
Solving Einstein’s equation numerically on manifolds
with arbitrary spatial topologies

Lee Lindblom, Béla Szilágyi, and Nicholas W. Taylor
Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA

(Received 3 December 2013; published 26 February 2014)

This paper develops a method for solving Einstein’s equation numerically on multicube representations
of manifolds with arbitrary spatial topologies. This method is designed to provide a set of flexible, easy to
use computational procedures that make it possible to explore the never before studied properties of
solutions to Einstein’s equation on manifolds with arbitrary toplogical structures. A new covariant, first-
order symmetric-hyperbolic representation of Einstein’s equation is developed for this purpose, along with
the needed boundary conditions at the interfaces between adjoining cubic regions. Numerical tests are
presented that demonstrate the long-term numerical stability of this method for evolutions of a complicated,
time-dependent solution of Einstein’s equation coupled to a complex scalar field on a manifold with spatial
topology S3. The accuracy of these numerical test solutions is evaluated by performing convergence studies
and by comparing the full nonlinear numerical results to the analytical perturbation solutions, which are
also derived here.
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I. INTRODUCTION

Solving partial differential equations on manifolds with
arbitrary spatial topologies presents a number of challenges
beyond those required to solve those equations on subsets
of R3. In a previous paper, Lindblom and Szilágyi [1]
showed how systems of elliptic and hyperbolic partial
differential equations for collections of tensor fields can be
solved numerically on manifolds with arbitrary spatial
topologies by using multicube representations of those
manifolds. We review some of the basic features of that
multicube method in Sec. II. In particular, we discuss how
the global differentiable structure (needed to define what it
means globally to have smooth tensor fields) can be defined
conveniently for multicube manifolds. We also review what
boundary conditions are needed at the interfaces between
cubic regions and how these conditions are enforced for
first-order symmetric-hyperbolic evolution systems.
In Sec. III we develop a new (spatially) covariant, first-

order symmetric-hyperbolic representation of the Einstein
system that can be used on manifolds with arbitrary spatial
topologies. The standard generalized-harmonic representa-
tion of Einstein’s equation [2] is a special case of these new
covariant representations on manifolds whose spatial slices
are subsets of R3. Given this new representation of the
Einstein system, it is straightforward to adapt the multicube
methods developed by Lindblom and Szilágyi [1] to the
Einstein case. In particular, the explicit boundary condi-
tions that must be applied to the characteristic fields of this
system at the interface boundaries between adjoining cubic
regions are presented in Sec. III.
The long-term numerical stability of these methods is

tested in Secs. IV–VI by studying solutions to Einstein’s

equation coupled to a complex Klein-Gordon scalar field.
There exists a static solution to this system of equations
whose spatial geometry is the standard round metric on S3.
This solution is therefore a (new) representation of the
Einstein static universe. The Einstein static universe has a
well-known physical instability that causes the universe to
expand without bound or to collapse to a singularity on a
fairly short time scale (cf. Ref. [3]). Our numerical tests of
the coupled Einstein-Klein-Gordon system, described in
Sec. IV, reproduce this well-known result.
One important goal of this paper is to study the long-term

numerical stability of our implementation of the multicube
methods. Since the Einstein-Klein-Gordon static universe
solution is unstable, we introduce unphysical mode-
damping forces into the Einstein and Klein-Gordon equa-
tions that are designed to exponentially suppress the two
unstable modes of this solution. One of these unstable
modes is the well-known spatially homogeneous physical
instability of the Einstein static universe, while the other is
a dipole instability that exists in the particular coordinate
gauge used in our tests. These mode-damping forces,
described in detail in Sec. V, leave untouched all of the
rich dynamics of the Einstein-Klein-Gordon evolution
equations, except for the degrees of freedom associated
with the unstable modes. With the addition of these mode-
damping forces, we are able to perform long-term evolu-
tions (about 160 light-crossing times) of the Einstein static
universe. The results of these tests, described in Sec. V,
show that our implementation of the multicube method is
stable and convergent, even on such very long time scales.
We show that the constraints of this system, as well as the
unphysical mode-damping forces, converge (exponentially
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quickly) toward zero as the spatial resolution of the
numerical solutions is increased.
Finally, we test the accuracy and numerical stability of

our implementation of the multicube method in Sec. VI by
studying a complicated, time-dependent solution of the
coupled Einstein-Klein-Gordon system. We derive the
general solution to these equations analytically for first-
order perturbations of the Einstein-Klein-Gordon static
universe solution. These analytical solutions are then used
to construct initial data composed of a superposition of 15
distinct modes. We evolve these initial data numerically
and demonstrate stability and convergence. We show that
the constraints of the system and the magnitudes of the
unphysical mode-damping forces converge exponentially
toward zero as the spatial resolution is increased. We
measure the accuracy of the numerical solutions by
comparing them with the analytical first-order perturbation
solutions. We show that the differences between these two
solutions converge toward zero, until these differences
reach the level of the neglected quadratic terms in the
analytical perturbation solution. These accuracy and sta-
bility tests are carried out for this complicated time-
dependent solution for about 160 light-crossing times of
the solution.
Solving Einstein’s equation numerically on manifolds

with arbitrary spatial topologies requires a number of
computational tools beyond those needed to solve problems
on manifolds having spatial slices which can be embedded
in R3. In particular, smooth tensor fields must be repre-
sented in a way that does not depend on the existence of a
single, smooth global coordinate system. To our knowl-
edge, the methods developed by Lindblom and Szilágyi [1]
and applied here to Einstein’s equation are the first
numerical methods to appear in the literature that are
capable of solving these equations on aribitrary manifolds.
As far as we know, Bentivegna and Korzynski [4–6] give
the only other published results of fully three-dimensional
numerical solutions of Einstein’s equations on manifolds
with nontrivial topologies. They evolve Einstein’s equation
in vacuum on manifolds having spatial topologies S3 and
T3, with black hole lattice solutions. They avoid the generic
problem of solving equations on manifolds with aribitrary
topologies by embedding each of their spatial manifolds1 in
R3 and using its global Cartesian coordinates to represent
smooth tensors. They then solve Einstein’s equation nu-
merically in R3 using the standard tools of numerical
relativity.

II. REVIEW OF THE MULTICUBE METHOD

The most useful manifolds for solving Einstein’s equa-
tion numerically are those which admit globally hyperbolic

causal structures. These manifolds have topologies of the
form R × Σ, where Σ is a three-dimensional manifold. The
multicube method of representing three-dimensional mani-
folds with arbitrary topologies consists of three basic
elements: (i) a collection of nonoverlapping cubic blocks
BA that cover the manifold, (ii) a collection of maps ΨAα

Bβ
that specify how the faces of the blocks are connected
together to create the desired topology, and (iii) a smooth
positive-definite reference metric ~gij used to determine the
differentiable structure of the manifold. We devote most of
the remainder of this section to a discussion of these basic
elements of the multicube method. In addition, we give a
brief review of the interface boundary conditions needed to
solve first-order symmetric-hyperbolic evolution systems,
like Einstein’s equation, on multicube manifolds.

