction damping depends very sensitively on the details of
the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have
characteristic mutual friction damping times that are short endgugh shorter than about 3 ® suppress the
gravitational radiation driven instability completely.

PACS numbsgfs): 04.40.Dg, 04.30.Db, 97.10.Sj, 97.60.Jd

[. INTRODUCTION stars. It is widely believed, however, that these 1.6 ms ob-

Recently Anderssofl] and Friedman and MorsinR]  jects are old cold recycled pulsdrs2], having been spun up
showed that the-modes inall rotating stars would be driven by accretion long after their initial cooldown. These neutron
unstable by the emission of gravitational radiation in the abstars are expected to have superfluid cores, and hence the
sence of internal fluid dissipation. Subsequent analysis bfluid dynamics and dissipation mechanisms that govern their
Lindblom, Owen, and Morsink3] and then by Andersson, r-modes are entirely different from those studied to date
Kokkotas, and Schutl] showed that internal fluid dissipa- [1-5]. The purpose of this paper is to develop the tools
tion in hot young neutron stars is insufficient to suppress thisieeded to study themodes in superfluid neutron stars. The
gravitational radiation driven instability. Thus neutron starschallenge is to understand how thenode instability is sup-
that are formed rapidly rotating are expected to spin dowrpressed in the 1.6 ms pulsars in particular, and the more
within about one year to a relatively small angular velocity numerous 3 ms objects in LMXBs more generally.
(about 5—-10 % of the maximunby the emission of gravita- The superfluid dissipation mechanism called “mutual
tional radiation. Owert al.[5] constructed rough models of friction” seems a likely candidate to provide the needed sta-
this spindown process, and concluded that the gravitationdlility for the r-modes in old cold neutron stars. Mutual fric-
radiation from these spindown events might be observabldon arises from the scattering of electrons off the magnetic
by the second-generation Laser Interferometer Gravitationafields entrapped in the cores of the superfluid neutron vorti-
Wave ObservatoryLIGO) gravitational wave detectors. ces[13,14], and is known to play an important role in other

The purpose of this paper is to investigate the behavior ohspects of the dynamics of superfluid neutron stars. Lind-
this gravitational-radiation instability in themodes of older blom and Mendel[15] show, for example, that mutual fric-
colder neutron staf6—8]. Here the physics is more compli- tion completely suppresses the gravitational radiation driven
cated and there are interesting observational constraints. Tliestability in thef-modes of rotating neutron stars. Our re-
existence of the two 1.6 ms pulsd@], and numerous ex- sults here for the-modes present a more ambiguous picture.
amples of somewhat more slowly rotating neutron stars ilWWe find in Sec. VI that the characteristic damping time for
low mass x-ray binarie_MXBs) [10] show that some neu- ther-modes due to mutual friction is about*$, for a typi-
tron stars are in fact rapidly rotating and stable. Unfortu-cal model of the neutron-star core superfluid. This time scale
nately uncertainty in the neutron-star equation of state mearis far too long to have any appreciable effect on threode
that the minimum rotation periods for neutron stars are noinstability in these stars. However, we also find that the
presently well known, and so we cannot say exactly howmutual-friction damping time is extremely sensitive to the
rapid (in a dynamically meaningful senséhese rotations parameters that define the core superfluid. Within the pres-
really are. Values for the minimum rotation perio@ghen ently acceptable range of the parameters examined here,
mass shedding first occursf 1.4 M o models range from 0.5 about 1% have mutual friction damping times so stipet.,
ms to about 1.4 ms, depending on the equation of $fdfe ~ shorter than about 5) ghat ther-mode instability is sup-
Any value in this range, however, implies that the 1.6 mspressed completely. A somewhat larger fraction of these pa-
pulsars are rotating much more rapidly than is consistentameters in the acceptable range, about 3%, have damping
with our present understanding of the gravitational wavetimes short enougfi.e., shorter than about 58 that mutual
spindown due to the-mode instability in hot young neutron friction suppresses the instability in some sufficiently warm
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and sufficiently slowly .rotating neutron stars. Thus We CoNnthese superfluid velocities;,, and v p. are related by the
clude that an appropriately fine-tuned superfluid dynamics ondon equations to the phases of the complex order param-
could provide the needed stability for thenodes in old cold  eters,s, and S, that describe the neutron and proton con-
neutron stars through mutual friction. However given the ensates; thusp,=(#/2m,)VS, and Jp=(ﬁ/2mp)€sp
small fraction of superfluid models that provide the neede / X whereA is the el .

stability, other damping mechanisms need to be considere(_j'(le n;pC)A' w greA IS tl € ﬁectrom{:\gnetlc vector poftprr—
(e.g., solid crust effects, strange quark matter, magnetif@l- These equations imply that vorticity and magnetic fields
fields, ...). In this material are confined to vortices and flux tubes of

icroscopic dimension. In a typical neutron star the spacing
play a role in damping the-modes of superfluid neutron eEv;/een the_se neutron yortices is expected_ to be of order
stars. We analyze this damping mechanism for the superfluid® ~ ¢M: while the spacing between magnetic flux tubes is
r-modes in Sec. VI and find a characteristic damping time of*Pected to be about 16° cm[19]. Our interest here is the
about 16(T/10° K)? s, whereT is the temperature of the V€Y large-scale motions of thls materla_l associated _W|th the
neutron-star core. This time scale is short enough to suppred@V-order r-modes. Thus, it is appropriate to consider all
the r-mode instability in stars cooler than abouf 3 Neu-  physical quantities, such as, andv,, to be averaged over
tron stars are spun up in the usual picture during an LMXBmany vortices. The procedure for making this average is de-
phase, in which the core temperature is expected to exce&§ribed more fully by Bekarevich and Khalatnikd21],

10° K [16]. This temperature is too hot to allow shear vis- Baym and Chandl€22], Sonin[23], Mendell and Lindblom
cosity to provide the needed stability even for the 3 ms neul24], and Mendel[25,26. Throughout the remainder of this
tron stars observed in these systems. Ld@hhas shown paper, all quantities are assumed to be so averaged.

that when a neutron star is spun up to the point where sta- One of the interesting and unusual features of the neutron-
bility of the r-modes is lost, the star heats up and then spinstar core superfluid is the so called “drag effe¢27,13,19
down to a very small angular velocity in a few months by Or “entrainment effect’[28]. This effect is caused by the
emitting gravitational radiation. Thus, some robust internalfact that the conserved particle currents are not simply pro-
fluid dissipation mechanism must be identified to explain theportional to the superfluid velocities. Instead these conserved
stability of ther-modes in the observed LMXB systems. If currents are linear combinations (ifn and Jp: Panln
mutual friction is the only mechanism capable of_providir_lgijnpljp for the neutron current, andppl;p+pnpl;n for the

the nee_ded stability, then this fact would place interestin roton current. Thus a given neutron superfluid flﬁwis
constraints on the parameters of the neutron-star core sup ccompanied by a certaiamall) current of protons, and vice
fluid. An alternate possibility in the case of the 1.6 ms pu"versa. The mass-density matrix elements, pyp. andpnp

sars V\_/o_uld be a mechanism for spinning up the75e stars Wm}ire determined by the micro-physics of the many-body
gut ra|S|rt|g thetlr corel temp(te;atures above aboltKde.g., strong interactions that occur between the neutrons and pro-
ylacgre 'C:P at very ov;/hrab S hvdrod . f i tons. This entrainment effect plays a crucial role in mutual
n Sec. 1l we review the basic Nydrodynamics of NeUlron-;; (perhaps the most important dissipation mechanism

star core superfluids. We outline in Sec. Il the derivation ofin this material which we discuss in more detail in Sec. VI.

