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Numerical evolutions of nonlinear r-modes in neutron stars
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Nonlinear evolution of the gravitational radiatiéBR) driven instability in ther-modes of neutron stars is
studied by full numerical 3D hydrodynamical simulations. The growth ofrtheode instability is found to be
limited by the formation of shocks and breaking waves when the dimensionless amplitude of the mode grows
to about three in value. This maximum mode amplitude is shown by numerical tests to be rather insensitive to
the strength of the GR driving force. Upper limits on the strengths of possible nonlinear mode-mode coupling
are inferred. Previously unpublished details of the numerical techniques used are presented, and the results of
numerous calibration runs are discussed.
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[. INTRODUCTION growth ofr-modes to very small values. This could happen,
for instance, if the-modes were to leak energy by nonlinear
In recent years the gravitational radiati@®R) driven in-  coupling into other modes faster than GR reaction could re-
stability in ther-modes of rotating neutron stars has receivedstore it. In this case themode instability would not be play
considerable interest, both as a source of gravitational waveany interesting role in real astrophysical systems.
for detectors such as the Laser Interferometer Gravitational In a previous pap€l6], we presented the preliminary re-
Wave ObservatoryLIGO), and as an astrophysical processsults of fully nonlinear, three-dimensional numerical simula-
capable of limiting the rotation rates of neutron stars. In anytions aimed at investigating the growth pimodes. In our
rotating star, the-modes are driven towards instability by simulations, we modeled a young neutron star as a rapidly
GR[1,2]: as the star emits gravity wav@srimarily through  rotating, isentropic, Newtonian polytrope; we added a small-
a gravitomagnetic effegtthe GR reaction acts back on the amplitude seed-mode and we solved the hydrodynamic
fluid by lowering the(already negativeangular momentum equations driven by an effective GR reaction force. We found
of the mode. This in turn causes the amplitude of the mode tthat r-mode saturation intervenes at amplitudes far larger
grow. In most stars internal dissipation suppresses théan expected+3), supporting the astrophysical relevance
r-mode instability, but this may not be the case for hot, rap-of r-modes and the possibility of detectimgmode gravity
idly rotating neutron starf3,4]. For neutron stars with mil- waves. The details of the GR signature emitted by the
lisecond rotation periods, the time scale for the growth of the-mode instability that we observe in our simulations are
instability is about 40 s. In the absence of any limiting pro-rather different than previously envisioned, and these details
cess, GR would force the dimensionless amplitude of theuggest that this radiation may be more easily detected than
most unstableri=2) r-mode to grow to a value of order previously thought: the radiation is more monochromatic and
unity within about ten minutes of the birth of such a stat is emitted in a shorter, more powerful butsee Ref[6] and
unit amplitude, the characteristiemode velocities are com- the final section of this paper
parable to the rotational velocity of the sjar. Our results are compatible with the conclusions of Ster-
The strength of the GR emitted and the time scale orgioulas and Fonf7], who performed relativistic simulations
which the neutron star loses angular momentum and spinsf r-modes on a fixed neutron-star geometry, and found no
down depend critically on the maximum amplitude to which saturation even at large amplitudes. A second point of com-
ther-mode grows. Initial estimates assumed that the ampliparison can be made with the work of Schenk and colleagues
tude would grow to a value of order unity before an unde-[8]. They have attacked the problem analytically, developing
scribed nonlinear process saturated the mode. After satura- perturbative formalism to study the nonlinear interactions
tion, it was assumed that the spindown would proceed as af the modes of rotating stars, and proving that the couplings
guasistationary process, reducing the angular velocity to onesf r-modes to many other rotational modes are sritaky
tenth of its initial value within about one year. In this sce- are forbidden by selection rules, or they vanish to zeroth
nario, gravitational waves from spindown events might beorder in the angular velocity of the sjar
detectable with LIGO I[5]. The present work is meant as a complement to Faf.
However, at present no one knows with certainty howthroughout these pages, we describe our simulations in
large the amplitude of themodes will grow. It may well be greater detail; we discuss their relevance and their limitations
that nonlinear hydrodynamics of the star might limit thein the light of Refs[7,8]; and we present the results of sev-
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eral additional simulations aimed at enlightening particulawhereR and ), are the radius and angular velocity of the
aspects of the problem. In Sec. Il we write down the basiainperturbed stawy, is the dimensionlessmode amplitude,
hydrodynamic equations, and we define a number of mathandYE is a vector spherical harmonic of the magnetic type,
ematical quantities that will be used to monitor the nonlinearyefined by

evolution of ther-modes. In Sec. Il we implement the ef-

fective current-quadrupole gravitational radiation-reaction VB =1+ D)1 Y2V x(rvy 6
force. In Sec. IV we integrate the fluid equations with im=LI( )] ( im)- ©
r-mode initial data in slowly rotating stars, and we COMParermea r-mode frequency is given biL2]
the results with the small-amplitude, slow-rotation analytical

expressions: we demonstrate that the integration reproduces (1-1)(1+2)
faithfully the analytical predictions to the expected degree of wo=~ 7 o
accuracy. In Secs. V-VIII we study the nonlinear evolution
of r-mode initial data in rapidly rotating stars: concentrating : . . i
on the nonlinear saturation of themodes, and analyzing in To monitor the nonlinear evolution of themodes, it is

. . . - - helpful to introduce nonlinear generalizations of the ampli-
detail the evolution of several hydrodynamical quantities. Fi- " .
. . . tude and frequency of the mode. These quantities are defined
nally, we summarize our conclusions in Sec. IX.

most conveniently in terms of the current multipole moments
of the fluid,

)

II. BASIC HYDRODYNAMICS

We study the solutions to the Newtonian fluid equations ‘]Im:f prIJ_Y"IB* d3x ®)
" .

p+V-(pv)=0, (D) | _ _
In slowly rotating stars, thd,, moment is proportional to the
V)= —Vp— oV 4+ pFCR amplitude of them=_2 r-mode, the most unstable _mode, ar_1d
p(ow+v-Vo) VP=pV®+pF @ the one that we will study. To track the evolution of this
mode even in the nonlinear regime, we define the normal-

o7+ V- (10)=0, (3 ized, dimensionless amplitude

wherev is the fluid velocity,p and p are the density and

pressure,® is the Newtonian gravitational potential, and = - ,
FCRis the gravitational radiation reaction force. Equati8n IMR*Q,

is a recasting of the energy equation for adiabatic flows, _
wherer is theentropy tracef[9]; for polytropic equations of WhereM is the total mass of the star adds defined by
state,7 is related to the internal enerdper unit masge by

the relationt=(ep)?, where y is the adiabatic exponent. 1Wf pr4d3x:f prédr.