A. Multicube structures

An arbitrary (three-dimensional) manifold Σ can be
subdivided into a collection of regions, each of which
can be mapped smoothly into a cube BA in R3 (cf. Ref. [1]).
We use upper-case latin indices fA; B;…g with A ¼
f1; 2;…; Ng to label these regions and their images BA
in R3. These regions overlap in Σ only along the boundaries
between neighboring regions. It is convenient to choose the
images of these regions BA to be cubes of uniform
coordinate size, L, which are all oriented along the same
global Cartesian coordinate axes in R3. In this case the cube
BA can be specified simply by giving the location of its
center c⃗A ¼ ðcxA; cyA; czAÞ in R3. It is also convenient to
arrange the cubes BA so they intersect (if at all) in R3 only at
points on faces where the corresponding regions touch in Σ.
This collection of cubes BA provides the basic frame-

work on which a multicube representation of the manifold
Σ can be constructed. Each point in the interior of one of the
cubes represents a unique point in Σ. In addition, each point
in Σ is the inverse image of at least one point in the closure
of∪ABA. The Cartesian coordinates of R3 therefore provide
a global way of identifying points in Σ. We use the notation
xi ¼ fx; y; zg to denote these coordinates, where latin
indices fi; j; k;l;…g are used to denote spatial quantities.

B. Interface boundary maps

The topological structure of the manifold Σ determines
how the cubic regions BA are connected together.
Conversely, the topological structure of a multicube mani-
fold is determined by giving a collection of maps ΨAα

Bβ that
specify how the points on the faces of each cubic region are
identified with those of its neighbors [1]. We use the
notation ΨAα

Bβ to represent the map from the ∂αBA face of
cube BA to the ∂βBB face of cube BB. We use lower-case
greek indices fα; β;…g with α ¼ f�x;�y;�zg to label
the faces of each cube. The cubes BA are chosen to be
aligned with the global Cartesian coordinate axes in R3, so
the region boundary faces are always located at constant
spatial coordinate surfaces. For example, the boundary

1One of the black hole interiors in the Bentivegna and
Korzynski S3 solution is excised, and a conformal transformation
is applied to map its horizon to infinity in R3.

LINDBLOM, SZILÁGYI, AND TAYLOR PHYSICAL REVIEW D 89, 044044 (2014)

044044-2



∂αBA is assumed to be a surface of constant coordinate
xσA ¼ xjαjA , where the index σ ¼ jαj denotes the fixed
boundary-surface coordinate. This boundary surface is
identified with the boundary ∂βBB, a surface of constant
coordinate xσB ¼ xjβjB , via the map ΨAα

Bβ.
The map ΨAα

Bβ that takes the Cartesian coordinates xjB of
points in ∂βBB to the Cartesian coordinates xiA of points in
∂αBA can be chosen to have the form of a simple translation
plus rotation and/or reflection (cf. Ref. [1]):

xiA ¼ ciA þ fiα þ CAαi
BβjðxjB − cjB − fjβÞ: (1)

The vector ciA þ fiα is the location of the center of the face
∂αBA, and CAαi

Bβj is the combined spatial rotation and
reflection matrix needed to match the face ∂αBA to the
face ∂βBB in the desired way. The vectors ciA þ fiα and
matrices CAαi

Bβj in these maps are constants determined once
and for all by the topology of the particular manifold. These
maps are smooth for the coordinates xk within the boundary
surface, i.e., for those with k ≠ σ. For the normal surface
coordinate xσ , however, the maps are only continuous and
not (in general) differentiable.
The multicube Cartesian coordinates xiA on the

3-manifold Σ can be extended naturally to coordinates
on the spacetime R × Σ: xaA ¼ ftA; xiAg, where latin indices
from the beginning of the alphabet, fa; b;…g with
a ¼ ft; x; y; zg, denote spacetime quantities. The maps
ΨAα

Bβ defined above can be extended in a natural way to
include the equation for the continuity of the time coor-
dinate across region boundaries, tA ¼ tB. The full space-
time coordinate transformation map can then be written in
the compact, four-dimensional notation

xaA ¼ caA þ faα þ CAαa
BβbðxbB − cbB − fbβÞ; (2)

where ctA þ ftα ¼ 0, CAαt
Bβb ¼ δtb, and CAαa

Bβt ¼ δat .
Explicit expressions for the multicube representations of

the 3-manifolds T3, S1 × S2, and S3 are described in detail
in Ref. [1]. In particular, specific expressions are given
there for the collections of cubic regions BA, the vectors ciA
and fiα, and the interface boundary transformation matrices
CAαi
Bβj, needed to construct the multicube representation of

each of these manifolds.

C. Reference metrics

Tensor fields can be represented on multicube manifolds
by giving their components (expressed in the global
coordinate basis of R3) as functions of the global
Cartesian coordinates. Within each coordinate region BA,
the components of smooth tensor fields are smooth
functions of these coordinates xaA. Additional structure
must be provided, however, that determines how to trans-
form continuous, differentiable, and smooth tensor fields
across the interface boundaries between regions in

multicube manifolds. One way to fix this differentiable
structure is to specify a smooth, static spacetime metric,
which we denote as ~ψab (cf. Ref. [1]). Like other smooth
vector and tensor fields, the components of ~ψab might be
discontinuous across the boundaries of the cubic block
regions when written in terms of the global multicube
Cartesian coordinate basis. However, the components of
~ψab must be smooth functions in any smooth atlas of
overlapping coordinate charts. The numerical examples
studied in this paper solve Einstein’s equation on a
manifold with the topology of a three-sphere, Σ ¼ S3.
For these examples, the multicube representation of the
standard round-sphere metric on S3 can be used to construct
a reference metric (cf. Ref. [1]). Smooth multicube refer-
ence metrics are also given in Ref. [1] for manifolds with
spatial topologies T3 and S1 × S2. In a future paper we will
describe an algorithm for constructing smooth reference
metrics ~ψab on any multicube manifold.
It is easy to construct covectors that are normal to the

boundaries of the multicube regions: ~nAa ∝ ∂axσA. Given a
smooth reference metric ~ψab, these covectors can be
normalized to be outward pointing and to have unit length:
~naA ~n

b
A ~ψab ¼ 1 and ~nAa ¼ ~ψab ~nbA. Let ~naA denote the out-

ward-directed unit normal to the boundary ∂αBA, and ~naB
the outward-directed unit normal to ∂βBB. Since the
reference metric ~ψab is smooth, these normal vectors (up
to sign) represent the same vector at the corresponding
points on each side of identified boundaries. The trans-
formation law that maps smooth tensor fields across
interface boundaries must therefore be constructed to
transform ~naB into − ~naA. In contrast, continuous vector
fields uaA that are tangent to the boundary, i.e.,
uaA ~n

b
A ~ψab ¼ 0, should transform using the standard

Jacobian of the map ΨAα
Bβ in Eq. (2): uaA ¼ CAαa

Bβbu
b
B. It is

straightforward then to construct the transformations,
effectively Jacobians, needed to transform arbitrary tensor
fields from the region boundary ∂βBB to ∂αBA:

JAαaBβb ¼ CAαa
Bβcðδcb − ~ncB ~nBbÞ − ~naA ~nBb; (3)

J�BβbAαa ¼ ðδca − ~nAa ~ncAÞCBβb
Aαc − ~nAa ~nbB: (4)

These effective Jacobians transform the background sur-
face normals correctly,

~naA ¼ −JAαaBβb ~n
b
B; (5)

~nAa ¼ −J�BβbAαa ~nBb; (6)

and they also transform the components of vectors ua that
are tangent to the boundary correctly,

uaA ¼ JAαaBβbu
b
B ¼ CAαa

Bβbu
b
B; (7)
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using the rotation/reflection matrix CAαa
Bβb from the surface

coordinate map. The Jacobian and its dual are also inverses
of one another:

δAaAb ¼ JAαaBβcJ
�Bβc
Aαb : (8)

We introduce the notation hvaBiA and hwBaiA to denote
the result of transforming these vector and covector fields
from the boundary of region B to the corresponding points
on the boundary of region A:

hvaBiA ¼ JAαaBβbv
b
B; (9)

hwBaiA ¼ J�BβbAαa wBb: (10)

The necessary and sufficient conditions for the continuity
of these fields across interface boundaries are vaA ¼ hvaBiA
andwAa ¼ hwBaiA. The appropriate transformation laws for
tensor fields are obtained by applying the effective Jacobian
to each index of the tensor. For example, the physical
spacetime metric ψab, which will generally be different
than the static reference metric ~ψab, transforms across
interface boundaries as follows:

hψBabiA ¼ J�BβcAαa J�BβdAαb ψBcd: (11)

The continuity of the spacetime metric across this boundary
is the statement that ψAab ¼ hψBabiA.
The rules for transforming the derivatives of tensors

across interface boundaries can be determined by intro-
ducing the covariant derivative ~∇a that is compatible with
the smooth reference metric, i.e., ~∇c ~ψab ¼ 0. The covariant
derivatives of smooth tensors are tensors, so these deriv-
atives are transformed across region boundaries using the
effective Jacobian JAαaBβb defined above. In particular, the
transformations of the covariant derivatives of the vector va

and covector wa are given by the expressions

h ~∇avbBiA ¼ J�BβcAαa JAαbBβd
~∇cvdB;

h ~∇awBbiA ¼ J�BβcAαa J�BβdAαb
~∇cwBd:

Tensor fields with continuous derivatives therefore
satisfy the continuity conditions ~∇avbA ¼ h ~∇avbBiA and
~∇awAb ¼ h ~∇awBbiA. These transformation laws can be
generalized to tensor fields of arbitrary rank in the obvious
way. In particular, the transformation of the derivatives of
the spacetime metric is given by

h ~∇cψBabiA ¼ J�BβdAαc J�BβeAαa J�BβfAαb
~∇dψBef:

Smooth tensor fields are defined to be those having
continuous derivatives of all orders.

D. Boundary conditions for hyperbolic systems

A first-order symmetric-hyperbolic system of equations
for the dynamical fields uA (assumed here to be a collection
of tensor fields) can be written in the form

∂tuA þ AkA
Bðx;uÞ ~∇kuB ¼ FAðx;uÞ; (12)

where the characteristic matrix, AkA
Bðx;uÞ, and the

source term, FAðx;uÞ, may depend on the spacetime
coordinates xa and the fields uA, but not their derivatives.
The script indexes fA;B; C;…g in these expressions label
the components of the collection of tensor fields that
make up uA. These systems are called symmetric because,
by assumption, there exists a positive-definite metric
on the space of fields, SAB, that can be used to transform
the characteristic matrix into a symmetric form:
SACAkC

B ≡ Ak
AB ¼ Ak

BA.
Boundary conditions for symmetric-hyperbolic systems

must be imposed on the incoming characteristic fields of
the system. The characteristic fields ûK (whose index K
labels the collection of characteristic fields) are projections
of the dynamical fields uA onto the matrix of left eigen-
vectors of the characteristic matrix (cf. Refs. [2,7]):

ûK ¼ eKAðnÞuA: (13)

The matrix of eigenvectors eKAðnÞ is defined by the
equation

eKAðnÞnkAkA
BðuÞ ¼ vðKÞeKBðnÞ; (14)

where the covector nk that appears in this definition is the
outward-pointing unit normal to the surface on which the
characteristic fields are evaluated. The eigenvalues vðKÞ are
often referred to as the characteristic speeds of the system.
The characteristic fields ûK represent the independent
dynamical degrees of freedom at the boundaries. These
characteristic fields propagate at the speeds vðKÞ (in the
short wavelength limit), so boundary conditions must be
given for each incoming characteristic field, i.e., for each
field with speed vðKÞ < 0. No boundary condition is
required (or allowed) for outgoing characteristic fields,
i.e., for any field with vðKÞ ≥ 0.
The boundary conditions on the dynamical fields uA that

ensure the equations are satisfied across the faces of
adjoining cubic regions are quite simple: data for the
incoming characteristic fields at the boundary of one region
are supplied by the outgoing characteristic fields from the
neighboring region. The boundary conditions at an inter-
face between cubic regions require that the dynamical fields
uAA in region BA be transformed into the representation used
in the neighboring region BB. When the dynamical fields
uA are a collection of tensor fields (as assumed here),
their components are transformed from one coordinate
representation to another using the Jacobians of the
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transformation as described in Eqs. (9) and (10). In this
case, the needed boundary conditions can be stated
precisely for hyperbolic evolution problems: Consider
two cubic regions BA and BB whose boundaries ∂αBA
and ∂βBB are identified by the map ΨαA

βB as defined in
Eq. (2). The required boundary conditions on the dynami-
cal fields uAA consist of fixing the incoming characteristic
fields ûKA (i.e., those with speeds vðKÞ < 0) at the boundary
∂αBA with data, uBB, from the fields on the neighboring
boundary ∂βBB:

ûKA ¼ heKAðnÞiAhuAB iA: (15)

The matrix of eigenvectors, heKAðnÞiA, that appears in
Eq. (15) is to be constructed with the fields from region
BB that have been transformed into region BA where the
boundary condition is to be imposed. This boundary
condition must be applied to each incoming characteristic
field on each internal cube face—i.e., on each face that is
identified with the face of a neighboring region.

