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A multi-cube method is developed for solving systems of elliptic and hyperbolic partial dif-
ferential equations numerically on manifolds with arbitrary spatial topologies. It is shown
that any three-dimensional manifold can be represented as a set of non-overlapping cubic
regions, plus a set of maps to identify the faces of adjoining regions. The differential struc-
ture on these manifolds is fixed by specifying a smooth reference metric tensor. Matching
conditions that ensure the appropriate levels of continuity and differentiability across
region boundaries are developed for arbitrary tensor fields. Standard numerical methods
are then used to solve the equations with the appropriate boundary conditions, which
are determined from these inter-region matching conditions. Numerical examples are pre-
sented which use pseudo-spectral methods to solve simple elliptic equations on multi-
cube representations of manifolds with the topologies T 3, S 2 � S 1 and S 3. Examples are also
presented of numerical solutions of simple hyperbolic equations on multi-cube manifolds
with the topologies R� T 3, R� S 2 � S 1 and R� S 3.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The need to solve partial differential equations on manifolds having non-trivial spatial topologies arises in many areas of
physical science: from models of wormholes or the global structure of the universe in general relativity theory to global cir-
culation models of the earth’s atmosphere in meteorology and climatology. This paper develops practical methods for solv-
ing a variety of partial differential equations on manifolds having arbitrary spatial topologies. Every n-dimensional manifold
(by definition) can be mapped locally into a portion of n-dimensional Euclidean space, Rn. A number of different numerical
methods are capable of solving partial differential equations locally on open subsets of Rn. The topological structure of a
manifold, however, affects the global solutions to partial differential equations in profound ways. This paper develops meth-
ods for fitting together local solutions, obtained from standard numerical methods, to form the desired global solutions on
manifolds with arbitrary topologies. The discussion here focuses on solving elliptic systems of equations on three-dimen-
sional manifolds R with arbitrary topologies, and also hyperbolic systems of equations on four-dimensional manifolds with
topologies R� R.

Solving partial differential equations numerically on manifolds with arbitrary topologies requires the creation of compu-
tational infrastructures (beyond those needed to solve the equations numerically on open subsets of Rn) that meet two basic
requirements. The first requirement is that the manifold must be represented in a way that allows the points in the manifold,
and the values of scalar and tensor fields defined at those points, to be referenced efficiently in a way that respects the under-
lying topological structure of the manifold. The second requirement is to create a way to specify the global differential
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structure of the manifold, i.e. the computational method must provide a way of representing globally continuous and differ-
entiable scalar and tensor fields on these manifolds. The goal here is to develop practical methods that can be used on arbi-
trary manifolds by a wide range of different numerical methods.

The first requirement is to find a systematic way of representing manifolds with arbitrary topologies. Every n-dimensional
manifold can be mapped locally into a portion of n-dimensional Euclidean space Rn. For computational efficiency (and to
avoid certain types of numerical instabilities) each manifold is represented here by a collection of non-overlapping n-dimen-
sional cubes which cover the manifold, plus a set of maps that identify the faces of adjoining n-cubes. This decomposition is
analogous to representing a manifold as a collection of non-intersecting n-simplexes (i.e. triangles for n ¼ 2 and tetrahedrons
for n ¼ 3) that cover the manifold, plus maps that identify neighboring faces. Many numerical methods (including the pseu-
do-spectral methods used to produce illustrative examples for this paper) are easier to use in computational domains based
on n-cubes rather than n-simplexes. Points in each of the n-cube regions are identified by local Cartesian coordinates, and
these coordinates are used to represent the solutions to the differential equations in each n-cube. This type of representation
has been used for some time in numerical methods for solving partial differential equations on a two-sphere [1–3], and also
in three-dimensional manifolds that are subsets of R 3 [4–10]. Those ideas are generalized in Section 2, and it is shown that
these generalizations can be applied to two-dimensional or three-dimensional manifolds having arbitrary topologies. Exam-
ples of these multi-cube representations are given in Appendix A for the three-dimensional manifolds with the topologies T 3,
S2 � S1, and S 3.

The second requirement is to develop a method of representing (at least in the continuum limit) continuous and differ-
entiable tensor fields on the multi-cube representations of manifolds developed in Section 2. Representing tensor fields
within each of the n-cube regions is straightforward: their components can be expressed in the tensor bases associated with
the local Cartesian coordinates. These tensor components are functions of those coordinates, and their continuity (or differ-
entiability) determines the continuity (or differentiability) of the tensor field itself. In general, however, the coordinate ten-
sor bases associated with different n-cube regions are not even continuous (and cannot be made continuous globally) across
the interfaces that join them. The problem of defining the continuity and differentiability of tensor fields across n-cube inter-
faces is therefore non-trivial. The method introduced here makes use of a smooth reference metric tensor. This reference
metric must be supplied (along with the collection of n-cube regions and the associated interface maps) as part of the spec-
ification of a particular manifold. This metric is used to construct geometrical normal vectors at each interface, and these
normals are used to construct the Jacobian matrices that map vectors (and tensors) across interfaces. The differentiability
of tensors across the n-cube interfaces is defined in terms of the continuity of the covariant derivatives of those tensors, using
the covariant derivative associated with the reference metric. The details of these continuity and differentiability conditions
are given in Section 3. Examples of reference metrics which can be used to implement these continuity and differentiability
conditions are given in Appendix A for the three-dimensional manifolds with the topologies T 3, S2 � S1, and S 3.

Systems of differential equations can be solved numerically on multi-cube representations of manifolds by fitting to-
gether local solutions from each n-cube region. The appropriate local solutions are determined in each region by applying
the correct boundary conditions on the n-cube faces. The appropriate boundary conditions are the ones that enforce the
needed level of continuity and differentiability of the global solution at the region boundaries. These boundary conditions
are developed in Section 4 for second-order strongly elliptic systems, and also for first-order symmetric hyperbolic systems
of equations. These boundary conditions select the unique local solution in a particular n-cube that equals the desired global
solution in that region. The collection of local solutions to the equations constructed in this way provides the desired global
solution.

The multi-cube method of solving systems of partial differential equations numerically on manifolds with non-trivial
topologies is illustrated here by solving a series of test problems in Sections 5 and 6. Simple second-order elliptic equations,
and first-order symmetric hyperbolic equations, are solved numerically on manifolds with spatial topologies T 3, S2 � S1, and
S 3. These tests use pseudo-spectral methods to produce local solutions on each cubic region. The results are shown to con-
verge exponentially (in an L2 norm) to the exact global solutions (which are known analytically for these test problems) as
the number of grid points used for the solution is increased.
2. Building multi-cube manifolds

This section describes how n-dimensional manifolds can be represented using the multi-cube method. The idea is quite
simple: n-dimensional multi-cube representations of manifolds consist of a set of non-overlapping n-cubes that cover the
manifold, plus a set of maps that identify the boundary faces of neighboring cubes. An argument is presented in Section 2.1
that all two-dimensional and all three-dimensional manifolds (with arbitrary topologies) can be represented in this way. A
large class (but not all) higher-dimensional manifolds can also be represented using this multi-cube method. The multi-cube
method provides a way of representing manifolds that facilitates the design of computational tools for solving partial differ-
ential equations on them. A simple infrastructure is introduced in Section 2.2 for systematically building, referencing and
identifying the faces of the needed sets of n-cubes in these manifolds. These n-cube regions are joined together to form
the desired topological manifold using maps that identify points on the faces of neighboring n-cubes. A simple framework
for building and referencing these maps is presented. Only a small number of topologically distinct maps are needed for the
case of three-dimensional manifolds (the main focus of this paper), and all of those maps are given explicitly.
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2.1. Existence of multi-cube representations

This subsection considers the question of whether two- and three-dimensional manifolds with arbitrary topologies admit
multi-cube representations. The first step is to show that every two-manifold is homeomorphic to a set of squares (i.e. 2-
cubes) glued together along their edges. The proof is based on the result of Radó [11] (see also Moise [12]) that all two-
dimensional manifolds admit triangulations, i.e. that any two-manifold is homeomorphic to a set of triangles glued together
along their edges. It is easy to show that a simple refinement of any triangulation on a two-dimensional manifold produces a
multi-cube representation of that manifold. As illustrated in Fig. 1, let points ‘‘A’’, ‘‘B’’, and ‘‘C’’ denote the vertexes of one of
the triangles in the triangulation. Add the midpoints of each edge of this triangle as additional vertexes, labeled ‘‘ab’’, ‘‘bc’’,
and ‘‘ac’’ in Fig. 1. Next, add the centroid of the triangle, the point labeled ‘‘d’’, and finally add as additional edges the line
segments that connect ‘‘d’’ with the midpoints ‘‘ab’’, ‘‘bc’’ and ‘‘ac’’. The resulting complex consists of three quadrilaterals.
When all of the triangles in a given triangulation are refined in this way, the result is a multi-cube representation of the
two-manifold. The refinement consists of a set of quadrilaterals that are glued together edge to edge. Since the additional
edge vertexes, ‘‘ab’’, etc. are always added at the geometrical midpoints, the edges of neighboring quadrilaterals constructed
in this way will always coincide. These quadrilaterals are homeomorphic to squares (2-cubes). So the topological structure of
a two-manifold can be thought of as a collection of non-overlapping 2-cubes that cover the manifold, plus a set of maps that
identify the edges of adjoining 2-cubes.

A similar argument shows that every three-dimensional manifold has a multi-cube representation, i.e. that every three-
dimensional manifold is homeomorphic to a set of non-overlapping ‘‘distorted’’ cubes glued together at their faces. The proof
is based on a result of Moise [12,13] that all three-dimensional manifolds admit triangulations by tetrahedrons, i.e. that any
three-dimensional manifold is homeomorphic to a set of non-overlapping tetrahedrons glued together at their faces. It is
easy to show that any tetrahedron can be decomposed into four ‘‘distorted’’ cubes glued together at their faces (the term
distorted cube is used here to describe a solid having six faces, each of which is a plane quadrilateral). Distorted cubes
are homeomorphic to geometrical cubes. It follows that every triangulation of a three-manifold can be refined (by adding
appropriate vertexes, edges and faces) to obtain a multi-cube representation, i.e. a set of non-overlapping distorted cubes
glued together at their faces. This argument demonstrates the existence of multi-cube representations for any three-dimen-
sional manifold.

The key to this argument is the representation of a single tetrahedron as four distorted cubes glued together. This can be
done by refining the tetrahedron through the addition of vertexes, edges and faces as summarized in Fig. 2. Begin with a tet-
rahedron with vertexes labeled ‘‘A’’, ‘‘B’’, ‘‘C’’ and ‘‘D’’. First add vertexes to the midpoints of each edge, plus vertexes to the
centroids of each face, the points ‘‘a’’, ‘‘b’’, ‘‘c’’ and ‘‘d’’ shown in the top left of Fig. 2. Adding the extra edges connecting ‘‘a’’,
‘‘b’’, ‘‘c’’ and ‘‘d’’ to the midpoints of each edge of the original tetrahedron completes the decomposition of each face into a set
of distorted squares. Add one last vertex at the centroid of the tetrahedron, labeled ‘‘O’’ in the top right of Fig. 2. Connect ‘‘O’’
to the facial centroids, ‘‘a’’, ‘‘b’’, ‘‘c’’ and ‘‘d’’, by adding the edges shown as dash-dot line segments in the top right of Fig. 2.
Finally add the six internal quadrilateral faces that include the point ‘‘O’’ as an edge vertex. These additional vertexes, edges,
and faces divide the tetrahedron into four volume regions (one adjacent to each tetrahedron vertex). The bottom of Fig. 2
shows these four regions more clearly. The regions adjacent to the vertexes ‘‘A’’ and ‘‘C’’ are shown with opaque faces, while
those adjacent to ‘‘B’’ and ‘‘D’’ are shown with transparent faces.

