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Numerical evolutions of nonlinear r-modes in neutron stars
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Nonlinear evolution of the gravitational radiation~GR! driven instability in ther-modes of neutron stars is
studied by full numerical 3D hydrodynamical simulations. The growth of ther-mode instability is found to be
limited by the formation of shocks and breaking waves when the dimensionless amplitude of the mode grows
to about three in value. This maximum mode amplitude is shown by numerical tests to be rather insensitive to
the strength of the GR driving force. Upper limits on the strengths of possible nonlinear mode-mode coupling
are inferred. Previously unpublished details of the numerical techniques used are presented, and the results of
numerous calibration runs are discussed.
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I. INTRODUCTION

In recent years the gravitational radiation~GR! driven in-
stability in ther-modes of rotating neutron stars has receiv
considerable interest, both as a source of gravitational wa
for detectors such as the Laser Interferometer Gravitatio
Wave Observatory~LIGO!, and as an astrophysical proce
capable of limiting the rotation rates of neutron stars. In a
rotating star, ther-modes are driven towards instability b
GR @1,2#: as the star emits gravity waves~primarily through
a gravitomagnetic effect!, the GR reaction acts back on th
fluid by lowering the~already negative! angular momentum
of the mode. This in turn causes the amplitude of the mod
grow. In most stars internal dissipation suppresses
r-mode instability, but this may not be the case for hot, r
idly rotating neutron stars@3,4#. For neutron stars with mil-
lisecond rotation periods, the time scale for the growth of
instability is about 40 s. In the absence of any limiting pr
cess, GR would force the dimensionless amplitude of
most unstable (m52) r-mode to grow to a value of orde
unity within about ten minutes of the birth of such a star.~At
unit amplitude, the characteristicr-mode velocities are com
parable to the rotational velocity of the star.!

The strength of the GR emitted and the time scale
which the neutron star loses angular momentum and s
down depend critically on the maximum amplitude to whi
the r-mode grows. Initial estimates assumed that the am
tude would grow to a value of order unity before an und
scribed nonlinear process saturated the mode. After sa
tion, it was assumed that the spindown would proceed a
quasistationary process, reducing the angular velocity to o
tenth of its initial value within about one year. In this sc
nario, gravitational waves from spindown events might
detectable with LIGO II@5#.

However, at present no one knows with certainty h
large the amplitude of ther-modes will grow. It may well be
that nonlinear hydrodynamics of the star might limit t
0556-2821/2002/65~8!/084039~15!/$20.00 65 0840
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growth of r-modes to very small values. This could happe
for instance, if ther-modes were to leak energy by nonline
coupling into other modes faster than GR reaction could
store it. In this case ther-mode instability would not be play
any interesting role in real astrophysical systems.

In a previous paper@6#, we presented the preliminary re
sults of fully nonlinear, three-dimensional numerical simu
tions aimed at investigating the growth ofr-modes. In our
simulations, we modeled a young neutron star as a rap
rotating, isentropic, Newtonian polytrope; we added a sm
amplitude seedr-mode and we solved the hydrodynam
equations driven by an effective GR reaction force. We fou
that r-mode saturation intervenes at amplitudes far lar
than expected (;3), supporting the astrophysical relevan
of r-modes and the possibility of detectingr-mode gravity
waves. The details of the GR signature emitted by
r-mode instability that we observe in our simulations a
rather different than previously envisioned, and these det
suggest that this radiation may be more easily detected
previously thought: the radiation is more monochromatic a
is emitted in a shorter, more powerful burst~see Ref.@6# and
the final section of this paper!.

Our results are compatible with the conclusions of St
gioulas and Font@7#, who performed relativistic simulation
of r-modes on a fixed neutron-star geometry, and found
saturation even at large amplitudes. A second point of co
parison can be made with the work of Schenk and colleag
@8#. They have attacked the problem analytically, develop
a perturbative formalism to study the nonlinear interactio
of the modes of rotating stars, and proving that the coupli
of r-modes to many other rotational modes are small~they
are forbidden by selection rules, or they vanish to zer
order in the angular velocity of the star!.

The present work is meant as a complement to Ref.@6#:
throughout these pages, we describe our simulations
greater detail; we discuss their relevance and their limitati
in the light of Refs.@7,8#; and we present the results of se
©2002 The American Physical Society39-1
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eral additional simulations aimed at enlightening particu
aspects of the problem. In Sec. II we write down the ba
hydrodynamic equations, and we define a number of m
ematical quantities that will be used to monitor the nonlin
evolution of ther-modes. In Sec. III we implement the e
fective current-quadrupole gravitational radiation-react
force. In Sec. IV we integrate the fluid equations w
r-mode initial data in slowly rotating stars, and we compa
the results with the small-amplitude, slow-rotation analyti
expressions: we demonstrate that the integration reprod
faithfully the analytical predictions to the expected degree
accuracy. In Secs. V–VIII we study the nonlinear evoluti
of r-mode initial data in rapidly rotating stars: concentrati
on the nonlinear saturation of ther-modes, and analyzing in
detail the evolution of several hydrodynamical quantities.
nally, we summarize our conclusions in Sec. IX.

II. BASIC HYDRODYNAMICS

We study the solutions to the Newtonian fluid equation

] tr1¹W •~rvW !50, ~1!

r~] tvW 1vW •¹W vW !52¹W p2r¹W F1rFW GR, ~2!

] tt1¹W •~tvW !50, ~3!

where vW is the fluid velocity,r and p are the density and
pressure,F is the Newtonian gravitational potential, an
FW GR is the gravitational radiation reaction force. Equation~3!
is a recasting of the energy equation for adiabatic flo
wheret is theentropy tracer@9#; for polytropic equations of
state,t is related to the internal energy~per unit mass! e by
the relationt5(er)1/g, whereg is the adiabatic exponen
The Newtonian gravitational potential is determined by Po
son’s equation

¹2F54pGr, ~4!

while the gravitational radiation reaction force will be di
cussed in Sec. III.

We solve Eqs.~1!–~4! numerically in a rotating referenc
frame, using the computational algorithm developed at L
to study a variety of astrophysical hydrodynamic proble
@10#. The code performs an explicit time integration of t
equations using a finite-difference technique that is accu
to second order both in space and time, and uses techni
very similar to those of the familiarZEUScode@11#. For most
of our simulations, we adopt a cylindrical grid with 64 ce
in the radial direction, and 128 cells in the axial and a
muthal directions.

In the limit of slow rotation, we define ther-modes of
rotating Newtonian stars~using the normalization of Lind-
blom, Owen and Morsink@3#! as the solutions of the per
turbed fluid equations having the Eulerian velocity pertur
tion

dvW 5a0RV0S r

RD l

YW l l
Beiv0t, ~5!
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whereR and V0 are the radius and angular velocity of th
unperturbed star,a0 is the dimensionlessr-mode amplitude,
andYW l l

B is a vector spherical harmonic of the magnetic typ
defined by

YW lm
B 5@ l ~ l 11!#21/2r¹W 3~r¹W Ylm!. ~6!

The r-mode frequency is given by@12#

v052
~ l 21!~ l 12!

l 11
V0 . ~7!

To monitor the nonlinear evolution of ther-modes, it is
helpful to introduce nonlinear generalizations of the amp
tude and frequency of the mode. These quantities are defi
most conveniently in terms of the current multipole mome
of the fluid,

Jlm5E rr lvW •YW lm
B* d3x. ~8!

In slowly rotating stars, theJ22 moment is proportional to the
amplitude of them52 r-mode, the most unstable mode, a
the one that we will study. To track the evolution of th
mode even in the nonlinear regime, we define the norm
ized, dimensionless amplitude

a5
2uJ22u

J̃MR3V0

, ~9!

whereM is the total mass of the star andJ̃ is defined by

J̃MR45
1

4pE rr 4 d3x.E rr 6 dr. ~10!