the equations that govern the normal modes of a SUperﬂUIanfortunater these mass-matrix elements are not well deter-

tn;kuetrt%g ztr;lglflrgnmgfjrl]:r cggggygigﬁsﬁgigrg% :Qeggqul\j/ativ‘ger%ined at the present time. These quantities are constrained
Galilean invariancepn,=pn—pnp aNd ppp=pPp= Pnp;

that are needed to study themodes. In Sec. V we present wherep, andp, are the neutron and proton mass densities.

our numerical solutions for the-modes of rotating super- But, the independent elemeph, must be determined di-
fluid neutron stars, up to the second order in the small angu-

lar velocity expansion. The effects of superfluid mutual fric- rectly from the micro-physics. We find it convenient to re-

; . . . express, in terms of the dimensionless entrainment pa-
tion and shear viscosity on thesanodes are evaluated in PresSSpnp P

Sec. VI. The equations that determine the superfluid pulsar_ametere:

tions are expressed in spherical coordinates in the Appendix.

Regular shear viscosity is another mechanism that coul

Pnp=— €Pn- (2.7
Il. SUPERFLUID HYDRODYNAMICS Borumand, Joynt, and Kluak [29] estimate thai~0.04,
IN NEUTRON-STAR MATTER and that its value is known at present only to within about a

factor of two. Given this uncertainty we explore the proper-

When the core temperature. (?f a neutron star drops k?elo‘f\fes of ther-modes over the expected range of superfluid
about 1§ K, a phase transition to a superconductlng-models With 0.0 e<0.06

_supt)r(]arflwd state Is exptegt(id ;[0 g;c{ug—zq. Thg neut(rjo?hs The material in the core of a neutron star is a complicated
In the core are expected 1o Tormi™; LOooper pairs and e vy e of neutrons, protons, electrons, muons, etc. While

l . . . .
prqtons tp form=S, pairs. The purpose of this sectlpn IS to' the general equations that describe the dynamics of this kind
review briefly the equations that describe the behavior of thl%f charged superconducting-superfiuid mixture have been

compli(_:ated superconducting-superflu?d mixture on the macétudied[24], these general equations are considerably more

roscopic scales needed here to describer tmodes. complicated than are needed here. Our present interest is the
Let v, denote the velocity of the neutron superfluid, andgynamics of the superfluid analogues of thenodes; thus

Jp the velocity of the proton superfluid. On small scaleswe are interested in dynamics having length scales compa-
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rable to the size, and time scales comparable to the rotation

; T X Ppp o~ | Pnp .~ > Pn
period, of the star. Under these conditions the dynamics of 5ve:p—5vp+ p—5vn= ov +;
the core superfluid material simplifies considerably. On time P P
scales longer than the plasma time sdaleout 10 ?* s) and
the cyclotron time scaléabout 10 *° s), for example, this

>

1+ep£) W, (2.4

p

We note that for simplicity in these equations we have ig-

material is well described by the magnetohydrodynamic Iimitnored tirrgsfof Orde'Te./tmp.’ tthh‘? r%t.'o of e'Iectron t?] protor|1

of the exact equationf26]. In this limit the electrons and mass. And for SIMpICtly In this discussion, we have aiso
ignored the presence of muons. A more complete discussion

muons maintain exact charge neutrality with the protons. . L .
Similarly the electrons and muons are forced by scattering tﬁcsl]udmg the contributions of the muons is given by Mendell

move together as a single fluid on time scales longer tha ) - -
about 10°° s[19]. Further, for dynamics on the time scales The equations for the velocity fieldsy and éw are ob-
of interest here, the bulk electrical currents are extremely@ined by perturbing the full system of superconducting-
require the charged species to move together without geneqﬁscf'bed a?ove. These equations, when expressed in terms
ating any electrical current. The dynamical degrees of freeof sv and éw, have the remarkably simple form30]:
dom of this material are reduced therefore to a pair of veloc-
ity vector fields—one for the neutrons and one for the ap
protons—and a corresponding pair of thermodynamic scaladi8v?+v°V, 808+ 60 V2=~ V35U +— @) 3B Vep,
densities. P p 2.5

In general there are forces in the complete dynamical '
equations(even for this reduced systenthat describe the A b a b a a
interactions between the smoothed superfluid flow and the = dtOW +v VoW +(2y—1) oW V= —VI56p.
sheaf of vortice§24]. These additional forces are negligible (2.6
for fluid motions with time scales comparable to thmodes
[25,26, and we neglect them here. And finally, in general The perturbed scalafU that appears on the right-hand side
the dynamics would also include a “normal” component of of Eq. (2.5) is defined by
this superfluid material; however, again we simplify by as-
suming that the temperature is well below the superfluid op
transition and ignore these additional dynamical degrees of oU= ?_ o0, 2.7)
freedom.

Our study is directed toward an exploration of the super- .
fluid analogues of the-modes. We are primarily interested where p is the perturbed pressure, aad the perturbed

X - . . jravitational potential. The potentias that appears on the
t_herefore in examining the equations that descn_be the ?YOI"?ight-hand sides of Eq€2.5) and (2.6) measures the degree
tion of small departures from a uniformly rotating equilib-

rium neutron star. The dynamics of the neutron-star COI’(%O which the perturbed fluid departs frofhequilibrium. The
superfluid is described by two velocity vectors and two ther- hermodynamic functiorg is related to the chemical poten-

modynamic scalar fields. It will be convenient to express thetlals (per unit maspof the neutronsu,, protonsuy, and

. o . - H electronsu, by
equations for these velocity fields in termsdf and éw: the
average and relative velocities of the core superfluids. These

quantities are defined as B=p— tnt %Me_ (2.9
p
p 80=ppdun+ppdv, (2.2
The quantityB vanishes in the equilibrium staté~or sim-
and plicity we again neglect terms of order./m,.) Finally, the
velocity field v® in Egs. (2.5 and (2.6) represents the uni-
SW= &jp_&jn_ (2.3  form rotation of the equilibrium star, and the dimensionless

quantity v that appears in Eq2.6) is related to the determi-
We use the prefi¥ to denote a smallEulerian perturbation ~hant of the superfluid mass-density matrix= (pnnopp
away from the equilibrium value of a quantity; while, quan- = pap)/pPnPp -
tities without prefix, such ag=p,+ p,, denote the equilib- The three perturbed scalar field8), 6®, and 58, that
rium values. The superfluid velocity fieldw,, and sv, are ~ @Ppear on the right-hand sides of E¢&5) and(2.6) can be

easily determined from Eq&2.2) and (2.3 oncess and sw used to determine all of the other scalars of interest in this

o o - problem; for example
are known. Similarly the velocity field of the electrord,,
can be expressed in terms of these quantities from the con- J 9
dition that there is no electrical curref25]. The electrical 5p:p(_p) (5u+5q))+(_p) 5B, (2.9
current of protons is proportional to the mass current, which ap 8 B p
iS pppvp+ Pnpvn because of the entrainment effect; thus the
perturbed electron velocity is given by and ép, (and thencedp, as wel) can be determined from
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(5] A5
dpn oo dpn Pp
N (0,up) (zﬂtn) N m du
oppl, \Ppl, m,ZJ dpe e'm® where w is the frequency of the mode and is an
integer. The superfluid versions of the Euler equation, Egs.
It is straightforward then to transform the mass conservatiori2.5) and (2.6), determine the velocitiesv? and sw? in
laws (for neutrons and protonsnto forms depending only terms of the scalaréU and §8 much as they do in the

