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This paper develops a method for solving Einstein’s equation numerically on multicube representations
of manifolds with arbitrary spatial topologies. This method is designed to provide a set of flexible, easy to
use computational procedures that make it possible to explore the never before studied properties of
solutions to Einstein’s equation on manifolds with arbitrary toplogical structures. A new covariant, first-
order symmetric-hyperbolic representation of Einstein’s equation is developed for this purpose, along with
the needed boundary conditions at the interfaces between adjoining cubic regions. Numerical tests are
presented that demonstrate the long-term numerical stability of this method for evolutions of a complicated,
time-dependent solution of Einstein’s equation coupled to a complex scalar field on a manifold with spatial
topology S. The accuracy of these numerical test solutions is evaluated by performing convergence studies
and by comparing the full nonlinear numerical results to the analytical perturbation solutions, which are

also derived here.
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I. INTRODUCTION

Solving partial differential equations on manifolds with
arbitrary spatial topologies presents a number of challenges
beyond those required to solve those equations on subsets
of R3. In a previous paper, Lindblom and Szildgyi [1]
showed how systems of elliptic and hyperbolic partial
differential equations for collections of tensor fields can be
solved numerically on manifolds with arbitrary spatial
topologies by using multicube representations of those
manifolds. We review some of the basic features of that
multicube method in Sec. II. In particular, we discuss how
the global differentiable structure (needed to define what it
means globally to have smooth tensor fields) can be defined
conveniently for multicube manifolds. We also review what
boundary conditions are needed at the interfaces between
cubic regions and how these conditions are enforced for
first-order symmetric-hyperbolic evolution systems.

In Sec. III we develop a new (spatially) covariant, first-
order symmetric-hyperbolic representation of the Einstein
system that can be used on manifolds with arbitrary spatial
topologies. The standard generalized-harmonic representa-
tion of Einstein’s equation [2] is a special case of these new
covariant representations on manifolds whose spatial slices
are subsets of R>. Given this new representation of the
Einstein system, it is straightforward to adapt the multicube
methods developed by Lindblom and Szildgyi [1] to the
Einstein case. In particular, the explicit boundary condi-
tions that must be applied to the characteristic fields of this
system at the interface boundaries between adjoining cubic
regions are presented in Sec. III.

The long-term numerical stability of these methods is
tested in Secs. [IV-VI by studying solutions to Einstein’s
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equation coupled to a complex Klein-Gordon scalar field.
There exists a static solution to this system of equations
whose spatial geometry is the standard round metric on S°.
This solution is therefore a (new) representation of the
Einstein static universe. The Einstein static universe has a
well-known physical instability that causes the universe to
expand without bound or to collapse to a singularity on a
fairly short time scale (cf. Ref. [3]). Our numerical tests of
the coupled FEinstein-Klein-Gordon system, described in
Sec. 1V, reproduce this well-known result.

One important goal of this paper is to study the long-term
numerical stability of our implementation of the multicube
methods. Since the Finstein-Klein-Gordon static universe
solution is unstable, we introduce unphysical mode-
damping forces into the Einstein and Klein-Gordon equa-
tions that are designed to exponentially suppress the two
unstable modes of this solution. One of these unstable
modes is the well-known spatially homogeneous physical
instability of the Einstein static universe, while the other is
a dipole instability that exists in the particular coordinate
gauge used in our tests. These mode-damping forces,
described in detail in Sec. V, leave untouched all of the
rich dynamics of the Einstein-Klein-Gordon evolution
equations, except for the degrees of freedom associated
with the unstable modes. With the addition of these mode-
damping forces, we are able to perform long-term evolu-
tions (about 160 light-crossing times) of the Einstein static
universe. The results of these tests, described in Sec. V,
show that our implementation of the multicube method is
stable and convergent, even on such very long time scales.
We show that the constraints of this system, as well as the
unphysical mode-damping forces, converge (exponentially
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quickly) toward zero as the spatial resolution of the
numerical solutions is increased.

Finally, we test the accuracy and numerical stability of
our implementation of the multicube method in Sec. VI by
studying a complicated, time-dependent solution of the
coupled Einstein-Klein-Gordon system. We derive the
general solution to these equations analytically for first-
order perturbations of the FEinstein-Klein-Gordon static
universe solution. These analytical solutions are then used
to construct initial data composed of a superposition of 15
distinct modes. We evolve these initial data numerically
and demonstrate stability and convergence. We show that
the constraints of the system and the magnitudes of the
unphysical mode-damping forces converge exponentially
toward zero as the spatial resolution is increased. We
measure the accuracy of the numerical solutions by
comparing them with the analytical first-order perturbation
solutions. We show that the differences between these two
solutions converge toward zero, until these differences
reach the level of the neglected quadratic terms in the
analytical perturbation solution. These accuracy and sta-
bility tests are carried out for this complicated time-
dependent solution for about 160 light-crossing times of
the solution.

Solving FEinstein’s equation numerically on manifolds
with arbitrary spatial topologies requires a number of
computational tools beyond those needed to solve problems
on manifolds having spatial slices which can be embedded
in R3. In particular, smooth tensor fields must be repre-
sented in a way that does not depend on the existence of a
single, smooth global coordinate system. To our knowl-
edge, the methods developed by Lindblom and Szilagyi [1]
and applied here to Einstein’s equation are the first
numerical methods to appear in the literature that are
capable of solving these equations on aribitrary manifolds.
As far as we know, Bentivegna and Korzynski [4-6] give
the only other published results of fully three-dimensional
numerical solutions of Einstein’s equations on manifolds
with nontrivial topologies. They evolve Einstein’s equation
in vacuum on manifolds having spatial topologies S° and
T3, with black hole lattice solutions. They avoid the generic
problem of solving equations on manifolds with aribitrary
topologies by embedding each of their spatial manifolds' in
R? and using its global Cartesian coordinates to represent
smooth tensors. They then solve Einstein’s equation nu-
merically in R using the standard tools of numerical
relativity.

II. REVIEW OF THE MULTICUBE METHOD

The most useful manifolds for solving Einstein’s equa-
tion numerically are those which admit globally hyperbolic

'One of the black hole interiors in the Bentivegna and
Korzynski S3 solution is excised, and a conformal transformation
is applied to map its horizon to infinity in R>.
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causal structures. These manifolds have topologies of the
form R x X, where X is a three-dimensional manifold. The
multicube method of representing three-dimensional mani-
folds with arbitrary topologies consists of three basic
elements: (i) a collection of nonoverlapping cubic blocks
B, that cover the manifold, (ii) a collection of maps \Ifgg
that specify how the faces of the blocks are connected
together to create the desired topology, and (iii) a smooth
positive-definite reference metric g;; used to determine the
differentiable structure of the manifold. We devote most of
the remainder of this section to a discussion of these basic
elements of the multicube method. In addition, we give a
brief review of the interface boundary conditions needed to
solve first-order symmetric-hyperbolic evolution systems,
like Einstein’s equation, on multicube manifolds.

A. Multicube structures

An arbitrary (three-dimensional) manifold £ can be
subdivided into a collection of regions, each of which
can be mapped smoothly into a cube B, in R? (cf. Ref. [1]).
We use upper-case latin indices {A,B,...} with A=
{1,2,...,N} to label these regions and their images B,
in R3. These regions overlap in  only along the boundaries
between neighboring regions. It is convenient to choose the
images of these regions 3, to be cubes of uniform
coordinate size, L, which are all oriented along the same
global Cartesian coordinate axes in R>. In this case the cube
B, can be specified simply by giving the location of its
center ¢4 = (c*4, ¥4, ¢%,) in R3. It is also convenient to
arrange the cubes B, so they intersect (if at all) in R* only at
points on faces where the corresponding regions touch in X.

This collection of cubes B, provides the basic frame-
work on which a multicube representation of the manifold
2 can be constructed. Each point in the interior of one of the
cubes represents a unique point in X. In addition, each point
in X is the inverse image of at least one point in the closure
of U, B,. The Cartesian coordinates of R? therefore provide
a global way of identifying points in X. We use the notation
x' ={x,y,z} to denote these coordinates, where latin
indices {i, j,k, 7, ...} are used to denote spatial quantities.

B. Interface boundary maps

The topological structure of the manifold X determines
how the cubic regions B, are connected together.
Conversely, the topological structure of a multicube mani-
fold is determined by giving a collection of maps \Iﬂgg that
specify how the points on the faces of each cubic region are
identified with those of its neighbors [1]. We use the
notation \I//gg to represent the map from the 9,5, face of
cube B, to the 9yBg face of cube Bg. We use lower-case
greek indices {a,f, ...} with a = {£x, -y, £z} to label
the faces of each cube. The cubes 3, are chosen to be
aligned with the global Cartesian coordinate axes in R3, so
the region boundary faces are always located at constant
spatial coordinate surfaces. For example, the boundary
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0.8, is assumed to be a surface of constant coordinate
X = xx , where the index o = |a| denotes the fixed
boundary-surface coordinate. This boundary surface is
identified with the boundary 0yBp, a surface of constant
coordinate x§ = x‘g‘, via the map W44 B

The map \I/A“ that takes the Cartesian coordinates x’ of
points in 938 to the Cartesian coordinates x); of points in
0,8, can be chosen to have the form of a simple translation
plus rotation and/or reflection (cf. Ref. [1]):

xA_CA+fa+C2’;;( _Cﬁ_f;}) (M
The vector ¢/, + f% is the location of the center of the face
0,84, and Cg% is the combined spatial rotation and
reflection matrix needed to match the face 0,8, to the
face 9yBp in the desired way. The vectors ¢!, + fi, and
matrices C3%% in these maps are constants determined once
and for all by the topology of the particular manifold. These
maps are smooth for the coordinates x* within the boundary
surface, i.e., for those with k # o. For the normal surface
coordinate x°, however, the maps are only continuous and
not (in general) differentiable.