III. COVARIANT FIRST-ORDER EINSTEIN
EVOLUTION SYSTEM

Einstein’s equation determines the spacetime metric ψab
by equating the Einstein curvature tensor to the stress-
energy tensor of the matter in the spacetime. This equation
is, of course, covariant. The standard first-order hyperbolic
representations of Einstein’s equation (e.g., Ref. [2]),
however, are not covariant, because the auxiliary dynamical
fields introduced to make the system first order are not
tensors. This lack of covariance has not caused any
problems (that we know of) in the codes that solve these
noncovariant equations on spatial manifolds that can be
embedded in R3, e.g., for binary black-hole spacetimes.
However, our attempts to use these noncovariant represen-
tations for numerical evolutions on manifolds with non-
trivial spatial topologies failed. We were unable to achieve
stable and convergent evolutions, at the interface bounda-
ries in particular. These problems disappeared when we
adopted the spatially covariant representation of the first-
order Einstein evolution system described in the remainder
of this section. The interface boundary conditions needed
for this new covariant representation are precisely those
described in Sec. II D for any hyperbolic system whose
dynamical fields are tensors.
Let ψab denote the physical spacetime metric that is

determined by solving Einstein’s equation, and let Γa
bc and∇a denote the connection and covariant derivative asso-

ciated with ψab. Let ~ψab denote a smooth static reference
metric, and let ~Γa

bc and ~∇a denote the connection and
covariant derivative associated with ~ψab. It is straightfor-
ward to show that the physical Ricci curvature Rab
associated with ψab satisfies the identity

Rab ¼ − 1

2
ψcd ~∇c

~∇dψab þ∇ðaΔbÞ − ψcd ~Re
cdðaψbÞe

þ ψcdψefð ~∇eψca
~∇fψbd − ΔaceΔbdfÞ; (16)

where Δabc is the tensor that describes the difference
between the connections:

Δabc ¼ ψadðΓd
bc − ~Γd

bcÞ

¼ 1

2
ð ~∇bψac þ ~∇cψab − ~∇aψbcÞ: (17)

The vector Δa is defined as Δa ¼ ψbcΔabc, and ~Rd
abc is the

reference Riemann curvature associated with ~ψab. Note that
Eq. (16) reduces to Eq. (4) of Ref. [2] for the case where the
reference metric is the flat Minkowski metric ~ψab ¼ ηab
expressed in Cartesian coordinates.
In analogy with the generalized harmonic representa-

tions of Einstein’s equation (e.g., Ref. [2]), the gauge (or
coordinate) conditions are fixed in this covariant evolution
system by setting Δa to be a fixed gauge source function:

Δa ¼ −Ha: (18)

We assume that this gauge source function Ha ¼
Haðψ ; ~ψ ; ∂k ~ψ ; xÞ may depend on the physical metric ψab
(but not its derivatives) and the reference metric ~ψab
(including its derivatives if desired), as well as the
spacetime coordinates xa. This gauge condition becomes
a constraint of the system:

Ca ¼ Δa þHa: (19)

The covariant vacuum evolution equation therefore satisfies
the standard generalized harmonic evolution equation:

0 ¼ Rab − ∇ðaCbÞ: (20)

The standard argument (cf. Ref. [2]) using the Bianchi
identities implies that the constraint Ca satisfies the
evolution equation

0 ¼ ∇b∇bCa þ Cb∇ðaCbÞ; (21)

which is also identical to the standard generalized
harmonic case. It follows that the Pretorius-Gundlach
[8–10] constraint-damping mechanism can be applied to
the covariant evolution system without modification. In
particular, we add the constraint-damping terms:

0 ¼ Rab − ∇ðaCbÞ þ γ0

�
tðaCbÞ − 1

2
ψabtcCc

�
; (22)

where ta is a timelike vector field, and γ0 is a constant. The
constraint evolution implied by the covariant evolution
system with constraint damping, Eq. (22), is obtained by
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using the Bianchi identities. The result is the evolution
system

0¼∇b∇bCa−2γ0∇b½tðbCaÞ�þCb∇ðaCbÞ−1

2
γ0taCbCb; (23)

which is a dampedwave equation for small, short-wavelength
Ca when γ0 > 0. The covariant vacuum Einstein equation,
including the constraint-damping terms, reduces therefore
to the following manifestly hyperbolic system:

ψcd ~∇c
~∇dψab ¼ −2∇ðaHbÞ − 2ψcd ~Re

cdðaψbÞe

þ 2ψcdψefð ~∇eψca
~∇fψbd − ΔaceΔbdfÞ

þ γ0½2δcðatbÞ − ψabtc�ðHc þ ΔcÞ:
(24)

This equation (minus the constraint-damping terms) was
derived previously by Ruiz, Rinne and Sarbach [11], who
used it in their analysis of boundary conditions, and by
Brown [12], who used it to derive an action principle
for this second-order covariant generalized harmonic
formulation of Einstein’s equation.
The idea now is to transform Eq. (24) into a spatially

covariant symmetric-hyperbolic first-order evolution sys-
tem. To that end, we introduce the physical timelike
normal, ta, which satisfies ψabtatb ¼ −1, and which can
be expressed in terms of the lapse N and shift Nk of the
physical metric: ta∂a ¼ N−1ð∂t − Nk∂kÞ. We then define
the first-order variables, Πab and Φiab:

Πab ¼ −tc ~∇cψab; (25)

Φiab ¼ ~∇iψab; (26)

where the indices fi; j; k;…g range only over the spatial
coordinates, while the indices fa; b; c; d;…g range over
both space and time coordinates. The introduction of Φiab
also implies the existence of a new constraint for the
system:

Ciab ¼ ~∇iψab − Φiab: (27)

We note that the constraint, Ciab, like the first-order
evolution fields, Πab and Φiab, is a tensor with respect
to purely spatial coordinate transformations.
The spatially covariant first-order evolution equation for

ψab follows directly from the definition of Πab in Eq. (25):

∂tψab − ð1þ γ1ÞNk∂kψab ¼ −NΠab − γ1NkΦkab

− 2ð1þ γ1ÞNk ~Γj
kðaψbÞj:

(28)

The constraint term γ1NkCkab=N, where γ1 is an arbitrary
constant, has been added to the definition of Πab to obtain
Eq. (28). The particular choice γ1 ¼ −1 makes the system
linearly degenerate, which implies that shocks will not form
from smooth initial data [13]. Here the quantity ~Γa

bc is the
connection associated with the reference metric ~ψab. We
assume that this reference metric is static, ∂t ~ψab ¼ 0, and
that ~ψ tt ¼ −1 and ~ψ ti ¼ 0. It follows that all of the time
components of ~Γa

bc vanish, ~Γt
bc ¼ ~Γa

tc ¼ 0, in this case.
The spatially covariant first-order evolution equation for

Πab follows from the second-order covariant evolution
equation, Eq. (24):

∂tΠab−Nk∂kΠabþNgki∂kΦiab− γ1γ2Nk∂kψab

¼ 2NψcdðgijΦicaΦjdb−ΠcaΠdb−ψefΔaceΔbdfÞ

− 2N∇ðaHbÞ− 1

2
NtctdΠcdΠab−NtcΠcigijΦjab

þNγ0½2δcðatbÞ−ψabtc�ðHcþΔcÞ− γ1γ2NiΦiab

− 2Nψ ij ~Rk
ijðaψbÞk− 2Ni ~Γj

iðaΠbÞjþNgij ~Γk
ijΦkab

þ 2NgijΦikða ~Γk
bÞj− 2γ1γ2Ni ~Γj

iðaψbÞj

− 8πNð2Tab−ψabψ
cdTcdÞ− 2NΛψab: (29)