The quantityJ̃ is evaluated once and for all at the beginni
of each of our evolutions. For slowly rotating stars, the de
nition ~9! of the mode amplitude reduces to the one given
Eq. ~5!.

In slowly rotating stars, and in all situations where t
leading contribution toJ22 comes from them52 r-mode, the
time derivativedJ22/dt is proportional to the frequency o
the mode:dJ22/dt5 ivJ22. Thus we are led to define th
nonlinear generalization of ther-mode frequency as

v52
1

uJ22u
UdJ22

dt U. ~11!

As shown by Rezzollaet al. @14#, we can re-expressdJ22/dt
as an integral over the standard fluid variables,

J22
(1)[

dJ22

dt
5E r@vW •~¹W YW 22

B* !•vW 2¹W F•YW 22
B* #d3x. ~12!

The definitions, Eqs.~9! and ~11!, of mode amplitude and
mode frequency are very stable numerically, because t
are expressed in terms of integrals over the fluid variables
9-2
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NUMERICAL EVOLUTIONS OF NONLINEAR r-MODES . . . PHYSICAL REVIEW D 65 084039
the Appendix, we give explicit expressions forJ22 andJ22
(1) in

the cylindrical coordinate system used in our numeri
analysis.

While we monitor the nonlinear evolution of ther-mode,
we are also interested in tracking the star’s average ang
velocity as well as its degree of differential rotation. Wi
this in mind, we define the average angular velocity

V̄[J/I , ~13!

where the angular momentum and the moment of inertia
given respectively by

J5E rÃ2V~Ã,z,w!d3x, ~14!

I 5E rÃ2 d3x. ~15!

Here Ã is the cylindrical radial coordinate, and the loc
angular velocityV(Ã,z,w)[v ŵ /Ã, wherev ŵ is the proper
azimuthal component of the fluid velocity. We also define
average differential rotationDV as the weighted variance o
V,

~DV!25I 21E rÃ2~V2V̄!2 d3x

5I 21E rÃ2V2 d3x2V̄2. ~16!

III. RADIATION-REACTION FORCE

The gravitational radiation-reaction force due to a tim
varying current quadrupole is given by the expression

Fa
GR5k

16

45

G

c7
~2v je jalxmSlm

(5)1v je jklxkSla
(5)2v jeaklxkSl j

(5)

2eaklxkxmSlm
(6)!, ~17!

see Blanchet@13#, and Eq.~20! of Rezzollaet al. @14#. Here
Sjk

(n) represents thenth time derivative of the current quadru
pole tensor,

Sjk5E r~xW3vW !( j xk) d3x; ~18!

e jkl is the totally antisymmetric tensor, and the vectorxk
represents the Cartesian coordinates of the point at which
force is evaluated. The parameterk that appears in Eq.~17!
has the valuek51 in general relativity. For reasons dis
cussed below, we find it useful to consider other values ok
in our numerical simulations.

We find that a straightforward application of Eq.~17! in
numerical evolutions is nearly impossible. There are t
problems: first, it is very hard to evaluate reliably time d
rivatives of such a high order; second, various sources
numerical noise~even small errors in the initial equilibrium
configuration of the fluid, and the numerical drift of the ce
08403
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ter of mass! can generate contributions to the current qua
rupole tensor that overwhelm those of the purer-mode mo-
tion. So we need to introduce special numerical techniq
and simplifications to overcome these problems.

In order to reduce the influence of extraneous no
sources on the evolution, it is helpful to re-express the c
rent quadrupole tensor in terms of the current multipole m
ments defined in Eq.~8!. There is a one-to-one correspo
dence between theJ2m current multipoles andSi j :

Syy2Sxx12iSxy5A16p

5
J22, ~19!

Sxz2 iSyz5A4p

5
J21, ~20!

Sxx1Syy52Szz5A8p

15
J20. ~21!

In a slowly rotating star, them52 r-mode excitesJ22, but
not J21 andJ20. In contrast, the principal sources of nume
cal noise contribute primarily toJ20. Thus, we evaluate only
theJ22 contribution toFW GR: we use Eq.~17! to evaluateFW GR,
taking theSi j determined from Eqs.~19!–~21!, but setting
J215J2050. We find that this scheme reduces considera
the numerical noise in the radiation reaction force, and
produces faithfully the analytical description ofr-modes in
slowly rotating stars~see Sec. IV!.

The second major problem is evaluating the numeri
time derivatives ofSjk , or equivalently the time derivative
of J22. Whenever the radiation-reaction time scale is mu
longer than ther-mode period 2p/v, the dominant contribu-
tion to the derivativesSjk

(n) comes from terms proportional t
powers of ther-mode frequency:

Sjk
(n)'~ iv!nSjk , J22

(n)'~ iv!nJ22. ~22!

Even when ther-mode amplitude becomes large, the expr
sion ~22! will be accurate as long as the time scale for t
evolution ofa andv is longer than 2p/v. Now, J22 andJ22

(1)

are easily evaluated using the integral expressions in Eqs~8!
and ~12!; thus, the time derivatives needed in Eq.~17! are
given simply byJ22

(5)5v4J22
(1) andJ22

(6)52v6J22, where we
determinev numerically using Eq.~11!. In the Appendix, we
present explicit expressions for the components of the ef
tive radiation-reaction force in cylindrical coordinates.

IV. CALIBRATION RUNS

In order to test the accuracy of our hydrodynamic evo
tion code and of our approximations for the gravitation
radiation-reaction force, we investigate the evolution o
small-amplituder-mode in a slowly rotating star.

We provide initial data for this study by solving the time
independent fluid equations for a slowly, rigidly rotating ste
lar model. We model the neutron star as ann51 polytrope,
generated by the self consistent field technique develope
Hachisu@15#. Table I shows the physical parameters for th
9-3
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LEE LINDBLOM, JOEL E. TOHLINE, AND MICHELE VALLISNERI PHYSICAL REVIEW D 65 084039
model, labeledSlow; in particular, the ratio of rotational ki-
netic energy to gravitational binding energy isTrot /uWu
50.00398, and the angular velocity is 26% of the maxim

possible value~estimated asVmax5
2
3
ApGr̄).

We then adjust the velocity field of this equilibrium mod
by adding the velocity perturbation of anm52 r-mode of
amplitudea0:

vW 5ÃV0eW ŵ1a0RV0S r

RD 2

Re~YW 22
B !. ~23!

In the Appendix, we write out explicitly the components
this initial velocity field in our cylindrical coordinate system
Because Eq.~23! is the exact representation of a purem
52 r-mode only in the small-amplitude, small-rotation lim
we expect that the frequency and the amplitude measure
our numerical experiment using Eqs.~9!–~11! will be differ-
ent from their theoretical valuesa0 and2 4

3 V0 by terms of
orderO(a2), andO(V2/Vmax

2 ).
We perform two numerical integrations of the equatio

of motion, for this slowly rotating initial configuration. In th
first run ~C1!, we let the star evolve under purely Newtonia
hydrodynamics, setting the strengthk of the radiation reac-
tion ~17! to zero. In the second run~C2!, we force the mode
by settingk.63107. With this unphysically large value th
amplitude of ther-mode grows appreciably within a tim
that we can conveniently follow numerically.~The Courant
limit for the evolution time step is set by the speed of sou
in the fluid, and by the size of the grid cells; forV0
50.26Vmax, one complete rotation of the star takes abo
70000 time steps.!

Figure 1 illustrates the evolution of the mode amplitudea
in runs C1 and C2, as a function oft/P0, where P0
52p/V0 is the initial rotation period of the star. The sol
curves trace the numerical evolution ofa @as defined in Eq.
~9!#, whereas the dashed curves trace the theoretical pre
tions for this evolution, obtained in the small-amplitud
slow-rotation limit @3#.

TABLE I. Physical parameters for the equilibrium models.