2
2|32 ©

~oa L
The Newtonian gravitational potential is determined by Pois- JMR 4 (10

son’s equation

The quantityd is evaluated once and for all at the beginning
of each of our evolutions. For slowly rotating stars, the defi-

while the gravitational radiation reaction force will be dis- nition (9) of the mode amplitude reduces to the one given by

cussed in Sec. lll. Eq. (5). . : L

We solve Eqs(1)—(4) numerically in a rotating reference In. slowly rota.tlng stars, and in all situations where the
frame, using the computational algorithm developed at LSlJ?ad'ng qont_nbutlon tdz? comes fr_om then=2 r-mode, the
to study a variety of astrophysical hydrodynamic problemstlme derivatived Jz,/ .dt is proportional to the freque_ncy of
[10]. The code performs an explicit time integration of the the lmOde'd‘]ZZ/dT.:"f’JZZ'fTrTéJS v(\;e ?re led to define the
equations using a finite-difference technique that is accurat8onlinear generalization of themode frequency as

to second order both in space and time, and uses techniques

V2h=47Gp, (4)

very similar to those of the familiazteus code[11]. For most w=— i dLZZ (12)
of our simulations, we adopt a cylindrical grid with 64 cells 1327 | dt

in the radial direction, and 128 cells in the axial and azi-

muthal directions. As shown by Rezzollet al.[14], we can re-expres$,,/dt

In the limit of slow rotation, we define the-modes of ~as an integral over the standard fluid variables,
rotating Newtonian stargusing the normalization of Lind-
blom, Owen and Morsink3]) as the solutions of the per- (1y_ 4922
turbed fluid equations having the Eulerian velocity perturba- 22 dt
tion

=fp[J-(ﬁ?E;)-J—€¢-?§;]d3x. (12
| The definitions, Eqs(9) and (11), of mode amplitude and
- ry' .. . )
5U=aoRQo(§> Y,E,‘e""ot, 5) mode frequency are very stable numerically, because they

are expressed in terms of integrals over the fluid variables. In
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the Appendix, we give explicit expressions ﬂ:yzandJ(zlz) in  ter of masg can generate contributions to the current quad-

the cylindrical coordinate system used in our numericalrupole tensor that overwhelm those of the pt@ode mo-

analysis. tion. So we need to introduce special numerical techniques
While we monitor the nonlinear evolution of thmemode,  and simplifications to overcome these problems.

we are also interested in tracking the star’s average angular In order to reduce the influence of extraneous noise

velocity as well as its degree of differential rotation. With sources on the evolution, it is helpful to re-express the cur-

this in mind, we define the average angular velocity rent quadrupole tensor in terms of the current multipole mo-
o ments defined in Eq(8). There is a one-to-one correspon-
Q=J/1, (13 dence between tha,, current multipoles and; :
where the angular momentum and the moment of inertia are _ 164
given respectively by Syy— Sixt 2iS,y 5 J22, (19
J= f pw2Q(w,z,¢)d3x, (14 _ A
S~ |Syz: ?‘]Zla (20
|=f pw?d3x. (15) oy
Sxx+ Syy Szz \/ ‘]20 (21)

Here w is the cylindrical radial coordinate, and the local
angular velocity)(w,z,¢)=v /o, wherev, is the proper
azimuthal component of the f|UId velocity. We also define the
average differential rotatioA ) as the weighted variance of
Q,

In a slowly rotating star, then=2 r-mode excites),,, but
notJ21 andJ,g. In contrast, the principal sources of numeri-
cal noise contribute primarily td,,. Thus, we evaluate only

the J,, contribution toF ®: we use Eq(17) to evaluateF SR,
_ taking theS;; determined from Eqs(19)—(21), but setting
(AQ)?=1 71[ pw?(Q—0)?d Jo1=J50=0. We find that this scheme reduces considerably
the numerical noise in the radiation reaction force, and re-
_ produces faithfully the analytical description pimodes in
=1 71] pw?Q?d3x— Q2 (16)  slowly rotating stargsee Sec. IV.

The second major problem is evaluating the numerical
time derivatives ofS;,, or equivalently the time derivatives
of J,,. Whenever the radiation-reaction time scale is much

The gravitational radiation-reaction force due to a time-longer than theé-mode penod 2/ », the dominant contribu-
varying current quadrupole is given by the expression tion to the derlvatlve§( comes from terms proportional to
powers of ther-mode frequency:

Ill. RADIATION-REACTION FORCE

16 G
FGR=K4—5 g(zvjejaIXmS(ri)—’_vifjklxksl(g)_vjfaklxks(f’) SP=~(i0)"SK, IP=~(i0)"Ip. (22)

— EaXi XS (17) Even when_ the-mode amplitude becomes !arge, the expres-

sion (22) will be accurate as long as the time scale for the

see Blanchef13], and Eq.(20) of Rezzollaet al.[14]. Here ~ evolution of« andw is longer than /. Now, J, andJ5y

SV represents thath time derivative of the current quadru- are easily evaluated using the integral expressions in(Bps.

Ik . S .

pole tensor, and (12); thus, the time derivatives needed in Ef7) are

given simply byJ$)=w*J) and 3$9= — w®J,,, where we
- - determinew numerically using Eq(11). In the Appendix, we
o ) 3,
Sik f PXX0) X4 A% (18) present explicit expressions for the components of the effec-

tive radiation-reaction force in cylindrical coordinates.
€jii is the totally antisymmetric tensor, and the veckqr

represents the Cartesian coordinates of the point at which the
force is evaluated. The parametethat appears in Eq17)
has the valuex=1 in general relativity. For reasons dis- In order to test the accuracy of our hydrodynamic evolu-
cussed below, we find it useful to consider other values of tion code and of our approximations for the gravitational
in our numerical simulations. radiation-reaction force, we investigate the evolution of a
We find that a straightforward application of Ed.7) in ~ small-amplituder-mode in a slowly rotating star.
numerical evolutions is nearly impossible. There are two We provide initial data for this study by solving the time-
problems: first, it is very hard to evaluate reliably time de-independent fluid equations for a slowly, rigidly rotating stel-
rivatives of such a high order; second, various sources dfr model. We model the neutron star asranl polytrope,
numerical noisgeven small errors in the initial equilibrium generated by the self consistent field technique developed by
configuration of the fluid, and the numerical drift of the cen-Hachisu[15]. Table | shows the physical parameters for this

IV. CALIBRATION RUNS
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TABLE I. Physical parameters for the equilibrium models. 0.16 [

Parameter Symbol Slow Fast 014}
C1, Cc2 C3-C8 5

polytropic index n 1 1 012}
total mass M 1.4Mg 1.4M o
equatorial radius Req 12.7 km 18.4 km 0.10
polar R/equatorial R Rpol/Req 0.98 0.59
nonrotating R Ro 12.5 km 12.5 km
angu_lar veIQC|ty i 1.45 krad/s —5.34 krad/s FIG. 1. Evolution of ther-mode amplitude in a slowly rotating
rotation pe_nod Po 4.32 m_s 1.18 ms star. The solid curves plot the results of numerical evolutigvith
energy ratio Tro/|W|  3.98<10°°  0.10072 and without gravitational radiation reactjorwhile the dashed
simulation RR time scale  7{z 0.45% 9.437# curves plot the analytical predictions. For the curves marked
physical RR time scale 8 2.8x10'P, 4.2x10°P,  “free,” k=0; for the curves marked “forced,k=6x 10'.

R, is the radius of the nonrotating star of the same mass.nFor
=1 polytropesR,=/7K/2G [16] whereK is the polytropic con-
stant.