The multicube Cartesian coordinates x% on the
3-manifold X can be extended naturally to coordinates
on the spacetime R x X: x4 = {14, x', }, where latin indices
from the beginning of the alphabet, {a,b,...} with
a ={t,x,y,z}, denote spacetime quantities. The maps
\Ilgﬁ defined above can be extended in a natural way to
include the equation for the continuity of the time coor-
dinate across region boundaries, 74 = tg. The full space-
time coordinate transformation map can then be written in
the compact, four-dimensional notation

x4 = ¢4 + fa+ Chgi(xg — cg — f), ()

where ¢}y + ff, = 0, C3fj, = &, and Cyjf =

Explicit expressions for the multicube representations of
the 3-manifolds 73, S' x S2, and S° are described in detail
in Ref. [1]. In particular, specific expressions are given
there for the collections of cubic regions By, the vectors ¢/,
and f%, and the interface boundary transformation matrices
C‘gg}, needed to construct the multicube representation of

each of these manifolds.

C. Reference metrics

Tensor fields can be represented on multicube manifolds
by giving their components (expressed in the global
coordinate basis of R®) as functions of the global
Cartesian coordinates. Within each coordinate region By,
the components of smooth tensor fields are smooth
functions of these coordinates x4. Additional structure
must be provided, however, that determines how to trans-
form continuous, differentiable, and smooth tensor fields
across the interface boundaries between regions in
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multicube manifolds. One way to fix this differentiable
structure is to specify a smooth, static spacetime metric,
which we denote as v, (cf. Ref. [1]). Like other smooth
vector and tensor fields, the components of y,;, might be
discontinuous across the boundaries of the cubic block
regions when written in terms of the global multicube
Cartesian coordinate basis. However, the components of
W,, must be smooth functions in any smooth atlas of
overlapping coordinate charts. The numerical examples
studied in this paper solve Einstein’s equation on a
manifold with the topology of a three-sphere, T = S°.
For these examples, the multicube representation of the
standard round-sphere metric on S* can be used to construct
a reference metric (cf. Ref. [1]). Smooth multicube refer-
ence metrics are also given in Ref. [1] for manifolds with
spatial topologies T2 and S' x S?. In a future paper we will
describe an algorithm for constructing smooth reference
metrics ¥, on any multicube manifold.

It is easy to construct covectors that are normal to the
boundaries of the multicube regions: 71,4, « d,x4. Given a
smooth reference metric v ,,, these covectors can be
normalized to be outward pointing and to have unit length:
n4nhw,, = 1 and ny, = Wypnk. Let 714 denote the out-
ward-directed unit normal to the boundary 9,8,, and n%
the outward-directed unit normal to 0zBjp. Since the
reference metric v, is smooth, these normal vectors (up
to sign) represent the same vector at the corresponding
points on each side of identified boundaries. The trans-
formation law that maps smooth tensor fields across
interface boundaries must therefore be constructed to
transform 7% into —n4. In contrast, continuous vector
fields w4 that are tangent to the boundary, i.e.,
usnbw,, =0, should transform using the standard
Jacobian of the map Wy in Eq. (2): uf = Cyffup. 1t is
straightforward then to construct the transformations,
effectively Jacobians, needed to transform arbitrary tensor
fields from the region boundary 03B to 9,8,:

B = Chpe (8, — Aiginy) — Aiggy. 3)
Bpb ~ ~
JZag (5C - nAllnA)CAaL nAanIZ? (4)

These effective Jacobians transform the background sur-
face normals correctly,

g = —Jasng, (5)
~ Bpb ~
fiag =~ gy, (6)

and they also transform the components of vectors u“ that
are tangent to the boundary correctly,

Aaa Aaa

ujf = Jygsup = Cagiu, @)
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using the rotation/reflection matrix ng‘bl from the surface

coordinate map. The Jacobian and its dual are also inverses
of one another:

B ~
545 = T3 s ()

We introduce the notation (v%), and (wp,), to denote
the result of transforming these vector and covector fields
from the boundary of region B to the corresponding points
on the boundary of region A:

(V)4 = gt ©)

Waa)a = T Wp. (10)

The necessary and sufficient conditions for the continuity
of these fields across interface boundaries are v = (v%§),
and wy, = (wg,) 4. The appropriate transformation laws for
tensor fields are obtained by applying the effective Jacobian
to each index of the tensor. For example, the physical
spacetime metric y,;,, which will generally be different
than the static reference metric v, transforms across
interface boundaries as follows:

Whap)a = Tooo Tao W gea. (11)

The continuity of the spacetime metric across this boundary
is the statement that wa,, = (Wpap)a-

The rules for transforming the derivatives of tensors
across interface boundaries can be determined by intro-

ducing the covariant derivative @a that is compatible with

the smooth reference metric, i.e., V . ,, = 0. The covariant
derivatives of smooth tensors are tensors, so these deriv-
atives are transformed across region boundaries using the
effective Jacobian Jg% defined above. In particular, the
transformations of the covariant derivatives of the vector v¢
and covector w, are given by the expressions

= B
(Vavg)a =T, eI g%v v

Aaa
= _ iBpe prBpd
<vaWBb>A - JAaa Aab \% WBd-

Tensor fields with continuous derivatives therefore

satisfy the continuity conditions V,04 = (V,0%), and
Vowap, = (Vowpy) 4. These transformation laws can be
generalized to tensor fields of arbitrary rank in the obvious
way. In particular, the transformation of the derivatives of
the spacetime metric is given by

= Bfd B, B,
<chBab> ‘]Za/cj J:a‘ze j—\agfvdWBef

Smooth tensor fields are defined to be those having
continuous derivatives of all orders.
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D. Boundary conditions for hyperbolic systems

A first-order symmetric-hyperbolic system of equations
for the dynamical fields u* (assumed here to be a collection
of tensor fields) can be written in the form

Ot + AMg(x, w)V,uf = FA(x,u), (1)

where the characteristic matrix, A*z(x,u), and the
source term, F' A(X, u), may depend on the spacetime
coordinates x“ and the fields u*, but not their derivatives.
The script indexes {A, B,C, ...} in these expressions label
the components of the collection of tensor fields that
make up u. These systems are called symmetric because,
by assumption, there exists a positive-definite metric
on the space of fields, S 45, that can be used to transform
the characteristic matrix into a symmetric form:
SacA'p = Alys = Al

Boundary conditions for symmetric-hyperbolic systems
must be imposed on the incoming characteristic fields of
the system. The characteristic fields #* (whose index K
labels the collection of characteristic fields) are projections
of the dynamical fields u* onto the matrix of left eigen-
vectors of the characteristic matrix (cf. Refs. [2,7]):

i’ = e* 4 (m)ut. (13)

The matrix of eigenvectors eX 4(n) is defined by the
equation

AR (1) = vy e p(n), (14)

where the covector n; that appears in this definition is the
outward-pointing unit normal to the surface on which the
characteristic fields are evaluated. The eigenvalues v () are
often referred to as the characteristic speeds of the system.
The characteristic fields #* represent the independent
dynamical degrees of freedom at the boundaries. These
characteristic fields propagate at the speeds vk, (in the
short wavelength limit), so boundary conditions must be
given for each incoming characteristic field, i.e., for each
field with speed v(x) <0. No boundary condition is
required (or allowed) for outgoing characteristic fields,
i.e., for any field with v(c) > 0.

The boundary conditions on the dynamical fields u* that
ensure the equations are satisfied across the faces of
adjoining cubic regions are quite simple: data for the
incoming characteristic fields at the boundary of one region
are supplied by the outgoing characteristic fields from the
neighboring region. The boundary conditions at an inter-
face between cubic regions require that the dynamical fields
uf in region BB, be transformed into the representation used
in the neighboring region Bg. When the dynamical fields
u? are a collection of tensor fields (as assumed here),
their components are transformed from one coordinate
representation to another using the Jacobians of the
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transformation as described in Egs. (9) and (10). In this
case, the needed boundary conditions can be stated
precisely for hyperbolic evolution problems: Consider
two cubic regions B, and By whose boundaries 0,5,
and 0pBj are identified by the map \I/;’g as defined in
Eq. (2). The required boundary conditions on the dynami-
cal fields ujf consist of fixing the incoming characteristic
fields &% (i.e., those with speeds (k) < 0) at the boundary
0,83, with data, u%, from the fields on the neighboring
boundary 9yBp:

iy = (" a(m))  (ug)s. (15)

The matrix of eigenvectors, (eX 4(n)),, that appears in
Eq. (15) is to be constructed with the fields from region
Bp that have been transformed into region B, where the
boundary condition is to be imposed. This boundary
condition must be applied to each incoming characteristic
field on each internal cube face—i.e., on each face that is
identified with the face of a neighboring region.

ITII. COVARIANT FIRST-ORDER EINSTEIN
EVOLUTION SYSTEM

Einstein’s equation determines the spacetime metric v,
by equating the Einstein curvature tensor to the stress-
energy tensor of the matter in the spacetime. This equation
is, of course, covariant. The standard first-order hyperbolic
representations of FEinstein’s equation (e.g., Ref. [2]),
however, are not covariant, because the auxiliary dynamical
fields introduced to make the system first order are not
tensors. This lack of covariance has not caused any
problems (that we know of) in the codes that solve these
noncovariant equations on spatial manifolds that can be
embedded in R?, e.g., for binary black-hole spacetimes.
However, our attempts to use these noncovariant represen-
tations for numerical evolutions on manifolds with non-
trivial spatial topologies failed. We were unable to achieve
stable and convergent evolutions, at the interface bounda-
ries in particular. These problems disappeared when we
adopted the spatially covariant representation of the first-
order Einstein evolution system described in the remainder
of this section. The interface boundary conditions needed
for this new covariant representation are precisely those
described in Sec. II D for any hyperbolic system whose
dynamical fields are tensors.