Each of the four volume regions constructed above has six faces, and each of these faces has four edges and four vertexes.
These faces are therefore quadrilaterals. It only remains to show that these quadrilaterals are planar. Call two edges of the
original tetrahedron ‘‘complimentary’’ if they do not intersect at a vertex, e.g. the edges ‘‘AC’’ and ‘‘BD’’ are complimentary.
Now consider the six bisecting planes of the tetrahedron, each one formed by an edge and the midpoint of the complemen-
tary edge of the tetrahedron. Each bisecting plane passes through the midpoint of the complementary edge, the centroid ‘‘O’’,
as well as the facial centroids of the two faces adjacent to the complementary edge. For example, the bisecting plane formed
by the edge ‘‘AC’’ and midpoint ‘‘bd’’ intersects ‘‘O’’ as well as the facial centroids ‘‘a’’ and ‘‘c’’. The quadrilateral formed by the
vertexes ‘‘bd’’, ‘‘a’’, ‘‘O’’, and ‘‘c’’ is therefore a planar quadrilateral. It follows that each of the faces of the four volume regions
is a planar quadrilateral, and therefore each volume region is a distorted cube.
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Fig. 1. Each triangle in a triangulation of a two-dimensional manifold is refined by the addition of extra vertexes and edges to produce three quadrilaterals.
This is done by first adding as new vertexes the midpoints of each edge, i.e. the points ‘‘ab’’, ‘‘bc’’ and ‘‘ac’’ in the figure on the left. Next the centroid of the
triangle, i.e. the point ‘‘d’’ in the figure on the right, is also added as a new vertex. Finally the line segments that join ‘‘d’’ to the midpoints ‘‘ab’’, ‘‘bc’’, and
‘‘ac’’, the dashed lines in the figure on the right, are added as new edges.
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Fig. 2. Top Left: Label the vertexes of the tetrahedron ‘‘A’’, ‘‘B’’, ‘‘C’’ and ‘‘D’’. Add vertexes at the midpoints of each edge, and additional vertexes at the
centroid of each face of the tetrahedron, labeled ‘‘a’’ for the centroid of face ‘‘BCD’’, ‘‘b’’ for face ‘‘ACD’’, etc. Also add additional edges (shown as dashed line
segments) connecting each centroid to the midpoint of each adjoining edge. Top Right: Add one additional vertex, labeled ‘‘O’’ at the centroid of the
tetrahedron. Add additional edges (shown as dash-dot line segments) that connect ‘‘O’’ to the centroids of each face, and six additional faces that include
‘‘O’’ as a vertex. Bottom: Four ‘‘distorted’’ cubes that make up the tetrahedron are illustrated. The two cubes adjacent to vertexes ‘‘A’’ and ‘‘C’’ are shown with
opaque shaded faces, while the faces of the cubes adjacent to ‘‘B’’ and ‘‘D’’ are transparent.
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The vertexes added in this construction were placed at the geometric centroids of the triangular faces, and at the centroid
of the original tetrahedron. The edges added in this construction were also placed in geometrically determined ways: all of
them along one of the bisecting planes of each edge of the original tetrahedron. These geometrically constructed features will
therefore match on the triangular boundaries between neighboring tetrahedrons in any triangulation of a three-dimensional
manifold. It follows that the distorted cubes constructed in this way will match face-to-face across all the tetrahedron
boundaries as required for a multi-cube representation of the manifold.

2.2. Infrastructure for multi-cube manifolds

Now turn to the problem of finding a systematic way of constructing multi-cube manifolds. The goal is to develop meth-
ods that can be used as part of the computational infrastructure for solving systems of partial differential equations on such
manifolds. The discussion here is focused on three-dimensional manifolds R, but generalizations to other dimensions should
be fairly straightforward. Let BA denote a collection of geometrical cubic regions in R 3. The subscript A ¼ f1; . . . ;Ng is used to
label the individual regions.1 These cubes are used here as the domains of coordinate charts for the multi-cube representation
of R. Let WA denote the invertible coordinate map that takes the region BA into a subset of R: WAðBAÞ � R. It will be useful to
denote the boundary faces of these regions in R 3 as @aBA, where a ¼ �x denotes the faces intersecting the �x axes, a ¼ �y the
faces intersecting the �y axes, etc.

The discussion above shows that every three-manifold can be covered by a collection of non-overlapping cubes:
[AWAðBAÞ ¼ R. Non-overlapping here means that the images of the regions are non-intersecting, WAðBAÞ \WBðBBÞ ¼ ;, for
points in the interiors of BA and BB when A – B. It is convenient to choose the regions BA in R 3 to be scaled so they all have
the same size L, and are all oriented along the same global Cartesian coordinate axes in R 3. In this case the region BA is com-
pletely determined therefore simply by specifying the location of its center~cA ¼ ðcx

A; c
y
A; c

z
AÞ in R 3. It is also convenient to ar-

range the regions BA in R 3 so they intersect (if at all) in R 3 only at points on faces whose images also intersect in R. In the
multi-cube representations of manifolds satisfying these conditions, each point in the interior of the regions represents a
unique point in R, and each point in R is the image of at least one point in the closure of [ABA. The Cartesian coordinates
1 The term region in this paper is used to refer to the cubes BA that form the basic topological structure of the manifold. It might be useful for computational
efficiency to subdivide some (or all) of the cubic regions into a collection of smaller cubes, e.g. by cutting a cubic region into two, four, or eight smaller cubes.
Those smaller cubic subsets of the BA are referred to as subregions.



L. Lindblom, B. Szilágyi / Journal of Computational Physics 243 (2013) 151–175 155
of R 3 therefore provide a global way of identifying points in R. Tensor fields are represented on these multi-cube manifolds
by giving the values of their components (expressed in the coordinate basis of R 3) as functions of these global Cartesian
coordinates.

A multi-cube manifold consists of a set of cubic regions, BA for A ¼ f1; . . . ;Ng that can be specified simply by giving the
locations of their centers~cA, along with a set of rules that determine how the faces of these cubes are to be identified with
one another. When points on the images of two boundary faces WAð@aBAÞ and WBð@bBBÞ intersect in R, then the associated
coordinate charts provide an invertible map from one boundary face to the other: @aBA ¼ WAa

Bbð@bBBÞ where WAa
Bb � W�1

A �WB

for points on the @aBA and @bBB faces. Since the cubes BA have uniform size and orientation in R 3, there are only a small num-
ber of simple maps WAa

Bb needed to represent all the topologically distinct ways of mapping one face onto another. It is suf-
ficient to consider maps that identify the faces of two cubic region first by rigidly translating so the centers of the faces @aBA

and @bBB coincide, and then rigidly rotating and/or reflecting to align the two faces in the desired way. Thus it is sufficient to
consider the simple maps WAa

Bb that take the Cartesian coordinates xi
B of points in @bBB to the Cartesian coordinates xi

A of the
corresponding points in @aBA in the following way,
xi
A ¼ ci

A þ f i
a þ CAa i

Bb j xj
B � cj

B � f j
b

� �
: ð1Þ
The vector~cA þ~f a is the location of the center of the @aBA face, and CAa
Bb is the combined rotation and reflection matrix needed

to achieve the desired orientation. Examples of the use of these methods is given in Appendix A where explicit multi-cube
representations are constructed for manifolds with the topologies T 3, S2 � S1 and S 3.

Multi-cube manifolds are specified by giving the list of cubic regions BA needed to cover the manifold, the vectors~cA that
determine the locations of their centers in R 3, and the maps WAa

Bb that determine how the regions are glued together. These
maps, defined in Eq. (1), depend on the vectors ~cA and ~f a, and the matrix CAa

Bb , so these quantities must all be specified to
determine each map. The vector~f a is the position of the center of the a face relative to the center of the region. Since the
cubic regions are chosen to have uniform sizes and orientations,~f a has the same form in each cubic region:
~f�x ¼
1
2

Lð�1;0;0Þ;

~f�y ¼
1
2

Lð0;�1;0Þ;

~f�z ¼
1
2

Lð0;0;�1Þ;

ð2Þ
where L is the size of the cubes. Since all of the cubic regions are aligned, the class of possible rotations and reflections
needed for CAa

Bb is quite small. These can all be constructed by combining 90-degree rotations about the normal to one of
the faces, Ra, with mirror reflections about some (possibly different) direction, Mb. Table 1 gives explicit expressions for
the matrices that describe these elementary rotations and reflections in three dimensions. The most general transformation
of one face onto another can be constructed by taking products of these elementary transformations. The group of possible
CAa

Bb in three dimensions generated in this way is therefore the octahedral symmetry group, Oh, which has 48 distinct ele-
ments [14]. The orientation preserving subgroup generated by the rotations alone has 24 elements. Note that
Ra � R�a ¼ R4

a ¼M2
a ¼ I, where I is the identity matrix. Since the number of possible maps WAa

Bb constructed in this way is
so small, it is easy to write a flexible code that is capable of setting up the multi-cube structures and all the needed gluing
maps for three-manifolds with arbitrary topologies.
3. Specifying differential structures on multi-cube manifolds

This section describes a practical and efficient way to define Ck differential structures on multi-cube manifolds. It is useful
to begin with a brief discussion of the traditional way such structures are defined. The differential structure on a manifold
provides the framework needed to represent differentiable scalar and tensor fields on that manifold. The usual method of
specifying a differential structure is to cover the manifold with a set of overlapping domains DA, and set of maps !A that
assign coordinates to the points in each domain: !�1

A ðDAÞ � Rn. These coordinate maps provide a differential structure for
the manifold if they have the property that the composition maps !A

B ¼ !�1
A �!B are differentiable (or Ckþ1) transformations

from the coordinates of one patch to the other for points in the overlap DA \ DB. The Jacobian matrices associated with these
Table 1
Elementary Transformations.

a ¼ �x a ¼ �y a ¼ �z

Ra 1 0 0
0 0 	1
0 �1 0

0
@

1
A 0 0 �1

0 1 0
	1 0 0

0
@

1
A 0 	1 0

�1 0 0
0 0 1

0
@

1
A

Ma �1 0 0
0 1 0
0 0 1

0
@

1
A 1 0 0

0 �1 0
0 0 1

0
@

1
A 1 0 0

0 1 0
0 0 �1

0
@

1
A
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coordinate transformations JAi
Bj ¼ @xi

A=@xj
B determine the transformations for Ck differentiable tensors from one coordinate

representation to another in these overlaps.
It is possible to use the traditional method of defining differential structures on multi-cube manifolds, but to do so re-

quires that non-trivial additional structures must be added to the basic multi-cube construction (since the domains that de-
fine that basic structure do not overlap). The most straightforward approach would be to require that each multi-cube
manifold be provided with an additional set of overlapping domains DA 
 WAðBAÞ and a set of Ckþ1 related coordinate maps
!A for the new overlapping DA domains. An alternative, more minimalist, approach would be to require that suitable Jaco-
bian matrices JAai

Bbj , in addition to the connection maps WAa
Bb , be provided on each interface between regions in multi-cube man-

ifolds. This minimal structure would provide the transformations needed to define differentiable scalar and continuous
tensor fields on these manifolds. If Ckþ1 differentiable scalars or Ck differentiable tensor fields are needed, then in addition
to JAai

Bbj , all of their kth order derivatives @k
BJAi

Bj would also have to be specified on each interface between regions.
It might seem redundant and unnecessary to require that the Jacobian matrices JAai

Bbj and their derivatives be specified on

the interfaces in multi-cube manifolds, in addition to the interface coordinate maps WAa
Bb defined in Eq. (1). After all, the Jaco-

bian matrices associated with those interface maps, JAai
Bbj ¼ CAai

Bbj , and their derivatives, @BkJAai
Bbj ¼ @BkCAai

Bbj ¼ 0, could be used to
transform tensor fields at the boundary interfaces. Unfortunately it is easy to see that the coordinate maps WA used in Sec-
tion 2 to construct the multi-cubes are not suitable for constructing a global Ck differential structure on most manifolds. If
they were, the basis vectors @Ai associated with these coordinates would be smooth global non-vanishing vector fields. These
vector fields could be used in this case to construct a global smooth flat metric on the manifold. Since most manifolds do not
admit global flat metrics, the existence of a complete set of smooth non-vanishing coordinate vector fields cannot exist on
most manifolds. Fig. 3, drawn from the perspective of a smooth coordinate patch that covers both sides of an interface
boundary, illustrates how the multi-cube coordinates in neighboring regions can be continuous while failing to be differen-
tiable across region boundaries. The coordinate region B1 on the left, matches to coordinate region B2 on the right across the
X1 ¼ X2 interface in Fig. 3. The coordinate vectors tangent to this interface, e.g. @Y1 and @Y2 , are continuous across this inter-
face, while those not tangent to the boundary, i.e. @X1 and @X2 , are discontinuous there.