in terms of the three scalar potentidld, 68, and 5® [30].
(6p—3pp) And we derive the equations that determine these potentials,
together with the appropriate boundary conditions.
We assume here that the time dependence of the pertur-
5pp (2.10  bation is e'“! and that its azimuthal angular dependence is

oB=

on 8U, 6®, and 6B [30]: ordinary fluid cas¢31]. Given the temporal and angular de-
a a pendence assumed here, E@s5 and (2.6) become linear
d1op+ v Vadp+Va(pdv®) =0, (21D aigebraic equations fofu® and Sw? which can be solved
o p? directly:
(3i+02V,) ( ) (5u+5c1>)+ y (pp) 54 1/ 9p
P B Sv —|Qab[Vb5U— (ﬁ) 6,8pr}, (3.1)
L) spey pev (p W) =0 (2.12
plap| O TP Talp ' ' Swa=i02bv, 8. 3.2

The quantityp that appears in Eq2.12 is defined ag  In these equation@" and Q2" are tensors that depend on
=(PrnPpp— pﬁp)/p=pnpp7/p. These equation€2.5), (2.6),  the frequency of the mode, and the angular velocity of the
(2.11), and(2.12), together with the perturbed gravitational €quilibrium star(). These tensors are given by

potential equation, [
ab_ b
= w+mQ)s?
VvV, 60 =—47Gép, (2.13 Q (w+m9)2—492[( )
determine the evolution of the material in the superfluid core _4QZZaZ 2 Vab 33
of a neutron star in the long length scale, long time scale, and w+m 1l '
low temperature approximation of interest to us here. [
1
~ab b
= +mQ)s?
lll. OSCILLATIONS OF SUPERFLUID NEUTRON STARS Q (w+ mQ)2—4yZQZ[(‘” )
A superfluid neutron star is a reasonably complicated 4y20%727° ab
structure consisting of a superfluid core surrounded by a o ma2evien). (3.4

solid crust, and probably a liquid ocean above that. For the

purposes of our analysis here we use a simplified and idealn Egs.(3.3) and(3.4) Q) is the angular velocity of the equi-
ized representation of this structure. We consider a neutroribrium star; the unit vector? points along the rotation axis;
star model that consists of a superfluid condnerep>p,), ¢? is the vector field that generates rotations aboutzhe
surrounded by an ordinary matter enveldpéere p<p). axis; and 8%” is the Euclidean metric tensdthe identity
For simplicity we treat the material in this envelope as amatrix in Cartesian coordinates

perfect fluid. The dynamics of the material in the core is The expressions for the velocity fields in Eq8.1) and
described by Eqg2.5), (2.6), (2.11), (2.12, and(2.13. And (3.2 can be substituted into the mass conservation laws, Egs.
similarly the material in our idealized envelope is described2.11) and (2.12), to obtain equations for the scalar fields
by Euler's equation, Eq(2.5 with §3=0, and Eqs(2.11) alone. In general, the potentia#), 8, and 5® are solu-
and(2.13. In this section we show how the modes of such ations then of the following system of partial differential
rotating superfluid stellar model can be described completelgquationd 30]:

\% aby, sU) + (w+mQ (&—p> sU=V, 1('9—’3) 5B Q*V, p|—(w+mQ) (a—p) 5B+ (a—p) 5O |, (3.5
a(pPQ*VpoU) + (w m)papﬂ B BQTVpp|—(w (wpﬂ p&pﬁ : :
Y, 56) + (w-+mQ 20(”")5—1(6) DY PV &
Va(pQ3V88) + (w+mQ) 9B\ oy B ,BQ aPVpp 68
- (jg) { Q3V,pv, 5U+(w+mm(5u+5q>)} (3.6
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ap pressure vanishes therep=0. This condition can be writ-
VeV0P+4mGp ap oP ten in terms of the variables used here by noting that
B
Sv3Vp
dap dp - o ar
- —47TGP(%) 5u—4we(£) 5. (3.7) AP=opt r Tmay (310
B p

where 5v? is given in this region by Eq3.1) with §8=0.

The functionséU, 68, and P are also subject to appro- . ; S
. " . Thus using Egs(2.7) and(3.1) this boundary condition can
priate boundary conditions at the interface between the s Se written in terms oBU and S® as

perfluid core and the ordinary-fluid envelope, at the surface

of the star, and at infinity. First, we consider the boundary at 0=[p (0+mQ)(8U+ 5P)+Q3®V,_pV,5U],.

the interface between the superfluid core and the ordinary- (3.1
fluid envelope of the star. Mass and momentum conservation

across this boundary place a number of constraints on the Finally, the perturbed gravitational potenti#® must fall
continuity of these functiong30]. In particular these condi- off at infinity faster than ¥/ in order that the mass of the
tions require that the function8U and & be continuous perturbed star remain the same as that of the equilibrium
there. In additionV,6® must be continuous, whil¥ ,6U  star: lim,_..(r §®)=0. In additions® and its first deriva-

must have a discontinuity that is prescribed by tive must be continuous at the surface of the star. The prob-
1/3 lem of finding the modes of “uniformly” rotating superfluid

p _ tars is reduced therefore to finding the solutions to EQs.
N V,8Uls— —| —| n3V,p[8B1s=n?V.5U],. S 9 q
[VaoUls pz(aﬁ>p aPLoBls=nVadUlo (3.5, (3.6), and (3.7) subject to the appropriate boundary

(3.9 conditions including in particular Eqs(3.8), (3.9, and
) ) N (3.12.
The subscripts ando in Eq. (3.8) denote that the quantities  The equations for the potentiall) and 88, Egs. (3.5

ordinarz-ﬂuid sid?j (zif the bdounQary1 reslpect::/elt))/, ar?gde- the mode and the angular velocity of the star thro@f?
notes the outward directed unit normal to the boundary sur=_ ~ap o :
face. The functiorsg, which is of interest to us only within andQ™, as given in Eqs(3.3) and(3.4). In the analysis that

the superfluid core, must satisfy the condition follows it will be necessary to have f[hose depe_znc_ienceg dis-
’ played more explicitly. Here we are interested in investigat-

ing the superfluid versions af-modes. Such modes have
[68]s frequencies that go to zero linearly as the angular velocity of

. 4y*Q0%2°n;, 2myQw®n,
NVaoB]s— mz [VadBlst

(0t m)w the star vanishes. Thus, it will be useful to define the dimen-
=0, (3.9  sionless frequency parameter
on the boundary of the superfluid core. Here we use the kQ=ow+ml. (3.12
notationw for the cylindrical radial coordinate, ang? to o )
denote the unit vector in the direction. The parametek remains finite in the zero angular-velocity

Next consider the boundary conditions on the outer surlimit for these modes. Using this parameter and the expres-
face of the star. The functioU must be constrained at this sions forQ® andQ2° from Egs.(3.3) and(3.4), we re-write
surface in such a way that the Lagrangian perturbation in th&gs.(3.5) and(3.6) to obtain the following equivalent forms:

2 cab b 2mx 2.2 2| (9P ap
Vi p(k“62°—4722°)V,0U |+ — w8V, p SU=—k“(k*—4)Q%| p| —| (8U+6P)+|—| B8
w ap 8 B 0
1/dp 2mk [ dp
e 2] spesoacrma] -2 sgur
(3.13
~ ~ 2
p 2mx Yp Pn d[p
v k2 6%P— 4427272°)V, 5B | + waV +KZQZ——<—p) )
? K2—4'y2( 7 )VudB © 2 k2= 42 p 9B\ pn P p
1 p ? 2 sab a-b
- p3(;<2—4)<ﬁ) p(K 64— 4z°2°)V 4pVpp 6
- (ap> KO AZZ  eoU —2 ey b U+ k025U 5) (3.14
a B b p(K2—4) aP¥b P(K2_4)’GfﬁI aP “ . .
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The boundary conditions, Eq€.9) and(3.11), are similarly transformed into the forms:

Kzna[vaéﬂ]s_ 4'yzzbnbza[va5ﬁ]s+

2 ab_ g,ab 2mk 2.2 1\02 _
(k2670 47372°) VNV 0U + —— w2V h 0U+ k3(k2=4)0%(8U +50) | =0.

b
2mKZ:I)' nb[5,3]s= 0. (3.1

(3.1

(o]

In Eq. (3.16 we have expressed the boundary condition in(Equilibrium neutron-star models do not exist fdR

terms of the thermodynamic enthalgy,which is defined as

(3.17

=2+/7Gp,.) The techniques needed to evaluate the terms in
these series for the equilibrium structure are identical to
those described for example in Lindblom, Mendell, and
Owen|[33].

Next, we define expansions for the quantities that deter-

The enthalpy is the appropriate thermodynamic function tanine the perturbations of a superfluid stak), 68, 6P,

use in Eq.(3.16 because its gradieny, ;h, is well-defined
and nonzero at the surface of the star.

IV. SUPERFLUID r-MODES IN THE SLOW ROTATION
APPROXIMATION

The r-modes of rotating ordinary-fluid stars have tradi-

tionally been studied using a small angular-velocity expan-

sion[32]. Our goal here is to perform a similar expansion for
the superfluid generalizations of thenodes. Thus, we seek
solutions to Egs(3.13, (3.14), and(3.7) as power series in
the angular velocity of the star.

We begin first with the structure of the equilibrium super-
fluid star. This structure is identical to its ordinary-fluid

counterpart in the large-scale averaged-over-vortices hydro-
dynamics used here. We expand each of the equilibrium

functions of interest:

2

TSPo
2
P=po+tp—=+0(Q%, (4.2
TSPo
2
h=hy+h, _+O(Q4). (4.3
7Gpg

The location of the surface of the sffw) is also expressed
as such an expansion:

2

R=Ry+R, +0(0%. (4.4

7Gpo

and «:
Q2
_p202 4
SU=R50? U+ 8U,—=+0(Q% |, (45
L TGpo
[ 2
SB=R30?| 6By+ 6B,——=+0O(QY|, (4.6
L T™SPo
[ 2
SD=R20? 5D+ 60, ——+0O(Q% |, (4.7
L 7Gpg
2
K= Ko+ K2—G_ +0(Q%). (4.8

mTSPo

We have normalized the eigenfunctions usiyg the radius

of the star(in the nonrotating limix, and ), the angular
velocity of the star. Using these expressions for the pertur-
bations, together with those for the structure of the equilib-
rium star, it is straightforward to write down order-by-order
the equations that determine the superflaichodes. This
expansion is completely analogous to that given by Lind-
blom, Mendell, and Owef33] for the ordinary-fluid modes.

It is straightforward to verify that the functions

m+1 _
SUy= a(—) P™. L (w)eme, (4.9
Ro
6Bo=0, (4.10
with
B 2
Ko= m+ 1 y (41])

Here and throughout the remainder of this paper we use the
subscripts 0 and 2 to denote the lowest- and the second-ordgg;isfy the lowest-order terms from the expansion of the pul-

terms respectively in these expansions; and weruased

sation Eqgs(3.13 and(3.14). Inspection of the equation for

= cosf to denote the standard spherical coordinates. We alsgg Eq. (3.14), reveals that the right side is proportional to

introduce here the angular velocity sca]erG;o, wherepg

is the average density of the star in the non-rotating limit.

Q2 the first term on the right vanishes identically 6,
given by Eq.(4.9), while the lowest-order contribution to the
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second term is proportional 3. Thus the functionds,

=0 satisfies Eq(3.14) to lowest order. (k§o*P—4z°2 oUg
With the lowest-order contribution t68 vanishing, the r=Rg
lowest-order equations fafU and 6® from Egs.(3.13 and ~0 (4.14
(3.7) reduce to the following, ' ’
Vil po( k5%~ 42%2°)V,6U aPo 6U=0, These equations are identical to the lowest-order terms in the

(4.12 ordinary-fluid r-mode equation§33]. The functionsU, to-
gether with kg given in Egs.(4.9) and (4.11) satisfy Egs.

dh) (6Uo+6®o). (413 |owest-order expressions for the classicatodes as studied

dp
VaV ,60y= 47TG<
for example by Papaloizou and Pring&?]. (However, they

(4.12 and (4.149 identically because these are in fact the

The lowest-order boundary conditions at the superfluicdre expressed here in a form that was introduced more re-

ordinary-fluid interface, Eqg3.8) and(3.9), merely require ~ cently[34].) Thus to lowest order the superfluiemodes are
that 53U, andV,8U,, are continuous there. The lowest-order identical to their ordinary-fluid counterparts.

contribution from the boundary condition félJ, at the sur- Continuing on to second order, the equations for the po-

face of the star is tentials are

2 cab b 2Mkg 2 cab b
Va[po(Koéa —4ZaZ )Vb5U2]+ Tmavapo 5U2+Va[p2(K05a —4ZaZ )Vb5U0+ 2KOK2pova5U0]
2m a
R (k2Vapot koVap2) 8Ug

ap
WGpOKO(KO 4)p0( p) (6Ug+ 6Dg)+V,

1/(4
(_p) 5,32(Ké5ab_4zazb)vbpo}

B P
2mkg 1( dp s ay 41
—mgﬁpﬂzm aPo, 4.19
- - 2
2cab_ 4.25850 Ko _a YoPo 1 /‘7”) b_ g5a,b
K502 —4~v5722°)V , 685 | + w2V 6Bs— K5a—4ZZ)V VuPo S
. 5 (Ko Yo bOB2 a( KS‘M’%) B2 3(2—4)\ 3B p( aPoVoPo 982
1 &p 2 cab ach 2mkg a a 2Mky a
= O(KO 4) (}‘B (K05a —4z7%z )VapOVb5U2+ T’G)’ Vapo 5U2+ 2KOK2V pOVa5U0+ T’w Vapo 5UO
2MKo 2 cab_ g,ab 2
+ Tm Vapz 5U0+(K06a —47°% )Vap2Vb5UO _Ko’Tero B (5Uo+ 5(1)0) (416}
. ap ap ap ap\ "t 4 ap
B B P B Blg
(4.1
It will be helpful to express Eqg4.15 and(4.16 in the following shorthand forms:
D(6U,)=E(6B,) t+F, (4.18
D(8B,)=E(8U,)+F, (4.19

whereD andD are second-order partial differential operat@&sndE are first-order operators, afdandF are functions that
depend on the lowest-order eigenfunctiaiti$, and 6®,.