Let y,, denote the physical spacetime metric that is
determined by solving Einstein’s equation, and let I'; . and
V, denote the connection and covariant derivative asso-
ciated with y,,. Let y,;, denote a smooth static reference
metric, and let I';, and V, denote the connection and
covariant derivative associated with y,. It is straightfor-
ward to show that the physical Ricci curvature R,
associated with v, satisfies the identity

PHYSICAL REVIEW D 89, 044044 (2014)
1~ = o~
Ry = —zl//“lvcvdl//ab + V(L,Ah) - l//LdRecd(al//b)e
F WY (VoY fWia — AaceBoay): (16)

where A,,. is the tensor that describes the difference
between the connections:

Aabc = V/ad(rzc - ch)
1 - - -
= 5 (vbl//ac + Vcl//ab - val//bc)' (17)

The vector A, is defined as A, = w’“A ., and Rdabc is the
reference Riemann curvature associated with i ;. Note that
Eq. (16) reduces to Eq. (4) of Ref. [2] for the case where the
reference metric is the flat Minkowski metric y,, = 1,
expressed in Cartesian coordinates.

In analogy with the generalized harmonic representa-
tions of Einstein’s equation (e.g., Ref. [2]), the gauge (or
coordinate) conditions are fixed in this covariant evolution
system by setting A, to be a fixed gauge source function:

A, =—H,. (18)

We assume that this gauge source function H, =
H,(y,yr, 0%, x) may depend on the physical metric v,
(but not its derivatives) and the reference metric v,
(including its derivatives if desired), as well as the
spacetime coordinates x“. This gauge condition becomes
a constraint of the system:

Co= A, +H,. (19)

The covariant vacuum evolution equation therefore satisfies
the standard generalized harmonic evolution equation:

0= Rab - V<aCb) (20)

The standard argument (cf. Ref. [2]) using the Bianchi
identities implies that the constraint C, satisfies the
evolution equation

0 - vabca + CbV(aCb), (21)

which is also identical to the standard generalized
harmonic case. It follows that the Pretorius-Gundlach
[8-10] constraint-damping mechanism can be applied to
the covariant evolution system without modification. In
particular, we add the constraint-damping terms:

1 )
0=Rup — VCh +70|tCh) — El//ahtccc . (22)

where ¢ is a timelike vector field, and y is a constant. The
constraint evolution implied by the covariant evolution
system with constraint damping, Eq. (22), is obtained by
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using the Bianchi identities. The result is the evolution
system

1
0= VbeCa —ZyOVb [t(bCa>] +CbV(aCb) _E}/Otacbcb’ (23)

which is a damped wave equation for small, short-wavelength
C, when y, > 0. The covariant vacuum Einstein equation,
including the constraint-damping terms, reduces therefore
to the following manifestly hyperbolic system:

V/Cdvcvdl//ab = _2v(aHb) - 2W6d1~eecd(a1//b)e

+ 2V/Cdl//ef(vel//cavfl//bd - A“”eAbdf)
+ 70268, 1) = yapt) (Ho + A,).
(24)

This equation (minus the constraint-damping terms) was
derived previously by Ruiz, Rinne and Sarbach [11], who
used it in their analysis of boundary conditions, and by
Brown [12], who used it to derive an action principle
for this second-order covariant generalized harmonic
formulation of Einstein’s equation.

The idea now is to transform Eq. (24) into a spatially
covariant symmetric-hyperbolic first-order evolution sys-
tem. To that end, we introduce the physical timelike
normal, ¢, which satisfies y,1*t* = —1, and which can
be expressed in terms of the lapse N and shift N* of the
physical metric: 1*0, = N~'(9, — N*9;). We then define
the first-order variables, I1,, and ®;,,:

M =~V (25)

CI)iab = vil//alw (26)

where the indices {i, j, k, ...} range only over the spatial
coordinates, while the indices {a,b,c,d, ...} range over
both space and time coordinates. The introduction of ®;,,
also implies the existence of a new constraint for the
system:

Ciab = 6il//ab - @iab' (27)

We note that the constraint, C,,,, like the first-order
evolution fields, I1,, and ®;,,, is a tensor with respect
to purely spatial coordinate transformations.

The spatially covariant first-order evolution equation for
v 4 follows directly from the definition of I1,, in Eq. (25):

OWap — (1 +71)N* Oy iy = =Ny, — 7| N* Dy,
(28)
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The constraint term y,N*C;,,/N, where 7, is an arbitrary
constant, has been added to the definition of I1,; to obtain
Eq. (28). The particular choice y; = —1 makes the system
linearly degenerate, which implies that shocks will not form
from smooth initial data [13]. Here the quantity I'. is the
connection associated with the reference metric v ,,. We
assume that this reference metric is static, 0,j,;, = 0, and
that w,, = —1 and y,; = 0. It follows that all of the time
components of I'¢, vanish, I[,, = . = 0, in this case.

The spatially covariant first-order evolution equation for
I1,, follows from the second-order covariant evolution
equation, Eq. (24):

OM, — N*O 1, + NgH 0, D0, — 7172N Ospr
= ZNWCd(gij(I)ica(I)jdh - Hcandb - llleanceAhdf)

- 2NV, H) — %dencdnab — Nt g7 ®

+ Ny [25fafb) —Wapt)(He + D) —7172N @y

- ZNWinkij(aWb)k - 2Ni1:{(anb)j + Ngijfqu)kab

+ 2N9ijq>ik(a1:];§)j - 271Y2Nif'f(qu)j

—8aN (2T = Wap“'Teq) = 2N Ay o, (29)

In this expression, T, represents the stress-energy tensor
of any matter that may be present in the solution, and A is
the cosmological constant. We use the notation g, for the
spatial metric, g,, = W, + t.t,, Which satisfies g, = 0.
The quantity ¢ is the inverse of the spatial metric
gij = y;;- The quantities A,,. and A, = wPeA,,. that
appear on the right side of Eq. (29) are to be written as
functions of the first-order fields II,, and ®,,,; i.e., the
derivatives V . that appear in the definition of A,
Eq. (17), are to be replaced by the expressions

vtl//ab = _NHab + Niq)iabv (30)

vil//ab = (I)iab- (31)

The derivation of the evolution equation for I, Eq. (29),
also uses the identity V14 =112y + 191°)11,..

The spatially covariant first-order evolution equation for
;. 1s obtained by requiring that the constraint C;,;, satisfy
a damped, advection-type evolution equation:

tcﬁcciab = _yZCiab- (32)

Choosing the constant y, > O ensures that the constraint
Ciqp 1s driven toward zero as the system evolves. This
constraint-damping equation implies the following first-
order evolution equation for ®,,,:
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0,®jup, — N O, iy, + NOT iy — Ny20ir iy

1 .
— 5Ntctf’q)icdl‘[ab + Ng/*1®,;. Py, — Ny2 @iy
- Njf‘qu)kab - 2Nj(I)ik(aI:l}(;)j + 2Nf{(anb)/
- 2N72f{(aWb)j — 2NMyr R i (33)

The derivation of this evolution equation uses the
identity V;1* = =112y + 11°) .

The principal parts of a first-order evolution system are
defined to be the terms that involve the derivatives of the
fields. We use the notation 9,u* + A z(x, u)V,u® =0 to
denote the principal parts of the general first-order hyper-
bolic system described in Eq. (12). The principal parts of
the spatially covariant first-order evolution system defined
in Egs. (28), (29), and (33) are therefore given by

Owap — (14 71)N* Vi, =0,
O, — N*V, I, + Ng“ V@, — y172N* Vi, = 0,
0,Piup — N*V, @, + NV, 11, — NyaViy 4 = 0.

These terms are identical to the principal parts of the
standard first-order generalized harmonic evolution system
described in Ref. [2]. It follows that this spatially covariant
first-order evolution system is symmetric hyperbolic with
the standard symmetrizer [2]:

Supdudul = mm (L2 yodyppg + AT, d,

- 272dl//acdnbd + gijdéiacdéjbd>v (34)
where m® is any positive-definite metric (e.g.,
m = v 4+ 19¢*, or even m* = §%) and L is a constant
with the dimension of a length. It follows that the character-
istic fields and speeds of the spatially covariant first-order
evolution system are identical to those of the noncovariant
generalized harmonic system. In particular, the character-

g MK (a0 AL+ A2 .
istic fields & = {&),. a7, @; ,} are given by

0, = Wap. (35)
iy =Ty £ 0 Py — 7o ap, (36)
1%, = P ®yap. (37)

where P;* = 5,5 — n;nk. All of these characteristic fields
are tensors with respect to spatial coordinate transforma-
tions. The characteristic fields 2%, have coordinate char-
acteristic speed —(1 + y;)nN*, the fields 45 have speeds
—nN* £ N, and the fields &7, have speed —n;N*.

The first-order dynamical fields I1,, and ®,,, of the
spatially covariant first-order evolution system are different
from those used in the noncovariant generalized-harmonic
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evolution equations. These differences require that addi-
tional terms proportional to the reference connection I,
and its curvature Rj.,; be added to the right sides of
Egs. (28), (29), and (33). But these additional terms do
not affect the principal parts of the equations, the expres-
sions for the characteristic fields in terms of the dynamical
fields, or the characteristic speeds of the system. We also
note that the reference metric can be chosen to be the
Minkowski metric, y,;, = 7,5, on manifolds that admit a
global flat metric (e.g., manifolds whose spatial slices are
subsets of R?). When expressed in terms of the global
Cartesian coordinates that are available in such a case, the
reference connection I';,. and the reference curvature R, .,
both vanish identically. The spatially covariant first-order
evolution system is then precisely the same as the standard
noncovariant generalized harmonic system. The standard
first-order generalized harmonic system is therefore a
special case of the new covariant first-order system on
manifolds that admit a flat reference metric.