Parameter Symbol Slow Fast
C1, C2 C3-C8

polytropic index n 1 1
total mass M 1.4M ( 1.4M (

equatorial radius Req 12.7 km 18.4 km
polar R/equatorial R Rpol /Req 0.98 0.59
nonrotating R R0 12.5 km 12.5 km
angular velocity V0 1.45 krad/s 5.34 krad/s
rotation period P0 4.32 ms 1.18 ms
energy ratio Trot /uWu 3.9831023 0.10072
simulation RR time scale tRR

(s) 0.459P0 9.4374P0

physical RR time scale tRR
(p) 2.83107P0 4.23104P0

aR0 is the radius of the nonrotating star of the same mass. Fon
51 polytropesR05ApK/2G @16# whereK is the polytropic con-
stant.
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Whenk50, the theoretical prediction for the evolution o
the amplitude is justa5a0, and we can verify that the nu
merical evolution tracks the analytical curve within the e
pected deviations of ordera2. When kÞ0, the analytical
prediction for the evolution of the amplitude is

a5a0et/tGR, ~24!

where the radiation-reaction time scale is given by@3#

1

tGR
52pS 256

405D
2

k
G

c7
J̃MR4V0

6 . ~25!

For this model,tGR50.46P0. As we can see in Fig. 1, the
numerical evolution tracks the small-amplitude, slo
rotation analytical result within the expected accuracy, ev
if the radiation-reaction force is so unphysically strong.

Although this slow rotation numerical evolution was on
carried out over a small fraction~0.2! of a rotation period
~and therefore over a small fraction of ther-mode oscillation
period!, the evolution extended for about 7.3 dynamic
times and 4.6 sound-crossing times.

In Figs. 2 and 3, we display two additional diagnostics
the undriven (k50) slow-rotation evolution~C1!. In Fig. 2
we plot the real and imaginary parts of the current multip
momentJ22: the solid curves trace the numerical evolutio
whereas the dashed curves trace the analytical expressi

FIG. 1. Evolution of ther-mode amplitude in a slowly rotating
star. The solid curves plot the results of numerical evolutions~with
and without gravitational radiation reaction! while the dashed
curves plot the analytical predictions. For the curves mark
‘‘free,’’ k50; for the curves marked ‘‘forced,’’k.63107.

FIG. 2. Real and imaginary parts of the current multipole m
mentJ22 ~in arbitrary units!, for a slowly rotating star evolved with-
out gravitational radiation reaction~run C1!. The solid curves trace
the numerical evolutions, the dashed curves trace the analytical
dictions.
9-4
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NUMERICAL EVOLUTIONS OF NONLINEAR r-MODES . . . PHYSICAL REVIEW D 65 084039
J225
1

2
aMR3J̃V0eivt. ~26!

Again the deviations are within the expected accuracy of
analytical results. The deviations appear to be caused by
excitation of modes other than the purem52 r-mode; the
spurious excitations appear because the initial data@Eq. ~23!#
are only accurate to first order ina. Figure 3 depicts the
evolution of the frequencyv @as defined in Eq.~11!#. The
deviations from the analytical result,v052 4

3 V0, are within
the expected accuracy. The magnified scale used to displv
in Fig. 3 makes the presence of the small-amplitude, sh
period extraneous modes quite apparent.

V. EVALUATING THE SATURATION AMPLITUDE

In our production runs, we investigate the nonlinear b
havior of ther-mode in a rapidly rotating stellar model, un
der a variety of physical conditions~different initial ampli-
tudes, and different values for the radiation-react
coefficientk).

Again, we provide initial data by solving the time
independent fluid equations for ann51 polytrope. The
physical parameters for this model, labeledFast, are reported
in Table I; in particular, the ratio of rotational kinetic energ
to gravitational binding energy isTrot /uWu50.10072, and the
angular velocity is 95% of its maximum value.

We perform a numerical integration of the equations
motion starting from the rapidly rotating initial configura
tion, Fast, using Eq. ~23! to add a slow-rotation, small
amplituder-mode field, witha050.1. Because the radiation
reaction force is so much stronger for this model~it is
proportional tov6}V6), we find that we can setk54487,
which yields an r-mode growth timetRR

(s)59.43P0. This
choice of k is still much larger than its physical valu
~unity!, but it should yield a reasonable picture of the no
linear evolution of ther-mode, if the time scales for all th
relevant hydrodynamical processes~including nonlinear cou-
plings to other modes! are comparable toP0, or shorter. In-
deed, if the average sound-crossing timetS is representative
of the relevant hydrodynamical time scales, then our con
tion is satisfied: a rough estimate givestS5R0 / c̄S.0.16P0

.tRR
(s) /60, where we have approximatedc̄S as the average

speed of sound in the equivalent spherical polytrope.

FIG. 3. Frequency of them52 r-mode, for a slowly rotating
star evolved without gravitational radiation reaction~run C1!. The
solid curve is determined numerically from Eq.~11!. For compari-
son, the dashed line shows the analytical valuev052

4
3 V0.
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A. Evolution of the r-mode amplitude

We follow the evolution throught533P0. Because the
rotation of the star is progressively reduced by radiation
action, and because the star develops differential rotation
the end of the evolution the star has performed,on the aver-
age, only about 31 rotations@we obtain this number from
*V̄dt/(2p)#. In Fig. 4 we plot the numerically determine
evolution of ReJ22: the curve is a very smooth sinusoid
whose frequency is essentially constant, and whose enve
is determined by the~relatively slow! evolution of the
r-mode amplitude. So the approximations used to computv
andJ22

(n) ~discussed in Sec. III! are in fact quite good in this
situation.

In Fig. 5 we plot the numerical evolution of ther-mode
amplitudea. At the beginning of the evolution, the com
puted diagnostica agrees with the theoretical valuea0 to ;
10%, within the expected accuracy. The growth is expon
tial ~as predicted by perturbation theory! until a'1.8. Then
some nonlinear process begins to limit the growth, until
amplitude peaks ata53.35 and then falls rapidly within a
few rotation periods. After this ther-mode is effectively not
excited.

B. A mechanism for r-mode saturation

What nonlinear process is responsible for the behavio
the r-mode amplitude? What causes the mode to saturate
disappear from the star? To answer these questions, we s
the evolution of the total mass, total angular momentum,
total kinetic energy of the star, which are plotted in Fig. 6

Because the mass is constant, the damping of ther-mode
cannot be caused by ejection of matter from the simulat

FIG. 4. Numerical evolution of ReJ22 ~arbitrary units! for a
rapidly rotating star driven by gravitational radiation reaction~pro-
duction run C3!. The sinusoidal approximation, used to computev
andJ22

(n) , is evidently appropriate for this run.

FIG. 5. Numerical evolution of ther-mode amplitudea in pro-
duction run C3.
9-5
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LEE LINDBLOM, JOEL E. TOHLINE, AND MICHELE VALLISNERI PHYSICAL REVIEW D 65 084039
grid. On the other hand, we expect that the star should
energy and angular momentum as it radiates gravitatio
radiation in accord with the prediction of general relativ
@14,17#:

S dE

dt D
J22

5
uvu
2 S dJ

dt D
J22

52
128p

225

G

c7
kv6uJ22u2. ~27!

The evolution of the angular momentum mirrors this eq
tion quite closely~within a few percent!; for energy, how-
ever, Eq.~27! is only accurate until shortly after the cat
strophic fall of ther-mode amplitude~at t.28P0; see Fig.
7!. Before that time, the star loses about 40% of its init
angular momentum and 36% of its initial kinetic energy. A
ter that time, the amplitude and~therefore! the radiation-
reaction force are much reduced, soJ becomes essentiall
constant; however, the kinetic energy continues to decre
losing an additional 12% of its initial value during the ne
three rotation periods.