We next consider the second-order boundary conditions. The boundary conditions that must be satisfied at the superfluid

ordinary-fluid boundary, Eq$3.8) and (3.9), have the following second-order forms on the surfaeeR,:
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98U, 1 dpo | 96U,
-l S 20
95 4vh a5 2

<Ké—4y3u2>[ e T >[ %) 4 2T p,1,-0, (4.29

The second-order boundary condition for the potenild| Eq.(3.16), is identical to that derived by Lindblom, Mendell, and
Owen|[33] for the perfect-fluid case:

2 cab b 2mKO
maVah05U2+(K05a —4ZaZ )Vah2Vb5U0+ m‘aVah25U0

2Mmk
(k253 — 4237V ;hoV U 5 + ——

+ 2KOK2Vahova6U

SUg+ k2(k2—4)mGpo(SUg+ 5@0)] =0. (4.22

r=Ry

It will be useful in our numerical solution of the pulsation equations to have an expression for the second-order contribution
to the frequency of the mode,, as integrals over the eigenfunctions. Such an expression can be obtained by multiplying Eq.
(4.18 by sUj and integrating over the interior of the star. Sinttg is an element of the kernel of the operalrthis part
of the integral reduces to a boundary integral. This boundary integral is nonvanishing b€gaukeis discontinuous at the
superfluid boundary as a consequence of the boundary conditio@ Bg. The result of integrating the left-hand side of Eq.
(4.18 can be expressed in the following way:

o[ 9P

9B (4.23

dho (1 2 2 *
SUg D(6U,)d 3x=2mx|r W (kg—4u°)oB20Ugdu
-1

r=Rg

Combining this result with the more straightforward integrals of the right-hand side of4Ekf, we obtain the following
expression for the second-order change in the frequency of the superfhode:

1 6m P22 SWGE)m
2 _ 2 3
jr drl&UOI 4= (m+1)2f 2 [0l (m+1)4

(k3—4u?)r d[1dhy(dp
2(m+2) dr|r dr ﬁ

d
f (d—f]) (8Ug+ 8Do) 5UZ d 3
0

dho &p
5B,0U% d 3+ ((w)

_4M2 (95,32 2/.L(1—,u,2) aéﬁZ %43 3K0_2mK0_4 1 dho &p .13

ez o mipr e U ez ¢ arl g 9Pt

dho{?p fK%“a sUzd 4.2

T arag) | Tmya 9B20UEdn ] (4.24
r= S

In Eq. (4.29 the integrations are to be performed over theof the neutron star, and explicit expressions for the various
interior of the superfluid core,9r<Rq, for those integrals thermodynamic functions that appear in the equations. For
involving 88, and throughout the interior of the star<0 the equilibrium structure of the neutron star, we use the
<R,, for those integrals that do not. Even though this ex-Simple polytropic equation of statg=Kp?, with K chosen
pression fork, depends on the second-order eigenfunctiorsO that a 1.8 model has a radius CRO_]-Z 533 km. We
5B, it is nevertheless very useful in determinirg numeri- ~ choose this simple model because our method of solving Eq.
cally. This is due to the fact that the integrals involviag,  (4.18 to determinesU, seems to be rather unstable for more
are typically quite small. realistic equations of state. We also use this simple equilib-
rium equation of state to evaluate the thermodynamic deriva-
tive (dp/ dp) = p/2p that appears in the pulsation equations.
We adopt the fiducial valup,=2.8x 10'* g/cn? for the su-
perfluid transition density. However, we examine the sensi-
In order to solve the equations for the superfliichodes  tivity of our results to variations in this parameter.
we must adopt a specific model for the equilibrium structure In order to evaluate the other thermodynamic properties

V. NUMERICAL SOLUTIONS FOR THE SUPERFLUID
r-MODES
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of neutron star matter needed in the pulsation equations, W@atD can be inverted numerically without difficulty. Thus,
use the recent semi-empirical equation of state, AB8  Eq. (4.19 can be solved by straightforward numerical tech-
+UIX, of Akmal, Pandharipande, and Ravenhab]. The niques.

derivative @p/dp), is determined from this equation of state  The Eqs.(4.18 and(4.19 are solved iteratively to deter-
using the formula, Eq(70), in Lindblom and Mendel[30]  ine the potential$U, and 58,. We begin the process by
that expresses this derivative in terms of the more eas"%etting 5B,=0. Then we iterate the following sequence of
eyaluated derivativgs of thg chemical potentials. For4the denéalculations. First, we evaluate, from Eq. (4.24); then we
S|ty015range ngf primary interest to us (2@0"<p solve Eq.(4.18 for 8U,; and finally we solve Eq4.19 for

<10 gm/cnr), we find that 6B». This sequence of calculations is iterated until the func-
dp tions U, and 883, converge. This generally takes only a few
—) ~1.4x10 "—1.1x 10 ??p, (5.1)  steps. We find that the second-order eigenvatyéhas the
B P value 0.29879 for this model, essentially independent of the

- . . - entrainment parameterand the superfluid-transition density
where all quantities are expressed in cgs units. Similarly, we

, . : . ! " ps. This value ofk, differs only slightly from the value
flnd that the proton fractiop,/p for this equation of state is 0.29883 found by Lindblom, Mendell, and OwEsg] for the
given approximately by

analogous ordinary-fluid-modes.
p The eigenfunctiorsU,, for the casee=0.04 andp,=2.8

2 ~0.031+8.8x10 p. (5.2  x10* g/en? is illustrated in Fig. 1. This function was com-

p puted on a grid having 2000 radial grid points and 10 angular
These expressions are accurate to within about 20% in thgPokes using the higher-order angular differencing code.
indicated density range. Each curve represents the radial dependencélbf along
one of the angular spokes. This function is essentially iden-
tical to that obtained by Lindblom, Mendell, and OwWe8]
for the ordinary-fluid case. Figure 2 illustrates the associated
function 68, that was evaluated together with tié&J, of
eFig. 1. We note thatg, is only defined within the core of

The thermodynamic quantitigsand y can be expressed
in terms of the baryon densitigs, and p,, and the mass-
density matrix elemenp,, quite generally using the con-
straints on the mass-density matrix from Galilian invarianc

and Eq.(2.1: the star where the neutron-star matter is superfluid. We also
p note thatsB, is about an order of magnitude smaller than
y=1l+e—, (5.3 8U,. Thus even at the second-order, the superfteidodes
Pp differ little from their ordinary-fluid counterparts.
B p p Figures 3 and 4 illustrate howB, changes as varies. In
pr( 1- ?p e+ ). (5.9 particular Figs. 3 and 4 illustrat&g, for the extreme values

of e considered heree=0.02 ande=0.06, respectively.
Thus using Eq.(5.2 for the proton fraction, we obtain While the differences in these three functions, Figs. 2, 3, and

simple smooth expressions for the superfluid thermodynamié' are significant, th_ey do not really illustrate the most _inter-
functions needed in Eq¢4.18 and (4.19). esting feature of their dependence @nrhe most interesting

In order to evaluate the potentia®), and 53,, we con- and unexpected feature that we find in the solutionssigs
vert the operators in Eqg¢4.18 and (4_219 into ?ﬁatrix op- is a kind of resonance phenomenon. We find that there are

erators by making the usual discrete representations of tHeertain “critical” values of e (e.=0.02294 and e