The constraints C, and C,,;, defined in Egs. (19) and (27)
evolve according to Egs. (21) and (32). As in the non-
covariant generalized harmonic evolution system [2], the
second-order evolution system for these constraints can be
converted into a symmetric-hyperbolic first-order system
by adding the following secondary constraints:

F,=1tV.C,, (38)
Cia — V,Ca, (39)
Cijap = 2©[icj]ab- (40)

Expressions for all the constraints C,, C,y;, Fg, Ciy, and
Cijqp» are given in Appendix A in terms of the dynamical
fields of the system u? = {y;,, I, @, } and their spatial
derivatives.

IV. EINSTEIN-KLEIN-GORDON STATIC
UNIVERSE

The remainder of this paper is devoted to performing a
number of simple numerical tests on the multicube methods
described in Sec. II, using the spatially covariant repre-
sentation of the Einstein system developed in Sec. III. Our
primary goal here is to verify that our implementation of
these methods in the SpEC code (developed by the SXS
Collaboration, originally at Caltech and Cornell [14—17])
is numerically stable and convergent for long-time-scale
evolutions. Most known solutions to Einstein’s equation
on manifolds with compact spatial topologies collapse to a
singularity or expand exponentially without bound on very
short time scales. Neither of these types of solutions is well
suited for testing the long-term stability of a numerical
code. We have therefore focused our attention on one of the

044044-7



LINDBLOM, SZILAGYI, AND TAYLOR

few known time-independent solutions on a manifold with
compact spatial topology: the Einstein static universe.

The Einstein static universe is a time-independent (static)
and spatially homogeneous solution to Einstein’s equation
on the manifold R x $3:

ds* = y°, dx*dx’

= —d* + R3[dy* + sin’y(d6” + sin’0dg?)].  (41)

The spatial part of this geometry is just the standard round
metric on S3. This metric satisfies Einstein’s gravitational
field equation with source

1
Ry — El//abR + Ay, = 82Ty, 42)

where A is the cosmological constant and 7', is the stress-
energy tensor of the matter present in the spacetime. The
cosmological constant has the value A = 1/R3 for the
Einstein static universe, while the stress-energy tensor
T,, = p0,t0,t corresponds to a pressureless “dust” with
p = 1/4zR3. Dynamical evolutions of spacetimes contain-
ing dust typically develop shell-crossing singularities [18].
Hence, dust is not particularly well suited for numerical
tests using spectral methods, which require smooth
solutions to achieve exponential convergence [19].

An alternate interpretation of the Finstein static universe
can be constructed in which the matter part of the solution
is generated by a complex Klein-Gordon scalar field
instead of dust. The stress-energy tensor of a complex
scalar field ¢ is given by

Ty, = (va¢vb¢* + va¢*vb¢)

N[ =

1 , . .
- EWab (l//w[chsvdq5 + /’t2¢¢ )’ (43)
where ¢* is the complex conjugate of the field, and y is its
mass. This field satisfies the covariant Klein-Gordon
equation,

ViV = i, (44)

as a consequence of the stress-energy conservation law
V4T, = 0. One solution to this scalar field equation in the
Einstein static universe is

b = poe™, (45)

where ¢ is a (complex) constant. This particular solution
has a stress-energy tensor that can be used as the source
term needed for an Einstein-Klein-Gordon static universe
by taking A = 1/R} and p?|¢|* = 1/4zR3. Note that
only the product |¢h|u is fixed, not their individual values.
For our numerical tests, we use g =2/R; so that
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|po| = 1/+/167x. Also note that although the geometry of
the Einstein-Klein-Gordon universe is static, the scalar field
¢ oscillates with frequency p. In our numerical test
evolutions, we use the value R; = 1 for the scale of the
S* geometry.

The first test of our implementation of the multicube
methods described in Sec. Il is to evolve initial data for the
coupled Einstein and Klein-Gordon evolution equations
based on the static Einstein-Klein-Gordon universe solu-
tion. The spacetime manifold for this solution has the
topology R x S2, so we use the round metric y?, of Eq. (41)
as our smooth reference metric: y,;, = 1/12 »- The initial data
for the dynamical fields of the Einstein evolution system,
u® = {wup, My, Py}, are constructed from the metric of
the Einstein static universe solution. In particular, we take
wap, =2, and I, = ®;,, = 0 initially. The dynamical
fields of the complex first-order Klein-Gordon system
consist of the fields uf = {¢, 7, @?} The initial values
of these fields for the Einstein-Klein-Gordon static universe
solution are given by ¢ = ¢, I1¥ = —iug,, and CIDE/’ =0.
We carry out the numerical evolutions of these fields using
the multicube representation of S* developed in Ref. [1],
which gives the explicit multicube expressions for the
metric y/gb, as well as the standard three-sphere angular
coordinates y, 6, and ¢, in terms of the global multicube
Cartesian coordinates.

Evolutions of Finstein’s equation require appropriate
gauge (i.e., coordinate) conditions to be specified. The gauge
is specified in the spatially covariant first-order representa-
tion of the Einstein equation, described in Sec. III, using
the gauge source covector H,. The gauge condition is
imposed with the covariant generalized harmonic condition:
H, = —Aupp’¢. Itis straightforward to show that the static
Einstein-Klein-Gordon solution satisfies this condition with
H, = 0. The gauge choices used in our numerical tests
are harmonic gauge for the time coordinate and damped
harmonic gauge [20] for the spatial coordinates:

H, =0, (46)

H; = —ugN;/N, 47)

where g is a constant that serves as the harmonic gauge
damping parameter, N is the lapse, and N; is the shift of the
spacetime metric. This choice of gauge source function H,,
depends only on the spacetime metric (and not its deriva-
tives), so the covariant first-order representation of Einstein’s
equation is hyperbolic in this case. Note that this choice of
gauge reduces to harmonic gauge H, = 0 for the Einstein-
Klein-Gordon static universe solution where N =1
and N; = 0.

The results of this first numerical test are illustrated in
Figs. 1-3. Figure 1 shows the error in the metric £, as a
function of time for evolutions using different spatial
resolutions. The constant N, which appears in the labels
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FIG. 1 (color online). Errors in the numerical evolution of the
metric y,;, using initial data for the Einstein-Klein-Gordon static
solution. Numerical resolution used in each spatial dimension of
each cubic region is denoted by N.

of these figures, is the number of spectral basis functions
used in the solution for each dimension of each cubic
region B,. The error measure &, is defined by

2 fmamedAl//acAl//bd\/gd3x

& =
v fm“bmc‘il//fl\ivfﬁg\/@d%

: (48)

where Ay, = z;//a\{. —y, ylfb, and uf;\i represent the
analytically and numerically determined metrics, and
m“ is a positive definite tensor, taken here to be m®’ =
5% in the global multicube Cartesian coordinates. This
quantity measures the fractional accuracy of the numeri-
cally determined metric. Similarly, Fig. 2 shows the scalar

field error measure, 54,, defined by

0

10 T T T
10°F .
I
(4 — N=10
% — N=12
10 — N=14| o
— N=16
N=18
N=20
— N=22
N=24
10" .
1 1 1 1
0 5 10 15 20 25

t/R,
FIG. 2 (color online). Errors in the numerical evolution of the
complex Klein-Gordon scalar field ¢ using initial data for the
Einstein-Klein-Gordon static solution. Numerical resolution used
in each spatial dimension of each cubic region is denoted by N.
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FIG. 3 (color online). Constraint norm C in the numerical
evolutions using initial data for the Einstein-Klein-Gordon static
solution. Numerical resolution used in each spatial dimension of
each cubic region is denoted by N.

 _ J1AG7 5
¢ f|¢./\f|2\/§d3x’

where A¢p = ¢V —¢p*, and vertical bars denote the
complex absolute value. Figure 3 shows the constraint
errors of the combined Einstein and Klein-Gordon evolu-
tion equations. We combine these constraint errors into the
single quantity C, defined by

o [C\/gd’x fC(i\/ﬁd%c '
INGVadx [N\ /gdx
The quantity C, measures the size of the constraint

violations of the Einstein system, and N » measures the
sizes of the spatial derivatives of the dynamical fields:

& (49)

(50)

Cs = m (Cacb + FoF

L 1.
+ g/ med [Cmccjhd + nglcikaccjlbd:| ) . (51

,/\/'3, = m“medéij<8il//ac8jWbd + 0ill, 0,11y
+ 710 040c0; P 52)

The constraints of the Einstein evolution system used to
construct C,, are defined in Egs. (19), (27), (38), (39),
and (40). The dimensionless ratio between the norms of C,,
and NV w 1s designed to give a meaningful measure of the
fractional errors due to constraint violations of the Einstein
system. The quantities C, and N, defined by

. 1
C = m'l <c?cj? +3 mklc;?;c@ : (53)
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NG =12|oP, (54)

play analogous roles for the Klein-Gordon evolution

system. The scalar field constraints C?’ and C?; used to
construct Cy are defined by C? = <I>?’ — V¢ and
¢l =v,e? —v,of.

Figures 1 and 2 show that our numerical solutions
diverge exponentially away from the Einstein-Klein-
Gordon static universe solution, while Fig. 3 shows that
the constraints are well satisfied during a time in which this
instability grows by over 10 orders of magnitude. Our
numerical evolutions therefore confirm the existence
of the instability of the Einstein static universe first noted
by Eddington [3]. The growth rate of this instability
can be measured numerically from our evolutions,
giving 1/7, =~ 1.100501(1), where the number in paren-

theses represents the estimated uncertainty in the
last digit. This agrees with the analytical value,
1/t4=+v2v13—-6~1.1005010, computed for this

unstable mode in Sec. VI.