In this expression, Tab represents the stress-energy tensor
of any matter that may be present in the solution, and Λ is
the cosmological constant. We use the notation gab for the
spatial metric, gab ¼ ψab þ tatb, which satisfies gabtb ¼ 0.
The quantity gij is the inverse of the spatial metric
gij ¼ ψ ij. The quantities Δabc and Δa ¼ ψbcΔabc that
appear on the right side of Eq. (29) are to be written as
functions of the first-order fields Πab and Φiab; i.e., the
derivatives ~∇aψbc that appear in the definition of Δabc,
Eq. (17), are to be replaced by the expressions

~∇tψab ¼ −NΠab þ NiΦiab; (30)

~∇iψab ¼ Φiab: (31)

The derivation of the evolution equation for Πab, Eq. (29),
also uses the identity tb ~∇bta ¼ 1

2
tcð2ψab þ tatbÞΠbc.

The spatially covariant first-order evolution equation for
Φiab is obtained by requiring that the constraint Ciab satisfy
a damped, advection-type evolution equation:

tc ~∇cCiab ¼ −γ2Ciab: (32)

Choosing the constant γ2 > 0 ensures that the constraint
Ciab is driven toward zero as the system evolves. This
constraint-damping equation implies the following first-
order evolution equation for Φiab:
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∂tΦiab − Nk∂kΦiab þ N∂iΠab − Nγ2∂iψab

¼ 1

2
NtctdΦicdΠab þ NgjktcΦijcΦkab − Nγ2Φiab

− Nj ~Γk
ijΦkab − 2NjΦikða ~Γk

bÞj þ 2N ~Γj
iðaΠbÞj

− 2Nγ2 ~Γ
j
iðaψbÞj − 2Nkψ jða ~R

j
bÞik: (33)

The derivation of this evolution equation uses the
identity ~∇ita ¼ − 1

2
tcð2ψab þ tatbÞΦibc.

The principal parts of a first-order evolution system are
defined to be the terms that involve the derivatives of the
fields. We use the notation ∂tuA þ AkA

Bðx;uÞ ~∇kuB ≃ 0 to
denote the principal parts of the general first-order hyper-
bolic system described in Eq. (12). The principal parts of
the spatially covariant first-order evolution system defined
in Eqs. (28), (29), and (33) are therefore given by

∂tψab − ð1þ γ1ÞNk ~∇kψab ≃ 0;

∂tΠab − Nk ~∇kΠab þ Ngki ~∇kΦiab − γ1γ2Nk ~∇kψab ≃ 0;

∂tΦiab − Nk ~∇kΦiab þ N ~∇iΠab − Nγ2 ~∇iψab ≃ 0:

These terms are identical to the principal parts of the
standard first-order generalized harmonic evolution system
described in Ref. [2]. It follows that this spatially covariant
first-order evolution system is symmetric hyperbolic with
the standard symmetrizer [2]:

Sαβduαduβ ¼ mabmcdðL−2dψacdψbd þ dΠacdΠbd

− 2γ2dψacdΠbd þ gijdΦiacdΦjbdÞ; (34)

where mab is any positive-definite metric (e.g.,
mab ¼ gab þ tatb, or even mab ¼ δab) and L is a constant
with the dimension of a length. It follows that the character-
istic fields and speeds of the spatially covariant first-order
evolution system are identical to those of the noncovariant
generalized harmonic system. In particular, the character-
istic fields ûK ¼ fû0ab; û1�ab ; û2iabg are given by

û0ab ¼ ψab; (35)

û1�ab ¼ Πab � niΦiab − γ2ψab; (36)

û2iab ¼ Pi
kΦkab; (37)

where Pi
k ¼ δi

k − nink. All of these characteristic fields
are tensors with respect to spatial coordinate transforma-
tions. The characteristic fields û0ab have coordinate char-
acteristic speed −ð1þ γ1ÞnkNk, the fields û1�ab have speeds
−nkNk � N, and the fields û2iab have speed −nkNk.
The first-order dynamical fields Πab and Φiab of the

spatially covariant first-order evolution system are different
from those used in the noncovariant generalized-harmonic

evolution equations. These differences require that addi-
tional terms proportional to the reference connection ~Γa

bc
and its curvature ~Ra

bcd be added to the right sides of
Eqs. (28), (29), and (33). But these additional terms do
not affect the principal parts of the equations, the expres-
sions for the characteristic fields in terms of the dynamical
fields, or the characteristic speeds of the system. We also
note that the reference metric can be chosen to be the
Minkowski metric, ~ψab ¼ ηab, on manifolds that admit a
global flat metric (e.g., manifolds whose spatial slices are
subsets of R3). When expressed in terms of the global
Cartesian coordinates that are available in such a case, the
reference connection ~Γa

bc and the reference curvature ~Ra
bcd

both vanish identically. The spatially covariant first-order
evolution system is then precisely the same as the standard
noncovariant generalized harmonic system. The standard
first-order generalized harmonic system is therefore a
special case of the new covariant first-order system on
manifolds that admit a flat reference metric.
The constraints Ca and Ciab defined in Eqs. (19) and (27)

evolve according to Eqs. (21) and (32). As in the non-
covariant generalized harmonic evolution system [2], the
second-order evolution system for these constraints can be
converted into a symmetric-hyperbolic first-order system
by adding the following secondary constraints:

F a ¼ tc∇cCa; (38)

Cia ¼ ∇iCa; (39)

Cijab ¼ 2 ~∇½iCj�ab: (40)

Expressions for all the constraints Ca, Ciab, F a, Cia, and
Cijab are given in Appendix A in terms of the dynamical
fields of the system uA ¼ fψab;Πab;Φiabg and their spatial
derivatives.