Both approaches described above for specifying differential structures on a multi-cube manifolds require that a great deal
of extra structure be provided. This paper proposes a third, more elegant and more efficient, approach that can be incorpo-
rated more easily into the computational infrastructure for solving partial differential equations numerically. Every manifold
with a Ckþ1 differential structure admits a symmetric positive definite Ck differentiable metric tensor gij. The method pro-
posed here for specifying the global differential structure on a multi-cube manifold requires that the components of (any)
one of these Ck differentiable reference metrics, gij, be provided in the global Cartesian coordinate basis used to define the
multi-cube manifold. The components of this reference metric gij will be Ck functions of the multi-cube Cartesian coordinates
within each region BA, but will (in general) be discontinuous across the interfaces between regions. The only requirement on
this reference metric is that it must be sufficiently smooth, Ck, when represented in a global Ckþ1 coordinate atlas. The Ckþ1

coordinate charts !A themselves need not be given as part of the specification of the multi-cube manifold. Their only use in
this method is to ensure a priori that the reference metric meets the needed smoothness requirements.

Once a suitable reference metric gij is provided, it is straightforward to construct the Jacobian matrices JAai
Bbj and the dual

Jacobian matrices J�Bbj
Aai needed to transform continuous tensor fields across the interface boundaries in multi-cube manifolds.

Assume that the @aBA boundary of region BA is identified with the @bBB boundary of region BB by the map WAa
Bb given in Eq. (1).

The transformation taking the region BB representation of a vector v i
B into the region BA representation v i

A at one of these
identified boundary points is an expression of the form
Fig. 3.
to the b
v i
A ¼ JAai

Bbjv
j

B ; ð3Þ
where JAai
Bbj is in effect the Jacobian matrix of the transformation. The analogous transformation law for covectors wBi is,
wAi ¼ J�Bbj
Aai wBj; ð4Þ
where J�Bbj
Aai is in effect the dual Jacobian matrix.
∂X2

∂X1
∂

2Y∂
1Y

1Y
Y2

X 1

X 2

=

Maps WA define continuous but (typically) non-differentiable transitions between cubic regions. This example shows that the basis vectors tangent
oundary, @Y1 and @Y2 , are continuous, while those not tangent to the boundary, @X1 and @X2 , are not.
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Let gAij denote the coordinate components of the reference metric in the multi-cube coordinate basis of region BA, and let
nAai denote the outward directed normal covector to the surface @aBA. This interface is a surface of constant coordinate xa

A, so
the geometrical normal covector is proportional to @Aixa

A. The normal covector is therefore given by
nAai ¼
�@Aixa

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gjk

A @Ajxa
A@Akxa

A

q ; ð5Þ
where gij
A is the inverse of the reference metric gAij. The sign is chosen in this expression to make nAai the outgoing unit nor-

mal. The unit normal vector ni
Aa is related to nAai by ni

Aa ¼ gij
AnAaj:.

The Jacobian matrices needed to transform vectors and covectors (and therefore any type of tensor field) across boundary
interfaces are simple functions of the quantities CAai

Bbj and CBbj
Aai (which define the identification maps WAa

Bb), as well as the nor-
mals to the boundary surface, ni

Aa, nAai, ni
Bb and nBbi:
JAai
Bbj ¼ CAai

Bbk dk
j � nk

BbnBbj

� �
� ni

AanBbj; ð6Þ

J�Bbj
Aai ¼ dk

i � nAaink
Aa

� �
CBbj

Aak � nAain
j
Bb: ð7Þ
The Jacobian matrices defined in Eqs. (6) and (7) are the unique ones with the properties: (a) They map the geometrical nor-
mals nj

Bb into �ni
Aa and nBbj into �nAai,
ni
Aa ¼ �JAai

Bbj nj
Bb; ð8Þ

nAai ¼ �J�Bbj
Aai nBbj; ð9Þ
(i.e. the outward directed normal of one region is identified with the inward directed normal of its neighbor). (b) The Jaco-
bian matrix JAai

Bbj transforms any vector ti tangent to the boundary (i.e. any vector satisfying tini ¼ 0) using the continuity of
the WAa

Bb maps:
ti
A ¼ JAai

Bbj tj
B ¼ CAai

Bbj tj
B: ð10Þ
(c) The Jacobian matrix JAai
Bbj and its dual J�Bbj

Aai are inverses
dAi
Aj ¼ JAai

Bbk J�Bbk
Aaj : ð11Þ
This last property ensures that tensor contractions and traces transform properly under these boundary interface
mappings.

The Jacobian matrices constructed in Eqs. (6) and (7) using the identification maps WAa
Bb and the reference metric gij define

the transformations needed to connect arbitrary tensor fields across the interface boundaries of multi-cube manifolds. These
transformations make it possible therefore to define what it means for a global tensor field to be continuous on multi-cube
manifolds: A tensor field is continuous on a multi-cube manifold if its multi-cube coordinate components are continuous
within each region BA, and if its multi-cube coordinate components at each interface boundary point are equal to the trans-
form of its components from the neighboring region.

The reference metric can also be used to define a smooth connection
Ci
jk ¼

1
2

gi‘ð@ jg‘k þ @kg‘j � @‘gjkÞ; ð12Þ
that can be used to define a covariant derivative operator ri. This covariant derivative is related to the coordinate partial
derivatives (within each region BA) by the usual expressions for the case of vectors and covectors:
riv j ¼ @ iv j þ Cj
ikv

k; ð13Þ
riwj ¼ @iwj � Ck

ijwk: ð14Þ
The covariant gradients of tensors, e.g. riv j and riwj, are themselves tensor fields. Therefore they are transformed at inter-
face boundaries using the Jacobian matrices defined in Eqs. (6) and (7) as well. Thus, for example, the gradients of vectors and
covectors transform as,
rAiv j
A ¼ J�Bbk

Aai JAaj
Bb‘rBkv‘

B; ð15Þ

rAiwAj ¼ J�Bbk
Aai J�Bb‘

Aaj rBkwB‘: ð16Þ
Using these transformation laws it is straightforward to define what it means for a global tensor field to be differentiable on a
multi-cube manifold: A tensor field is differentiable if the tensor and its covariant gradient are continuous everywhere
including across all multi-cube interfaces. The concept of Ck tensors can be built up in a straightforward way simply by taking
kth order covariant gradients of tensors and demanding that the tensor and all gradients up through kth order be continuous
global tensor fields.
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The addition of a smooth (i.e. Ck differentiable) positive definite reference metric gij therefore provides all the additional
information needed to define a global Ck differential structure on any multi-cube manifold.

4. Interface boundary conditions for multi-cube manifolds

The multi-cube representations of manifolds provide a practical framework in which to solve systems of partial differen-
tial equations numerically on manifolds with non-trivial spatial topologies. The idea is to solve those equations on each of
the cubic regions BA, using boundary conditions on the faces @aBA that ensure the combination of local solutions from each
region satisfies the system of equations globally—including at the boundaries. Solving differential equations using multi-
patch methods is a common practice in computational physics on manifolds that are subsets of R 3 [4–10]. Such methods
are used for example in the pseudo-spectral code SpEC (developed by the Caltech/Cornell numerical relativity collaboration
[15–19]) to solve Einstein’s equations. The multi-cube framework developed here extends the class of problems accessible to
such codes by allowing them to solve problems on computational domains that cannot be covered by a single global coor-
dinate chart. This generalization provides a method of solving differential equations on two-dimensional and three-dimen-
sional manifolds with arbitrary topologies, in addition to a very large class of higher dimensional manifolds. The code
changes needed to implement these more general multi-cube methods require fairly minor generalizations of the way
boundary conditions are imposed at the interfaces between cubic regions in standard multi-patch codes. The needed gen-
eralizations are described here in some detail for second-order quasi-linear strongly-elliptic and first-order symmetric-
hyperbolic systems of equations.

4.1. Interface boundary conditions for elliptic systems

A second-order quasi-linear strongly-elliptic system of equations for a collection of tensor fields uA can be written in the
form
2 It is
second-
conside
within
the orig
will not
their no
rj½MjkA
BðuÞrkuB� ¼ FBðu;ruÞ; ð17Þ
where ri is some covariant derivative operator, MjkA
BðuÞ may depend on the fields but not their derivatives, and FBðu;ruÞ

may depend on the fields and their first derivatives. The script indexes A, B, C, . . .in these expressions label the components
of the collection of tensor fields that make up uA. Such a system is strongly elliptic if there is a positive definite metric on the
space of fields, SAB , a positive definite spatial metric, gij, on the manifold (e.g. the reference metric used to define the multi-
cube structure) and a positive constant, C > 0, such that
wjwkMjkC
ASCB vAvB P C gjkwjwk SAB vAvB; ð18Þ
for every vA and every wj [20].
All differentiable solutions to second-order elliptic systems of this type are smooth, assuming the quantities MjkA

B and FB

are smooth [20]. Boundary conditions for these equations at internal inter-region boundaries are therefore quite simple: the
solutions uA and their normal derivatives niriuA (where ni is the normal to the boundary) must be continuous when trans-
formed appropriately across inter-region boundaries.2

These continuity conditions can only be imposed at the interface boundaries by transforming the fields uA computed
in one region, BB, into the tensor basis used by its neighboring region, BA. The fields uA are (by assumption) a collection
of tensor fields whose components are transformed across region boundaries using the Jacobian as defined in Eqs. (3)
and (4). Thus the fields uAB (expressed in the tensor basis associated with the coordinates xi

B from the region BB) are re-
lated to the fields uAA (in the tensor basis associated with the coordinates xi

A from the region BA) by a transformation of
the form,
uAA ¼ JAB uBB ; ð19Þ
where JAB is the multi-component Jacobian appropriate for each tensor part of uB . For example, a system whose fields consist
of a scalar, a vector, and a covector uB ¼ fw;v i;wig, would transform as follows,
JAB uBB ¼ wB; JAaj
Bbiv

i
B; J�Bbi

Aaj wBi

n o
: ð20Þ
easy to see that the continuity of the fields uA and their normal derivatives niriuA must both be imposed as internal interface boundary conditions for
order elliptic systems. Consider a computational domain D on which an elliptic system along with suitable boundary conditions is to be solved. Now
r dividing this domain into two subdomains, D ¼ D1 [ D2, separated by an internal interface boundary. A solution to this elliptic system is determined
each of these subdomains by specifying (arbitrarily) the values of the fields on this interface boundary (in addition to the outer boundary conditions on
inal domain D). The normal derivatives of the fields in these solutions will not in general be continuous across the interface, however, so these solutions
in general equal the desired global solution on D. The correct global solution is only determined, therefore, by requiring continuity of both the fields and
rmal derivatives at internal interface boundaries.
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The boundary conditions for second-order elliptic systems also place conditions on the normal derivatives of the fields,
niriuA. The covariant gradient of a tensor field is itself a tensor field, so these gradients are transformed across region bound-
aries by an equation analogous to Eq. (19):
rAiuAA ¼ J�Bbj
Aai J

A
BrBjuBB : ð21Þ
It may be more convenient in some cases to impose the needed continuity conditions on the partial derivatives, ni@ iuA, rather
than the covariant derivatives of the fields, niriuA. The interface boundary transformations needed in this case are easy to
obtain from Eq. (21): the covariant derivatives rAk and rBk that appear in this condition are re-expressed in terms of the
partial derivatives @Ai and @Ai, and the connection coefficients Ci

Ajk and Ci
Bjk. For the case of vector and co-vector fields, the

resulting partial derivative transformation laws are given by,
@Akv i
A ¼ J�Bb‘

Aak JAai
Bbj @B‘v j

B þ J�Bb‘
Aak JAai

Bbn Cn
B‘j � JAan

Bbj Ci
Akn

� �
v j

B; ð22Þ

@AkwAi ¼ J�Bb‘
Aak J�Bbj

Aai @B‘vBj � J�Bb‘
Aak J�Bbn

Aai Cj
B‘n � J�Bbj

Aan Cn
Aki

� �
wBj: ð23Þ
The needed interface boundary conditions for second-order elliptic systems can now be stated precisely: Let BA and BB

represent cubic regions whose faces @aBA and @bBB are identified. Let uAA and uAB denote the fields evaluated in the cubic re-
gions BA and BB respectively. The required interface boundary conditions can then be written as,
uBB ¼ J BA uAA ; ð24Þ
to be imposed on the boundary face @bBB, and the equation,
ni
ArAiuAA ¼ ni

AJ�Bbk
Aai J

A
B rBkuBB ; ð25Þ
to be imposed on the boundary face @aBA.
The required continuity conditions can be imposed numerically by replacing the elliptic system, Eq. (17), with the equa-

tion for the continuity of the fields on the grid points of one of the boundary faces, @bBB, and the equation for the continuity
of the normal derivatives on the grid points of the other face @aBA. Together these boundary conditions ensure that the global
solution to Eq. (17) will have the required continuity and differentiability at interface boundaries. Second-order strongly-
elliptic systems can be solved using either Dirichlet or Neumann type boundary conditions. Thus the continuity conditions
imposed here are exactly those needed to ensure the well-posedness of the boundary value problem within each cubic
region.