V. MODE DAMPING

The straightforward numerical test of the Einstein-Klein-
Gordon evolution system described in Sec. IV confirms that
our implementation of the multicube method is basically
correct and that our numerical methods are basically stable
and convergent. Unfortunately, those evolutions persist for
just a few light-crossing times of the S® geometry. These first
tests do not, therefore, allow us to identify more subtle errors
that might become evident only on much longer time scales.
Nor do they test our implementation on solutions having
more complicated spatial and temporal structures than the
spatially homogeneous Einstein-Klein-Gordon static uni-
verse. We address these shortcomings in the following
sections by performing more challenging variations on
our original Einstein-Klein-Gordon static universe test.

In this section we construct small, unphysical damping
forces that suppress the growth of the modes responsible for
the Eddington instability. The modified evolution equations
can be written abstractly in the form

OWap = fab + Df av: (55)
Oy = Fup + DF 4p, (56)
019 = fy + Dfy, (57)
911, = F, + DF,, (58)

where f 4, Fap, f,), and F, are the expressions for the right
sides of the unmodified Einstein-Klein-Gordon evolution
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equations, while Df ,;,, DF ,,, Df ,, and DF , represent the
unphysical mode-damping forces.

Any physical mode, in particular the one responsible for
the Eddington instability, has a certain very specific spatial
structure. This fact is used in this section to construct
mode-damping forces that suppress the degrees of
freedom of the system having that particular structure,
while leaving unaffected the other dynamical degrees of
freedom of the system. The effectiveness of the resulting
mode-damping forces is then tested by evolving initial
data for the Einstein-Klein-Gordon static universe sol-
ution. These tests confirm the effectiveness of these
mode-damping forces. More importantly, these tests also
confirm the numerical stability and convergence of our
implementation of the multicube method for solving
Einstein’s equation over very long time scales.

The most convenient and efficient way to represent the
spatial structures of tensor fields on $° is to expand those
fields in the tensor harmonics of the three-sphere [21]. The
basic properties of the scalar, vector, and rank-2 tensor three-
sphere harmonics that are relevant to our work here are
summarized in Appendix B. The particular harmonics that
play an important role in the unstable modes of the Einstein-
Klein-Gordon static universe are the scalar harmonics Y*/™
and the vector harmonics V,;Y*™  The time-dependent
projections of a scalar field Q(X,#) and a vector field
V;(x, r) onto these harmonics are defined, respectively, as

kaf’m(t) :/Q()a t)y*krf’m\/éd3x’ (59)

vkem(t) = / GV;i(X, z)ﬁ,-Y*kfm\/Ed%, (60)

where Y*¥™ in these equations denotes the complex
conjugate.

The mode responsible for the Eddington instability is
spatially homogeneous, like the Einstein-Klein-Gordon
solution itself. Therefore, the spatial structures of the
dynamical fields for this mode are completely described
by the k = £ = m = 0 three-sphere harmonics. The mode-
damping forces needed to suppress the growth of this
instability can therefore be constructed using only the
k = ¢ = m = 0 three-sphere harmonic projections of the
quantities V= .al/l//ij’ f = .al/fij’ Yirs fth Ir= QUHU,
F=gF;, Wy, Fy, ¢, fy Ty, and F,. We use these
three-sphere harmonic projections to construct the follow-
ing mode-damping forces:

Y000 )
Dfay = =353 U™ +n6ly™ (1) =y (0)}gas
3

YOOO o
= L9000 1l (0) — P (0)] 17,0
3

(61)
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000
DF)) = - 3R [FO(1) + 0TI (£)] s
YOOO R
g R0 + P (iady, (62)
000 YOOO 000 . 000 ]
Dfy” =- {[ (1) — iug™(0)e™']
+ ns[¢°°°< 1) — " (0)e ]}, (63)
000
DFSJOOE Y3 {[Fooo() iMHgOO(O)emt]
+ s[T9 (1) — I (0) ]}, (64)

where 7, = d,t. The constants 77 and 7 in these equations
are damping rates (of order unity) that control how quickly
the mode damping acts to drive the k=¢7=m =0
component of these solutions back toward their equilibrium
values.

It is straightforward to show that the modified Einstein-
Klein-Gordon evolution equations suppress the dynamics
of the k = £ = m = 0 degrees of freedom of the system,
without affecting the dynamics in any other mode.
Multiplying Egs. (55)-(58) by Y*%% and integrating the
scalar parts (i.e., the spatial trace and the ¢ components)
over the S geometry results in the following equations for
the k = £ = m = 0 components of the various dynamical
fields:

A,y (1) —w(0)] = —nglw* (1) —w*®(0)], (65
A,y (1) —wi®(0)] = —nalyi(r) —wi®(0)], (66)
OI1"(t) = —n (1), (67)
OO (1) = —naIIy°(r), (68)

DUl (1) = #™(0)e) = —ns[d* (1) — ™ (0)eH].
(69)

O[T (1) — T (0)e™] = —ns [T (1) — TP(0)e].
(70)

These equations drive the k = £ = m = 0 components of
the various dynamical fields toward their initial values.
Initial data for the Klein-Gordon static universe solution
have been evolved with the modified equations that include
the k=7 =m =0 mode-damping forces defined in
Eqgs. (61)—(64). Unfortunately, the resulting evolutions
are still unstable. The numerically determined growth rate
of this new instability is 1/z) ~ 0.6180(1), where the
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number in parentheses represents the estimated uncer-
tainty in the last digit. This agrees with the analytical
value, 1/74= (\/4+uZR; —ugR3)/2=(5-1)/2~
0.618034, computed for an unstable k = 1 mode of this
system in Sec. VI. The growth rate of this new unstable
mode is set by the constant y; (taken to have the value
e = 1/R5 in our numerical tests) that controls the gauge
condition, Eq. (47), used in our evolutions. The modes
responsible for this somewhat weaker gauge instability
have spatial structures determined by the various k = 1
three-sphere harmonics. This instability can also be sup-
pressed, therefore, by constructing the appropriate k = 1
mode-damping forces.

The k=1 parts of the Einstein-Klein-Gordon static
solution have 0=y (1) = f1" (1) =y /" (1) = f1 " (1) =
y/}]fm( )=f1{"(1)=¢"""(t)=f,/"(t). The evolution
equations can therefore be modified to drive the dynamical
solution toward the state having no k = 1 three-sphere
harmonic content by adding the following mode-damping
forces:

lfm
DI = = L 0) 4 naw ™ (0
tavbylfm_;'_’ib@aylfm 1om 1em
- 3R, [fo/" () +ngw i ™ (1),
Ylfm o
= U 0) + ngwrlf (012, )
3
1¢m
D = = 0 + st (). (72
3

Similar forces could be constructed to suppress the k = 1
dynamics in the evolution equations for I1,, and I1;. Such
forces are not needed to control the growth of this rather
weak k = 1 instability, however, so a minimalist approach
has been followed by setting 0 = DF ;" = DF /™.
Combining the k=0 damping forces from
Egs. (61)—~(64) with the k = 1 forces from Egs. (71) and
(72) gives the needed composite mode-damping forces:

Df 4 = DY + Z Z L, (73)
=0 m=—¢
DF,;, = DFY, (74)
1 2
f _ DfO()O + Z Z D ;')fm’ (75)
=0 m=—¢
DF; = DF™, (76)

The resulting modified Einstein-Klein-Gordon evolution
system suppresses the dynamics in the k = O three-sphere
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harmonic components of y,, I1,,, ¢, and Il according
to Egs. (65)—(70). In addition, the modified system also
suppresses the dynamics in the k = 1 three-sphere har-
monic components v, and ¢ in the following way:

i ™ (1) = —ngwif " (1), (77)
A" (1) = =gy, " (1), (78)
Ay (1) = =gy (1), (79)
0y (1) = —nsgp' " (). (80)

The second numerical test of our implementation of the
multicube method evolves the coupled Einstein and Klein-
Gordon evolution equations, modified with the X = 0 and
k = 1 mode-damping forces. The initial data used for these
evolutions are those of the static Einstein-Klein-Gordon
universe solution, described in detail in Sec. IV. Figures 4
and 5 illustrate the errors in the metric v, and the Klein-
Gordon scalar field ¢, as measured by the quantities £,, and
&, defined in Eqgs. (48) and (49), respectively. Figure 6
illustrates the constraint norm C defined in Eq. (54) for this
test. These results show that the mode-damping forces are
effective in suppressing the £ = 0 and the k = 1 instabil-
ities that appeared in our earlier tests. The light-crossing
time of the S® geometry is 2zR5, so these results demon-
strate numerical stability and convergence for about 160
light-crossing times of the solution.

The results shown in Figs. 4-6 demonstrate that the
constraints of the Einstein-Klein-Gordon evolution system
are satisfied, and that the numerical solution converges to
the Einstein-Klein-Gordon static universe solution. These
results do not demonstrate, however, that the physical

L | L 1 n 1 L 1 n
0 200 400 600 800 1000
1/R,

FIG. 4 (color online). Errors in the metric y,, for evolutions
(including mode-damping forces) of initial data for the Einstein-

Klein-Gordon static solution. Numerical resolutions are the same
as those shown in Figs. 1-3.
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FIG. 5 (color online). Errors in the complex Klein-Gordon
scalar field ¢ for evolutions (including mode-damping forces)
of initial data for the Einstein-Klein-Gordon static solution.
Numerical resolutions are the same as those shown in Figs. 1-3.