IV. EINSTEIN-KLEIN-GORDON STATIC
UNIVERSE

The remainder of this paper is devoted to performing a
number of simple numerical tests on the multicube methods
described in Sec. II, using the spatially covariant repre-
sentation of the Einstein system developed in Sec. III. Our
primary goal here is to verify that our implementation of
these methods in the SpEC code (developed by the SXS
Collaboration, originally at Caltech and Cornell [14–17])
is numerically stable and convergent for long-time-scale
evolutions. Most known solutions to Einstein’s equation
on manifolds with compact spatial topologies collapse to a
singularity or expand exponentially without bound on very
short time scales. Neither of these types of solutions is well
suited for testing the long-term stability of a numerical
code. We have therefore focused our attention on one of the

SOLVING EINSTEIN’S EQUATION NUMERICALLY ON … PHYSICAL REVIEW D 89, 044044 (2014)

044044-7



few known time-independent solutions on a manifold with
compact spatial topology: the Einstein static universe.
The Einstein static universe is a time-independent (static)

and spatially homogeneous solution to Einstein’s equation
on the manifold R × S3:

ds2 ¼ ψ0
abdx

adxb

≡ −dt2 þ R2
3½dχ2 þ sin2χðdθ2 þ sin2θdφ2Þ�: (41)

The spatial part of this geometry is just the standard round
metric on S3. This metric satisfies Einstein’s gravitational
field equation with source

Rab − 1

2
ψabRþ Λψab ¼ 8πTab; (42)

where Λ is the cosmological constant and Tab is the stress-
energy tensor of the matter present in the spacetime. The
cosmological constant has the value Λ ¼ 1=R2

3 for the
Einstein static universe, while the stress-energy tensor
Tab ¼ ρ∂at∂bt corresponds to a pressureless “dust” with
ρ ¼ 1=4πR2

3. Dynamical evolutions of spacetimes contain-
ing dust typically develop shell-crossing singularities [18].
Hence, dust is not particularly well suited for numerical
tests using spectral methods, which require smooth
solutions to achieve exponential convergence [19].
An alternate interpretation of the Einstein static universe

can be constructed in which the matter part of the solution
is generated by a complex Klein-Gordon scalar field
instead of dust. The stress-energy tensor of a complex
scalar field ϕ is given by

Tab ¼
1

2
ð∇aϕ∇bϕ

� þ∇aϕ
�∇bϕÞ

−
1

2
ψabðψcd∇cϕ∇dϕ

� þ μ2ϕϕ�Þ; (43)

where ϕ� is the complex conjugate of the field, and μ is its
mass. This field satisfies the covariant Klein-Gordon
equation,

∇a∇aϕ ¼ μ2ϕ; (44)

as a consequence of the stress-energy conservation law
∇aTab ¼ 0. One solution to this scalar field equation in the
Einstein static universe is

ϕ ¼ ϕ0eiμt; (45)

where ϕ0 is a (complex) constant. This particular solution
has a stress-energy tensor that can be used as the source
term needed for an Einstein-Klein-Gordon static universe
by taking Λ ¼ 1=R2

3 and μ2jϕ0j2 ¼ 1=4πR2
3. Note that

only the product jϕ0jμ is fixed, not their individual values.
For our numerical tests, we use μ ¼ 2=R3 so that

jϕ0j ¼ 1=
ffiffiffiffiffiffiffiffi
16π

p
. Also note that although the geometry of

the Einstein-Klein-Gordon universe is static, the scalar field
ϕ oscillates with frequency μ. In our numerical test
evolutions, we use the value R3 ¼ 1 for the scale of the
S3 geometry.
The first test of our implementation of the multicube

methods described in Sec. II is to evolve initial data for the
coupled Einstein and Klein-Gordon evolution equations
based on the static Einstein-Klein-Gordon universe solu-
tion. The spacetime manifold for this solution has the
topologyR × S3, so we use the round metric ψ0

ab of Eq. (41)
as our smooth reference metric: ~ψab ¼ ψ0

ab. The initial data
for the dynamical fields of the Einstein evolution system,
uα ¼ fψab;Πab;Φiabg, are constructed from the metric of
the Einstein static universe solution. In particular, we take
ψab ¼ ψ0

ab and Πab ¼ Φiab ¼ 0 initially. The dynamical
fields of the complex first-order Klein-Gordon system
consist of the fields uαϕ ¼ fϕ;Πϕ;Φϕ

i g. The initial values
of these fields for the Einstein-Klein-Gordon static universe
solution are given by ϕ ¼ ϕ0, Πϕ ¼ −iμϕ0, and Φϕ

i ¼ 0.
We carry out the numerical evolutions of these fields using
the multicube representation of S3 developed in Ref. [1],
which gives the explicit multicube expressions for the
metric ψ0

ab, as well as the standard three-sphere angular
coordinates χ, θ, and φ, in terms of the global multicube
Cartesian coordinates.
Evolutions of Einstein’s equation require appropriate

gauge (i.e., coordinate) conditions to be specified.Thegauge
is specified in the spatially covariant first-order representa-
tion of the Einstein equation, described in Sec. III, using
the gauge source covector Ha. The gauge condition is
imposedwith the covariant generalized harmonic condition:
Ha ¼ −Δabcψ

bc. It is straightforward to show that the static
Einstein-Klein-Gordon solution satisfies this condition with
Ha ¼ 0. The gauge choices used in our numerical tests
are harmonic gauge for the time coordinate and damped
harmonic gauge [20] for the spatial coordinates:

Ht ¼ 0; (46)

Hi ¼ −μGNi=N; (47)

where μG is a constant that serves as the harmonic gauge
damping parameter, N is the lapse, and Ni is the shift of the
spacetime metric. This choice of gauge source function Ha
depends only on the spacetime metric (and not its deriva-
tives), so the covariant first-order representationofEinstein’s
equation is hyperbolic in this case. Note that this choice of
gauge reduces to harmonic gauge Ha ¼ 0 for the Einstein-
Klein-Gordon static universe solution where N ¼ 1
and Ni ¼ 0.
The results of this first numerical test are illustrated in

Figs. 1–3. Figure 1 shows the error in the metric Eψ as a
function of time for evolutions using different spatial
resolutions. The constant N, which appears in the labels
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of these figures, is the number of spectral basis functions
used in the solution for each dimension of each cubic
region BA. The error measure Eψ is defined by

E2
ψ ≡

R
mabmcdΔψacΔψbd

ffiffiffi
g

p
d3xR

mabmcdψN
acψ

N
bd

ffiffiffi
g

p
d3x

; (48)

where Δψab ¼ ψN
ac − ψA

ac, ψA
ab, and ψN

ab represent the
analytically and numerically determined metrics, and
mab is a positive definite tensor, taken here to be mab ¼
δab in the global multicube Cartesian coordinates. This
quantity measures the fractional accuracy of the numeri-
cally determined metric. Similarly, Fig. 2 shows the scalar
field error measure, Eϕ, defined by

E2
ϕ ≡

R jΔϕj2 ffiffiffi
g

p
d3xR jϕN j2 ffiffiffi
g

p
d3x

; (49)

where Δϕ ¼ ϕN − ϕA, and vertical bars denote the
complex absolute value. Figure 3 shows the constraint
errors of the combined Einstein and Klein-Gordon evolu-
tion equations. We combine these constraint errors into the
single quantity C, defined by

C2 ≡
R
C2ψ

ffiffiffi
g

p
d3xR

N 2
ψ

ffiffiffi
g

p
d3x

þ
R
C2ϕ

ffiffiffi
g

p
d3xR

N 2
ϕ

ffiffiffi
g

p
d3x

: (50)

The quantity Cψ measures the size of the constraint
violations of the Einstein system, and N ψ measures the
sizes of the spatial derivatives of the dynamical fields:

C2ψ ≡mab

�
CaCb þ F aF b

þ ~gijmcd

�
CiacCjbd þ

1

4
~gklCikacCjlbd

��
; (51)