Boundary conditions of this type are already used successfully and routinely in elliptic-solver codes that implement tra-
ditional multi-patch methods (see e.g. Ref. [16]). The only difference between the boundary conditions used in those tradi-
tional multi-patch codes and the ones introduced here is the form of the Jacobian matrices used to transform the
components of tensors and their derivatives at the interfaces between regions. In traditional multi-patch methods these Jac-
obians are just identity matrices, because in those cases there was always a smooth global coordinate basis that could be
used to represent tensor fields in all computational subdomains. In the multi-cube method introduced here, these Jacobians
contain critical information about the differential topology of the manifold.

4.2. Interface boundary conditions for hyperbolic systems

A first-order symmetric-hyperbolic system of equations for the dynamical fields uA (assumed here to be a collection of
tensor fields) can be written in the form
@tuA þ AkA
BðuÞrkuB ¼ FAðuÞ; ð26Þ
where the characteristic matrix, AkA
BðuÞ, and source term, FAðuÞ, may depend on the fields uA but not their derivatives. The

script indexes A, B, C, . . .in these expressions label the components of the collection of tensor fields that make up uA. These
systems are called symmetric because, by assumption, there exists a positive definite metric on the space of fields, SAB , that
can be used to transform the characteristic matrix into a symmetric form: SACA

k C
B � Ak

AB ¼ Ak
BA.

Boundary conditions for symmetric-hyperbolic systems must be imposed on the incoming characteristic fields of the sys-
tem. The characteristic fields ûK(whose index K labels the collection of characteristic fields) are projections of the dynamical
fields uA onto the left eigenvectors of the characteristic matrix (cf. Refs. [21,22]),
ûK ¼ eKAðnÞuA; ð27Þ
defined by the equation,
eKAðnÞnkAkA
BðuÞ ¼ v ðKÞ eKB ðnÞ: ð28Þ
The co-vector nk that appears in this definition is the outward pointing unit normal to the surface on which the characteristic
fields are evaluated. The eigenvalues v ðKÞ are often referred to as the characteristic speeds of the system. The characteristic
fields ûK represent the independent dynamical degrees of freedom at the boundaries. These characteristic fields propagate at
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the speeds v ðKÞ (in the short wavelength limit), so boundary conditions must be given for each incoming characteristic field,
i.e. for each field with speed v ðKÞ < 0. No boundary condition is required (or allowed) for outgoing characteristic fields, i.e. for
any field with v ðKÞ P 0.

The boundary conditions on the dynamical fields uA that ensure the equations are satisfied across the faces of adjoining
cubic regions are quite simple: data for the incoming characteristic fields at the boundary of one region are supplied by the
outgoing characteristic fields from the neighboring region. The boundary conditions at an interface between cubic regions
require that the dynamical fields uAA in region BA be transformed into the tensor basis used in the neighboring region BB.
When the dynamical fields uA are a collection of tensor fields (as assumed here) their components are transformed from
one coordinate representation to another using the Jacobian of the transformation as described in Eq. (19). In this case
the needed boundary conditions can be stated precisely for hyperbolic evolution problems: Consider two cubic regions BA

and BB whose boundaries @aBA and @bBB are identified by the map WaA
bB as defined in Eq. (1). The required boundary condi-

tions on the dynamical fields uAA consist of fixing the incoming characteristic fields ûKA , i.e. those with speeds v ðKÞ < 0, at the
boundary @aBA with data, uBB , from the fields on the neighboring boundary @bBB:
ûKA ¼ eKAðnÞJ ABuBB : ð29Þ
The matrix of eigenvectors, eKAðnÞ, that appears in this expression is to be evaluated using the fields from region BB that have been
transformed into regionBA where the boundary condition is to be imposed. This boundary condition must be applied to each incom-
ing characteristic field on each internal cube face, i.e. on each face that is identified with the face of a neighboring region.

This type of boundary condition is used routinely and successfully by hyperbolic evolution codes, such as the Caltech/Cor-
nell SpEC code, that implement traditional multi-patch methods. Those traditional applications differ from the multi-cube
methods discussed here only in the fact that tensors in those traditional cases could always be expressed in terms of the
global coordinate basis. The generalized Jacobians JAB needed to transform tensors across interface boundaries in those tra-
ditional applications of multi-patch methods are therefore just the identity map. In the more general multi-cube construc-
tion introduced in Sections 2 and 3 the Jacobians contain critical information about the differential topology of the manifold,
so the transformations used here must be slightly more complicated than those used in the traditional multi-patch case.
Other than that simple difference, however, the boundary conditions introduced here are the same as those used in the tra-
ditional multi-patch methods.

In some cases, like systems representing second-order tensor wave equations, the dynamical fields will include a collec-
tion of primary tensor fields plus a collection of secondary fields representing the first derivatives of the primary fields. In
most cases the secondary fields can be defined using a covariant derivative, thus making them tensor fields as well. The Ein-
stein equations are somewhat problematic, because the most natural covariant derivative of the metric tensor (the primary
tensor field in this case) vanishes identically. Thus first-order symmetric-hyperbolic representations of the Einstein equa-
tions are not generally co-variant [22]. They can be made fully covariant however by defining the secondary dynamical fields
using the covariant derivative associated with the non-dynamical reference metric that defines the differential topology of
the manifold. This type of fully covariant first-order representation of the Einstein system will be discussed in detail in a
future publication.

5. Numerical tests of a multi-cube elliptic equation solver

This section discusses a series of tests of the numerical solution of elliptic equations on compact three-manifolds using
the multi-cube methods described in Sections 2–4. These tests find numerical solutions to the equation
ririw� c 2w ¼ f ; ð30Þ
where w is a scalar field,ri represents the covariant derivative associated with a fixed smooth positive-definite metric gij on
a particular three-manifold, c is a constant, and f is a fixed source function. The constant term, with c 2 > 0, ensures the solu-
tion to this equation is unique on any compact three-manifold. This equation is solved here on the three-manifolds whose
multi-cube representations are described in Appendix A: T 3 with a flat metric, S2 � S1 with a round constant-curvature met-
ric, and S 3 with the standard round constant-curvature metric. The source functions f for these tests are chosen to ensure
that the solutions w are non-trivial functions which are known analytically.

The accuracy and effectiveness of the numerical solutions of Eq. (30) are evaluated in two ways. The first accuracy indi-
cator used here is the residual, R, which measures how well the numerical solutions satisfy the discrete form of the differ-
ential equations. This numerical residual is defined as
R ¼ ririwN � c 2wN � f ; ð31Þ
where wN is the numerical solution of the discrete form of Eq. (30). The size of this residual is monitored for each numerical
solution by evaluating its L2 norm and computing the normalized residual error quantity, ER, defined as
ER ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
R2 ffiffiffi

g
p

d3xR
f 2 ffiffiffi

g
p

d3x

vuut : ð32Þ
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The second accuracy indicator used here measures the error in the numerical solution itself: Dw ¼ wE � wN , where wE and wN

represent the exact analytical solution and the discrete numerical solutions respectively. The magnitude of Dw is evaluated
using the scale invariant L2 measure of the solution error:
Ew ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
ðDwÞ2 ffiffiffi

g
p

d3xR
w2

E
ffiffiffi
g
p

d3x

vuut : ð33Þ
The numerical tests described here were performed using the elliptic equation solver that is part of the SpEC code [16].
This code, developed originally by the Caltech/Cornell numerical relativity collaboration, uses pseudo-spectral methods to
represent functions and to evaluate their spatial derivatives. It evaluates the residual (and its linearization for non-linear
problems) for the elliptic system numerically, e.g. Eq. (31) with boundary conditions replacing the elliptic system at bound-
ary collocation points. The code solves the linearized equations and uses the linearized solution to reduce the size of the full
non-linear residual via Newton–Raphson like methods. The minimization of both the linearized and non-linear residuals
(including interface boundary terms) are done in parallel on all of the computational regions, so the resulting minimizing
field represents an approximate global numerical solution to the original global elliptic system. The SpEC code uses the PETSc
toolkit of linear and non-linear equation solvers to perform these residual minimization procedures, as described in more
detail Ref. [16].

Each cubic region in the tests described here is subdivided into one or more computational subregions, on which the field
components are fixed at the Gauss–Lobatto collocation points, and derivatives are computed using Chebyshev expansions.
The structure of these subregions was chosen to achieve fairly uniform spatial resolution. The particular choice of subregions
is described in the discussion of each test.

These numerical tests verify that several new ideas introduced in Sections 2–4 and Appendix A are correct, and that these
ideas have been implemented correctly in the SpEC code. The most fundamental new ideas tested here are the inter-region
boundary conditions, Eqs. (24) and (25), for elliptic equations. These internal boundary conditions depend on the Jacobians
and their derivatives, which depend in turn on the inter-region boundary maps in a critical way for manifolds with non-triv-
ial topologies. These Jacobian terms contribute to the boundary conditions in a non-trivial way even for the simple scalar
elliptic Eq. (30) used in these tests. These tests also depend in a non-trivial way on the multi-cube representations of the
reference metrics Eqs. (A.9) and (A.20) and their associated covariant derivatives on the manifolds S2 � S1 and S 3. If any
of these new elements of the multi-cube method were incorrect (or were implemented incorrectly in the code) the numer-
ical tests described here would not achieve the exponential convergence in the solution error measure Ew that is seen in
these tests.
5.1. Tests of a multi-cube elliptic equation solver on T 3

The numerical tests described here use the multi-cube representation of the three-manifold with topology T 3 given in
Appendix A.1. The reference metric in this case is the flat Euclidean metric, Eq. (A.1), so the covariant derivatives which ap-
pear in the elliptic Eq. (30) are just the Cartesian coordinate partial derivatives. When written in terms of the multi-cube
Cartesian coordinates on T 3, therefore, this equation takes the simple form,
ririw� c 2w ¼ @ 2
x wþ @ 2

y wþ @ 2
z w� c 2w ¼ f : ð34Þ
This equation is solved numerically in these tests using the source function f given by,
f ðx; y; zÞ ¼ �ðx2 þ c 2Þ cos
2p
L
ðkxþ ‘yþmzÞ

� �
; ð35Þ
where k, ‘, and m are integers, c is a constant c ¼ 1=L, and x is given by
x2 ¼ 2p
L

� �2

ðk2 þ ‘2 þm2Þ: ð36Þ
The exact analytical solution to this equation is given by
wEðx; y; zÞ ¼ cos
2p
L
ðkxþ ‘yþmzÞ

� �
: ð37Þ
The numerical tests of the solutions to Eqs. (34)–(36) were performed using a source function with k ¼ ‘ ¼ m ¼ 2. These
tests were performed on a set of eight computational subregions using a range of numerical resolutions having N ¼ 8, 10, 12,
14, 16, 18 and 20 collocation points respectively in each spatial direction in each subregion. These subregions divide the one
cubic region B1 needed to represent T 3 into eight cubes: each half the size of the region in each spatial direction. The internal
boundary maps between these subregions are just the trivial identity maps. The graphs of the solution errors Ew and the
residual errors ER, as defined in Eqs. (32) and (33), for these tests are shown in Fig. 4. The elliptic solver for these tests were
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run until the residual errors ER were reduced to the level of numerical roundoff. These results demonstrate that the bound-
ary conditions introduced here on region boundaries were implemented correctly and efficiently: successfully achieving the
exponential convergence expected of spectral numerical methods.