Whenk=0, the theoretical prediction for the evolution of
the amplitude is justr= a(, and we can verify that the nu-
merical evolution tracks the analytical curve within the ex-
pected deviations of ordew®. When 0, the analytical

model, labeledSlow in particular, the ratio of rotational ki- prediction for the evolution of the amplitude is

netic energy to gravitational binding energy T./|W|
=0.00398, and the angular velocity is 26% of the maximum a=ayeeRr, (24)
possible valudestimated ag) =3V 7Gp). o o o

We then adjust the velocity field of this equilibrium model Where the radiation-reaction time scale is given[8y
by adding the velocity perturbation of an=2 r-mode of

amplitudeay: 1 _, (587 Gjl\/l R*QS 25
2 Ter T\ 405 K7 0 &
r
> > 7B
v=wQee,+ aoRQo(ﬁ) Re(Yy,). (23 For this model,7gr=0.46P,. As we can see in Fig. 1, the

numerical evolution tracks the small-amplitude, slow-

. . . rotation analytical result within the expected accuracy, even
In the Appendix, we write out explicitly the components of it ihe radiation-reaction force is so unphysically strong.

this initial velocity field in our cylindrical coordinate system. Although this slow rotation numerical evolution was only
Because Eq(23) is the exact representation of a pure  .rried out over a small fractiof0.2) of a rotation period
=2 r-mode only in the small-amplitude, small-rotation limit, (anq therefore over a small fraction of thenode oscillation
we expect that the frequency and the amplitude measured {friog, the evolution extended for about 7.3 dynamical
our numerical experiment using Eq9)—(11) will be differ-  times and 4.6 sound-crossing times
; . ; : .
ent from t?elr theoretlfal valueg, and —5{}, by terms of In Figs. 2 and 3, we display two additional diagnostics for
orderO(a*), andO(Q/ Q). _ ~ the undriven =0) slow-rotation evolutioC1). In Fig. 2
We perform two numerical integrations of the equationsye piot the real and imaginary parts of the current multipole
of motion, for this slowly rotating initial configuration. In the momentJ,,: the solid curves trace the numerical evolution,

first run (C1), we let the star evolve under purely Newtonian yhereas the dashed curves trace the analytical expression
hydrodynamics, setting the strengthof the radiation reac-

tion (17) to zero. In the second ruiC2), we force the mode
by settingx=6x 10’. With this unphysically large value the
amplitude of ther-mode grows appreciably within a time
that we can conveniently follow numericallfThe Courant
limit for the evolution time step is set by the speed of sound
in the fluid, and by the size of the grid cells; fd2,
=0.260),2x, ONe complete rotation of the star takes about
70000 time steps. . . . :
Figure 1 illustrates the evolution of the mode amplitude 005 010 015 020
in runs C1 and C2, as a function dfPy, where Py tPo
=2/} is the initial rotation period of the star. The solid  F|G. 2. Real and imaginary parts of the current multipole mo-
curves trace the numerical evolution ef{as defined in Eq.  mentJ,, (in arbitrary unit3, for a slowly rotating star evolved with-
(9)], whereas the dashed curves trace the theoretical predigut gravitational radiation reactiainun C1). The solid curves trace
tions for this evolution, obtained in the small-amplitude, the numerical evolutions, the dashed curves trace the analytical pre-
slow-rotation limit[3]. dictions.
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FIG. 3. Frequency of then=2 r-mode, for a slowly rotating FIG. 4. Numerical evolution of R&,, (arbitrary unit$ for a

star evolved without gravitational radiation reactionn C1). The  rapidly rotating star driven by gravitational radiation reactipro-
solid curve is determined numerically from E@1). For compari-  duction run C3. The sinusoidal approximation, used to compute

son, the dashed line shows the analytical valige= — 5. andJ$y , is evidently appropriate for this run.
1 A. Evolution of the r-mode amplitude
_ = 33 i wt .
‘]22_2 aMR"J€e' . (26) We follow the evolution through=33P,. Because the

rotation of the star is progressively reduced by radiation re-
Again the deviations are within the expected accuracy of thaction, and because the star develops differential rotation, at
analytical results. The deviations appear to be caused by thibe end of the evolution the star has performenl the aver-
excitation of modes other than the pure=2 r-mode; the age only about 31 rotationgwe obtain this number from

spurious excitations appear because the initial Eata(23)]  1Qdt/(2)]. In Fig. 4 we plot the numerically determined
are only accurate to first order in. Figure 3 depicts the evolution of Rd,,: the curve is a very smooth sinusoid,
evolution of the frequency [as defined in Eq(11)]. The  whose frequency is essentially constant, and whose envelope
deviations from the analytical resulby=— 5, are within s determined by the(relatively slow evolution of the

the expected accuracy. The magnified scale used to display r-mode amplitude. So the approximations used to compute

in Fig. 3 makes the presence of the small-amplitude, shortandJ(zg) (discussed in Sec. lllare in fact quite good in this

period extraneous modes quite apparent. situation.
In Fig. 5 we plot the numerical evolution of tlremode
V. EVALUATING THE SATURATION AMPLITUDE amplitude «. At the beginning of the evolution, the com-

puted diagnostier agrees with the theoretical valug to ~
"10%, within the expected accuracy. The growth is exponen-
tial (as predicted by perturbation thepmyntil a~1.8. Then
some nonlinear process begins to limit the growth, until the
amplitude peaks atr=3.35 and then falls rapidly within a
few rotation periods. After this themode is effectively not
excited.

In our production runs, we investigate the nonlinear be
havior of ther-mode in a rapidly rotating stellar model, un-
der a variety of physical condition@ifferent initial ampli-
tudes, and different values for the radiation-reaction
coefficientx).

Again, we provide initial data by solving the time-
independent fluid equations for am=1 polytrope. The
physical parameters for this model, labekeakt are reported
in Table I; in particular, the ratio of rotational kinetic energy
to gravitational binding energy iE,,./|W|=0.10072, and the What nonlinear process is responsible for the behavior of
angular velocity is 95% of its maximum value. ther-mode amplitude? What causes the mode to saturate and

We perform a numerical integration of the equations ofdisappear from the star? To answer these questions, we study
motion starting from the rapidly rotating initial configura- the evolution of the total mass, total angular momentum, and
tion, Fast using Eq.(23) to add a slow-rotation, small- total kinetic energy of the star, which are plotted in Fig. 6.
amplituder-mode field, withao=0.1. Because the radiation- Because the mass is constant, the damping of -tinede
reaction force is so much stronger for this modilis  cannot be caused by ejection of matter from the simulation
proportional tow®= %), we find that we can set=4487,

B. A mechanism forr-mode saturation

which yields anr-mode growth timeT(RS,)?=9.433o. This 500
choice of « is still much larger than its physical value 2:00
: . ) . 1.00
(unity), but it should yield a reasonable picture of the non- 0.50
linear evolution of the-mode, if the time scales for all the 3 030
relevant hydrodynamical procesg@cluding nonlinear cou- 0.10
plings to other modgsare comparable t®,, or shorter. In- 0.05
deed, if the average sound-crossing timds representative 0.02
of the relevant hydrodynamical time scales, then our condi- 4 8 12 16 20 24 28 32

tion is satisfied: a rough estimate gives=R,/cs=0.16P t/Po

=7(§}/60, where we have approximated as the average  FIG. 5. Numerical evolution of themode amplitudex in pro-
speed of sound in the equivalent spherical polytrope. duction run C3.
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FIG. 6. Evolution of total mass, total angular momentum, and  FIG. 8. Isodensity surfaces showing breaking waves near the
total kinetic energy in production run C3. The quantities are plottedend of production run C3.
as fractions of their initial value.
with four crests(two in each hemispheyen the surface of
grid. On the other hand, we expect that the star should losthe star.(We will present a quantitative analysis later in this
energy and angular momentum as it radiates gravitationalection) As the amplitude reaches its maximum, these crests
radiation in accord with the prediction of general relativity become large, breaking waves: the edges of the waves de-

[14,17: velop strong shocks that dump kinetic energy into thermal
energy. In doing so they damp tliemode. Figure 8 illus-
dE\ |o[(dJ} = 1287 G ., trates the surface waves &t 28P, andt=29P, along se-
@t T2 lar). T 2 gk 924°. 27 |ected meridional slices.
Y22 Y22 Our code is written in such a way that the evolution of the