N 2
ψ ≡mabmcd ~gijð∂iψac∂jψbd þ ∂iΠac∂jΠbd

þ ~gkl∂iΦkac∂jΦlbdÞ: (52)

The constraints of the Einstein evolution system used to
construct Cψ are defined in Eqs. (19), (27), (38), (39),
and (40). The dimensionless ratio between the norms of Cψ
and N ψ is designed to give a meaningful measure of the
fractional errors due to constraint violations of the Einstein
system. The quantities Cϕ and N ϕ, defined by

C2ϕ ≡mij

�
Cϕi C

ϕ
j þ

1

2
mklCϕikC

ϕ
jl

�
; (53)
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FIG. 1 (color online). Errors in the numerical evolution of the
metric ψab using initial data for the Einstein-Klein-Gordon static
solution. Numerical resolution used in each spatial dimension of
each cubic region is denoted by N.
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FIG. 2 (color online). Errors in the numerical evolution of the
complex Klein-Gordon scalar field ϕ using initial data for the
Einstein-Klein-Gordon static solution. Numerical resolution used
in each spatial dimension of each cubic region is denoted by N.
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FIG. 3 (color online). Constraint norm C in the numerical
evolutions using initial data for the Einstein-Klein-Gordon static
solution. Numerical resolution used in each spatial dimension of
each cubic region is denoted by N.
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N 2
ϕ ≡ μ2jϕj2; (54)

play analogous roles for the Klein-Gordon evolution
system. The scalar field constraints Cϕi and Cϕij used to

construct Cϕ are defined by Cϕi ¼ Φϕ
i − ~∇iϕ and

Cϕij ¼ ~∇iΦ
ϕ
j − ~∇jΦ

ϕ
i .

Figures 1 and 2 show that our numerical solutions
diverge exponentially away from the Einstein-Klein-
Gordon static universe solution, while Fig. 3 shows that
the constraints are well satisfied during a time in which this
instability grows by over 10 orders of magnitude. Our
numerical evolutions therefore confirm the existence
of the instability of the Einstein static universe first noted
by Eddington [3]. The growth rate of this instability
can be measured numerically from our evolutions,
giving 1=τN ≈ 1.100501ð1Þ, where the number in paren-
theses represents the estimated uncertainty in the
last digit. This agrees with the analytical value,

1=τA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
13

p − 6
p

≈ 1.1005010, computed for this
unstable mode in Sec. VI.

V. MODE DAMPING

The straightforward numerical test of the Einstein-Klein-
Gordon evolution system described in Sec. IV confirms that
our implementation of the multicube method is basically
correct and that our numerical methods are basically stable
and convergent. Unfortunately, those evolutions persist for
just a few light-crossing times of the S3 geometry. These first
tests do not, therefore, allow us to identifymore subtle errors
that might become evident only on much longer time scales.
Nor do they test our implementation on solutions having
more complicated spatial and temporal structures than the
spatially homogeneous Einstein-Klein-Gordon static uni-
verse. We address these shortcomings in the following
sections by performing more challenging variations on
our original Einstein-Klein-Gordon static universe test.
In this section we construct small, unphysical damping

forces that suppress the growth of the modes responsible for
the Eddington instability. The modified evolution equations
can be written abstractly in the form

∂tψab ¼ fab þDfab; (55)

∂tΠab ¼ Fab þDFab; (56)

∂tϕ ¼ fϕ þDfϕ; (57)

∂tΠφ ¼ Fϕ þDFϕ; (58)

where fab, Fab, fφ, and Fφ are the expressions for the right
sides of the unmodified Einstein-Klein-Gordon evolution

equations, while Dfab, DFab, Dfφ, and DFφ represent the
unphysical mode-damping forces.
Any physical mode, in particular the one responsible for

the Eddington instability, has a certain very specific spatial
structure. This fact is used in this section to construct
mode-damping forces that suppress the degrees of
freedom of the system having that particular structure,
while leaving unaffected the other dynamical degrees of
freedom of the system. The effectiveness of the resulting
mode-damping forces is then tested by evolving initial
data for the Einstein-Klein-Gordon static universe sol-
ution. These tests confirm the effectiveness of these
mode-damping forces. More importantly, these tests also
confirm the numerical stability and convergence of our
implementation of the multicube method for solving
Einstein’s equation over very long time scales.
The most convenient and efficient way to represent the

spatial structures of tensor fields on S3 is to expand those
fields in the tensor harmonics of the three-sphere [21]. The
basic properties of the scalar, vector, and rank-2 tensor three-
sphere harmonics that are relevant to our work here are
summarized in Appendix B. The particular harmonics that
play an important role in the unstable modes of the Einstein-
Klein-Gordon static universe are the scalar harmonics Yklm

and the vector harmonics ~∇iYklm. The time-dependent
projections of a scalar field Qðx⃗; tÞ and a vector field
Viðx⃗; tÞ onto these harmonics are defined, respectively, as

QklmðtÞ ¼
Z

Qðx⃗; tÞY�klm ffiffiffi
~g

p
d3x; (59)

VklmðtÞ ¼
Z

~gijViðx⃗; tÞ ~∇jY�klm ffiffiffi
~g

p
d3x; (60)

where Y�klm in these equations denotes the complex
conjugate.
The mode responsible for the Eddington instability is

spatially homogeneous, like the Einstein-Klein-Gordon
solution itself. Therefore, the spatial structures of the
dynamical fields for this mode are completely described
by the k ¼ l ¼ m ¼ 0 three-sphere harmonics. The mode-
damping forces needed to suppress the growth of this
instability can therefore be constructed using only the
k ¼ l ¼ m ¼ 0 three-sphere harmonic projections of the
quantities ψ ¼ ~gijψ ij, f ¼ ~gijfij, ψ tt, ftt, Π ¼ ~gijΠij,
F ¼ ~gijFij, Πtt, Ftt, ϕ, fϕ, Πϕ, and Fϕ. We use these
three-sphere harmonic projections to construct the follow-
ing mode-damping forces:

Df000ab ≡−Y000

3R3
3

ff000ðtÞ þ ηG½ψ000ðtÞ − ψ000ð0Þ�g~gab

−
Y000

R3
3

ff000tt ðtÞ þ ηG½ψ000
tt ðtÞ − ψ000

tt ð0Þ�gt̂at̂b;

(61)
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DF000
ab ≡ −

Y000

3R3
3

½F000ðtÞ þ ηGΠ000ðtÞ�~gab

−
Y000

R3
3

½F000
tt ðtÞ þ ηGΠ000

tt ðtÞ�t̂at̂b; (62)

Df000ϕ ≡ −
Y000

R3
3

f½f000ϕ ðtÞ − iμϕ000ð0Þeiμt�

þ ηS½ϕ000ðtÞ − ϕ000ð0Þeiμt�g; (63)