If the r-mode were damped by a hydrodynamical proc
that conserved energy, such as the transfer of energy to o
modes, then Eq.~27! should portray accurately the evolutio
of the kinetic energy. But this is not what we see: inste
somepurely hydrodynamicprocess continues to decrease t
energy~by a sizable amount! after the gravitational-radiation
losses become negligible.

We believe that we have identified this process. To fi
order in the amplitude, ther-mode is only avelocitymode; to
second order, however, there is also an associated de
perturbation, proportional toY32, which appears as a wav

FIG. 6. Evolution of total mass, total angular momentum, a
total kinetic energy in production run C3. The quantities are plot
as fractions of their initial value.

FIG. 7. Theoretical and numerical evolution of the total ene
for production run C3. The total energy is plotted in units of t
initial rotational energy~because the system is bound,Etot must be
negative!.
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with four crests~two in each hemisphere! on the surface of
the star.~We will present a quantitative analysis later in th
section.! As the amplitude reaches its maximum, these cre
become large, breaking waves: the edges of the waves
velop strong shocks that dump kinetic energy into therm
energy. In doing so they damp ther-mode. Figure 8 illus-
trates the surface waves att528P0 and t529P0 along se-
lected meridional slices.

Our code is written in such a way that the evolution of t
shocks is alwayskinematicallycorrect. In particular, the con
tinuity equation ensures that mass is properly conserved,
that the proper density jump occurs across the shocks;
the Euler equation ensures that momentum is properly c
served, and that the proper pre- and post-shock veloc
arise. However, our code does not allow the energy di
pated in the shock to increase the entropy of the fluid, wh
remains always barotropic and isentropic. Consequently,
presence of shocks shows up as a decrease in the total e
of the star. Indeed, in this production run~C3! gravitational
radiation reduces thetotal energy by 9% of its initial magni-
tude throught528P0, and dissipation in shocks subtracts
further 3% in the last three rotations.~For comparison, 12%
of the initial kinetic energy is lost in the last three rotatio
compared to 36% before that time.!

Ignoring the thermal effects of shocks is useful to redu
the computational burden and the complexity of the hyd
dynamic code, and it is in fact a fairly reasonable appro
mation for neutron star matter, where the pressure co
mostly from the Fermi pressure of the degenerate neutr
so the equation of state can be effectively modeled
temperature-independent.

C. Radial structure of the r-mode amplitude

We define the radial amplitude densitya(r ) ~where r is
the spherical radius! by expressing the integral Eq.~8! for
J22 in spherical coordinates, and omitting the radial integ
tion:

a~r !eif(r )5
2

J̃MR2V0
E rr 2vW •YW 22

B* r 2 sinu du dw.

~28!

We removed the absolute value around the integral forJ22 so
that we can keep track of the local mode phasef(r ). With
this definition, aexp@if#5*a(r)exp@if(r)#dr/R, where f is
the global phase of ther-mode.

d
d

y

FIG. 8. Isodensity surfaces showing breaking waves near
end of production run C3.
9-6
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The amplitudea(r ) is plotted in Fig. 9 for the production
run C3 at the timet522.5P0. Throughout the entire evolu
tion, the mode is concentrated mostly between the sphe
radii r 50.5R and 0.9R, and the shape ofa(r ) is fitted rea-
sonably well by takingdv}(r /R)2 @see Eq.~5!# and r
}(sinpr/R)/(pr/R) as appropriate for a spherical,n51 poly-
trope.

It is also interesting to study the phase coherence of
r-mode, which we define as

~Df!25

E a~r !ueif(r )2eifu2 dr

E a~r !dr

. ~29!

Figure 10 plots the evolution ofDf, which is small until the
r-mode saturates att'26P0. For Df'1, the local phase
f(r ) spans approximately 2p: the mode has lost coherenc
completely. In this situation, there are large regions in
star where the radiation-reaction force pushes out of ph
with the local mode oscillations; this mismatch accelera
the damping of the mode.

D. Evolution of the r-mode frequency

Figure 11 shows the numerical evolution of ther-mode
frequencyv. The evolution ofv is quite smooth when the
amplitude of ther-mode is large; when the amplitude
small ~for t&10P0 and for t*28P0), we see that othe
modes make noticeable contributions toJ22, and therefore to
v. At the beginning of the run, the numericalv matches the
theoretical prediction to within the expected accuracy

FIG. 9. Radial amplitude densitya(r ) of the m52 r-mode for
production run C3 att522.5P0.

FIG. 10. Evolution of the phase-coherence functionDf in pro-
duction run C3.
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about 10%. These values for the frequency are also con
tent with those obtained via a Fourier transform ofJ22 @18#.

Surprisingly, the r-mode frequency remains approx
mately constant throughout the evolution, and it does
follow the decline of the average angular velocityV̄ ~plotted
in Fig. 12!. Altogether, the angular velocity decreases
about 22.5% while the total angular momentum decrease
40%. ~As the star spins down, it becomes less flattened,
the change in the moment of inertia accounts for the diff
ence between the decrease ofJ and that ofV̄.! The stability
of the r-mode frequency has important implications for t
possible detection ofr-mode gravity waves~see Sec. IX!.

We also point out that the approximate expressions for
GR reaction force, Eqs.~17!–~22!, that we use here are ac
curate only when the motion of the fluid has nearly sin
soidal time dependence. Figure 11 illustrates that the ev
tion in our simulation remains quite sinusoidal until about
528P0. After this point our expression for the GR reactio
force is not reliable. After this point in our simulation, how
ever, the fluid evolution is dominated by non-linear hydr
dynamic forces including shocks, and the GR reaction fo
is negligible. Thus our inability to model accurately the G
force during the late stages of the evolution does not ef
our results.

E. Growth of differential rotation

During this simulation~run C3!, the average differentia
rotation DV @defined in Eq.~16!# grows to a maximum of
approximately 0.41V̄ ~see Fig. 13!. After a rapid increase in
the first three rotation periods, when the linearr-mode eigen-
function of Eq.~23! evolves into its proper nonlinear, rapid
rotation form,DV/V̄ increases approximately asa0.75 until

FIG. 11. Numerical evolution of ther-mode frequencyv in
production run C3.

FIG. 12. Numerical evolution of the average stellar angular

locity V̄ in production run C3.
9-7
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LEE LINDBLOM, JOEL E. TOHLINE, AND MICHELE VALLISNERI PHYSICAL REVIEW D 65 084039
a.1, and then approximately asa until a begins to satu-
rate. Whena is maximum,DV50.25V̄. As the amplitude
falls, DV continues to grow~even more steeply!, as long as
there is significant gravitational radiation. Aftert528P0 ,
DV decreases to about 80% of its peak value. So the fi
configuration of the star~where the presence of ther-mode is
essentially negligible! still has a very large differential rota
tion.

But we should not concentrate exclusively on the av
aged quantityDV/V̄, which does not capture fully the spa
tial structure of differential rotation. Figure 14 illustrates t
spatial dependence of the azimuthally averaged angular
locity,

V~Ã,z!5
1

2pE V~Ã,z,w!dw, ~30!

at the time when the amplitude is maximum,t525.6P0. The
differential rotation is confined mostly to a thin shell of m
terial near the surface of the star, and is particularly conc
trated near each polar cap. The bulk of the material in
star remains fairly rigidly rotating.

F. Consistency of the radiation-reaction force

In these simulations we have assumed that the only
evant contribution to the radiation reaction force comes fr
the current quadrupole moment, and in particular fromJ22.
However, in the post-Newtonian approximation to gene
relativity, the lowest-order contribution to radiation reacti
comes from the mass quadrupole term, followed by m
octupole and current quadrupole. To verify that our appro
mation is justified for the physical states considered here,

FIG. 13. Numerical evolution of the differential rotationDV in
production run C3.

FIG. 14. Meridional structure of the differential rotation in pr
duction run C3. The plot shows the value of the azimuthally av

aged angular velocityV(Ã,z)/V̄, at timet525.6P0.
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evaluate the additional energy that would have been los
gravitational waves throughout our simulation if we had
cluded the lowest-order mass multipole terms.