. ) , shocks is alwaykinematicallycorrect. In particular, the con-
The evolution of the angular momentum mirrors this equasjnyity equation ensures that mass is properly conserved, and
tion quite closely(within a few percent for energy, how-  hat the proper density jump occurs across the shocks; and
ever, Eq.(27) is only accurate until shortly after the cata- \he gyler equation ensures that momentum is properly con-
strophic fall of ther-mode amplitudgat t=28P¢; see Fig. ~ gseryed, and that the proper pre- and post-shock velocities
7). Before that time, the star loses about 40% of its initial 5 jge However, our code does not allow the energy dissi-
angular momentum and 36% of its initial kinetic energy. Af- hateq in the shock to increase the entropy of the fluid, which
ter that time, the amplitude andhereforg the radiation-  remains always barotropic and isentropic. Consequently, the
reaction force are much reduced, 3decomes essentially resence of shocks shows up as a decrease in the total energy
constant; however, the kinetic energy continues to decreasgs ihe star. Indeed, in this production r¢@3) gravitational
losing an additional 12% of its initial value during the next ,qiation reduces thietal energy by 9% of its initial magni-

three rotation periods. tude throught=28P,, and dissipation in shocks subtracts a

If the r-mode were damped by a hydrodynamical proces§rther 39 in the last three rotationdor comparison, 12%
that conserved energy, such as the transfer of energy t0 Othgf yhe initial kinetic energy is lost in the last three rotations
modes, then Eq27) should portray accurately the evolution compared to 36% before that time.

of the kinetic energy. But this is not what we see: instead, |54ring the thermal effects of shocks is useful to reduce
somepurely hydrodynamiprocess continues to decrease theye computational burden and the complexity of the hydro-
energy(by a sizable amouptfter the gravitational-radiation dynamic code, and it is in fact a fairly reasonable approxi-

losses become negligible. mation for neutron star matter, where the pressure comes

We believe that we have identified this process. To firsiyoqty from the Fermi pressure of the degenerate neutrons,
order in the amplitude, themode_ is only a/elocnymode; to so the equation of state can be effectively modeled as
second order, however, there is also an associated densﬂé(mperature-independent.

perturbation, proportional t&5,, which appears as a wave

C. Radial structure of the r-mode amplitude

-6.2 ]
===y We define the radial amplitude densit(r) (wherer is

-6.4 theory ~ 1 the sphericalradiug by expressing the integral E8) for
[§ 66 Jo,, in spherical coordinates, and omitting the radial integra-
8 tion:
=

-6.8 -

simulation ) - -
70 ] a(r)e"/’(r):,#f prév-Yo¥r2sinodode.
4§ 12 16 20 24 28 32 IMR*(Q,

t/Po (28)

FIG. 7. Theoretical and numerical evolution of the total energyVVe removed the absolute value around the integral §pso

for production run C3. The total energy is plotted in units of the thf’:lt we can keep tr??\Ck of the |OC?-| mode phége). Wit_h
initial rotational energybecause the system is bourtg,, must be  this definition, aexdi¢]=[a(r)exdi¢(r)Jdr/R, where ¢ is
negative. the global phase of themode.
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FIG. 11. Numerical evolution of the-mode frequencyw in

FIG. 9. Radial amplitude density(r) of the m=2 r-mode for production run C3.

production run C3 at=22.5P,.

. . - . about 10%. These values for the frequency are also consis-
The amphtudm(r) is plotted in Fig. 9 for the producuon tent with those obtained via a Fourier transformJgf [18].
run C3 at the tima=22.5°,. Throughout the entire evolu- Surprisingly, the r-mode frequency remains approxi-

tion, the mode is concentrated mostly between the sphericgl e, constant throughout the evolution, and it does not
radii r=0.5R and 0.®R, and the shape af(r) is fitted rea- foll yth decli fthg | ’I @vlotied
sonably well by takingau<(1/R)? [see Eq.(5) andp iz 5100 B O B B reases by
f;é;len mt/R)/(m1/R) as appropriate for a spherical=1 poly- about 22.5% while the total angular momentum decreases by
It is also interesting to study the phase coherence of th 0%'ng5 thg Sttﬁr spins dotwr}, It b(te_comes Ie?s ;Iattt(:]neg_}fand
r-mode, which we define as e change in the moment of inertia accounts for e” iffer-
ence between the decreaselaind that of().) The stability
of the r-mode frequency has important implications for the

f a(r)|e D —e'¢|2dr possible detection af-mode gravity wavesgsee Sec. IX
(Ag)?= ) (29 We also point out that the approximate expressions for the
f a(r)dr GR reaction force, Eq417)—(22), that we use here are ac-
curate only when the motion of the fluid has nearly sinu-

soidal time dependence. Figure 11 illustrates that the evolu-
Figure 10 plots the evolution af ¢, which is small until the tion in our simulation remains quite sinusoidal until about
r-mode saturates dt=26P,. For A¢~1, the local phase =28P,. After this point our expression for the GR reaction
¢(r) spans approximately2: the mode has lost coherence force is not reliable. After this point in our simulation, how-
completely. In this situation, there are large regions in thesver, the fluid evolution is dominated by non-linear hydro-
star where the radiation-reaction force pushes out of phas#ynamic forces including shocks, and the GR reaction force
with the local mode oscillations; this mismatch acceleratess negligible. Thus our inability to model accurately the GR
the damping of the mode. force during the late stages of the evolution does not effect

our results.

D. Evolution of the r-mode frequency

. . . E. Growth of differential rotation
Figure 11 shows the numerical evolution of thenode

frequencyw. The evolution ofw is quite smooth when the ~ During this simulation(run C3, the average differential
amplitude of ther-mode is large; when the amplitude is rotation A€} [defined in Eq.(16)] grows to a maximum of

small (for t<10P, and for t=28P;), we see that other approximately 0.4Q (see Fig. 13 After a rapid increase in

modes make noticeable contributionslig, and therefore to the first three rotation periods, when the lineanode eigen-

w. At the beginning of the run, the numericalmatches the function of Eq.(23) evolves into its proper nonlinear, rapid-
theoretical prediction to within the expected accuracy ofrotation form,AQ/Q increases approximately a<-"® until

Lar 1.00
2 0.95
1.0} ;
< 08} & 0.90
06} < 0.85
041 0.80
02t
0.75
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
t/Po t/Py
FIG. 10. Evolution of the phase-coherence functlog in pro- FIG. 12. Numerical evolution of the average stellar angular ve-
duction run C3. locity Q in production run C3.
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evaluate the additional energy that would have been lost to

04} o . L .
gravitational waves throughout our simulation if we had in-
0.3 cluded the lowest-order mass multipole terms.
%} The mass multipole momen@,,,, are defined by
0.2}
01 Q= f priYin dx. (3D
4 8 12 16 20 24 28 32 In the presence of density oscillations with sinusoidal depen-

t/Po dences in the coordinatésind ¢ (i.e., Sp;, €' “mtT1M®) the

FIG. 13. Numerical evolution of the differential rotatid() in flux of energy into gravitational waves is given [18,2Q

production run C3.
(d—E) 2T (32
. . . dt 75 A5 2mli~2ml s
a=1, and then approximately as unill «a begins to satu- Qom c
rate. Whena is maximum,AQ=0.25). As the amplitude
falls, AQ) continues to groweven more steeplyas long as dE 8m G 5
there is significant gravitational radiation. Afteér 28P, dat =—@§w3le3ml ) (33
AQ) decreases to about 80% of its peak value. So the final Qam

configuration of the stafwhere the presence of themode is

essentially negligiblestill has a very large differential rota- where Q. and Qg are, respectively, the mass quadrupole

and mass octupole moments induced by these density fluc-

tion. tuations. Contributions of higher ord db
But we should not concentrate exclusively on the aver~uations. tontributions of nigner order areé suppressed by
very small fractional coefficients.