Einstein-Klein-Gordon equations are actually satisfied.
The mode-damping forces Df ., DF,y,, Dfy, and DFy
must be measured to confirm that. We measure the sizes
of these mode-damping forces with the quantity Ep,
defined as the integral norm of each component of each
mode-damping force:

o [ mPmIDf , Df g /9dx
b fﬂzmamedl//acth\/gd3x
fm“"m“dDFacDth\/ﬁaﬂx
St m P mhy g /gdP x
f|Df¢|2\/§d3x f|DF¢|2\/§d3x 81
JuwlplPadx [ ptlp|*\/gd’x
10’3I§m,,,,, A ?'J
10 o
S
C o7k -
107 . O
10"t

0 200 400 600 800 1000
1/R,

FIG. 6 (color online). Constraint norm C for evolutions

(including mode-damping forces) of initial data for the

Einstein-Klein-Gordon static solution. Numerical resolutions

are the same as those shown in Figs. 1-3.

044044-12



SOLVING EINSTEIN’S EQUATION NUMERICALLY ON ...

|

1072 me«w” eyl g ags """”ﬁ

0200 400 600 800 1000

t/Rj,
FIG. 7 (color online). Norm of the mode-damping forces, Ep,
for evolutions (including mode-damping forces) of initial data for
the Einstein-Klein-Gordon static solution. Numerical resolutions
are the same as those shown in Figs. 1-3.

The factors of u (the fundamental scalar field oscillation
frequency) in this expression are used as characteristic time
scales in the denominators to make £p dimensionless.
Figure 7 shows that the mode-damping forces converge
to zero as the numerical resolution is increased, so our
numerical solution also solves the unmodified physical
Einstein-Klein-Gordon evolution equations in this limit.
Consequently, the results shown in Figs. 4—7 demonstrate
that our implementation of the multicube method for
solving Einstein’s equation on manifolds with nontrivial
spatial topologies is stable and numerically convergent
even for very long-time-scale evolutions.

VI. PERTURBED EINSTEIN-KLEIN-GORDON
STATIC UNIVERSE

The numerical tests of the Einstein-Klein-Gordon
evolution system described in Sec. V confirm that our
implementation of the multicube method for solving
Einstein’s equation described in Secs. II and III is basically
correct and free of numerical instabilities even on rather
long time scales. Those numerical tests were limited,
however, by the fact that the Einstein-Klein-Gordon static
universe solution is time independent and its spatial
structure is extremely simple. In this section we address
these limitations by carrying out a third, more challenging,
set of numerical tests of the multicube methods by perform-
ing long-time-scale evolutions of complicated time-
dependent perturbations of the FEinstein-Klein-Gordon
static universe solution. We study these perturbed solutions
analytically in Sec. VI A and numerically in Sec. VI B. The
results demonstrate that our numerical nonlinear Einstein-
Klein-Gordon code successfully evolves complicated
dynamical solutions having significant spatial structures.
We show that these numerical solutions converge to
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solutions of the Einstein-Klein-Gordon evolution system
that agree with the analytical predictions.

A. Analytical perturbations

In this section we derive analytically the general sol-
utions to the coupled Einstein and Klein-Gordon equations
for perturbations about the Einstein-Klein-Gordon static
universe solution. Write the spacetime metric y,;, and the
scalar field ¢ for this perturbed solution as

Wap =W + Wap, (82)

¢ = goe + 56, (83)

where y¥, and ¢ye' are the “background” metric and
scalar fields of the Einstein-Klein-Gordon static universe
solution. The background metric y?, is identical to the
reference metric y,;, used to fix the differential structure in
our multicube representation of S3. We will therefore refer
to the background metric as y,;,. The evolution equations
for the perturbations, dy,, and &¢, are obtained by
linearizing the coupled Einstein-Klein-Gordon equations
about this background. The perturbed Ricci tensor is
given by

oo - 2.
5Rab = _Ev vc&//ab - v((l(SHb) + Fgc(a&//b)c
3
| B e
- (T Gab — T (aT"b)) W ca (84)
3

where V,, is the covariant derivative associated with the
background metric ¥, and g, = Wy, + V1Vt is the
background spatial metric. The perturbed Einstein equation
is given by

1
SR,y = (A —4xT)dy ,, + 87 (5Tab - Eli/abeT), (85)

where A = 1/R3 and 42T, = —1/R3 are the cosmological
constant and trace of the stress tensor from the background
spacetime, respectively, and 6T, and 6T = y*5T,, —
Tgh&//ab are the perturbed stress-energy tensor and its
trace. For the Einstein-Klein-Gordon system, the perturbed
stress-energy tensor is given by

1. 1 . o
5Tab - El//abéT = Eﬂz(qs()elmﬁd)* + ¢8€71#[6¢)Wub

+ iﬂ¢0€i”IV<a5¢*vb)t

— ipgpe N (, 5V 1. (86)

The perturbed Klein-Gordon equation for this system is
given by
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0 = VV,6¢ — u26¢ + pPpoe™ Sy,,. 87)

The perturbed damped harmonic gauge condition for this
system is given by

- 1, - )
0= V’oys, — zwbcva&/jbc — 1Gdd" Oy (88)

The perturbations of the Einstein-Klein-Gordon static
solution are determined by solving the linearized system,
Eqgs. (84)—(88), for oy, and 6¢.

These perturbed FEinstein-Klein-Gordon equations can
be decoupled into separate equations for the scalar, vector,
and tensor degrees of freedom of the system. To accomplish
this, the perturbed metric dy,;, is decomposed into two
scalars (under spatial coordinate transformations) dy,, and
Sy = W' 8y;;, one vector 8y, and one trace-free tensor
oW = oyi; — %1[/[ ;0w . These fields can then be represented
as linear combinations of the appropriate scalar, vector,
and tensor harmonics on the three-sphere (as described
in Appendix B). Since the background Einstein-Klein-
Gordon solution is static, the solutions to the perturbation
equations can be expressed as linear combinations of
modes, i.e., solutions having time dependence e/,

We first discuss the modes corresponding to the scalar
degrees of freedom of the system. The perturbations of
oy 4, and J¢ for a general scalar mode can be written in the
form

Sy = R[A, YrEm giost], (89)
Sy = SIAYEmeio], (90)
Sy = R[A, YEmeiosi] O1)
o = S[Ag Yl(cgrfke st], 92)

5¢ — (]I)Oeiﬂl[AZkameiwst +A;*ykfm*e—iwst]’ (93)
where A, A;j, Ay, A,"k’ A(J/j, and qu are complex constants;
ykém y ’(‘é’;', and Y’(‘3)’;'k are the scalar, vector, and tensor
harmonics” on S defined in Appendix B; wg is the
frequency of the mode; and M (Z) and I(Z) denote the
real and imaginary parts of a quantity Z, respectively.
The perturbed Einstein-Klein-Gordon equations for these
perturbations become a system of linear algebraic equations
for the amplitudes A, .... These linear equations have
solutions whenever the frequency wg is one of the mode
eigenfrequencies of the system. For these values of wg the
general solution to the perturbation equations can be
written as

A, = Akm, (94)
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o 16k(k+2)°RS .
A, = —A¥ —— 2 Akem, (95)
2 p2
K R3
Al =-— A (96
¢ 2ws(ws +2u)R3 — k(k+2)]° 6)
2 p2
- HR3 k¢
A, =— Akem —(97)
’ 2ws(ws —2pu)RE — k(k+2)]°
8ulwqR?
Ay =2 e, (98)
0
16/40#20)5135’ kfm

Aj == (99)

O[w2R; +4 —k(k+2)] %

where A’gf ™ is the complex constant that sets the amplitude
of the scalar mode, and Q is defined by

0 = [ws(ws — iug)R3 +4 — k(k +2)]

x {[@2R2 — k(k +2)> — 42w?R%}.  (100)

The allowed eigenfrequencies of these modes break up into
three distinct families, defined by

(03R3)? = k(k +2), (101)

(05 R3)* = k(k +2) +2(u*R5 — 1)

20/ (2R, — 1) + k(k +2) + 1u2R?.
(102)

It is straightforward to show that (w$R3)? > 0 when k > 2
and 8 > ,qug, so the generic scalar modes are stable in
these cases.

The scalar modes for the cases k =0 and k=1 are
somewhat exceptional and must be calculated separately.

For the k = 0 case, the vector and tensor harmonics, Y’ %’;’
and Y fgm,, both vanish, so the mode amplitudes A,; and A;;
ij j ij

are effectively zero. The mode amplitudes of the remaining
scalar degrees of freedom, A, A, A;, and qu, are given by
the expressions in Egs. (94)—(97) with k = 0, but there are
only two independent mode frequencies in this case:

(WER3)* = 2R3 — 2 £ 24/u*Ry — ?R2 + 1. (103)

One of these has an imaginary frequency, (wgR3)? <0,
and therefore represents an unstable mode of the Einstein-
Klein-Gordon system. The instability seen in the numerical
evolution discussed in Sec. IV has a growth rate that
matches with great accuracy the analytical rate predicted by
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this unstable k = 0 mode frequency, wg. There is also a
degenerate exceptional k = 0 mode having wgR; = 0. This
mode has A, = A, =0 and A; =—A,. This exceptional
mode does not excite the gravitational field at all and
appears to be a kind of gauge mode associated with the
phase of the complex scalar field ¢.

The other exceptional scalar modes are those with k = 1.
In this case the tensor harmonics Y. vanish identically,
so in effect A3 = 0. Repeating the mode calculation gives
the expressions in Eqs. (94)—(98) with k = 1. There are,
however, a smaller number of mode frequencies in this
case:

(wER3)* =3+ 2u*R3 £ 24°R3,

both of which satisfy (w3 R3)? > 0 and are therefore stable.
In addition, there are two other k = 1 modes that have
somewhat different mode structures. For these modes,

Ay =A =A; =0, (104)
A'// = 6((US - l.'LlG)R:;Algfm, (105)
A, =AY, (106)

The frequencies of these exceptional k = 1 modes are

given by
i
ws Ry = 3 (HoRs = \/4 + uGR3).