The mass multipole momentsQlm are defined by

Qlm5E rr lYlm* d3x. ~31!

In the presence of density oscillations with sinusoidal dep
dences in the coordinatest andw ~i.e., dr lm}eiv lmt1 imw) the
flux of energy into gravitational waves is given by@19,20#

S dE

dt D
Q2m

52
8p

75

G

c5
v2m

6 uQ2mu2, ~32!

S dE

dt D
Q3m

52
8p

6615

G

c7
v3m

8 uQ3mu2, ~33!

whereQ2m and Q3m are, respectively, the mass quadrupo
and mass octupole moments induced by these density
tuations. Contributions of higher order are suppressed
very small fractional coefficients.

Comparing Eqs.~32! and ~33! with Eq. ~27! we find that
the contribution of the density oscillations associated w
the r-mode at frequencyv to the energy flux is negligible
whenever

3c2

16

uQ2mu2

uJ2mu2
!1,

5v2

2352

uQ3mu2

uJ2mu2
!1. ~34!

We find that in our simulation both ratios are of order 1023

before ther-mode saturates~at t.25P0). The strongest con-
tribution to the quadrupole term comes fromQ22, although
the Fourier transform of this moment does not show a
definite frequency of oscillation. The strongest contributi
to the octupole term comes from theY32 dependence of the
density in them52 r-mode~see the next subsection!.

Betweent.25P0 and t.32P0 ~when a is back to its
initial value '0.1) the mass quadrupole term would ha
provided a correction of order 10% to the current quad
pole; although even then we see no evidence of a defi
oscillation frequency correlated to ther-mode. Only aftert
.32P0, when the fluid motion in the star becomes qu
turbulent and ther-mode is very weak, is the gravitationa
radiation generated by the mass multipoles comparable to
radiation fromJ22.

On the whole, we find that our approximation which i
nores the contributions from the mass multipoles is we
justified throughout the more interesting part of the evo
tion.

G. Density oscillations and mode saturation

The evolution of the isodensity surfaces in our neutr
star shows very clearly the presence of the lowest-order
lerian density perturbationdr associated with them52
r-mode. The lowest order expression fordr was derived by
Lindblom, Owen and Morsink@3# in the small-amplitude,

r-
9-8
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NUMERICAL EVOLUTIONS OF NONLINEAR r-MODES . . . PHYSICAL REVIEW D 65 084039
slow-rotation approximation. Solving Eq.~5! of Ref. @3# with
m52 and with polytropic indexn51, and then substituting
dC back into Eq.~4! of Ref. @3#, we get

dr5a0

7p2

15
A2

3

V0
2

G
j 3S pr

R0
DY32~u,w!eivt, ~35!

wherej 3 is the spherical Bessel function. The mass multip
associated with thisdr is

dQ325a0

7p

15
A2

3

V0
2R0

5

G
j 4~p!Y32~u,w!eivt, ~36!

where j 4(p)50.151425.
We study the evolution ofQ32 throughout run C3. We find

thatQ32 ~and therefore the density perturbation with angu
dependence given byY32) is indeed proportional toa, at
least as long as the growth ofa remains exponential; afte
that, Q32 grows more slowly thana, and it reaches a maxi
mum a few rotation periods beforea ~see Fig. 15!. The
phase evolution of the density perturbation is also consis
with expectations: the Fourier transform ofQ32(t) shows a
very definite peak at ther-mode~numerical! frequencyv.

A quantitative check shows that Eq.~36! predicts the ob-
served magnitude ofQ32 with an accuracy of about 50%; thi
error is consistent with the next-order terms (;V4 anda2)
not included in this expression. In the slowly rotating ca
bration model C1, we find thatQ32 is given by Eq.~36! to
within about 1%.

We point out that we do not explicitly include any dens
perturbation in the initial configuration of the star; rather, t
density perturbation is immediately generated by the hyd
dynamic evolution of the fluid as a consequence of the ini
velocity perturbation. The evolution of the amplitude of t
density perturbation amplitude provides more insight into
mechanism that causes ther-mode to saturate: on the surfac
of the star,dr appears as four large wave crests; at a criti
amplitude these crests stop growing, and within a few ro
tion periods they turn into breaking waves that damp
r-mode.

FIG. 15. Numerical evolution of the mass momentQ32 ~solid
line! and of ther-mode amplitudea, in production run C3. The
curve for Q32 was renormalized to emphasize the linear relat
betweena andQ32 during the growth of ther-mode.
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H. Limits on mode-mode coupling

In the numerical evolution~C3! nonlinear hydrodynamic
processes do not prevent the gravitational radiation insta
ity from driving the dimensionless amplitude of ther-mode
to values of order unity. In particular, the energy of t
r-mode is not channeled into other modes by nonlinear
drodynamic coupling until the amplitude of the mode b
comes quite large. It is possible however that the nonlin
processes that would limit the growth of ther-mode act only
on time scales that are longer than our artificially brief sim
lation growth timetRR

(s) , but still shorter than the physica
tRR

(p) .
Can our numerical simulation place any limits at all o

the possibility of nonlinear coupling? We know that in o
simulation the amplitude of ther-mode grows exponentially
until a'2, so the nonlinear interaction with other mod
must be negligible at least until that time. This observat
allows us to set a limit on the strength of the nonlinear co
plings between the modes; and from this limit we can infe
lower limit on the saturation amplitude that may be achiev
when the radiation-reaction coupling is adjusted to its phy
cal value. Of course, the inference is only justified for t
nonlinear interaction of ther-mode with other modes that ar
correctly modeled in our simulation~for instance, the finite
azimuthal resolution of the grid sets an upper limit on them
of the modes that can be resolved!, and with our physical
assumptions~for instance, the buoyantg-modes of realistic
neutron stars will not be present with our choice of the eq
tion of state!.

Our argument is based on the Lagrangian description
the nonlinear evolution of the mode amplitude developed
Schenket al. @8#. In this formalism, the modes interact at th
lowest order by way ofthree-mode couplings: roughly
speaking, quadratic interactions between pairs of mo
drive the evolution of the amplitude of a third mode. Becau
at the beginning of our simulation all modes except t
r-mode have negligible amplitude, we expect that the m
important three-mode nonlinear term might be one t
couples twor-modes to a third mode@8#. Following Ref.@8#
we consider the coupled equations for ther-mode and a ge-
neric modeX obtained in second-order Lagrangian perturb
tion theory:

dcR

dt
1 ivRcR5

cR

tRR
1

ivR

2

kXRR*

eR
cR* cX* , ~37!

dcX

dt
1 ivXcX5

ivX

2

kXRR*

eX
cR* cR* , ~38!

where cR and cX are the complex amplitudes~including
phases! of the modes;vR and vX are their frequencies;eR
and eX are the nonlinear mode energies at unit amplitu
and tRR is the radiation-reactione-folding time of the
r-mode. Finally,kXRR* is the nonlinear interaction energy fo
unit amplitude modes. Schenket al. @8# give expressions for
the kXRR of coupled generic Newtonian modes in rotatin
stars. In writing Eqs.~37! and ~38! we have omitted the
coupling terms proportional tokXXR* , which are forbidden by
9-9
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LEE LINDBLOM, JOEL E. TOHLINE, AND MICHELE VALLISNERI PHYSICAL REVIEW D 65 084039
a z-parity selection rule@8#: ther-mode has oddz-parity, so it
cannot couple quadratically to the modeX.

From our numerical evolution C3, we know that the a
plitude of ther-mode grows very nearly exponentially un
a.2:

cR~ t !.cR~0!e2 ivRt1t/tRR
(s)

, ~39!

where tRR
(s) is the artificially short radiation-reaction tim

scale used in our simulation.~Although it is convenient to
take ucRu.a, our argument still applies as long asucRu is
merely proportional toa.! Therefore, we also know that unt
ucRu.2, the second term on the right side of Eq.~37! is
negligible compared to the first. In this case,

1

tRR
(s)

@U ivR

2

kXRR*

eR
cX* U. ~40!