aged quantit)AQ/(_l, which does not capture fully the spa- Comparing Eqs(32) and (33) with Eq. (27) we find that
tial structure of differential rotation. Figure 14 illustrates thethe contribution of the density oscillations associated with
spatial dependence of the azimuthally averaged angular V€he r-mode at frequencys to the energy flux is negligible

locity, whenever

1
0(w.2= 5| (w.2.0)de, 30 36 [Qunl? | 507 |Qunl?
16 3|2 7 23523y,

<1. (34)

at the time when the amplitude is maximuis; 25.6P. The , ) , , . -3
differential rotation is confined mostly to a thin shell of ma- e find that in our simulation both ratios are of order 10

terial near the surface of the star, and is particularly concen2€fore ther-mode saturateat t=25P). The strongest con-

trated near each polar cap. The bulk of the material in thdfibution to the quadrupole term comes fra,, although
star remains fairly rigidly rotating. the Fourier transform of this moment does not show any

definite frequency of oscillation. The strongest contribution
to the octupole term comes from thig, dependence of the
density in them=2 r-mode(see the next subsectipn

In these simulations we have assumed that the only rel- Betweent=25P, and t=32P, (when « is back to its
evant contribution to the radiation reaction force comes froninitial value ~0.1) the mass quadrupole term would have
the current quadrupole moment, and in particular friyn provided a correction of order 10% to the current quadru-
However, in the post-Newtonian approximation to generapole; although even then we see no evidence of a definite
relativity, the lowest-order contribution to radiation reaction oscillation frequency correlated to tlmemode. Only afteit
comes from the mass quadrupole term, followed by mass=32P,, when the fluid motion in the star becomes quite
octupole and current quadrupole. To verify that our approxiturbulent and the-mode is very weak, is the gravitational
mation is justified for the physical states considered here, weadiation generated by the mass multipoles comparable to the
radiation fromJ,,.

On the whole, we find that our approximation which ig-
nores the contributions from the mass multipoles is well-
justified throughout the more interesting part of the evolu-
tion.

F. Consistency of the radiation-reaction force

Ll

G. Density oscillations and mode saturation

The evolution of the isodensity surfaces in our neutron
star shows very clearly the presence of the lowest-order Eu-

FIG. 14. Meridional structure of the differential rotation in pro- lerian density perturbatiorSp associated with them=2
duction run C3. The plot shows the value of the azimuthally averr-mode. The lowest order expression # was derived by
aged angular velocity) (w,z)/(), at timet=25.6P,. Lindblom, Owen and MorsinK3] in the small-amplitude,
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H. Limits on mode-mode coupling

In the numerical evolutiofC3) nonlinear hydrodynamic
processes do not prevent the gravitational radiation instabil-
ity from driving the dimensionless amplitude of thenode
to values of order unity. In particular, the energy of the
r-mode is not channeled into other modes by nonlinear hy-
drodynamic coupling until the amplitude of the mode be-

T 8 12 16 20 27 28 comes quite large. It i_s p_ossible however that the nonlinear
1Py processes that would limit the growth of thenode act only
on time scales that are longer than our artificially brief simu-

FIG. 15. Numerical evolution of the mass momed4, (solid  lation growth time7{%, but still shorter than the physical
line) and of ther-mode amplitudex, in production run C3. The (P
curve for Qs, was ren_ormalized to emphasize the linear relation  can our numerical simulation place any limits at all on
betweena and Qs, during the growth of the-mode. the possibility of nonlinear coupling? We know that in our

simulation the amplitude of themode grows exponentially
slow-rotation approximation. Solving E¢p) of Ref.[3] with  until @~2, so the nonlinear interaction with other modes
m=2 and with polytropic indexa=1, and then substituting must be negligible at least until that time. This observation
oV back into Eq.(4) of Ref.[3], we get allows us to set a limit on the strength of the nonlinear cou-
plings between the modes; and from this limit we can infer a
772 \FQS o Lot lower limit on the saturation amplitude that may be achieved
5P:a0f §EJB( )Y32(9"P)e ' (35 \when the radiation-reaction coupling is adjusted to its physi-
cal value. Of course, the inference is only justified for the
nonlinear interaction of theemode with other modes that are
wherej; is the spherical Bessel function. The mass multipolecorrectly modeled in our simulatioffor instance, the finite
associated with thigp is azimuthal resolution of the grid sets an upper limit on e
of the modes that can be resolyednd with our physical
assumptiongfor instance, the buoyarg-modes of realistic
77 202RS _ neutron stars will not be present with our choice of the equa-
5Q32: aoﬁ\/;szl( ’7T)Y32( 0, @)el wt, (36) tion of Staté.

Our argument is based on the Lagrangian description of
the nonlinear evolution of the mode amplitude developed by
Schenket al.[8]. In this formalism, the modes interact at the

wherej,(7)=0.151425. lowest order b .
; _ y way ofthree-mode couplingsroughly
We study the evolution o, throughout run C3. We find - gneaying  quadratic interactions between pairs of modes

that Qs, (and therefore the density perturbation with angulargyjye the evolution of the amplitude of a third mode. Because
dependence given bys) is indeed proportional tar, at 4t the beginning of our simulation all modes except the
least as long as the growth of remains exponential; after | moge have negligible amplitude, we expect that the most
that, Qs, grows more slowly tham, and it reaches a maxi- jmportant three-mode nonlinear term might be one that
mum a few rotation periods before (see Fig. 15 The  coyples twar-modes to a third modgs]. Following Ref.[8]
phase evolution of the density perturbation is also consisteRf,e consider the coupled equations for thmode and a ge-

with expectations: the Fourier transform @&(t) shows &  peric modeX obtained in second-order Lagrangian perturba-
very definite peak at theemode (numerical frequencyw.

Ro

‘& F ! tion theory:
A quantitative check shows that E(R6) predicts the ob-
served magnitude @3, with an accuracy of about 50%; this deg . CrR iwR KXRrR ,
error is consistent with the next-order termsQ* and a?) W’H‘URCR:T_ +T e__CRCX ' (37
not included in this expression. In the slowly rotating cali- RR R
bration model C1, we find tha,, is given by Eq.(36) to de i *
within about 1%. % _OX KXRR & % (39)
) . . at Tlextx=— CrCR >
We point out that we do not explicitly include any density t €X

perturbation in the initial configuration of the star; rather, the

density perturbation is immediately generated by the hydrowhere cg and cx are the complex amplitudeéncluding
dynamic evolution of the fluid as a consequence of the initiaPhasep of the modeswr and wy are their frequenciesig
velocity perturbation. The evolution of the amplitude of theand ex are the nonlinear mode energies at unit amplitude;
density perturbation amplitude provides more insight into thednd g is the radiation-reactiore-folding time of the
mechanism that causes thenode to saturate: on the surface r-mode. Finally,xxrg is the nonlinear interaction energy for
of the star,5p appears as four large wave crests; at a criticalnit amplitude modes. Schewk al. [8] give expressions for
amplitude these crests stop growing, and within a few rotathe «xrr Of coupled generic Newtonian modes in rotating
tion periods they turn into breaking waves that damp thestars. In writing Egs.(37) and (38) we have omitted the
r-mode. coupling terms proportional te%r, Which are forbidden by
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az-parity selection rul¢8]: ther-mode has odd-parity, so it 5.00
cannot couple quadratically to the moXe 2.00
From our numerical evolution C3, we know that the am- 1.00
plitude of ther-mode grows very nearly exponentially until 25 090
a=2: 0.20
0.10