— _ 4 .
various derivatives that appear. To this end we have given 0-04817 for theps=2.8x 10" g/en? case near which the

expressions for these operators in spherical coordinates in tfignction 638, becomes extremely large. Near these special
Appendix. We convert the radial derivatives into discreteV@lues ofe the character of the second-order terms in the
form using the standard three-point differencing formulas €Xpansion for the mode change from being dominated by the
For the angular derivatives, we have written separate code¥dinary-fluid like correlated motion of the neutrons and pro-
that use either the higher-order angular differencing formuladnS: to the uniquely superfluid anti-correlated motion, where
discussed in Ipser and Lindblof81] or the standard three- th€ néutrons and protons have opposite velocities. We see a
point formulas. We find that the results of our two separatdint Of this behavior, perhaps, in Fig. 3 where the magnitude
codes agree very well. The code that uses the higher-ord&f 982 for €=0.02 is considerably larger than its value at
angular differencing formulas requires far fewer angular€=0-04 or 0.06. _ )
spokes in order to achieve a given accuracy, and it appears to Mathematically we find that tbe reason for this resonance
be somewhat more stable. phenomenon is that the operatrthat determinesig, in

The operatoD that appears in Eq4.18 is a hyperbolic  Eqg.(4.19 becomes singular at these critical valueg of his
differential operator with a nontrivial kernel. Thus, Eq. singular behavior is illustrated in Fig. 5, in which we depict
(4.18 is solved using the numerical relaxation technique dethe dependence of the smalléistabsolute valueeigenvalue
veloped in Lindblom, Mendell, and OwgB3]. The stability  of the operatoD as a function ok. We see that this smallest
and convergence properties of this technique were discusseggenvalue vanishes for the two critical values eohoted
at length in that work. The operatbr is also hyperbolic, but above:e,=0.02294 ande,=0.04817. In a sufficiently small
(generically it does not have a nontrivial kernel. We find neighborhood of these points the functiéf8, must be pro-
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0.4

02}

5U,

0.4 0.6 0.8

t/R,

0.2

FIG. 1. EigenfunctionsU, for the m=2 r-mode based on a
superfluid model withe=0.04 andp,=2.8x10** g/cn?.

portional therefore t@,in/\min Where i, is the eigenfunc-
tion of D that corresponds to this smallest eigenvag,,.
Since\ i, vanishes for the singular values ef this forces
the functionépB, to become very large in sufficiently smal
neighborhoods of these points.

To paint a more physical picture of this resonance phe

nomenon, we note that the pulsation EG&18 and (4.19

are analogous to the equations that describe a pair of couple

driven oscillators. The operatof andD are analogous to
the kinetic and potential terms of these oscillatd&sand E
are the coupling between the oscillators; &nandF are the
driving terms. As the parameter changes, the operat®

PHYSICAL REVIEW D61 104003

0.2

01}

3B,

0.4 0.6 0.8

/R,

0.2

FIG. 3. EigenfunctionéB, for the m=2 r-mode based on a
superfluid model withe=0.02 andp=2.8x 10'* g/cn?.

the superfluid dominateg-modes discovered by Lindblom
and Mendell[30], and studied subsequently by L6] and
by Comer, Langlois, and Lif37]. The analogy is only su-
| perficial however. In the-modes the fluid motion is always
dominated by the potentiadU,, since the effects oB3,
only enter at higher order if). Further, the frequencies of

ther-modes vanish in the limit of nonrotating stars, while the
frdaquencies of the-modes do not.

VI. DISSIPATION IN SUPERFLUID r-MODES

The primary motivation for our study here is to investi-
gate how the transition to a superfluid state at low tempera-
res effects the stability of themodes in older colder neu-

changes while the other terms remain unchanged in thedd h q dri ds i bility b
equations. Thus, varying is analogous to changing the 7ON Stars. Ther-modes are driven towards instability by

spring constant of one of the oscillators while keeping thegravitational radiatio_n[;,Z], b_Ut internal fluid _diss_ipqtion
other oscillator and the coupling and driving terms fixed. Int€NdS o suppress this instabilftg,4]. Internal fluid dissipa-
the case of coupled driven oscillators we know that the amtion can staplhze th_e-mode.s com_pletely, i Itis sufficiently
plitude of one oscillator may be made large compared to th&trong. In this section we investigate the importance of the

other if its spring constant is tuned to the appropriate criticaf?V© tyPes of internal fluid dissipation considered most likely

value. This “resonance” behavior in coupled oscillators js {0 have a substantial mfl_ue_nce on thenodes in superfI_UId
analogous to the enhancements, relative tosU, ase is neutron stars: mutual friction caused by th_e scattering of
varied through one of its critical points. The modes in which€!€ctrons off the cores of the neutron vortices, and shear

6B, dominateséU, are somewhat analogous, therefore, toVIscosity due to elgctr.on—glectron scatterln_g. .
The effects of dissipation on the evolution of a fluid are

0.04 0.03
0.03 1 0.02 |
g, o002} 8, 0.01t
0.01 | 0
"0 0z 04 os o8 1 0z o0a o6 08
/R, 'R,

FIG. 4. EigenfunctionsB, for the m=2 r-mode based on a

FIG. 2. EigenfunctionsB, for the m=2 r-mode based on a
superfluid model withe=0.06 andps=2.8x10'* g/cnt.

superfluid model withe=0.04 andp,=2.8X 10" g/cn?.
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100 ' ' ' o 27T(m+1)3 o 1)1
=« T( m )
S0 | Ro [ r |2m+2
xR(;‘QZJ p(R—) dr+0(Q%, (6.2
0 0 0
xmin
is identical to its ordinary-fluid counterpdi33].

50 | ] Mutual friction tends to damp out any relative motion
between the proton and neutron superfluids. This dissipation
is caused by the scattering of electrgqméiose motion tracks

-100

that of the proton superfluid in our approximatjooff the
magnetic fields that are entrapped within the cores of the
€ neutron vortices. The presence of these magnetic fields is
due to the entrainment effect, and hence the magnitude of
this dissipation mechanism depends strongly on the poorly
known mass-matrix elemept,,. The rate at which energy is
dissipated by mutual friction in the neutron-star superfluid
Cc_:onsidered here is given Bg8]

0.02 0.03 0.04 0.05 0.06

FIG. 5. Eigenvalue of the operatBr having the smallest abso-
lute value as a function of, for m=2 perturbations wittp,=2.8
x 10" glent,

most conveniently studied using an appropriate energy fun
tional. For the case of a neutron-star superfluid whose evo-

lution is determingd py Eqg2.5), (2.6_), (2.11), (2.12, ar_ld (d_g :_ZQJ B,y 62— zazb)éwaéwgd3x,
(2.13, the following is the appropriate energy functional dt ME
[38] (6.3
1 p where the dimensionless mutual friction scattering coeffi-
£=3 f |p5v;5va+p(%) R (8U+ 6®)5U* ] cient,B,,, is given by,
B
2 1/6 —3/2
2 oo 1l er]
~ pn 0 Bi~———|——1||1—€t+e— . 6.4
+7 aw;aw%?”%(%) 8B* 8B " 1.96x 10\ Pp Pp ¢4
n
p