We now use Eq.~39! to integrate Eq.~38! and computecX :

cX~ t !5cX~0!e2 ivXt

1
ivX

2

kXRR*

eX

@cR* ~ t !#22@cR* ~0!#2e2 ivXt

2ivR1 ivX12/tRR
(s)

. ~41!

Now we setcX(0).0 anducR(t)u@ucR(0)u for the time late
in the simulation whencR.2, and find

ucX~ t !u.UkXRR*

eX
U uvXutRR

(s) ucR* ~ t !u2

2A~tRR
(s)dv!214

, ~42!

wheredv[2vR1vX . We define theresonance indexg (s)

5uvR/vXu@(tRR
(s)dv)214#1/2, whose value is close to unity

g (s).1, when the system is near resonance,dv.0. We use
this bound onucX(t)u in Eq. ~40! to obtain

1

tRR
(s)

@
ukXRR* u2

4eXeR
vR

2tRR
(s)

ucR* ~ t !u2

g~s! . ~43!

We can rewrite this inequality in terms of ther-mode period
PR52p/vR :

F PR

tRR
(s)G 2

@p2
ucR~ t !u2

g~s! UkXRR*

eX
U2eX

eR
. ~44!

We now setucR(t)u52 ~the value at which the evolution o
the amplitude begins to show deviation from exponent!
andPR /tRR

(s)51/10 ~the value for our simulation!, and obtain

UkXRR*

eX
U2eX

eR
!

g~s!

400p2
. ~45!

Thus, our numerical evolution puts a limit on the strength
the coupling between ther-mode and other modes in the sta

We now ask how the saturation amplitude would chan
if the radiation-reaction time scale assumed its phys
valuetRR

(p) instead of the valuetRR
(s) used in our simulation C3
08403
-

l

f

e
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The key to doing this is to realize that Eqs.~37! and ~38!
describe the coupled mode evolution in the physical cas
we just substitutetRR

(p) for tRR
(s) . The modeX is capable of

stopping the unstable growth of ther-mode only when the
magnitude of the second term on the right side of Eq.~37!
becomes comparable to the first. Through an analysis sim
to that which led to Eq.~44!, it is straightforward to find the
following condition on the saturation amplitude of th
r-mode:

F PR

tRR
(p)G 2

.p2
ucR

satu2

g~p! UkXRR*

eX
U2 eX

eR
. ~46!

We now use the upper limit forukXRR* u from Eq. ~45! from
our numerical evolution, to obtain alower limit for the am-
plitude cR

sat at which ther-mode would be saturated in th
physical case:

ucR
satu@20

PR

tRR
(p)
Ag~p!

g~s! . ~47!

Sinceg (p).g (s) this equation yieldsucR
satu@431024 for run

C3. So if the dominant mode-mode coupling is of the fo
given in Eqs.~37! and~38!, our simulation places a relativel
large lower limit on ther-mode saturation amplitude. How
ever, the r-mode could instead be limited byparametric
resonance@21# with a suitable pair of modes~satisfying the
resonance conditionvR1vY1vZ.0). It appears that our
simulation does not provide a very strong lower limit on t
saturation amplitude that could be imposed by this kind
process.

I. Dependence on the grid spacing

We wish to confirm that our standard computational g
can resolve the spatial structure of ther-mode well enough to
give reliable predictions about the saturation amplitude
the mode. For this purpose, we have performed a simula
~run C3*! with the same parameters of run C3, but on a g
with only half the spatial resolution~i.e., 32 cells in the ra-
dial direction, and 64 cells in the axial and azimuthal dire
tions!. Figure 16 compares the evolution ofa in runs C3 and
C3*. The two curves are very similar, but in run C3* sat
ration is reached a bit earlier, att/P0521.4, and at a some
what lower amplitudea52.68. This may be caused by th

FIG. 16. Numerical evolution of ther-mode amplitudea in
low-resolution run C3*~solid curve! and in run C3~dashed curve!.
9-10



rs
i

-
olu
o

po
ic

e
th
nd
u

n
ib
hin
ch
o
ce
n

t

ll
d

.

t
he
ta

os
,
m

m
(

the
n
s
n
zero
.
f

ion

y-
ears
he
he
c-

r
-
on

NUMERICAL EVOLUTIONS OF NONLINEAR r-MODES . . . PHYSICAL REVIEW D 65 084039
larger numerical viscosity that must be present in the coa
grid. The evolution of the other diagnostics is also very sim
lar in the two runs.

Thus, the simulation run~C3*! suggests that the qualita
tive results of our simulations are independent of the res
tion adopted. Ther-mode saturation amplitudes on the tw
grids agree to within about 20%. Interestingly, the extra
lation to the infinite resolution case suggests that the phys
saturation amplitude might be even larger than 3.3.

VI. TESTING THE SATURATION AMPLITUDE

Even in the absence of a saturation mechanism du
mode-mode coupling as described above, it is possible
the saturation amplitude in our simulation might still depe
on the strength of the radiation-reaction force. In our sim
lation we see that ther-mode grows until density waves o
the surface of the star break and form shocks. It is poss
that this occurs just because in our simulation we are pus
the fluid too hard with the radiation-reaction force, mu
harder that it would be in the physical case. To explore h
the evolution depends on the strength of this driving for
we go back to the time in run C3 before any signs of no
linear saturation are seen, whena51.8. We start a new run
~C4! there, increasing the value ofk ~which determines the
strength of the radiation-reaction force! to 5967~1.33 times
its value in run C3!. The new growth time scale is abou
7.5P0. ~Undoubtedly, a test withk!4487 would have been
more compelling; but our evolutions are so computationa
expensive that we were forced to increase rather than
crease the strength of the driving force.!

In a separate run~C5!, we test the influence of thehistory
of the evolution of ther-mode on its saturation amplitude
Namely, we ask if anr-mode that started out as thelinear
initial data of Eq.~23!, with a very large amplitude, would
evolve much differently from anr-mode that started ou
small and was built up gradually to large amplitude by t
radiation reaction force. To answer this question, we s
with theFastequilibrium model, and we add a linearr-mode
velocity field with a051.8. For this run we keepk54497.

Figures 17, 18, and 19 show the evolution of the diagn
tic parametersa, v and DV for runs C3-C5. As expected
the r-mode does grow faster in run C4, but its maximu
value is essentially the same~the maximuma53.338 att
524.12P0) as in run C3. In this run, ther-mode amplitude
increases froma51.8 to a53.338 within a timeDt.6P0

FIG. 17. Numerical evolution of ther-mode amplitudea in
production runs C3-C5.
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~compared toDt.8P0 in run C3! as would be expected
given that the driving force is43 times that of run C3.

In run C5, the growth of ther-mode is initially slower
than in run C3, as the linearr-mode velocity field evolves
toward its correct nonlinear form. Eventually its maximu
occurs at essentially the same amplitude as beforea
53.337). Figures 17 and 18 show that during run C5a and
v undergo short-period oscillations; this happens because
initial velocity field is only a small-amplitude approximatio
to the real m52 r-mode eigenfunction. So other spuriou
modes with fairly large amplitude are excited initially in ru
C5. Note that these extraneous modes must make non
contributions toJ22 if they are to show up in our diagnostics
Here the extraneous modes cause a rapid modulation oa
andv with a dominant period of about 0.5P0. Finally, it is
interesting to consider the evolution ofDV ~Fig. 19!, which
is very similar in the three runs.