Cr(t)=Cr(0)e tort U, (39) o

. . . . 4 8 12 16 20 24 28 32
where 78} is the artificially short radiation-reaction time t/Po

scale used in our simulatioffAlthough it is convenient to
take |cg|=«a, our argument still applies as long & is
merely proportional tax.) Therefore, we also know that until
|crl=2, the second term on the right side of Eg7) is
negligible compared to the first. In this case,

FIG. 16. Numerical evolution of the-mode amplitudex in
low-resolution run C3%solid curve and in run C3(dashed curve

The key to doing this is to realize that Eq87) and (38)
describe the coupled mode evolution in the physical case if

1 liog <ire we just substituter} for 75). The modeX is capable of
> |7 é—c;*( . (400  stopping the unstable growth of tllemode only when the
TRR R magnitude of the second term on the right side of &7)

: d ] becomes comparable to the first. Through an analysis similar
We now use Eq(39) to integrate Eq(38) and compute€x: 5 that which led to Eq44), it is straightforward to find the

C(t)=Cx(0)e1oxt foIIowm.g condition on the saturation amplitude of the
r-mode:
wx Kkrr[CR(D]?~[ch(0)]%e !
o . (@ Pr]”  IcR? | kind ex
2 e 2i wptiwy+ 275 — ZWZT 2= Z, (46)
i Y| ex | er
Now we setcy(0)=0 and|cg(t)|>|cg(0)| for the time late
in the simulation whertg=2, and find We now use the upper limit fokr4 from Eg. (45) from
. O ko2 our numerical evolution, to obtain lawer limit for the am-
(D)= Kxre |ox| TRAICR (V)] 42 plitude c&* at which ther-mode would be saturated in the
<(O]=

ex |2\(75h6w)2+4’ physical case:

where So=2wg+ wy. We define theresonance index/® P (P)
) X |CSRa1>20(—§) W . (47)
TRR

=|wrlwy|[(F5how)>+4]*2, whose value is close to unity,
y®=1, when the system is near resonanfe=0. We use

this bound oricx(t)] in Eq. (40) to obtain Sincey(P> 19 this equation yield$c3®>4x 10 * for run

C3. So if the dominant mode-mode coupling is of the form
given in Egs(37) and(38), our simulation places a relatively
large lower limit on ther-mode saturation amplitude. How-
ever, ther-mode could instead be limited byarametric
We can rewrite this inequality in terms of themode period  resonanceg21] with a suitable pair of modeatisfying the
Pr=27lwR: resonance conditiomg+ wy+ w;=0). It appears that our
simulation does not provide a very strong lower limit on the

1 k¥ ed? cE(b)|?
s | XRRI wgﬂ_&s& | R & | . (43)
9 Aexer v

2
Pr , [er(D)]? | k%R 23 (44) saturation amplitude that could be imposed by this kind of
i) T 0 | Tex | en process.
We now seticg(t)|=2 (the value at which the evolution of I. Dependence on the grid spacing

the amplitude begins to show deviation from exponehtial

. . . We wish to confirm that our standard computational grid
andPg/ 7= 1/10 (the value for our simulationand obtain b g

can resolve the spatial structure of thmode well enough to
12 give reliable predictions about the saturation amplitude of
KXRF# 2< Y (45) the mode. For this purpose, we have performed a simulation
€x \ €r 40072 (run C3% with the same parameters of run C3, but on a grid
with only half the spatial resolutiofi.e., 32 cells in the ra-
Thus, our numerical evolution puts a limit on the strength ofdial direction, and 64 cells in the axial and azimuthal direc-
the coupling between themode and other modes in the star. tions). Figure 16 compares the evolution @fin runs C3 and
We now ask how the saturation amplitude would changeC3*. The two curves are very similar, but in run C3* satu-
if the radiation-reaction time scale assumed its physicatation is reached a bit earlier, #tPy=21.4, and at a some-
value 7{f} instead of the value} used in our simulation C3. what lower amplitudex=2.68. This may be caused by the

(s)
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18 20 22 24 26 28
1Py t/Po

FIG. 18. Numerical evolution of the-mode frequencyw in

FIG. 17. Numerical evolution of the-mode amplitudex in )
production runs C3-C5.

production runs C3-C5.

. . . . (compared toAt=8P, in run C3 as would be expected
larger numerical viscosity that must be present in the Coarseg"iven that the driving force i¢ times that of run C3

Igno!. 'I;Ee f\xlolunon of the other diagnostics is also very simi- In run C5, the growth of the-mode is initially slower
ar in theé wo runs. than in run C3, as the linearmode velocity field evolves

: . . .
. Thus, the smulapon “.“003 ) suggests that the qualita toward its correct nonlinear form. Eventually its maximum
tive results of our simulations are independent of the resolu-

. ; . occurs at essentially the same amplitude as befare (
tion adopted. The-mode saturation amplitudes on the two —3.337). Figures 17 and 18 show that during run«£&nd

1 ithi 0, I -
gt'%sn ?g;ﬁg iﬁﬁg'&;ﬁﬁg;ﬁg a/(;el gherezg?sgg’amﬁeexgagg éﬁ undergo short-period oscillations; this happens because the
) . . 99 PYSICEitial velocity field is only a small-amplitude approximation
saturation amplitude might be even larger than 3.3. _ . . )
to thereal m=2 r-mode eigenfunction. So other spurious
modes with fairly large amplitude are excited initially in run
VI. TESTING THE SATURATION AMPLITUDE C5. Note that these extraneous modes must make nonzero

Even in the absence of a saturation mechanism due teentributions tal,, if they are to show up in our diagnostics.
mode-mode coupling as described above, it is possible thdtere the extraneous modes cause a rapid modulatian of
the saturation amplitude in our simulation might still dependand & with a dominant period of about 3. Finally, it is
on the strength of the radiation-reaction force. In our simudnteresting to consider the evolution A%} (Fig. 19, which
lation we see that themode grows until density waves on is very similar in the three runs.
the surface of the star break and form shocks. It is possible These runs provide limited evidence that the saturation
that this occurs just because in our simulation we are pushingmplitude of ther-mode does not deperigtrongly on our
the fluid too hard with the radiation-reaction force, muchartificially large radiation reaction force. The nonlinear hy-
harder that it would be in the physical case. To explore howgrodynamical process that leads to shock formation appears
the evolution depends on the strength of this driving forcet0 be triggered by attaining a certain critical amplitude of the
we go back to the time in run C3 before any signs of non{-mode, with little dependence on the strength of the
linear saturation are seen, wher=1.8. We start a new run radiation-reaction force. Thus if no mode-mode coupling oc-
(C4) there, increasing the value af (which determines the —curs on time scales longer than our unphysically sh,
strength of the radiation-reaction fojc® 5967(1.33 times  then our results suggest that the maximum amplituees is
its value in run C3 The new growth time scale is about a reasonable guess for the physical case {) as well.
7.5P,. (Undoubtedly, a test witkk<<4487 would have been
more compelling; but our evolutions are so computationally
expensive that we were forced to increase rather than de-
crease the strength of the driving force. Stergioulas and Forjf7] have also studied the nonlinear

In a separate rufC5), we test the influence of thaistory  evolution ofr-mode initial data, but using relativistic hydro-
of the evolution of ther-mode on its saturation amplitude. dynamics in a fixed background geometry. In their evolution
Namely, we ask if arr-mode that started out as thieear
initial data of Eq.(23), with a very large amplitude, would
evolve much differently from amr-mode that started out
small and was built up gradually to large amplitude by the
radiation reaction force. To answer this question, we start
with the Fastequilibrium model, and we add a lineamode
velocity field with «y=1.8. For this run we keepg=4497.