5.2. Tests of a multi-cube elliptic equation solver on S2 � S1

The numerical tests described here use the multi-cube representation of the three-manifold with topology S2 � S1 given
in Appendix A.2. The reference metric used in this case is the constant-curvature round metric given in terms of angular
coordinates fv; h;ug in Eq. (A.8), and in the multi-cube Cartesian coordinates used in these tests in Eq. (A.9). This choice
of reference metric makes the elliptic Eq. (A.9) somewhat more complicated in this case. In terms of the standard angular
coordinates this equation has the form
Fig. 4.
is the n
ririw� c 2w ¼
@2

vw

R2
1

þ @h½sin h@hw�
R2

2 sin h
þ

@2
uw

R2
2 sin2 h

� c 2w ¼ f : ð38Þ
This equation is solved numerically in these tests with a source function f given by,
f ðv; h;uÞ ¼ �ðx2 þ c 2ÞR½eikvY ‘mðh;uÞ�; ð39Þ
where Y‘mðh;uÞ is the standard S2 spherical harmonic function, k, ‘, and m are integers, c is a constant c ¼ 1=R2, x is given by
x2 ¼ ‘ð‘þ 1Þ
R2

2

þ k2

R2
1

; ð40Þ
and R½Q � denotes the real part of a quantity Q . The exact analytical solution to this equation is given by
wEðv; h;uÞ ¼ R½eikvY ‘mðh;uÞ�: ð41Þ
The numerical solution to this equation is carried out using the Cartesian coordinates of the multi-cube description of
S2 � S1 described in Appendix A.2. The covariant derivatives used by the SpEC code for this test are evaluated using the
Cartesian coordinate representation of the round metric given in Eq. (A.9). The source function f that appears on the right
side of Eq. (38), is evaluated in the multi-cube Cartesian coordinates used for these tests with the transformations between
the angular and Cartesian coordinates given in Tables A.4 and A.5.

The tests performed here used the source function given in Eqs. (39) and (40) with k ¼ ‘ ¼ m ¼ 2. These tests used a set of
twelve computational subregions to represent the six cubic regions of S2 � S1, cf. Fig. A.10. These subregions divide each re-
gion in the periodically identified z direction into two subregions. These tests were performed using N ¼ 8, 10, 12, 14, 16, 18,
20 and 22 collocation points respectively in each spatial direction in each of the computational subregions. The boundary
conditions at the inter-region boundaries are based on the maps specified in Table A.3. The graphs of the solution errors
Ew and the residual errors ER, as defined in Eqs. (32) and (33), for these tests are shown in Fig. 5. The elliptic solver for these
tests were run until the residual errors ER were reduced to the level of numerical roundoff. This graph demonstrates, for the
non-trivial S2 � S1 case, that the computational region boundary conditions developed here have been implemented cor-
rectly and efficiently, achieving the exponential convergence expected of spectral numerical methods.

5.3. Tests of a multi-cube elliptic equation solver on S 3

The numerical tests described here use the multi-cube representation of the three-manifold with topology S 3 given in
Appendix A.3. The reference metric used in this case is the standard constant-curvature round metric for S 3 given in terms
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of angular coordinates fv; h;ug in Eq. (A.19), in the multi-cube Cartesian coordinates used in these tests in Eq. (A.20). This
choice of reference metric fixes the elliptic Eq. (30) to have the form,
ririw� c 2w ¼ @v½sin2 v@vw�
R2

3 sin2 v
þ @h½sin h@hw�

R2
3 sin h sin2 v

þ
@2

u w

R2
3 sin2 h sin2 v

� c 2w ¼ f ; ð42Þ
when expressed in terms of the standard angular coordinates fv; h;ug used on S 3. The source function f used in these numer-
ical tests is given by,
f ðv; h;uÞ ¼ �ðx2 þ c 2ÞR½Yk‘mðv; h;uÞ�; ð43Þ
where the Yk‘mðv; h;uÞ are the S 3 spherical harmonics described in Appendix B, k, ‘, and m are integers, c is a constant
c ¼ 1=R3, and x is given by
x2 ¼ kðkþ 2Þ
R2

3

: ð44Þ
The exact analytical solution to this equation is given by
wEðv; h;uÞ ¼ R½Yk‘mðv; h;uÞ�: ð45Þ
The numerical solutions of Eq. (42) are carried out for these tests using the multi-cube representation of S 3 described in
Appendix A.3. The covariant derivatives used by the SpEC code for this test are evaluated using the multi-cube Cartesian
coordinate representation of the round metric on S 3 given in Eq. (A.20). The source function f, defined in Eq. (43), is evaluated
in terms of the multi-cube Cartesian coordinates for these tests using the transformations between the angular and the
Cartesian coordinates given in Tables A.8 and A.9.

The numerical tests described here solved the elliptic Eqs. (42)–(44) with the parameter values k ¼ ‘ ¼ m ¼ 2 in the
source function f. These tests were done using a set of eight computational subregions, corresponding to the eight cubic re-
gions needed to represent S 3, cf. Fig. A.11. These tests used N ¼ 8, 10, 12, 14, 16, 18, 20 and 22 collocation points respectively
in each spatial direction in each of the computational subregions. The boundary conditions at the region boundaries for these
tests are based on the interface identification maps specified in Table A.8. The graphs of the solution errors Ew and the resid-
ual errors ER, defined in Eqs. (32) and (33), for these tests are shown in Fig. 6. The elliptic solver for these tests were run until
the residual errors ER were reduced to the level of numerical roundoff. This graph demonstrates for another non-trivial
example that the inter-region boundary conditions developed here have been implemented correctly and efficiently.
Fig. 6 also demonstrates that these numerical tests have achieved the exponential convergence expected of spectral numer-
ical methods.

6. Numerical tests of a multi-cube hyperbolic equation solver

This section discusses numerical tests of the multi-cube methods for solving hyperbolic evolution equations on compact
three-manifolds as described in Sections 2–4. These tests find numerical solutions to the scalar wave equation
�@2
t wþririw ¼ 0; ð46Þ
where ri represents the spatial covariant derivative on the fixed geometry of the spatial three-manifold. This equation is
solved here on the three-manifolds described in Appendix A: T 3 with a flat metric, S2 � S1 with the constant curvature round
metric, and S 3 with the standard constant-curvature round metric.
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These wave equations are converted to first-order symmetric-hyperbolic form before solving them numerically. The list
of dynamical fields ua ¼ fw;P;Uig is therefore expanded to include the first derivatives of w: P ¼ �@tw, and Ui ¼ @ iw. Con-
straint damping is used to enforce the constraint,
Ci � @iw�Ui ¼ 0; ð47Þ
using the methods developed in Ref. [23] with constraint damping parameter c2 ¼ 1.
Exact analytical solutions exist to these wave equations on the three-manifolds used in these tests. Therefore the effec-

tiveness and efficiency of the evolution code can be tested in these cases by comparing numerical solutions wN to this equa-
tion with the known analytical solutions wE. The accuracy, and convergence properties, of the code can be measured
therefore by monitoring the L2 norms of Dw ¼ wE � wN using the solution error measure defined in Eq. (33). It is also useful
to monitor the constraint violation errors Ci. This is done by constructing the constraint error measure:
EC �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
gijCiCj

ffiffiffi
g
p

d3xR
gijðUiUj þ @iw@jwÞ

ffiffiffi
g
p

d3x

vuut : ð48Þ
This constraint error measure is invariant under changes in the overall scale of the solution, and to changes in the coordi-
nates used to represent the solution.

The tests performed here use the scalar wave evolution system that is implemented as part of the SpEC code [23,24]. This
code, developed originally by the Caltech/Cornell numerical relativity collaboration, uses pseudo-spectral methods to eval-
uate spatial derivatives, and the method of lines to approximate the hyperbolic system of partial differential equations as
sets of coupled ordinary differential equations on each collocation point. These tests use an eighth order Dormand-Prince
[25] algorithm to integrate the method of lines ordinary differential equations in time. Each cubic region in these tests is
subdivided into one or more computational subregions, on which field components are represented using Chebyshev basis
functions at the Gauss–Labatto collocation points. The structure of these subregions was chosen to achieve fairly uniform
spatial resolution. The particular choice of subregions is described in the discussion of each particular test.

6.1. Tests of a multi-cube hyperbolic equation solver on T 3

The numerical tests described here use the multi-cube representation of the three-manifold with topology T 3 given in
Appendix A.1. The reference metric in this case is the flat Euclidean metric, Eq. (A.1), so the spatial covariant derivatives
which appear in the wave Eq. (46) are just the Cartesian coordinate partial derivatives. When written in terms of the mul-
ti-cube Cartesian coordinates on T 3, therefore, the wave equation takes the simple form,
�@2
t wþririw ¼ �@2

t wþ @
2
xwþ @

2
ywþ @

2
z w ¼ 0: ð49Þ
The idea is to solve this equation numerically with initial data:
wðt; x; y; zÞjt¼0 ¼ cos
2p
L
ðkxþ ‘yþmzÞ

� �
; ð50Þ

@twðt; x; y; zÞjt¼0 ¼ �x sin
2p
L
ðkxþ ‘yþmzÞ

� �
; ð51Þ
where k, ‘, and m are integers, and x is given by
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x2 ¼ 2p
L

� �2

ðk2 þ ‘2 þm2Þ: ð52Þ
The exact solution to this initial value problem is given analytically by
wEðt; x; y; zÞ ¼ cos xt þ 2p
L
ðkxþ ‘yþmzÞ

� �
: ð53Þ
The numerical solution of the wave Eq. (49) for these tests was performed on a set of eight computational subregions.
These subregions divide the one cubic region needed to represent T 3 into eight cubes, each half the size of the region in
each spatial direction. The internal boundary maps between these subregions are just the trivial identity maps. These
hyperbolic evolution tests were performed using the initial data given in Eqs. (50) and (51) with k ¼ ‘ ¼ m ¼ 2. These
tests used computational subregions having N ¼ 16, 18, 20 and 22 collocation points respectively in each spatial direc-
tion. The graphs of the solution errors Ew and the constraint violation errors EC for these tests are shown in Fig. 7. These
graphs demonstrate that the numerical methods described here successfully achieve the exponential convergence ex-
pected of spectral numerical methods. The slow growth in time of the solution error Ew, seen in the left side of
Fig. 7 is linear in time. This type of error is a common feature of the ordinary differential equation integrator used
for these tests.

6.2. Tests of a multi-cube hyperbolic equation solver on S2 � S1

The numerical tests described here use the multi-cube representation of the three-manifold with topology S2 � S1 given
in Appendix A.2. The reference metric used in this case is the constant-curvature round metric given in terms of angular
coordinates fv; h;ug in Eq. (A.8), and in the multi-cube Cartesian coordinates used in these tests in Eq. (A.9). This choice
of reference metric fixes the wave Eq. (30) to have the form
�@2
t wþririw ¼ �@2

t wþ
@2

vw

R2
1

þ @h½sin h@hw�
R2

2 sin h
þ

@2
uw

R2
2 sin2 h

¼ 0; ð54Þ
when expressed in terms of the angular coordinates fv; h;ug used on S2 � S1. The idea is to solve this equation numerically
with initial data:
wðt; h;u;vÞt¼0 ¼ R½eikvY ‘mðh;uÞ�; ð55Þ

@twðt; h;u;vÞt¼0 ¼ R½ixeikvY ‘mðh;uÞ�; ð56Þ
where Y‘mðh;uÞ are the standard S2 spherical harmonics, k, ‘, and m are integers, x is given by
x2 ¼ ‘ð‘þ 1Þ
R2

2

þ k2

R2
1

; ð57Þ
and R½Q � denotes the real part of the quantity Q . The exact solution to this initial value problem is given analytically by
wEðt; h;u;vÞ ¼ R½eixtþikvY ‘mðh;uÞ�: ð58Þ
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The numerical solution of Eq. (54) is carried out using the Cartesian coordinates of the multi-cube description of S2 � S1

described in Appendix A.2. The spatial covariant derivatives used by the SpEC code for this test are evaluated using the Carte-
sian coordinate representation of the round metric given in Eq. (A.9). The initial data, Eqs. (55) and (56), used for these tests
are evaluated in the multi-cube Cartesian coordinates with the transformations between the angular and Cartesian coordi-
nates given in Tables A.4 and A.5.