5 We note that unlike regular viscosity, the mutual friction
o * 3 scattering coefficient does not depend on temperatate
0,6’)pRe[(25U+ o) op ]]d X (6. least at the lowest orderThis independence is due to the
fact that mutual friction involves the scattering of two differ-
The integrals of the first two terms on the right-hand side ofent fluids in relative motion. Thus, even at zero temperature
Eq. (6.1) are to be performed throughout the star, while thesome electrons acquire sufficient energy from their collisions
last three termgthose proportional t@dw? or 58) are to be  with the vortices to scatter into available energy states lo-
integrated only within the superfluid core. In the absence ofated above the Fermi surface.
dissipation, the energyis conserved. When we evaluate the In order to evaluate the effects of mutual friction on the
small angular-velocity expansion of the energy in E§j1),  superfluidr-modes, it is necessary to re-express 63 in
we find that only the first term on the right contributes at theterms of the eigenfunctiod@s, that determines the relative
lowest order. Thus, the lowest-order expression for the ensuperfluid motion. To lowest order in the angular velocity
ergy, then, we find

+

de o — @\ [ Bapo¥s(1=s) ey 70B2 p 03B\ 2myodpy|?
e :_ZRO(WGPO) — J 2 2.2 - Ko - + 2
dt/ [2Gpe (3-4%% |7 o), ot ap | r(1-pd
oo ((?6,32 u 9608, . mKo5,32‘2 43 ©.5
- — X. .
Yo ar r odu r(l—ﬂz)‘

It is straightforward to perform these integrals numerically using the superfimidde eigenfunctions described in Sec. V, and
so determine the energy dissipation rate caused by mutual friction. It is convenient to express this rate in terms of a
mutual-friction damping timeryg :
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10° . ——— viscosity. In the superfluid core this viscosity is due to
. 4.2x10" 4—"‘p's'=2_3x1o‘4“x electron-electron scattering, while in the surrounding
10* < - ordinary-fluid envelope the standard neutron-neutron scatter-
ing dominates. The rate at which energy is dissipated by
16° shear viscosity is given by
%MF i dg
10° é:-' (a) :_f 27]50';b50'abd 3X+f2nna5vgﬁa;bd 2x
! v S
10' §
5 - f 2pn3svP ook, d 2. (6.7
10° . . ' : °
0.02 0.03 0.04 0.05 0.06
e The volume integral in E(6.7) is to be evaluated within the

~ superfluid core, and within the ordinary-fluid envelope, but
FIG. 6. Characteristic damping time, due to superfluid mu- not over the boundary surface between the two. The surface
tual friction. These curves show the dependence,gf as a func-  integrals are to be evaluated over the interisuperfluid
tion of the superfluid entrainment parametefor three values of side and exterior (ordinary-fluid side¢ of the superfluid

the superfluid transition densifys. boundary, respectively. The tensér,;, that appears in these
integrals is the shear of the electron veloaity} of Eq. (2.4)
1 1 /de 1 o) 5 within the superfluid core, and the ordinary-fluid velocity
S _(_> = ———| . (6.6)  6v?in the envelope. In the small angular velocity expansion
T™MF 28\dt) o Tue VG the electron velocitysv? is the same adv?, to lowest order.

Thus to lowest order the energy dissipation rate due to shear

The characteristic mutual-friction damping timg,-, also viscosity is given by

defined in Eq.(6.6), is independent of angular velocity and 3
temperaturgto lowest ordex. The ° scaling of 1fy¢ fol- (d_g) _ _azw(m+1) (m—1)(2m+1)!R2Q2
lows directly from Eqs(6.2) and (6.5). The Q7 scaling of dt v m 0
dé&/dt in Eq. (6.5 follows in turn from Eq.(6.3) and the fact om
a 3 H H R, r
that Sw? scales a$)3 to lowest order. We present in Figs. 6 X[(2m+1)f 077( ) dr
0

and 7 the numerically determined characteristic damping R_O
times 7y for the m=2 superfluidr-modes. Figure 6 illus- R\ 2m
trates how sensitively,- depends on the entrainment pa- —(9s— 770)Rs<_s) } (6.8

rametere. We see thaty, has a typical value of about 40 Ro

s, but that it becomesiuchsmaller for a few narrow ranges . . _
where 5 and 7, are the limits of the viscosity taken from

,(?f € These”sp|kes in they(e) curves are c_aused by the the superfluid and the ordinary-fluid side of the boundary,
resonance” phenomenon that we discuss in Sec. V. Th espectively

mutual friction damping timery . becomes very small when | the superfluid core of the neutron stasR, the ap-
the eigenfunctionss, b(icomes large. This occurs at the propriate viscosity to use in Eq6.9) is due to electron-
points where the operat@ has a vanishing eigenvalue. We
see from Fig. 5 that the locations of these vanishing eigen-
values coincide exactly with the location of the spikes in the
ps=2.8X 10" g/en? curve in Fig. 6. We find that near these
spikes the curverye(€)=(e—e€.)2 This quadratic depen-
dence is exactly what is expected given thapg,

< hmin/\min N€ar these spikes. Figure 6 also illustrates that
the exact location of these spikes depends on the value of the

superfluid transition densitys. Figure 7 illustrates thaty,
changes smoothly apg is varied: the locations of these
spikes move smoothly to larger values ©fs pg increases.
Figure 6 also illustrates that the probability of having a small
“7me does not depend strongly gni. For example, we find
that about 1% of the values af in the acceptable range, ps/10"g cm™

0.02<€=<0.06, haveryr(€)<5 s, and this percentage is B

relatively insensitive tgy. FIG. 7. Characteristic damping timg,r due to superfluid mu-

The other important internal fluid dissipation mechanismtual friction. This curve shows the dependence-gt as a function
in superfluid neutron stars is expected to be regular sheaf the superfluid transition densipy, for e=0.04.

Tmr

1.4 2.1 2.8 3.5 4.2
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electron scattering. This electron-electron scattering viscosSince the energy is a real functional, the quantity 4is in

ity is given approximately by the expressif3g]

2

n=6.0x10F| =| | (6.9

P
T

fact just the imaginary part of the frequency of the mode.
The sign of = therefore determines whether the mode is
stable. If 70 then dissipation decreases the energy of the
mode and it is stable, while <0 then dissipation causes
the energy(and hence the mode itsglb increase exponen-

where all quantities are given in cgs units. Similarly, in thetially. We can explore the conditions under which mutual
ordinary-fluid envelope, neutron-neutron scattering viscositytiction and viscosity are effective in suppressing the gravi-
dominates at the densities where most of the dissipation odational radiation driven instability by giving the explicit

curs. This neutron-neutron scattering viscosity is given ap
proximately by the expressidi39]

9/4
= 347‘;—2. 6.10

Using these expressions for the viscosity it is straightforward
to evaluate the energy dissipation rate for shear viscosity

using Eq.(6.8). As in the case of mutual friction, it is con-
venient to express the result as a viscous time scale:

==

The characteristic viscous time scalg, also defined in Eq.

1

v

1

1
>F _

TV

10° K
—

(6.11

(6.11), is independent of the angular velocity and the tem-

perature of the neutron star. We find thgt= 1.01x 10° s for
our superfluid neutron-star model with ps=2.8

X 10" g/cn®. This value is somewhat shorter than that ob-
tained for hot neutron stars, 2840 s, by Lindblom,
Owen, and Morsink3] using neutron-neutron scattering vis-
cosity [Eq. (6.10] throughout the star; and for cold neutron
stars, 2.2% 1% s, by Andersson, Kokkotas, and Sch{u
using electron-electron scattering viscosiffEq. (6.9)]
throughout.