One of these modes is a nonoscillatory damped mode,
while the other mode is unstable. The instability seen in the
preliminary numerical evolution discussed in Sec. V has a
growth rate that matches the analytical rate predicted by
this (k = 1)-mode frequency wy. This exceptional k = 1
mode does not excite the Klein-Gordon scalar field at all
and appears to be associated with the coordinate gauge
freedom of the gravitational field.

The Einstein-Klein-Gordon perturbation equations also
admit mode solutions that represent the vector degrees of
freedom of the gravitational field. The modes representing
these vector degrees of freedom can be written quite
generally as

(107)

Sy = Wiy [AY YT + AYG Y e ), (108)
Sy = M2V Y + AV Y ]e ™ . (109)

Here, AY(}) and A{f}} are (complex) constants; and Y{{",

Y ’("’3’” Yff)';’k, and Y’(‘f)m are the type-1 and type-2 vector and

tensor harmonics defined in Egs. (B3), (B4), (B12), and
(B13) in Appendix B. These harmonics are defined only for
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k> 1. The perturbed FEinstein-Klein-Gordon equations
admit solutions of this type for arbitrary values of the
mode amplitudes, A’{}?l") and A’{}%, whenever the frequency

wy satisfies the vector-mode eigenfrequency condition

(wy — iug/2)*R; = k(k+2) =3 —uZR3/4.  (110)
The quantity s > 0 that appears in these expressions is the
harmonic gauge damping factor defined in Eq. (47). The
frequencies of these modes are complex with non-negative
imaginary parts, so these vector modes are all stable. These
vector modes appear to be associated with the spatial
coordinate gauge degrees of freedom of the system.
Finally, there is a set of modes that represent the tensor
degrees of freedom of the system. The two tensor degrees
of freedom are the trace-free, oy j, = oy jx — 5 Lwo WO O v
and transverse, V*8iy jx = 0, parts of the metric perturba-
tion. The general form for these tensor modes is given by

51//]k — gy{{[Akfm ka

(o _I_Akfm kam ] lwrt}

TG) (111)

where A';{g") and A’;‘fg") are constants, and Y’ ’(‘4’6’;?,( and Y’(‘;’;?k
are the type-4 and type-5 tensor harmonics defined in
Egs. (B15) and (B16) in Appendix B. These tensor
harmonics exist only for k > 2 and # > 2. The perturbed
Einstein-Klein-Gordon equations for these modes are
satisfied for arbitrary (small) values of the complex con-

stants A’;@; and A’;{g”), as long as the frequency wy satisfies
the tensor-mode eigenfrequency condition

wiR3 = k(k +2). (112)
These frequencies are real, w%R% > 0, so the transverse-
traceless tensor modes are all stable. These tensor modes
correspond to the gravitational radiation degrees of freedom
of the system.

We note that the modes of the Einstein-Klein-Gordon
static universe found in these analytical solutions are all
stable, except for two unstable modes. These unstable
k = 0 and k = 1 modes correspond exactly to the unstable
modes found in the numerical tests described in Secs. IV
and V. This fact provides additional (indirect) evidence that
our numerical implementation of the multicube method has
been done correctly.

B. Numerical tests

The third numerical test of our implementation of the
multicube method evolves initial data constructed from the
analytical perturbation solutions of the coupled Einstein-
Klein-Gordon evolution equations described in Sec. VI A.
We define the analytical metric, y/fb, and scalar field, ¢A,
solutions to be
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TABLE I. Amplitudes and frequency classes of the individual
modes of the perturbed Einstein-Klein-Gordon system used to
form the analytic perturbation solution for the long-term stability
tests shown in Figs. 9-12.

k ¢ m Akgm wg k ¢ m Akgm wg
2 2 1L0x107% ) 5 5 5 40x107 of
2 2 -1 10x10° o 5 5 4 40x107 o]
2 1 10X 107° wy 5 4 -3 40x107 oy
3 3 -2 6.7x1077 a)g 6 6 6 33x1077 a)g
33 1 67x107 wf 6 6-5 33x107 oy
32 0 67x107 @y 6 5 3 33x107 oy
4 4 —4 50x107 of
4 4 3 50x107 wf
4 3 =2 50x107 oy
Wi = Wap + Wap: (113)
P = poe'™ + 5¢p. (114)

We construct the dy,, and 6¢ that appear in these
definitions by taking linear combinations of the scalar
mode solutions described in Egs. (94)-(99). We include
fifteen distinct scalar modes with spherical harmonic
indices ranging from k =2 to k = 6 and with a variety
of values of the spherical harmonic indices # and m. The
amplitudes A’gf " of the individual modes used to construct
this solution are given in Table I. Also included in Table I
is the choice of eigenfrequency class for each mode, as
defined in Egs. (101) and (102). The amplitudes of these
modes were chosen to be about 10~° (or smaller) to ensure
that the second-order (in amplitude) terms would be
comparable to the double-precision round-off errors in
our numerical evolutions. We chose this particular mix of
harmonics to produce a solution having a complicated
and interesting-looking dynamical evolution. Figure 8
illustrates the metric perturbation oy, for this solution
evaluated on the equatorial two-sphere, y = n/2, of the
three-sphere geometry. The individual frames in Fig. 8
illustrate this field at times t = 0, t = 6R3, and t = 12R;.
These times (approximately one light-crossing time apart)

FIG. 8 (color online).
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do not correspond to any natural period of the system, and
are intended to illustrate the complex, chaotic-looking
dynamics produced by the chosen initial data.

We use the analytical fields l//“a4b and ¢ defined in
Egs. (113) and (114) to construct initial data for the
Einstein-Klein-Gordon evolution system. We evolve these
data numerically using the Einstein-Klein-Gordon equa-
tions that include the unphysical mode-damping forces
defined in Eqgs. (73)-(76). Figures 9 and 10 illustrate the
differences between the numerically determined fields, w(%
and ¢, and the analytical fields defined in Eqs. (113) and
(114). These results show that the numerical solutions
converge toward the analytical solutions until the size of
their differences approaches 107'2. The analytical fields
were constructed from solutions to the first-order pertur-
bation equations, and so they are expected to contain errors
at this level of accuracy. Figures 11 and 12 show that the
constraints of the Einstein-Klein-Gordon system as well
as the unphysical mode-damping forces are numerically
convergent (toward zero) in these evolutions. These tests
provide strong additional evidence that our implementation
of the multicube method for solving Einstein’s equation
described in Secs. II and III is correct and free from
numerical instabilities.

VII. SUMMARY

In this paper we extend the multicube method for solving
partial differential equations on manifolds with arbitrary
spatial topologies, developed in Ref. [1], to allow us to solve
Einstein’s equation on such manifolds. We accomplish this
by developing in Sec. Il a new spatially covariant first-order
symmetric hyperbolic representation of Einstein’s equation.
This new representation is equivalent to the standard non-
covariant first-order generalized harmonic representations
(e.g., Ref. [2]) on manifolds with spatial slices that can be
embedded in R3. We test our implementation of these
multicube methods in the SpEC code (developed by the
SXS Collaboration, originally at Caltech and Cornell) in
Sec. 1V by evolving initial data for anew representation of the
Einstein static universe metric on R x S3. Our representation
uses a complex Klein-Gordon scalar field to provide the

: \ E 107°

s 0

E_l()—ﬁ

Images of the dy,, component of the metric perturbation, evaluated on the equatorial two-sphere, y = z/2, of the

perturbed Einstein-Klein-Gordon static solution. These images represent the times ¢ = 0, t = 6R3, and t = 12R5. The color coding and

distortion of the sphere represent the (scaled) magnitude of dy,,.
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0 200 400 600 800 1000
1/R,

FIG. 9 (color online). Errors in the metric v, for evolutions
(including mode-damping forces) of initial data for the perturbed
Einstein-Klein-Gordon solution. Numerical resolutions are the
same as those shown in Figs. 1-3.

energy density for this spacetime. These numerical tests
reproduce with great precision the well-known Eddington [3]
instability of the Einstein static universe.

We have tested the accuracy and the long-time-scale
numerical stability of our implementation of these multi-
cube methods by adding unphysical damping forces to
Einstein’s equation in Sec. V. These damping forces are
designed to suppress the modes responsible for the
Eddington instability and to leave all the other dynamical
degrees of freedom of the system unchanged. These
long-time-scale tests confirm stability and numerical con-
vergence for about 160 light-crossing times of the S°
geometry. Finally, we have derived analytical expressions
for all of the modes of the Einstein-Klein-Gordon static

0200 400 600 800 1000
1/R,
FIG. 10 (color online). Errors in the complex Klein-Gordon
field ¢ for evolutions (including mode-damping forces) of initial
data for the perturbed Einstein-Klein-Gordon solution. Numerical
resolutions are the same as those shown in Figs. 1-3.
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C 107k .
10°F -
[robrenem R e A S e
SN i
10 " 1 " 1 L 1 " 1 N
0 200 400 600 800 1000

t/R S

FIG. 11 (color online). Constraint norm C for evolutions
(including mode-damping forces) of initial data for the perturbed
Einstein-Klein-Gordon solution. Numerical resolutions are the
same as those shown in Figs. 1-3.

universe in Sec. VI. We use these analytical expressions
to construct initial data for a complicated, time-dependent
spacetime having considerable spatial structure. Our
numerical evolutions of these initial data converge toward
the (small-amplitude) analytical perturbation solution,
while the constraints and mode-damping forces converge
toward zero, as the spatial resolution is increased.

The numerical tests presented in this paper are all
performed on the manifold R x S°. Nevertheless, we
believe that these tests confirm that the multicube methods
described in Secs. II and III for solving Einstein’s equation
on manifolds with arbitrary spatial topologies have been
implemented correctly. In the multicube method, the
equations are solved locally within each cubic region B 4

i ik W ey

) .