The numerical solution of the scalar wave Eq. (54) for these tests was performed on a set of twelve computational sub-
regions. These subregions divide the six cubic regions needed to represent S2 � S1, cf. Fig. A.10, into cubes that are half the
size of the region in the z direction. The internal boundary maps between these subregions are just the trivial identity maps,
while the maps between regions are those given in Table A.3. These hyperbolic evolution tests were performed using the
initial data given in Eqs. (55) and (56) with k ¼ ‘ ¼ m ¼ 2. These tests were performed on computational subregions having
N ¼ 16, 18, 20 and 22 collocation points respectively in each spatial direction. The graphs of the solution errors Ew and the
constraint violation errors EC for these tests are shown in Fig. 8. These graphs demonstrate that the numerical methods de-
scribed here successfully achieve the exponential convergence expected of spectral numerical methods. The slow growth in
time of the solution error Ew, seen in left side of Fig. 8 is (mostly) linear in time. This growth in the error is a common feature
of the ordinary differential equation integrator used for these tests.

6.3. Tests of a multi-cube hyperbolic equation solver on S 3

The numerical tests described here use the multi-cube representation of the three-manifold with topology S 3 given in
Appendix A.3. The reference metric used in this case is the standard constant-curvature round metric for S 3 given in terms
of angular coordinates fv; h;ug in Eqs. (55) and (56) in the multi-cube Cartesian coordinates used in these tests in Eq. (A.20).
This choice of reference metric fixes the wave Eq. (46) to have the form,
�@2
t wþririw ¼ �@2

t wþ
@v½sin2 v@vw�

R2
3 sin2 v

þ @h½sin h@hw�
R2

3 sin h sin2 v
þ

@2
u w

R2
3 sin2 h sin2 v

¼ 0; ð59Þ
when expressed in terms of the standard angular coordinates fv; h;ug used on S 3. This equation is solved numerically with
initial data:
wðt; h;u;vÞt¼0 ¼ R½Yk‘mðv; h;uÞ�; ð60Þ

@twðt; h;u;vÞt¼0 ¼ R½ixYk‘mðv; h;uÞ�; ð61Þ
where Yk‘m is the S 3 spherical harmonic function defined in Appendix B, k, ‘, and m are integers, and x is given by
x2 ¼ kðkþ 2Þ
R2

3

: ð62Þ
The solution to this initial value problem is given analytically by
wEðt; h;u;vÞ ¼ R½eixtYk‘mðv; h;uÞ�: ð63Þ
The numerical solution of Eq. (59) is carried out using the Cartesian coordinates of the multi-cube description of S 3 de-
scribed in Appendix A.3. The spatial covariant derivatives used by the SpEC code for this test are evaluated using the Carte-
sian coordinate representation of the round metric given in Eq. (A.20). The initial data, Eqs. (60) and (61), used for these tests
are evaluated in the multi-cube Cartesian coordinates with the transformations between the angular and Cartesian coordi-
nates given in Tables A.8 and A.9.
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The numerical solution of the scalar wave Eq. (59) for these tests was performed on a set of eight computational subre-
gions. These subregions are identical to the eight cubic regions needed to represent S 3, cf. Fig. A.11. The maps between re-
gions are those given in Table A.7. The hyperbolic evolution test was performed using the initial data given in Eqs. (60) and
(61) with k ¼ ‘ ¼ m ¼ 2. These tests were performed on computational subregions having N ¼ 16, 18, 20 and 22 collocation
points respectively in each spatial direction. The graphs of the solution errors Ew and the constraint violation errors EC for
these tests are shown in Fig. 9. These graphs demonstrate that the numerical methods described here successfully achieve
the exponential convergence expected of spectral numerical methods. The slow growth in time of the solution error Ew, seen
in the left side of Fig. 9 is (mostly) linear in time. This growth in the error is a common feature of the ordinary differential
equation integrator used for these tests.
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Appendix A. Examples of multi-cube representations of three-manifolds

This appendix describes the construction of multi-cube representations of manifolds using the methods developed in Sec-
tions 2 and 3. Each multi-cube representation consists of a set of non-overlapping cubes BA that cover the manifold, a set of
maps WAa

Bb that identify the faces of neighboring cubes, and finally a smooth positive definite reference metric gij used to de-
fine the differential structure on the manifold. The construction of these multi-cube structures is described here for three
common three-manifolds: the three-torus T 3 with a flat reference metric, the spherical-torus S2 � S1 with a constant-curva-
ture round-sphere metric, and the three-sphere S 3 with the standard constant-curvature round-sphere metric. These exam-
ples are used in Sections 5 and 6 to illustrate the solution of partial differential equations on multi-cube manifolds using the
methods developed in Section 4.
A.1. Multi-cube representation of T 3

The simplest example of a multi-cube manifold is the three-torus, T 3. Only a single cube B1 is needed to cover this man-
ifold, and it is most convenient to locate this cube at the origin in R 3 so~c1 ¼ ð0;0;0Þ. Opposite faces of this cube are identified
without rotation or reflection to obtain the T 3 topology: @þxB1 $ @�xB1, @þyB1 $ @�yB1, and @þzB1 $ @�zB1. The maps, W1�x

1	x,
W1�y

1	y, and W1�z
1	z, needed to effect these identifications are defined by Eq. (1) with the rotation matrices, CAa

Bb , being just the
identity matrices: C1þx

1�x ¼ C1þy
1�y ¼ C1þz

1�z ¼ I. The three-torus T 3 admits a smooth flat metric, so a convenient choice of reference
metric for this manifold is:
ds2 ¼ gijdxidxj ¼ dx2 þ dy2 þ dz2
; ðA:1Þ
where x, y and z are the multi-cube Cartesian coordinates that label points in B1.
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Fig. A.10. The three-manifold S 2 � S 1 is represented using the six cubic regions illustrated here. The faces of these cubes are identified using the maps
described in Table A.3. This representation of S 2 � S 1 is based on the commonly used ‘‘cubed-sphere’’ representation of S 2.

Table A.2
Cube-center locations for S 2 � S 1.

~c1 ¼ ð0;�L;0Þ ~c3 ¼ ð0; L;0Þ ~c5 ¼ ðL;0;0Þ
~c2 ¼ ð0;0;0Þ ~c4 ¼ ð0;2L;0Þ ~c6 ¼ ð�L;0;0Þ

Table A.3
Cube face identifications,@aBA $ @bBB , and rotation matrices, CAa

Bb , for the interface maps in S 2 � S 1. Bold face indicates
the object is a matrix.

@aBA $ @bBB CAa
Bb CBb

Aa
@aBA $ @bBB CAa

Bb CBb
Aa

@þzB1 $ @�zB1 I I @þyB1 $ @�yB2 I I
@�yB1 $ @þyB4 I I @þxB1 $ @�yB5 Rþz R�z

@�xB1 $ @�yB6 R�z Rþz @þzB2 $ @�zB2 I I
@þyB2 $ @�yB3 I I @þxB2 $ @�xB5 I I
@�xB2 $ @þxB6 I I @þzB3 $ @�zB3 I I
@þyB3 $ @�yB4 I I @þxB3 $ @þyB5 R�z Rþz

@�xB3 $ @þyB6 Rþz R�z @þzB4 $ @�zB4 I I
@þxB4 $ @þxB5 R2

þz R2
þz

@�xB4 $ @�xB6 R2
þz R2

þz

@þzB5 $ @�zB5 I I @þzB6 $ @�zB6 I I
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A.2. Multi-cube representation of S2 � S1

The manifold S2 � S1 can be covered by a set of six cubic regions BA with A ¼ f1; . . . ;6g. A convenient way to arrange these
cubes in R 3 is illustrated in Fig. A.10. The values of the cube-center location vectors~cA for this configuration is summarized in
Table A.2. The inner faces of the touching cubes in Fig. A.10 are connected by identity maps, while the outer faces are
identified using the maps described by Eq. (1) with the rotation matrices CAa

Bb given in Table A.3. This representation of
S2 � S1 is constructed by taking the Cartesian product of S1 (the periodically identified z-axis in this representation) with
the commonly used ‘‘cubed-sphere’’ representation of S2 [1–3].

It is useful to discuss the method used to construct the ‘‘cubed-sphere’’ representation of S2 in some detail here, since this
method is used in Appendix A.3 as the model for constructing a new representation of S 3. Let f�x; �y;�zg denote Cartesian coor-
dinates in an R 3, and let �x2 þ �y2 þ �z2 ¼ r2 denote a two-sphere S2 of radius r. It is useful for some purposes to identify points
on this S2 using standard angular coordinates h and u:
�x ¼ r sin h cos u; ðA:2Þ
�y ¼ r sin h sin u; ðA:3Þ
�z ¼ r cos h: ðA:4Þ
Now consider a cube �B centered at the origin, of size L ¼ 2r=
ffiffiffi
3
p

(which just fits inside the sphere), whose orientation is
aligned with the f�x; �y;�zg axes. Let @�aB represent the six faces of this cube, with �a ¼ ��x, etc., labeling the various faces.
The images of these six faces can be arranged in a plane, like the a ¼ þz faces of the cubes shown in Fig. A.10. The goal here
is to construct a representation of S2 � S1, so it will also be useful to make a correspondence between these cube faces @�aB
with the cubes shown in Fig. A.10. Table A.4 gives the relationship between the cube-face identifiers �a ¼ ��x, etc. and the
cubic region labels A ¼ 1;2; . . . ;6 shown in Fig. A.10.

Points on each of the cube-faces, @�aB, can be identified by their local Cartesian coordinates. For example, points on the
�a ¼ þ�z face, i.e. the A ¼ 2 face in Fig. A.10, can be identified by the coordinates f�x; �yg. It is also useful to introduce scaled local
Cartesian coordinates, fXA;YAg to represent the points on these faces. For the �a ¼ þ�z face for example, it is useful to set



Table A.4
Cubed-Sphere Representation of S 2: Angular to Cartesian Coordinate Map.

A �a XA YA

1 ��y � �x
�y ¼ � cot u � �z

�y ¼ � cot h csc u
2 þ�z �x

�z ¼ tan h cos u �y
�z ¼ tan h sin u

3 þ�y �x
�y ¼ cot u � �z

�y ¼ � cot h csc u
4 ��z � �x

�z ¼ � tan h cos u �y
�z ¼ tan h sin u

5 þ�x � �z
�x ¼ � cot h sec u �y

�x ¼ tan u
6 ��x � �z

�x ¼ � cot h sec u � �y
�x ¼ � tan u

Table A.5
Cartesian to Angular Coordinate Map for the Cubed-Sphere Representation of S 2. The range of the local Cartesian coordinate XA is �1 6 XA 6 1, and the range of
h is 0 6 h 6 p in these expressions. The ranges of u for different values of YA are specified in the table.