Gravitational radiation is the final form of dissipation ex-
pected to have a significant influence on theodes of su-
perfluid neutron stars. Since the superfltichodes are iden-
tical to their ordinary-fluid counterparts to lowest order in the
angular velocity, the gravitational radiation coupling is the

temperature and angular-velocity dependence uging Eqs.
(6.6), (6.11), and(6.12:

1 1 o \® 1 o \°
= =] t=— —
7(Q.T) 7GR\ V7Gpy ™F \ V7Gpy

1/10° K

T (6.149

2
?\,( ) '
Gravitational radiation tends to drive themodes un-
stable while mutual friction and shear viscosity tend to sta-
bilize these modes. From E¢6.14 we see that>0, and
mutual friction will completely suppress the gravitational ra-
diation driven instability whenever

Q
\ WG;O

Since neutron stars have angular velocities that are limited

by Qs%x/wGE), we see that mutual friction will suppress
the gravitational radiation instability for all angular velocities

wheneverry,r<1.57cr~4.89 s. From Fig. 6 we see that this
may occur, but only if the entrainment parameterof
neutron-star matter is limited to a very narrow range. Only
about 1% of the values of in the expected range, 0.86&

<0.06, have sufficiently shorty, ¢ to suppress the instability
completely.

From Eq.(6.15 we see that mutual friction will always
suppress the gravitational radiation driven instability in the

T™F (6.19

gTGR'

same to this order. The characteristic gravitational radiatiom-modes of neutron stars with sufficiently small angular ve-

time scalergg for the m=2 r-mode,

6

1 1 (dg) 1 QO 6.12
e ] == |, 61
Ter 28\l Tgg VaGpy

therefore has the same valugr=3.26 s, as in the ordinary-
fluid case[3].
The effects of mutual friction, shear viscosity, and gravi-

tational radiation act together simultaneously to influence the

evolution of the superfluid-modes. Their combined effects

on the evolution of the energy of the mode are conveniently

described by the overall dissipative time scale,

[< GR+(?TT>MF+( )v’ (6.13

1

T

1
2¢

de
dt

dé
dt

0.8

06 |
G 04f
£
\0
c

02 |

01o5 0° 0 0° 10°
T (K)

FIG. 8. Critical angular velocities for superfluid neutron stars
having a range of characteristic mutual friction time scaigg .
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locities. However, this suppression is not physically relevant It is also informative to examine the critical angular ve-

if ;MF is too large. If the angular velocities needed in Eq_|OCities,QC, that mark the dividing line between stable and
(6.15 are sufficiently small, then shear viscosity will also unstable neutron stars({).,T)=0. Stars rotating more rap-
play a significant role in suppressing thenode instability in  idly than Q. are unstable, while those rotating more slowly
these stars. In particular shear viscosity alone will suppresare stable. Figure 8 illustrates the temperature dependence of
the r-mode instability if Q. for a range of possible mutual friction time-scales. From
Fig. 8 we see that shear viscosity completely suppresses the

~ 1/6
Q _[ Ter 10° K 1/3~ 10° K\ '3 gravitational radiation instability in all neutron stars cooler
= 7__ T ~0.056 T ' than about 1® K. We also see that the mutual friction time
7Gpo v scale must be shorter than 10 or 15 s in order for mutual

friction to play a significant role in suppressing the gravita-

(6.16
Mutual friction then is capable of further suppressing thetional radiation instability in neutron stars with temperatures

r-mode instability in more rapidly rotating neutron stars only that are typical of low mass x-ray binari¢about 16 K).
if Since only about 2% of the expected rangeedfave time
1/3 o T 1/3
o1 k)

scales this short, it appears unlikely that mutual friction is
- (w\T
’T =T = e
MF~=TGR Ton 100 K o1
6.1

acting to suppress the gravitational radiation instability in
these stars.

We see that mutual friction will be primarily responsible for

the suppression of themode instability |n~. some(suffi- We thank L. Bildsten, E. Brown, and Y. Levin for helpful

ciently warm) superfluid neutron stars only fy=57.7's.  discussions concerning this work. This research was sup-

Such small values of,z occur in only about 3% of the ported by NSF grants PHY-9796079 and PHY-9900767, and

values ofe in the expected range: 0.62<0.06. NASA grant NAG5-4093.
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APPENDIX: PULSATION EQUATIONS IN SPHERICAL COORDINATES

In order to solve the superfluid pulsation equations numerically, it is necessary to express them in some particular coordi-

nate representation. We find it useful to work in spherical coordimage= cosé, ande. The operator®, E, F, D, E, andF
that appear in Eqg4.18 and(4.19 have the following representations in spherical coordinates:

#?8U, 1—u?d?°6U, 298U, 2u 96U,
v

+ += —~ -
ar? r2 ou® r o r® ou 1

m2s6U, }

D(5U2):K(2)Po{ A= 47

A 2u(1—u?) azauzi Zazauzi (1— u?)? azauzi 1—u? 96U, 3u(l—u? 96U,
Po r arow M Ta? T2 ol r ar r? i
de 2 2 55U2 2mKO 4#(1_/.L2) &5U2
+gr | (ko= Ar)—; ; 2~ ; Pl (A1)
d 1 dho( dp dho( 6By  Au(1—pu?) 968,
2 2_ AN _

(32— 2mug—4) A0 PP A2
(3kg—2mko— )FW@ ; B2, (A2)
12m(m+2) P2 5ug—2(m+2 L dp0 S0t 16mGpg M 2AP S s A3
= Tmr1Z 2 Yo (m )Kz “dr Yot 16mGpo T mya| g ( o) (A3)
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- Kopo [070B2 1-p? PPy 2 05B, 2um 03B,  MPSB,
D(5:82)= 2 2 F 2 + 2 J 2 + = 9 -2 J -2 1— 2
ko—4y5l or r meooroar e du r(l-pf)
_ 4%po 2&25Bz+ 2u(1=p?) #P8By  (1—p®)? 9*6B, 1—u? 5B 3u(l—p?) 96B,
K2— 4y m a2 r raw r? aw? r  or r2 i
d [ xdpo | 908, d [ 4v5po |[ ,00B; wm(1-u?) 35B;
Tar\2_a2) ar dr\2_a2)|* Tar r 9
ko= 475 ko= 475 M
2 2 2 2 -
kg—4 J dh 2mk, d
—0—2“(—’)) (—O) 8B+ =0 | TP ) 55, (A4)
polkg—4)\ B o dr r dr KZ—4y2
~ 1 dhy(dp 5 ,. 00Uy 4u(1—p?) 96U,  2mxg
E(6U2)__;0_2_4W(£)J(KO_4M ) ar - p I + 5U2 s (AS)
~ [dp\ | (m+1)%k, dhy 3hsy, 47wGp, [ dp
== — - - — + .

We note that the functions,, andh,, that appear on the right-hand sides of E¢s3) and(A6) are parts of the second-order

expansions of these quantities. In general the second-order density function has thg,{orm) = poo(r) + po(r)Po(u),
wherep,¢(r) andp,,(r) are functions of andP,(u) is thel=2 Legendre polynomial. A similar expression is satisfied by
h,. These functions may be determined using the techniques described in Lindblom, Mendell, anfBGjwen
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