Figures 17, 18, and 19 show the evolution of the diagnos-
tic parametersy, o and AQ for runs C3-C5. As expected,
the r-mode does grow faster in run C4, but its maximum
value is essentially the sanfthe maximuma=3.338 att
=24.1P;) as in run C3. In this run, theemode amplitude FIG. 19. Numerical evolution of the differential rotatid() in
increases fromy=1.8 to a=3.338 within a timeAt=6P, production runs C3-C5.

VII. FREE EVOLUTION
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FIG. 22. Numerical evolution of the differential rotatid() in

FIG. 20. Numerical evolution of the-mode amplitudex in )
production runs C6-C8.

production runs C6-C8.

using thisrelativistic Cowling approximationthe gravita- namical time scales, according to our rough estimate of the
tional interactions of the mode with itself and with the rest of SPéed of sound for the rapidly rotating model
the star are neglected. The principal difference between their We plot the evolution ofr andw for these simulations in
model and ours therefore is that theirs has no radiation read=igs. 20 and 21. The wavy appearance of the curves suggests
tion, and nor-mode growth. that, by using the linear eigenfunction, E@3), for ampli-
Stergioulas and Font find that, for an initieinode am- ~ tudes of order unity, we have excited spurious modes in ad-
plitude a,=1.0, no significantsuppression of the mode is dition to the basian=2 r-mode. We have already observed
observed during 13 rotation periods. They define their modéhis behavior in run C5. The rapid modulation efand
amplitude using a post-Newtonian expression for the eigenbas a period of about 0%, and the amplitude of the modu-
function that differs from our Eq23) except in the Newton- lation is smaller for run C7.This is reasonable: for lower
ian limit. And their method of evaluating the mode amplitudeWe expect the approximate expression, &), to be more
numerically also differs from ours. They read the mode am-accurate and so to excite smaller amplitude spurious mpdes.
plitude from the value of the fluid’s velocity at a single point  In both runs,a loses about 20% of its initial value during
within the star, while we define in terms of integrals over the first four rotation periods. In the next few rotation peri-
the entire star. In the slow-rotation Newtonian limit our two 0ds, however, the average value @fremains unchanged
definitions agree. Stergioulas and Font observe that the anfalthough in run C6 we can see a further modulation of the
plitude of the velocity oscillationgshown in Fig. 2 of Ref. amplitude with a period of aboutR)). Throughout the runs,
[7]) decrease by about 50% during the course of their simuthe r-mode frequencyw oscillates aroundw=—1.12),,
lation, an effect that they attribute to numerical visco§ity ~ consistent with its value in run C3 for the same valuenof
In order to compare our own simulations more directly with (i.., 1.44. As the run is started, the differential rotatidif)
theirs, we performed a series of evolutions in which we(which is zero in the initial, rigidly rotating staincreases
turned off the radiation-reaction force by settirg- 0. almost immediately to values that are consistent with those
In production runs C6 and C7, we augment our rapidlyobserved in run C3 for the same amplitude; compare Figs. 22
rotating equilibrium configuration with the approximate and 13. Ase decreasesi() decreases consistentlyn run
r-mode velocity field of Eq(23). For run C6, we choose the C7, A settles to a value slightly higher than what we ex-
initial ay so thata [as measured by our numerical diagnos-pected from its value in run C3 when=0.82; but we did
tic, Eq. (9)] is initially 1.8: the value at which we start to not run this evolution as far as run C6, so at the end of our
observe deviations from exponential growth in run C3. Forsimulation the value oA might still be evolving)
run C7, we choose, so that the initial is 1.0, in order to Finally, we study the free nonlinear evolution of an
make a direct comparison with Stergioulas’ and Font's pub+f-mode that wagrownto the amplitudex=1. To do so, we
lished results. We have evolved these systems through rgo back to the time in run C3 whem=1, and start a new
spectively 11 and 7 initial rotation periodseveral hydrody- run(C8) using the C3 data at this time. We evolve these data
settingx to zero in the subsequent evolution. We follow this
evolution through an additional 15.4 initial rotation periods.
During this time the mode amplitude is essentially con-
stant, see Fig. 20, except for a slow secular decline due to
numerical viscosity at 0.23%/revolution, and a few very
small amplitude oscillations. Themode frequency is quite
constant, and the phase coherence function, and the differen-
tial rotationA Q) also remain quite small in this caésee Fig.

. 22). The r-mode amplitude in run C3 remains above unity
1P, for 14.3 rotation periods, so run C8 demonstrates that the
LSU hydrodynamic codg9,10] used here reliably and stably

FIG. 21. Numerical evolution of the-mode frequencyw in evolves large amplitude-modes in rapidly rotating stars for
production runs C6 and C7. the duration of our simulations.
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FIG. 23. Numerical evolution of themode amplituder in the FIG. 24. Numerical evolution of themode frequency in the
extended run C4. extended run C4.

Comparing runs C6, C7, and C8, we infer that the strongygs aftera reaches its minimum~0.01). The evolution of
decrease in the amplitude observed in runs C6 and C7 occUfige amplitude for this case is plotted in Fig. 23. After
as nonlinear hydrodynamics reorganizes the initial Iinear:33p0, the fluid motion is quite turbulent, but we see no
r-mode velocity field to the correct nonlinear form for am- sign thate is starting to grow again. The evolution of the
plitudes of order unity. After the reorganization is complete,_,qde frequencyFig. 24 is also erratic, probably because
(within a few rotation periods « decreases only because of pere the sinusoidal approximation begins to fa#imember
numerical viscosity.(In run C5, this same phenomenon that , is approximated as-(1/3,,)d|J,l/dt]. In fact, after
caused the slower growth of the amplitude compared to rup_ 33P, we have found it necessary to impose a@h hoc
C3,) By contrast, the small decrease in run C8 appears to bgyit on the value ofw: otherwise o grows to about

caused entirely by numerical viscosity. _ _ —170,, and the radiation-reaction forcgroportional to
Altogether, we find that our results are Compat|ble_W|thwe) becomes huge, pushing the fluid to superluminal veloci-

those of Stergioulas and Fofif]: no nonlinear saturation tie

effect is evident in the free nonlinear evolution remodes,

at least for amplitudes of order unity.

S.
Nine periods should be more than enough to see a second
r-mode growth episode, if it occurs at all. Although at the
end of the simulation the average angular velocity of the star

VIIl. REPEATED SPINDOWN EPISODES? is lower than(},, the growth time scale is determined by the

_ ) ) r-mode frequency, which is even higher than at the beginning
r-modes by Oweret al. [5] was based on a simple two- growth?
parameter model consisting of a rotating star with angular one hypothesis is that because of its strong differential
velocity () and itsr-mode with amplitudea. Using this  rotation the post-spindown configuration of the star is one
model the mode was found to grow exponentially until it which stabilizes the-mode. The value oAQ for the last
reached some maximum level,,«, where it was assumed to few periods is plotted in Fig. 25. The increase of) ob-
remain saturated. Energy and angular momentum were €Xgrved betweet= 32P, andt=36P, is not caused by radia-
pected to be removed from the star by gravitational radiatioRjon reaction, but by a global, energy-conservative reorgani-
during this saturation phase until thenode regained stabil- zation of the fluid. At the end of this process, the spatial
ity (because of increased internal dissipation brought aboutrycture of differential rotation is very different from what it
by cooling or because the angular momentum of the star Wagas ata,,,,: compare Fig. 14t 25.6P, in run C3 with
reduced to a very low levglIn this initial picture gravita- Fig. 26 (t=42P, in run C4. The latter plot shows a star that

tional radiation was expected to spin down the star on g rotating on cylindersiexcept for the outer laygr with
timescale of about one year. The radiation emitted was €X0) (w,z) almost proportional tas.