These runs provide limited evidence that the saturat
amplitude of ther-mode does not depend~strongly! on our
artificially large radiation reaction force. The nonlinear h
drodynamical process that leads to shock formation app
to be triggered by attaining a certain critical amplitude of t
r-mode, with little dependence on the strength of t
radiation-reaction force. Thus if no mode-mode coupling o
curs on time scales longer than our unphysically shorttRR

(s) ,
then our results suggest that the maximum amplitudea'3 is
a reasonable guess for the physical case (k51) as well.

VII. FREE EVOLUTION

Stergioulas and Font@7# have also studied the nonlinea
evolution ofr-mode initial data, but using relativistic hydro
dynamics in a fixed background geometry. In their evoluti

FIG. 18. Numerical evolution of ther-mode frequencyv in
production runs C3-C5.

FIG. 19. Numerical evolution of the differential rotationDV in
production runs C3-C5.
9-11



o
he
ea

s
od
e

de
m
nt

o
a

u

ith
we

dl
te
e
s

o
o

ub

the

ests

ad-
d

-

es.
g
ri-

the
,

ose
. 22

x-

our

n

ata
is
s.

e to
ry

ren-

ity
the
y
r

LEE LINDBLOM, JOEL E. TOHLINE, AND MICHELE VALLISNERI PHYSICAL REVIEW D 65 084039
using this relativistic Cowling approximation, the gravita-
tional interactions of the mode with itself and with the rest
the star are neglected. The principal difference between t
model and ours therefore is that theirs has no radiation r
tion, and nor-mode growth.

Stergioulas and Font find that, for an initialr-mode am-
plitude a051.0, no significant suppression of the mode i
observed during 13 rotation periods. They define their m
amplitude using a post-Newtonian expression for the eig
function that differs from our Eq.~23! except in the Newton-
ian limit. And their method of evaluating the mode amplitu
numerically also differs from ours. They read the mode a
plitude from the value of the fluid’s velocity at a single poi
within the star, while we definea in terms of integrals over
the entire star. In the slow-rotation Newtonian limit our tw
definitions agree. Stergioulas and Font observe that the
plitude of the velocity oscillations~shown in Fig. 2 of Ref.
@7#! decrease by about 50% during the course of their sim
lation, an effect that they attribute to numerical viscosity@7#.
In order to compare our own simulations more directly w
theirs, we performed a series of evolutions in which
turned off the radiation-reaction force by settingk50.

In production runs C6 and C7, we augment our rapi
rotating equilibrium configuration with the approxima
r-mode velocity field of Eq.~23!. For run C6, we choose th
initial a0 so thata @as measured by our numerical diagno
tic, Eq. ~9!# is initially 1.8: the value at which we start t
observe deviations from exponential growth in run C3. F
run C7, we choosea0 so that the initiala is 1.0, in order to
make a direct comparison with Stergioulas’ and Font’s p
lished results. We have evolved these systems through
spectively 11 and 7 initial rotation periods~several hydrody-

FIG. 20. Numerical evolution of ther-mode amplitudea in
production runs C6-C8.

FIG. 21. Numerical evolution of ther-mode frequencyv in
production runs C6 and C7.
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namical time scales, according to our rough estimate of
speed of sound for the rapidly rotating model!.

We plot the evolution ofa andv for these simulations in
Figs. 20 and 21. The wavy appearance of the curves sugg
that, by using the linear eigenfunction, Eq.~23!, for ampli-
tudes of order unity, we have excited spurious modes in
dition to the basicm52 r-mode. We have already observe
this behavior in run C5. The rapid modulation ofa and v
has a period of about 0.5P0, and the amplitude of the modu
lation is smaller for run C7.@This is reasonable: for lowera
we expect the approximate expression, Eq.~23!, to be more
accurate and so to excite smaller amplitude spurious mod#

In both runs,a loses about 20% of its initial value durin
the first four rotation periods. In the next few rotation pe
ods, however, the average value ofa remains unchanged
~although in run C6 we can see a further modulation of
amplitude with a period of about 8P0). Throughout the runs
the r-mode frequencyv oscillates aroundv521.12V0,
consistent with its value in run C3 for the same value ofa
~i.e., 1.44!. As the run is started, the differential rotationDV
~which is zero in the initial, rigidly rotating star! increases
almost immediately to values that are consistent with th
observed in run C3 for the same amplitude; compare Figs
and 13. Asa decreases,DV decreases consistently.~In run
C7, DV settles to a value slightly higher than what we e
pected from its value in run C3 whena50.82; but we did
not run this evolution as far as run C6, so at the end of
simulation the value ofDV might still be evolving.!

Finally, we study the free nonlinear evolution of a
r-mode that wasgrown to the amplitudea51. To do so, we
go back to the time in run C3 whena51, and start a new
run ~C8! using the C3 data at this time. We evolve these d
settingk to zero in the subsequent evolution. We follow th
evolution through an additional 15.4 initial rotation period
During this time the mode amplitudea is essentially con-
stant, see Fig. 20, except for a slow secular decline du
numerical viscosity at 0.23%/revolution, and a few ve
small amplitude oscillations. Ther-mode frequency is quite
constant, and the phase coherence function, and the diffe
tial rotationDV also remain quite small in this case~see Fig.
22!. The r-mode amplitude in run C3 remains above un
for 14.3 rotation periods, so run C8 demonstrates that
LSU hydrodynamic code@9,10# used here reliably and stabl
evolves large amplituder-modes in rapidly rotating stars fo
the duration of our simulations.

FIG. 22. Numerical evolution of the differential rotationDV in
production runs C6-C8.
9-12
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Comparing runs C6, C7, and C8, we infer that the stro
decrease in the amplitude observed in runs C6 and C7 oc
as nonlinear hydrodynamics reorganizes the initial lin
r-mode velocity field to the correct nonlinear form for am
plitudes of order unity. After the reorganization is comple
~within a few rotation periods!, a decreases only because
numerical viscosity.~In run C5, this same phenomeno
caused the slower growth of the amplitude compared to
C3.! By contrast, the small decrease in run C8 appears to
caused entirely by numerical viscosity.

Altogether, we find that our results are compatible w
those of Stergioulas and Font@7#: no nonlinear saturation
effect is evident in the free nonlinear evolution ofr-modes,
at least for amplitudes of order unity.

VIII. REPEATED SPINDOWN EPISODES?

The first attempt to analyze the nonlinear evolution
r-modes by Owenet al. @5# was based on a simple two
parameter model consisting of a rotating star with angu
velocity V and its r-mode with amplitudea. Using this
model the mode was found to grow exponentially until
reached some maximum levelamax, where it was assumed t
remain saturated. Energy and angular momentum were
pected to be removed from the star by gravitational radia
during this saturation phase until ther-mode regained stabil
ity ~because of increased internal dissipation brought ab
by cooling or because the angular momentum of the star
reduced to a very low level!. In this initial picture gravita-
tional radiation was expected to spin down the star o
timescale of about one year. The radiation emitted was
pected to sweep down in frequency from43 times the initial
angular velocity of the star to43 times its final value: ranging
from perhaps 1 kHz initially to perhaps 100 Hz.

Our simulations suggest a very different picture. We fi
that, once the amplitude of ther-mode reachesamax, it is
quickly reduced by the action of the breaking waves a
shocks, instead of remaining saturated at this value for a v
long time. At the end of our simulation the star still has 60
of its initial angular momentum, and its average angular
locity is 77.5% ofV0. Thus the star is left rotating relativel
rapidly, leaving open the possibility of subsequent episo
of r-mode instability and spindown.

To investigate this possibility, we extend run C4, evolvi
our star for 13 more initial rotation periods aftera has gone
back to its initial value~0.1!, or ~equivalently! for nine peri-

FIG. 23. Numerical evolution of ther-mode amplitudea in the
extended run C4.
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ods aftera reaches its minimum (;0.01). The evolution of
the amplitude for this case is plotted in Fig. 23. Aftert
533P0, the fluid motion is quite turbulent, but we see n
sign thata is starting to grow again. The evolution of th
r-mode frequency~Fig. 24! is also erratic, probably becaus
here the sinusoidal approximation begins to fail@remember
that v is approximated as2(1/J22)duJ22u/dt#. In fact, after
t533P0 we have found it necessary to impose anad hoc
limit on the value of v; otherwise v grows to about
217V0, and the radiation-reaction force~proportional to
v6) becomes huge, pushing the fluid to superluminal velo
ties.