101 1

0200 400 600 8001000
t/R,

FIG. 12 (color online). Norm of the mode-damping forces, Ep,

for evolutions (including mode-damping forces) of initial data for

the perturbed Einstein-Klein-Gordon solution. Numerical reso-

lutions are the same as those shown in Figs. 1-3.
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with boundary conditions, cf. Sec. II D, that guarantee that
the solution within each region corresponds to the desired
global solution. These boundary conditions depend on the
topology of the manifold only through their dependence on
the reference metric y,;, and the interface boundary maps
\Il/g,g. So while the simulations presented here do not test
reference metrics or interface boundary maps for a wide
range of manifolds with “arbitrary” topologies, they do
verify that the basic structure of the boundary conditions
that would apply for arbitrary topologies has been done
correctly.
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APPENDIX A: COVARIANT EINSTEIN
CONSTRAINTS

This appendix presents explicit expressions for the
covariant constraints of the FEinstein evolution system
derived in Sec. III in terms of the covariant first-order
dynamical fields vy ,,, I1,,, and ®;,;, and their spatial
derivatives. The primary constraint C, of this system,
defined in Eq. (19), has the following expression in terms
of the first-order fields:

3 1.,
Ca = Ha + gqu)ija + thba - E.g;zl//hc (Pibc

1
- Etawbcnbc- (Al)

The three-index constraint C,,;,, defined in Eq. (27), has the
following expression:

C'iab = vil//ab - (piab- (A2)

The spatially covariant analog of the Hamiltonian and
momentum constraints of more standard 3+1 representa-
tions of Einstein’s equation, F ,, defined in Eq. (38), has the

following explicit representation in terms of the first-order
fields:

- . . 1 . . o
G VI, — ¢V I, — gitV, @, + 2 1wt g @ . + 1,97V, H; — ¢it"V,H,,

. . 1 . ‘ ; R )
G, i Preap?tC — = gL i ¢ P q it + G D, Pyt — 5 1ay TGP P gy

1 .
+ 3 1Moy te” + gl @ ;e Ty 1€ 10y %

1 . i, 1 ..
- _gizq)icdtctdnbewbe + 2Ata - guq)ibatbnjete - Egqu)icdtctdnja - 16”Tabtb

. 1 , L o
+7 (gldcida - QZU/‘dCicd> — AP 1°Cy + 27 1y R yic — 20T R

2

— g,

Wj(bkjd)ic + fall/bdl//ijkki/(bl//d)k-

(A3)

Similarly, the two-index constraint, C;,, defined in Eq. (39), is given by the expression

- 1 - 1 1 |
Cio = ¢*"Vi® 1, — Egéwcdviq)jcd + "V, I1,, - ) tayVIl.,+ V:H, + Egt]lq)jcdq)iefwwwdf

1 . . 1 1
+ Egjkq)jcdq)ikel//aiteta — 79" @ity + 5 Picallpety <V/Cb‘//d€ + El//belcld>

1 1
- (I)icdnhatc <l//bd +5 tbtd> + _YZ(tade - 252td>cicd - Abiuch'

2 2

2

(A4)

Finally, the four-index constraint, C;j,, defined in Eq. (40), is given by

Cijap = 2V @jap + Rcajil//cb =+ Rcbjil//ac-

(A5)
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These expressions for the constraints make it possible to
evaluate them easily in terms of the first-order dynamical
fields of the system and their spatial derivatives at any
instant of time. These expressions are analogous to those
for the standard noncovariant generalized harmonic evo-
lution system [2], but the covariant expressions used here
depend in critical ways on the geometry of the reference
metric ¥, used to define the covariant derivative V;.

APPENDIX B: TENSOR HARMONICS ON §3

This appendix summarizes the basic properties of the
three-sphere scalar, vector, and tensor harmonics. These
harmonics are defined here as eigenfunctions of the
covariant Laplace operator on the three-sphere, based on
the approach developed by Sandberg [21]. The notation
introduced here is intended to be simpler and more
systematic than that used by Sandberg. Our expressions
for the vector and tensor harmonics are also covariant.
Covariance allows us to evaluate these tensors using any
convenient choice of coordinate basis on S°, like the
multicube Cartesian coordinates. The angular functions
¥, 0 and ¢ that appear in our expressions are considered to
be functions of whatever choice of spatial coordinates is
used. Explicit expressions for these angular functions in
terms of the multicube Cartesian coordinates are given, for
example, in Appendix A.3 of Ref. [1].

The scalar harmonics on the three-sphere are denoted
here as Y*™ where k>¢>0 and £>m>—¢ are
integers. These harmonics are defined to be eigenfunctions
of the covariant Laplace operator for the standard round
metric on §:

k(k+2)

viviykfm — >
R3

kam’ (B 1)

where V; is the covariant derivative, and R is the radius of
the round-sphere metric on S°.

The vector harmonics on S can be derived directly
from the scalar harmonics. In particular, the three vector

harmonics Y’(‘é’?, Y](CS’?, and Y’(“g’;? are given by

yiom = v,yom, (B2)
YI(CIK)'? = ¢V, Y¥"V, cos z, (B3)
Yhon = e NV ko, (B4)

where ¢;; is the totally antisymmetric tensor volume
element, which satisfies V ,¢; ik = 0. These vector harmon-
ics satisfy the following divergence conditions:

k(k +2)
R

VIyl&%rln — kam’

(B5)
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iyktm _
VY =0, (B6)
iykim _
Vivkm — o, (B7)
and the following eigenvalue equations:
. 2—k(k+2)
kfm ktm
V-/VjY(O)i = R Yo (BY)
. 1 —k(k+2)
kém __ kém
V/VJ-Y(W = 7]?% Y (BY)
. 1 —k(k+2)
kfm ktm
V/VJ-YQ)[. = R Yo (B10)

There are six (symmetric) tensor harmonics on §3, Y ’(‘('S’;’j,

k¢ 1% % 1% Kt :
Ym’lflj, Y(z)’?j’ Y<3)’:.’j, Y(4)’l’.'j, and Y<5)’l'lj, which can be defined

in terms of the scalar and vector harmonics:

i = y<mg,, (B11)
i = %(V,-Y%’}’ + VY, (B12)
v =Y. e
v = v e

1
kfm £ ykém kém kém
Yy = EX mij_M(Y(l)ivjcos;ﬁ—Y(WVicos;()

x {[£(€ +1) = 2](E¥)? 4 6 cos yEF — 4},
(B15)

kam _ 1

(5ij — 9 (B16)

(eimvs Yé{zf)’:] + ejmvs Yl(cﬁﬂrzl)
In Eq. (B15), the quantity H*(y) is the function that
transforms  S2  harmonics into S®  harmonics:
YKy, 0, ) = HX (y) Y™ (0, ), while E¥ (y) is defined
by

Ekf —

2 d
(sin2yH).  (B17)

[2— (£ 4 1)) sinyH* dy

These tensor harmonics are trace free,
_ Ajyktm _ ijykém __ ijykém _ jijykém _ ijykém
0=g"Yey; = ,;q;y(l‘)if = 97 Gy = 9 Y Gy = 97 s
m

except for g/Y*m — 3yk“m These tensor harmonics sat-
(0)ij

isfy the following divergence conditions:
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v = Vi) @19
. 3—k(k+2)
iyktm _— k‘'m
VYOG = R Taii BI19)
. 3—k(k+2)
iykim _ kf'm
VYei = —r Yo (B20)
. 2[3 —k(k+2)]
iyktm _ km
Ve =3 Yo (B2D
viykn — o, (B22)
ViY’gg';?j =0, (B23)
and the following eigenvalue equations:
k(k+2)
n kfm __ km
vV, v 2 Yo (B24)
S—k(k+2
vyt 22 TKEE D e o)
D)ij R; (Dij
S—k(k+2
vt =2 TKEE D e o)
2)ij R; (2)ij
6 —k(k+2
VIV, Yl = 6 —kkt2) i ) ykem, (B27)
3)ij R; (3)ij
2—k(k+2)
n k¢m kém
V'V, Y = 7}32 Y (B28)
2—k(k+2
VI, Yl — # yom, (B29)
ij R; (5)ij

These expressions for the tensor harmonics are equivalent
to those given by Sandberg [21].

The scalar and tensor harmonics on S* can be computed
numerically in a straightforward way. The scalar harmonics

PHYSICAL REVIEW D 89, 044044 (2014)

Y¥m are related to the standard S> harmonics Y by
the expression Y ™ = HK(y)Y?™ (6, ¢). The functions
H*(y) can be determined numerically for k = # and
k = ¢ + 1 by the expressions

200 +1) .
f+12ffy e S A , B30
D 2+ x (B30

H () = (-

Herlf(X)

= \/2(¢ +2) cosyH  (y),

and for k > £ + 1 using the recursion relation

(B31)

k+3)(k+2)
Hk+2f ) ( Hk+lf
C°”\/(k+3+f)(k+z—f)

k) k2 Ok 1-2)
k+D)(k+3+2)(k+2—2)

HX . (B32)

This recursion relation for H*(y) is obtained from
the standard recursion relation used to determine the
associated Legendre functions [22] and the fact that

H*’(y) is proportional to inllfzz()()/\/sin , where

Zill //g (y) is the associated Legendre function of the

second kind [1].

The quantities E*(y), defined in Eq. (B17), can be
obtained from H*’(y) using the standard expressions for
the derivatives of the associated Legendre functions. For
k = ¢, we have

2cosy
EY = — , B33
71 (B33)
while for k> ¢, these are given by the recursion
relation
B 2(k+2)cosy
2—-¢(+1)
2\/(k+1)(k—&)(k+ ¢+ 1)H

2—2(6+1)Vk e B9
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