A YA-range cos u u-range cos h

1 �1 6 Y1 6 1 X1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

1

q 7p
4 P u P 5p

4 Y1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

1 þ Y2
1

q
2 1 P Y2 P 0 X2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2 þ Y2
2

q p P u P 0 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

2 þ Y2
2

q
2 �1 6 Y2 < 0 X2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2 þ Y2
2

q
2p > u P p 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

2 þ Y2
2

q
3 �1 6 Y3 6 1 X3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

3

q
3p
4 P u P p

4 �Y3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

3 þ Y2
3

q
4 1 P Y4 > 0 X4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

4 þ Y2
4

q
2p > u P p �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

4 þ Y2
4

q
4 �1 6 Y4 6 0 X4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

4 þ Y2
4

q p P u P 0 �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

4 þ Y2
4

q
5 �1 6 Y5 < 0 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

5

q
2p > u P 7p

4 �X5=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

5 þ Y2
5

q
5 1 P Y5 P 0 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

5

q p
4 P u P 0 �X5=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

5 þ Y2
5

q
6 �1 6 Y6 < 0 �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

6

q 5p
4 P u > p X6=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

6 þ Y2
6

q
6 1 P Y6 P 0 �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

6

q
p P u P 3p

4 X6=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

6 þ Y2
6

q
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fX2;Y2g ¼ f�x=�z; �y=�zg. Each coordinate has been divided by �z, which is constant on this face, to ensure that the scaled coor-
dinates fX2;Y2g are confined to the ranges, �1 6 X2 6 1 and �1 6 Y2 6 1. Similar definitions are made on the other faces, cf.
Table A.4, that ensure the XA and YA are all oriented the same way as in Fig. A.10, and all satisfy �1 6 XA 6 1 and
�1 6 YA 6 1. Using Eqs. (A.2)–(A.4), this construction provides a natural identification between points on the original sphere,
labeled by their angular coordinates fh;ug, and the Cartesian cube-face coordinates fXA;YAg via the equations summarized
in Tables A.4 and A.5.

The fXA;YAg defined in this way are local Cartesian coordinates. These could be converted to global coordinates by adding
in the appropriate offset for each face: xx

A ¼ cx
A þ 1

2 LXA and xy
A ¼ cy

A þ 1
2 LYA. Alternatively, the angles tan�1 XA and tan�1 YA could

be used as local ‘‘Cartesian’’ coordinates on these cube faces. These angle-based Cartesian coordinates have the advantage of
giving a more uniform mapping of the Euclidean plane onto the image of the cube face on the sphere, so they are the pre-
ferred choice for numerical work. Global Cartesian coordinates constructed from these angle-based coordinates are defined
by
xx
A ¼ cx

A þ
2L
p

tan�1 XA; ðA:5Þ

xy
A ¼ cy

A þ
2L
p

tan�1 YA; ðA:6Þ
where XA and YA are functions of the standard angular coordinates h and u by the expressions given in Table A.4.
For representations of S2 � S1, an appropriate coordinate is also needed for the periodically identified z direction in

Fig. A.10. Introduce an angle v, whose range is �p 6 v 6 p, that labels the points in the S1 subspace. Then define the global
Cartesian coordinate associated with this direction as
xz
A ¼ cz

A þ
L

2p
v: ðA:7Þ
The standard constant-curvature ‘‘round’’ metric on S2 � S1 is smooth, and it is therefore an acceptable choice for the ref-
erence metric to define the differential structure on this manifold. The simplest representation of this round metric uses the
angular coordinates h, u, and v:
ds2 ¼ R2
2ðdh2 þ sin2 hdu2Þ þ R2

1dv2; ðA:8Þ
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where R2 and R1 are constants that specify the radii of the S2 and S1 parts of the geometry respectively. Using the transfor-
mations given in Eqs. (A.5)–(A.7) and Table A.4, a straightforward (but lengthy) calculation gives the global multi-cube Carte-
sian-coordinate representation of this metric on S2 � S1:
Fig. A.1
hidden
ds2 ¼ pR2

2L

� �2 ð1þ X2
AÞð1þ Y2

AÞ
ð1þ X2

A þ Y2
AÞ

2 ½ð1þ X2
AÞðdxx

AÞ
2 � 2XAYAdxx

Adxy
A þ ð1þ Y2

AÞðdxy
AÞ

2� þ 2pR1

L

� �2

ðdxz
AÞ

2
: ðA:9Þ
The XA and YA that appear in this expression are thought of as the functions of the Cartesian coordinates obtained by invert-
ing the expressions given in Eqs. (A.5) and (A.6):
XA ¼ tan
pðxx

A � cx
AÞ

2L

� �
; ðA:10Þ

YA ¼ tan
pðxy

A � cy
AÞ

2L

� �
: ðA:11Þ
The functions XA and YA depend on the location of a particular coordinate region through the parameters cx
A and cy

A. However,
beyond this dependence the multi-cube coordinate representation of the S2 � S1 round metric given in Eq. (A.9) is the same
in each of the six coordinate regions BA.

These multi-cube Cartesian coordinates fxA; yA; zAg turn out to be harmonic with respect to the round metric on S2 � S1,
i.e. each coordinate is a solution (locally within each cubic-region, not globally across the interface boundaries) to the covar-

iant Laplace equation, 0 ¼ ri
ArAi xA ¼ ri

ArAi yA ¼ ri
ArAi zA, where rAi is the covariant derivative associated with the S2 � S1

metric in region A. These conditions are equivalent to 0 ¼ @Ai
ffiffiffiffiffi
gA
p

gij
A

� �
where gA ¼ det gAij and gij

A is the inverse of the metric

gAij expressed in terms of the multi-cube Cartesian coordinates in region A.

A.3. Multi-cube representation of S 3

The locations of the eight cubic regions used to construct this representation of S3 are illustrated in Fig. A.11. The values of
the cube-center location vectors~cA for this configuration are summarized in Table A.6. The inner faces of the touching cubes
in Fig. A.11 are assumed to be connected by identity maps. The outer faces of these eight cubic regions are identified using
the maps described in Table A.7. This ‘‘cubed-sphere’’ representation of S3 is a natural three-dimensional generalization of
the two-dimensional cubed-sphere representation of S2 described in Appendix A.2. It is constructed by inserting a four-
dimensional cube into a three-dimensional sphere S3 in R4, and then identifying points on the faces of the four-cube with
the points on the three-sphere that are connected by rays extending outward from the origin.

It is appropriate to discuss this ‘‘cubed-sphere’’ representation of S 3 in some detail, since it does not appear to have been
used or described in the literature before. Let f�x; �y;�z; �wg denote Cartesian coordinates in R4, and let �x2 þ �y2 þ �z2 þ �w2 ¼ r2 de-
note a three-sphere, S 3, of radius r. It is often useful to identify points in S 3 using the angular coordinates v, h and u:
�x ¼ r sinv sin h cos u; ðA:12Þ
�y ¼ r sin v sin h sinu; ðA:13Þ
�z ¼ r sinv cos h; ðA:14Þ
�w ¼ r cosv: ðA:15Þ
Now consider a four-cube centered at the origin, of size L ¼ r (which just fits inside the three-sphere), whose orientation is
aligned with the f�x; �y;�z; �wg axes. Let @�aB denote the eight faces of this four-cube (each of which is a three-cube) labeled by
y

1 3 4

z

x
8

7 6

5

1. The three-manifold S 3 can be represented using the eight cubic regions illustrated here. Cubic region B2, centered at the origin~c2 ¼ ð0;0;0Þ is
between B7 and B8 in this figure. The outer faces of these cubes are identified using the maps described in Table A.7.



Table A.6
Cube-Center Locations for S 3.

~c1 ¼ ð0;�L;0Þ ~c3 ¼ ð0; L;0Þ ~c5 ¼ ðL;0;0Þ ~c7 ¼ ð0;0; LÞ
~c2 ¼ ð0;0;0Þ ~c4 ¼ ð0;2L;0Þ ~c6 ¼ ð�L;0;0Þ ~c8 ¼ ð0;0;�LÞ

Table A.7
Cubic Region Face Identifications, @aBA $ @bBB , and rotation matrices, CAa

Bb , for the interface maps in S 3.

@aBA $ @bBB CAa
Bb CBb

Aa
@aBA $ @bBB CAa

Bb CBb
Aa

@þyB1 $ @�yB2 I I @�yB1 $ @þyB4 I I
@þxB1 $ @�yB5 Rþz R�z @�xB1 $ @�yB6 R�z Rþz

@þzB1 $ @�yB7 R�x Rþx @�zB1 $ @�yB8 Rþx R�x

@þyB2 $ @�yB3 I I @þxB2 $ @�xB5 I I
@�xB2 $ @þxB6 I I @þzB2 $ @�zB7 I I
@�zB2 $ @þzB8 I I @þyB3 $ @�yB4 I I
@þxB3 $ @þyB5 R�z Rþz @�xB3 $ @þyB6 Rþz R�z

@þzB3 $ @þyB7 Rþx R�x @�zB3 $ @þyB8 R�x Rþx

@þxB4 $ @þxB5 R2
þz R2

þz
@�xB4 $ @�xB6 R2

þz R2
þz

@þzB4 $ @þzB7 R2
þx R2

þx
@�zB4 $ @�zB8 R2

þx R2
þx

@þzB5 $ @þxB7 R�y Rþy @�zB5 $ @þxB8 Rþy R�y

@þzB6 $ @�xB7 Rþy R�y @�zB6 $ @�xB8 R�y Rþy

Table A.8
Cubed-Sphere Representation of S 3.

A �a XA YA Za

1 ��y � �x
�y ¼ � cotu � �w

�y ¼ � cot v csc h cscu � �z
�y ¼ � cot h cscu

2 þ�w �x
�w ¼ tanv sin h cos u �y

�w ¼ tanv sin h sinu �z
�w ¼ tan v cos h

3 þ�y �x
�y ¼ cot u � �w

�y ¼ � cot v csc h cscu �z
�y ¼ cot h csc u

4 ��w � �x
�w ¼ � tan v sin h cos u �y

�w ¼ tanv sin h sinu � �z
�w ¼ � tanv cos h

5 þ�x � �w
�x ¼ � cot v csc h sec u �y

�x ¼ tan u �z
�x ¼ cot h sec u

6 ��x � �w
�x ¼ � cot v csc h sec u � �y

�x ¼ � tan u � �z
�x ¼ � cot h sec u

7 þ�z �x
�z ¼ tan h cos u �y

�z ¼ tan h sin u � �w
�z ¼ � cotv sec h

8 ��z � �x
�z ¼ � tan h cos u � �y

�z ¼ � tan h sinu � �w
�z ¼ � cotv sec h
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the index �a ¼ ��x, etc. Arrange the images of these eight three-cubes in R 3 at the locations given in Table A.6, as shown in
Fig. A.11. Table A.8 gives the relationship between the four-cube face identifiers �a ¼ ��x, etc. and the three-cube region iden-
tifiers A ¼ 1;2; . . . ;8 shown in Fig. A.11.

Points on each of the four-cube faces, @�aB, can be identified by their local Cartesian coordinates. For example, points on
the �a ¼ þ �w face, i.e. the A ¼ 2 region in Fig. A.11, can be identified by the coordinates f�x; �y;�zg. It is convenient to introduce
scaled local Cartesian coordinates, fXA; YA; ZAg to represent the points on these faces. For the �a ¼ þ �w face for example, set
fX2;Y2; Z2g ¼ f�x= �w; �y= �w;�z=�wg. Each coordinate has been divided by �w, which is constant on this face, to ensure that the
scaled coordinates fX2;Y2; Z2g are confined to the ranges, �1 6 X2 6 1, �1 6 Y2 6 1, and �1 6 Z2 6 1. Similar definitions
are made on the other faces, cf. Table A.8, that ensure the XA, YA, and ZA are all oriented the same way as in Fig. A.11, and
all satisfy �1 6 XA 6 1, �1 6 YA 6 1, and �1 6 ZA 6 1. Using Eqs. (A.12)–(A.15), this construction provides a natural identi-
fication between points on the original three-sphere, labeled by their angular coordinates fv; h;ug, and the local Cartesian
coordinates fXA;YA; ZAg on each four-cube face via the equations summarized in Tables A.8 and A.9.