Nine periods should be more than enough to see a sec
r-mode growth episode, if it occurs at all. Although at t
end of the simulation the average angular velocity of the s
is lower thanV0, the growth time scale is determined by th
r-mode frequency, which is even higher than at the beginn
of the run. What keeps ther-mode then from resuming its
growth?

One hypothesis is that because of its strong differen
rotation the post-spindown configuration of the star is o
which stabilizes ther-mode. The value ofDV for the last
few periods is plotted in Fig. 25. The increase ofDV ob-
served betweent532P0 andt536P0 is not caused by radia
tion reaction, but by a global, energy-conservative reorga
zation of the fluid. At the end of this process, the spa
structure of differential rotation is very different from what
was atamax: compare Fig. 14 (t525.6P0 in run C3! with
Fig. 26 (t542P0 in run C4!. The latter plot shows a star tha
is rotating on cylinders~except for the outer layer!, with
V(Ã,z) almost proportional toÃ.

Karino et al. @22# derived linearized structure equation
for the r-modes of differentially rotating Newtonian star
When differential rotation is so strong thatcorotation points

FIG. 24. Numerical evolution of ther-mode frequencyv in the
extended run C4.

FIG. 25. Differential rotationDV through the extended run C4
9-13
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appear @that is, when there exists aÃ such that v
1mV(Ã)50#, the mode equations go singular.@The pres-
ence of a corotation point at the cylindrical radiusÃ means
that the velocity pattern of the mode appears to stand sti
the frame rotating with angular velocityV(Ã).# A compari-
son of the differential rotation of Fig. 26 with the value ofv
suggests the presence of corotation points in the final c
figuration of our star. By itself, however, the singularity
the linearized mode equations does not necessarily mean
r-modes are impossible.

A second, probably more likely possibility is that, in th
very noisy environment manifest in Figs. 23 and 24,
growing r-mode is unable to get locked in phase with t
approximate expression for the driving force that we u
here. The actual radiation reaction force@Eq. ~17!# is a func-
tion of the frequency of ther-mode. Since we do not know
exactly what this frequency is, we use the expression
~11! to approximate it. This approximation works extreme
well as long as ther-mode makes the dominant contributio
to J22

(1) ; yet, in the turbulent post-spindown environment, t
r-mode no longer dominates the evolution ofJ22. Hence, our
expression for the gravitational radiation reaction force is
longer correct: it fails to maintain phase coherence with
r-mode and so prevents the growth of the mode.

If the r-mode really does not exist in the chaotic po
spindown environment, then it will be necessary to wait
viscosity to damp differential rotation before ther-mode can
grow again. However, viscosity might be unable to do t
before the star cools so much that ther-mode is stabilized
~either because the star forms a crust or because visc
itself has grown too strong!. This possibility is worrisome,
because the same environmental conditions~strong differen-
tial rotation and generalized noise! that characterize the en
of run C4 are likely to occur in the young supernova re
nants wherer-modes are expected to arise in nature. Still,
think it more likely that the absence of a second grow
episode in our simulation is the result of our expression

FIG. 26. Meridional structure of differential rotation at the e
of production run C4. This contour plot shows level contours for

value of the azimuthally averaged angular velocityV(Ã,z)/V̄, at
time t542P0.
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the radiation reaction force, which is too simple for this ch
otic situation.

IX. CONCLUSIONS

We have completed a series of numerical 3D hydro
namical simulations of the nonlinear evolution of the G
driven instability in ther-modes of rotating neutron stars. W
have verified that the current-quadrupole GR reaction fo
implemented in our code is accurate by reproducing the a
lytical predictions~for slowly rotating stars! with our full 3D
numerical integration code. In our simulations, the amplitu
of the (m52) r-mode is driven to a value of about thre
before nonlinear hydrodynamic forces stop its growth by
formation of shocks and breaking surface waves. We sho
that the value of this maximum amplitude is insensitive
the strength of the GR driving force by repeating the sim
lation for different strengths and different initial fluid con
figurations. We also repeated our simulation using a coa
numerical grid to verify the robustness of our results~the
maximum mode amplitude changes only by about 20% w
the number of grid points is reduced by a factor of 8!, and to
show in particular that numerical viscosity is not playing
critical role in our simulations.

In our simulation we have artificially increased th
strength of the GR reaction force in order to reduce the pr
lem to one that can be studied with the available compu
resources. We have shown, however, that the results of
simulation can be used to infer limits on the real physi
problem as well. We used the results of our simulations
derive a lower limit of a few times 1024 on the saturation
amplitude of ther-mode in a real neutron star due to possib
~but unseen! nonlinear mode-mode couplings. This low
limit applies to couplings with modes that are well describ
by our simulation: that is, the modes of a barotropic flu
with spatial structures larger than about 2% of the radius
the star.

Recent analysis of the effects of magnetic fields@23#, and
exotic forms of bulk viscosity@4# suggest that ther-mode
instability may not play as important a role in astrophysic
situations as was once thought. However, the consider
uncertainty that exists about both the macroscopic and
croscopic states of a neutron star makes it impossible at
present time to conclude that ther-mode instability plays no
astrophysical role. Thus it seems reasonable to us that s
effort be put into gravitational wave searches forr-mode
signals having forms qualitatively similar to those predict
by simulations such as this.
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APPENDIX: USEFUL EXPRESSIONS
IN CYLINDRICAL COORDINATES

In this appendix we give explicit expressions in cylind
cal coordinates (Ã,z,w) for a number of useful quantitie
used in our simulations. The components of the init
r-mode velocity field used in our numerical evolutions ar

vÃ5a0A 5

16p

V0

R
zÃ sin 2w, ~A1!

vz52a0A 5

16p

V0

R
Ã2 sin 2w, ~A2!

and

v ŵ5V0Ã1a0A 5

16p

V0

R
zÃ cos 2w. ~A3!

We refer the azimuthal component of the velocity to the
thonormal coordinateŵ, so thatv ŵ and v ŵ have the same
numerical value and we can use them interchangeably.

The integrals that determineJ22 and its first time deriva-
tive J22

(1) are

J225A 5

16pE re22iw@zv ŵ1 i ~zvÃ2Ãvz!#Ã
2 dÃ dz dw,

~A4!
tt.

o,

I.

lf-

08403
P
s

l

-

and

J22
(1)5A 5

16pE re22iw@T11 iT2#Ã dÃ dz dw, ~A5!

where

T1[2zvÃv ŵ2Ãvzv ŵ2z
]F

]w
, ~A6!

T2[z~vÃ
2 2v ŵ

2
!2ÃvÃvz1Ã2

]F

]z
2zÃ

]F

]Ã
. ~A7!

The components of the radiation-reaction force in cyl
drical coordinates are obtained from Eq.~17! by expressing
the current multipole tensorSjk in terms of the current mul-
tipole momentsJ2m via Eqs.~19!–~21!:

Fz
GR52k

16

45
A4p

5

G

c7
rÃ

3Im$e2iw@3~vÃ1 iv ŵ!J22
(5)1ÃJ22

(6)#%, ~A8!

and

F ŵ
GR

2 iF Ã
GR5k

16

45
A4p

5

G

c7
rÃe2iw@3vzJ22

(5)1zJ22
(6)#,

~A9!

wherek51 in general relativity theory. The fifth and sixt
time derivatives ofJ22 are obtained asJ22

(5)5v4J22
(1) , and

J22
(6)52v6J22.
.L.
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