pected to sweep down in frequency frdjrtimes the initial Karino et al. [22] derived linearized structure equations
angular velocity of the star t§ times its final value: ranging  for the r-modes of differentially rotating Newtonian stars.
from perhaps 1 kHz initially to perhaps 100 Hz. When differential rotation is so strong thedrotation points

Our simulations suggest a very different picture. We find
that, once the amplitude of themode reaches,,y, it is

quickly reduced by the action of the breaking waves and 045
shocks, instead of remaining saturated at this value for a very 0.40
long time. At the end of our simulation the star still has 60% S
of its initial angular momentum, and its average angular ve- has
locity is 77.5% ofQ)q. Thus the star is left rotating relatively 0.30
rapidly, leaving open the possibility of subsequent episodes
of r-mode instability and spindown. 025
To investigate this possibility, we extend run C4, evolving 28 3t2/P0 36 40
our star for 13 more initial rotation periods afterhas gone
back to its initial valug0.1), or (equivalently for nine peri- FIG. 25. Differential rotatiomlAQ) through the extended run C4.
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— the radiation reaction force, which is too simple for this cha-
07 = otic situation
2= .
0.6 SN
\ g W IX. CONCLUSIONS
0.5 \ N
) DQ < We have completed a series of numerical 3D hydrody-
0.4 oS \ namical simulations of the nonlinear evolution of the GR
e 0\ driven instability in ther-modes of rotating neutron stars. We
N 0.3 AN have verified that the current-quadrupole GR reaction force
h\ implemented in our code is accurate by reproducing the ana-
0.2 \ lytical predictions(for slowly rotating starswith our full 3D
04 o6 0811 |12 14Q numerical integration code. In our simulations, the amplitude
0.1 N of the (m=2) r-mode is driven to a value of about three
[\ \{ before nonlinear hydrodynamic forces stop its growth by the
0 . .
5 03 07 0 03 - formation of shocks and breaking surface waves. We showed

that the value of this maximum amplitude is insensitive to
the strength of the GR driving force by repeating the simu-
FIG. 26. Meridional structure of differential rotation at the end lation for different strengths and different initial fluid con-

of production run C4. This contour plot shows level contours for thefigurations. We also repeated our simulation using a coarser
value of the azimuthally averaged angular velodityw,z)/Q, at ~ numerical grid to verify the robustness of our resulise

time t=42P,. maximum mode amplitude changes only by about 20% when
the number of grid points is reduced by a factor pfahd to
show in particular that numerical viscosity is not playing a

/R,

appear [that is, when there exists as such that w
+mQ(w)=0], the mode equations go singul@ifhe pres- critical role in our simulations.
ence of a corotation point at the cylindrical radigsmeans In our simulation we have artificially increased the
that the velocity pattern of the mode appears to stand still irstrength of the GR reaction force in order to reduce the prob-
the frame rotating with angular velocifQ(w).] A compari- lem to one that can be studied with the available computer
son of the differential rotation of Fig. 26 with the value®f resources. We have shown, however, that the results of our
suggests the presence of corotation points in the final corsimulation can be used to infer limits on the real physical
figuration of our star. By itself, however, the singularity of problem as well. We used the results of our simulations to
the linearized mode equations does not necessarily mean thdgrive a lower limit of a few times 10 on the saturation
r-modes are impossible. amplitude of the-mode in a real neutron star due to possible

A second, probably more likely possibility is that, in the (but unseehn nonlinear mode-mode couplings. This lower
very noisy environment manifest in Figs. 23 and 24, thelimit applies to couplings with modes that are well described
growing r-mode is unable to get locked in phase with theby our simulation: that is, the modes of a barotropic fluid
approximate expression for the driving force that we usewith spatial structures larger than about 2% of the radius of
here. The actual radiation reaction foféey. (17)] is a func-  the star.
tion of the frequency of the-mode. Since we do not know Recent analysis of the effects of magnetic fidl23], and
exactly what this frequency is, we use the expression Ecexotic forms of bulk viscosityf4] suggest that the-mode
(11) to approximate it. This approximation works extremely instability may not play as important a role in astrophysical
well as long as the-mode makes the dominant contribution situations as was once thought. However, the considerable
to 3(212); yet, in the turbulent post-spindown environment, theuncertainty that exists about both the macroscopic and mi-
r-mode no longer dominates the evolutionJgf. Hence, our croscopic states of a neutron star makes it impossible at the
expression for the gravitational radiation reaction force is ndPresent time to conclude that thenode instability plays no
longer correct: it fails to maintain phase coherence with theastrophysical role. Thus it seems reasonable to us that some
r-mode and so prevents the growth of the mode. effort be put into gravitational wave searches femode

If the r-mode really does not exist in the chaotic post-Signals having forms qualitatively similar to those predicted
spindown environment, then it will be necessary to wait forby simulations such as this.
viscosity to damp differential rotation before thenode can
grow again. However, viscosity might be unable to do this
before the star cools so much that thenode is stabilized
(either because the star forms a crust or because viscosity We thank L. Bildsten, J. Friedman, Yu. Levin, B. Owen,
itself has grown too strong This possibility is worrisome, N. Stergioulas, K. Thorne, G. Ushomirsky, and R. Wagoner
because the same environmental conditigtong differen-  for helpful discussions. We also thank H. Cohl, J. Cazes, and
tial rotation and generalized nojsthat characterize the end especially P. Motl for contributions to the LSU hydrody-
of run C4 are likely to occur in the young supernova rem-namic code. This research was supported by NSF grants
nants where-modes are expected to arise in nature. Still, wePHY-9796079, AST-9987344, AST-9731698, PHY-9900776,
think it more likely that the absence of a second growthPHY-9907949, and PHY-0099568 and NASA grants NAG5-
episode in our simulation is the result of our expression for4093, NAG5-8497 and NAG5-10707. We thank NRAC for
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APPENDIX: USEFUL EXPRESSIONS
IN CYLINDRICAL COORDINATES

In this appendix we give explicit expressions in cylindri-
cal coordinates §,z,¢) for a number of useful quantities
used in our simulations. The components of the initial
r-mode velocity field used in our numerical evolutions are

o, f5 Q0
vV =g E?ZWSIH ©,

(A1)
2= — \/i(ﬁ Zsin2 (A2)
VT T%N16r R @
and
- 5 Q
v°=Qqw+ ag EﬁZmCOSZp. (A3)

5 )
ID= /Ej pe 29T, +iT,Jw dwdz dp, (A5)

where

) A
leZvavq,—mvsz—Z%, (AB)
T,=2(v2 —0v? G+ 2?® P A7
2=z(vg v(P) WUV T T Zm&m' (A7)

The components of the radiation-reaction force in cylin-
drical coordinates are obtained from Ed7) by expressing
the current multipole tensd; in terms of the current mul-
tipole momentsl,,, via Egs.(19)—(21):

We refer the azimuthal component of the velocity to the or-and

thonormal coordinatéo, so thatv? andv; have the same
numerical value and we can use them interchangeably.
The integrals that determink, and its first time deriva-

tive J$) are

/5 .
Joo= EJ’ pefz"P[Zv;P—Fi(zvm—wvz)]mzdm dz do,
(Ad)

16 [47 G
GR_ _ —~ =
Fe=—rs\N 5 af®
XIM{e?¢[3(v o +ivy) I +wIP},  (A8)
16 /4w G )
GR .
F:p —IF§R2K4—5 ?gpme2'¢[3vz\](2g)+z\](2?],
(A9)

where k=1 in general relativity theory. The fifth and sixth
time derivatives ofJ,, are obtained ad%y=w*J{), and
J(zg)z —0%3p.
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