The fXA;YA; ZAg defined using this cubed-sphere construction are local Cartesian coordinates on each of the faces of the
four-cube. They could be converted to global coordinates by adding the appropriate offset for each cube: xx

A ¼ cx
A þ 1

2 LXA,
xy

A ¼ cy
A þ 1

2 LYA, and xz
A ¼ cz

A þ 1
2 LZA. Alternatively, the angles tan�1 XA, tan�1 YA, and tan�1 ZA also provide local Cartesian-like

coordinates for these cubes. These angle-based Cartesian coordinates give a more uniform mapping of Euclidean space onto
the image of the four-cube face on the three-sphere. So as in the two-dimensional cubed-sphere case, these angle-based
Cartesian coordinates are the preferred choice for numerical work on the multi-cube representation of S 3. Global multi-cube
Cartesian coordinates constructed from these angle-based coordinates are defined by
xx
A ¼ cx

A þ
2L
p tan�1 XA; ðA:16Þ

xy
A ¼ cy

A þ
2L
p

tan�1 YA; ðA:17Þ

xz
A ¼ cz

A þ
2L
p

tan�1 ZA; ðA:18Þ



Table A.9
Cartesian to Angular Coordinate Map for the Cubed-Sphere Representation of S 3. The range of the local Cartesian coordinate XA is �1 6 XA 6 1, the range of ZA is
�1 6 ZA 6 1, the range of the angular coordinate h is 0 6 h 6 p, and the range of v is 0 6 v 6 p in these expressions. The ranges of u corresponding to different

ranges of YA are specified in the table. The quantities WA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

A þ Y2
A þ Z2

A

q
are used to simplify the expressions for cosv.

A YA-range cos u u-range cos h cos v

1 �1 6 Y1 6 1 X1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

1

q 7p
4 P u P 5p

4 Z1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

1 þ Z2
1

q
Y1=W1

2 1 P Y2 P 0 X2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2 þ Y2
2

q p P u P 0 Z2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2 þ Y2
2 þ Z2

2

q
1=W2

2 �1 6 Y2 < 0 X2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2 þ Y2
2

q
2p > u P p Z2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2 þ Y2
2 þ Z2

2

q
1=W2

3 �1 6 Y3 6 1 X3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

3

q 3p
4 P u P p

4 Z3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

3 þ Z2
3

q �Y3=W3

4 1 P Y4 > 0 X4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

4 þ Y2
4

q
2p > u P p Z4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

4 þ Y2
4 þ Z2

4

q �1=W4

4 �1 6 Y4 6 0 X4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

4 þ Y2
4

q p P u P 0 Z4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

4 þ Y2
4 þ Z2

4

q �1=W4

5 �1 6 Y5 < 0 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

5

q
2p > u P 7p

4 Z5=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

5 þ Z2
5

q �X5=W5

5 1 P Y5 P 0 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

5

q p
4 P u P 0 Z5=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

5 þ Z2
5

q �X5=W5

6 �1 6 Y6 < 0 �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

6

q 5p
4 P u > p Z6=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

6 þ Z2
6

q
X6=W6

6 1 P Y6 P 0 �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

6

q
p P u P 3p

4 Z6=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

6 þ Z2
6

q
X6=W6

7 1 P Y7 P 0 X7=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

7 þ Y2
7

q p P u P 0 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

7 þ Y2
7

q �Z7=W7

7 �1 6 Y7 < 0 X7=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

7 þ Y2
7

q
2p > u P p 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

7 þ Y2
7

q �Z7=W7

8 1 P Y8 P 0 X8=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

8 þ Y2
8

q p P u P 0 �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

8 þ Y2
8

q
Z8=W8

8 �1 6 Y8 < 0 X8=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

8 þ Y2
8

q
2p > u P p �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

8 þ Y2
8

q
Z8=W8
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where XA, YA, and ZA are functions of the hyper-spherical angular coordinates v, h and u given by the expressions in Tables
A.8 and A.9.

The standard constant-curvature ‘‘round’’ metric on S 3 is smooth, and it is therefore an acceptable choice for the reference
metric to define the differential structure on this manifold. The simplest representation of this round metric uses the angular
coordinates v, h, and u:
ds2 ¼ R2
3ðdv2 þ sin2 vdh2 þ sin2 v sin2 hdu2Þ; ðA:19Þ
where R3 is a constant that specifies the radius of the S 3. Using the transformations given in Eqs. (A.12)–(A.15), and in Tables
A.8 and A.9, a straightforward (but lengthy) calculation gives the global multi-cube Cartesian-coordinate representation of
this metric on S 3:
ds2 ¼ pR3

2L

� �2 ð1þ X2
AÞ 1þ Y2

A

� �
1þ Z2

A

� �
1þ X2

A þ Y2
A þ Z2

A

� �2

1þ X2
A

� �
1þ Y2

A þ Z2
A

� �
1þ Y2

A

� �
1þ Z2

A

� � dxx
A

	 
2 � 2XAYA

1þ Z2
A

dxx
Adxy

A

2
4

þ
1þ Y2

A

� �
1þ X2

A þ Z2
A

� �
1þ X2

A

� �
1þ Z2

A

� � dxy
A

	 
2 � 2XAZA

1þ Y2
A

dxx
Adxz

A þ
1þ Z2

A

� �
1þ X2

A þ Y2
A

� �
1þ X2

A

� �
1þ Y2

A

� � dxz
A

	 
2 � 2YAZA

1þ X2
A

dxy
Adxz

A

3
5: ðA:20Þ
The XA, YA, and ZA that appear in Eq. (A.20) are thought of as the functions of the global multi-cube Cartesian coordinates
obtained by inverting the expressions given in Eqs. (A.16)–(A.18):
XA ¼ tan
pðxx

A � cx
AÞ

2L

� �
; ðA:21Þ

YA ¼ tan
pðxy

A � cy
AÞ

2L

� �
; ðA:22Þ

ZA ¼ tan
pðxz

A � cz
AÞ

2L

� �
: ðA:23Þ
The functions XA, YA and ZA depend on the location of a particular coordinate region through the parameters cx
A, cy

A and cz
A.

However, beyond this dependence the multi-cube coordinate representation of the S 3 round-sphere metric given in Eq.
(A.20) is the same in each of the eight coordinate regions BA.

These multi-cube Cartesian coordinates fxA; yA; zAg turn out to be harmonic with respect to the round metric on S 3, i.e.
each coordinate is a solution (locally within each cubic-region, not globally across the interface boundaries) to the covariant
Laplace equation, 0 ¼ ri

ArAi xA ¼ ri
ArAi yA ¼ ri

ArAi zA, where rAi is the covariant derivative associated with the S 3 metric in
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region A. These conditions are equivalent to 0 ¼ @Ai
ffiffiffiffiffi
gA
p

gij
A

� �
where gA ¼ det gAij and gij

A is the inverse of the metric gAij ex-
pressed in terms of the multi-cube Cartesian coordinates in region A.

Appendix B. Spherical harmonics on S 3

This appendix derives expressions for the eigenfunctions of the Laplace operator on the three-sphere S 3. These eigenfunc-
tions are referred to here as three-sphere harmonics. These functions are defined as solutions of the equation
ririY ¼ �kY; ðB:1Þ
whereri is the covariant derivative operator on S 3, and k is an eigenvalue. These functions have been studied previously by a
number of authors [26–29]. Here a slightly different representation is introduced that allows these harmonics (of arbitrary
order) to be evaluated accurately in a straightforward way. Using the angular coordinate representation of the round metric
on S 3 from Eq. (A.19), it is straightforward to write the co-variant Laplace operator explicitly as
ririY ¼
@v½sin2 v@vY�

R2
3 sin2 v

þ @h½sin h@hY�
R2

3 sin h sin2 v
þ

@2
u Y

R2
3 sin2 h sin2 v

: ðB:2Þ
The eigenvalue problem, Eq. (B.1), can be solved then by separation of variables. The non-singular solutions to this equation
have the form:
Yk‘mðv; h;uÞ ¼
Nk‘mffiffiffiffiffiffiffiffiffiffiffi
sinv

p Q
‘þ1

2
kþ1

2
ðcosvÞPm

‘ ðcos hÞeimu; ðB:3Þ
where Pl
m and Ql

m are the associated Legendre functions of the first and second kind respectively. The eigenvalue associated
with this Yk‘m is
k ¼ kðkþ 2Þ
R2

3

: ðB:4Þ
These functions are non-singular on S 3 only for integers k, ‘ and m satisfying
k P 0; ðB:5Þ
k P ‘ P 0; ðB:6Þ
‘ P m P �‘: ðB:7Þ
The half-integer associated Legendre functions Q
‘þ1

2

kþ1
2
ðxÞ with x ¼ cos v are non-singular for �1 6 x 6 1, and can be evalu-

ated re-cursively. For fixed ‘, the functions with k < ‘ can be shown to vanish,
Q
‘þ1

2
kþ1

2
ðxÞ ¼ 0; ðB:8Þ
using Section 3.4 Eq. (13) in Ref. [30]. For k ¼ ‘ a similar argument using Section 3.6.1 Eq. (14) in Ref. [30] gives
Q
‘þ1

2
‘þ1

2
ðxÞ ¼ ð�1Þ‘þ12‘‘!

ffiffiffiffi
p
2

r
ð1� x2Þ

‘
2þ

1
4: ðB:9Þ
The functions with k > ‘ can be determined from these using the recursion relation,
ðk� ‘þ 2ÞQ ‘þ1
2

kþ5
2
ðxÞ ¼ 2ðkþ 2ÞxQ

‘þ1
2

kþ3
2
ðxÞ � ðkþ ‘þ 2ÞQ ‘þ1

2
kþ1

2
ðxÞ; ðB:10Þ
from Section 3.8 Eq. (12) in Ref. [30]. Evaluating Eq. (B.10) for k ¼ ‘� 1 gives
Q
‘þ1

2
‘þ3

2
ðxÞ ¼ 2ð‘þ 1ÞxQ

‘þ1
2

‘þ1
2
ðxÞ; ðB:11Þ
using Eq. (B.8). The Q
‘þ1

2

kþ1
2
ðxÞ with k P ‘þ 2 can then be generated recursively using Eq. (B.10). This recursion relation is

known to be a stable and accurate way to generate the Legendre functions of the first kind, Pm
‘ ðxÞ, cf. Ref. [31]. Our numerical

tests indicate that it is also an accurate way to generate the half-integer Legendre functions of the second kind, Q
‘þ1

2

kþ1
2
ðxÞ.

The orthogonality properties of the Yk‘mðv; h;uÞ are determined by the orthogonality properties of Q
‘þ1

2
kþ1

2
ðcos vÞ, P‘mðcos hÞ

and eimu. The needed condition for Q
‘þ1

2
kþ1

2
can be obtained from the associated Legendre differential equation,
0 ¼ d
dx
ð1� x2ÞdQl

m
dx

� �
þ mðmþ 1Þ � l2

1� x2

� �
Ql

m ; ðB:12Þ
from which it follows that
d
dx
ð1� x2Þ Ql

m0
dQl

m
dx
� Ql

m
dQl

m0

dx

� �� �
¼ ðm0 � mÞðmþ m0 þ 1ÞQl

m0Q
l
m : ðB:13Þ
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The half-integer associated Legendre functions are well behaved in the interval �1 6 x 6 1, therefore integrating Eq. (B.13)
over this interval gives
0 ¼ ðm0 � mÞðmþ m0 þ 1Þ
Z 1

�1
Ql

m0 ðxÞQ
l
m ðxÞdx: ðB:14Þ
It follows that the Q
‘þ1

2

kþ1
2
ðxÞ with k P 0 and ‘ P 0 satisfy the orthogonality condition:
M2
k‘ dk0k ¼

Z 1

�1
Q
‘þ1

2
k0þ1

2
ðxÞQ ‘þ1

2
kþ1

2
ðxÞdx; ðB:15Þ
where Mk‘ is the numerical constant,
M2
k‘ ¼

p2ðkþ ‘þ 1Þ!
4ðkþ 1Þðk� ‘Þ! : ðB:16Þ
The analogous orthogonality relations for P‘mðcos hÞ and eimu are well known:
N2
‘md‘0‘ ¼

Z 1

�1
Pm
‘0 ðyÞP

m
‘ ðyÞdy; ðB:17Þ

2pdm0m ¼
Z 2p

0
eim0ue�imudu; ðB:18Þ
where
N2
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ð‘�mÞ! ‘þ 1

2

	 
 : ðB:19Þ
From these conditions then, it follows that by choosing the normalization constants
Nk‘m ¼
1ffiffiffiffiffiffiffi

2p
p

Mk‘N‘m

; ðB:20Þ
the Yk‘m satisfy the following orthogonality conditions on S 3,
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