DF000
ϕ ≡−Y000

R3
3

f½F000
ϕ ðtÞ − iμΠ000

ϕ ð0Þeiμt�

þ ηS½Π000
ϕ ðtÞ − Π000

ϕ ð0Þeiμt�g; (64)

where t̂a ¼ ∂at. The constants ηG and ηS in these equations
are damping rates (of order unity) that control how quickly
the mode damping acts to drive the k ¼ l ¼ m ¼ 0
component of these solutions back toward their equilibrium
values.
It is straightforward to show that the modified Einstein-

Klein-Gordon evolution equations suppress the dynamics
of the k ¼ l ¼ m ¼ 0 degrees of freedom of the system,
without affecting the dynamics in any other mode.
Multiplying Eqs. (55)–(58) by Y�000 and integrating the
scalar parts (i.e., the spatial trace and the tt components)
over the S3 geometry results in the following equations for
the k ¼ l ¼ m ¼ 0 components of the various dynamical
fields:

∂t½ψ000ðtÞ − ψ000ð0Þ� ¼ −ηG½ψ000ðtÞ − ψ000ð0Þ�; (65)

∂t½ψ000
tt ðtÞ − ψ000

tt ð0Þ� ¼ −ηG½ψ000
tt ðtÞ − ψ000

tt ð0Þ�; (66)

∂tΠ000ðtÞ ¼ −ηGΠ000ðtÞ; (67)

∂tΠ000
tt ðtÞ ¼ −ηGΠ000

tt ðtÞ; (68)

∂t½ϕ000ðtÞ − ϕ000ð0Þeiμt� ¼ −ηS½ϕ000ðtÞ − ϕ000ð0Þeiμt�;
(69)

∂t½Π000
φ ðtÞ − Π000

φ ð0Þeiμt� ¼ −ηS½Π000
φ ðtÞ − Π000

φ ð0Þeiμt�:
(70)

These equations drive the k ¼ l ¼ m ¼ 0 components of
the various dynamical fields toward their initial values.
Initial data for the Klein-Gordon static universe solution

have been evolved with the modified equations that include
the k ¼ l ¼ m ¼ 0 mode-damping forces defined in
Eqs. (61)–(64). Unfortunately, the resulting evolutions
are still unstable. The numerically determined growth rate
of this new instability is 1=τN ≈ 0.6180ð1Þ, where the

number in parentheses represents the estimated uncer-
tainty in the last digit. This agrees with the analytical
value, 1=τA ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μ2GR

2
3

p − μGR3Þ=2 ¼ ð ffiffiffi
5

p − 1Þ=2 ≈
0.618034, computed for an unstable k ¼ 1 mode of this
system in Sec. VI. The growth rate of this new unstable
mode is set by the constant μG (taken to have the value
μG ¼ 1=R3 in our numerical tests) that controls the gauge
condition, Eq. (47), used in our evolutions. The modes
responsible for this somewhat weaker gauge instability
have spatial structures determined by the various k ¼ 1
three-sphere harmonics. This instability can also be sup-
pressed, therefore, by constructing the appropriate k ¼ 1
mode-damping forces.
The k ¼ 1 parts of the Einstein-Klein-Gordon static

solution have 0¼ψ1lmðtÞ¼f1lmðtÞ¼ψ1lm
tt ðtÞ¼f1lmtt ðtÞ¼

ψ1lm
tj ðtÞ¼f1lmtj ðtÞ¼ϕ1lmðtÞ¼f1lmϕ ðtÞ. The evolution

equations can therefore be modified to drive the dynamical
solution toward the state having no k ¼ 1 three-sphere
harmonic content by adding the following mode-damping
forces:

Df1lmab ≡−Y1lm

3R3
3

½f1lmðtÞ þ ηGψ
1lmðtÞ�~gab

−
t̂a ~∇bY1lm þ t̂b ~∇aY1lm

3R3

½f1lmtj ðtÞ þ ηGψ
1lm
tj ðtÞ�;

−
Y1lm

R3
3

½f1lmtt ðtÞ þ ηGψ
1lm
tt ðtÞ�t̂at̂b; (71)

Df1lmϕ ≡−Y1lm

R3
3

½f1lmϕ ðtÞ þ ηSϕ
klmðtÞ�: (72)

Similar forces could be constructed to suppress the k ¼ 1
dynamics in the evolution equations for Πab and Πϕ. Such
forces are not needed to control the growth of this rather
weak k ¼ 1 instability, however, so a minimalist approach
has been followed by setting 0 ¼ DF1lm

ab ¼ DF1lm
ϕ .

Combining the k ¼ 0 damping forces from
Eqs. (61)–(64) with the k ¼ 1 forces from Eqs. (71) and
(72) gives the needed composite mode-damping forces:

Dfab ¼ Df000ab þ
X1
l¼0

Xl
m¼−l

Df1lmab ; (73)

DFab ¼ DF000
ab ; (74)

Dfϕ ¼ Df000ϕ þ
X1
l¼0

Xl
m¼−l

Df1lmϕ ; (75)

DFϕ ¼ DF000
ϕ : (76)

The resulting modified Einstein-Klein-Gordon evolution
system suppresses the dynamics in the k ¼ 0 three-sphere
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harmonic components of ψab, Πab, ϕ, and Πϕ according
to Eqs. (65)–(70). In addition, the modified system also
suppresses the dynamics in the k ¼ 1 three-sphere har-
monic components ψab and ϕ in the following way:

∂tψ
1lm
tt ðtÞ ¼ −ηGψ1lm

tt ðtÞ; (77)

∂tψ
1lm
tj ðtÞ ¼ −ηGψ1lm

tj ðtÞ; (78)

∂tψ
1lmðtÞ ¼ −ηGψ1lmðtÞ; (79)

∂tϕ
1lmðtÞ ¼ −ηSϕ1lmðtÞ: (80)

The second numerical test of our implementation of the
multicube method evolves the coupled Einstein and Klein-
Gordon evolution equations, modified with the k ¼ 0 and
k ¼ 1 mode-damping forces. The initial data used for these
evolutions are those of the static Einstein-Klein-Gordon
universe solution, described in detail in Sec. IV. Figures 4
and 5 illustrate the errors in the metric ψab and the Klein-
Gordon scalar field ϕ, as measured by the quantities Eψ and
Eϕ defined in Eqs. (48) and (49), respectively. Figure 6
illustrates the constraint norm C defined in Eq. (54) for this
test. These results show that the mode-damping forces are
effective in suppressing the k ¼ 0 and the k ¼ 1 instabil-
ities that appeared in our earlier tests. The light-crossing
time of the S3 geometry is 2πR3, so these results demon-
strate numerical stability and convergence for about 160
light-crossing times of the solution.
The results shown in Figs. 4–6 demonstrate that the

constraints of the Einstein-Klein-Gordon evolution system
are satisfied, and that the numerical solution converges to
the Einstein-Klein-Gordon static universe solution. These
results do not demonstrate, however, that the physical

Einstein-Klein-Gordon equations are actually satisfied.
The mode-damping forces Dfab, DFab, Dfϕ, and DFϕ

must be measured to confirm that. We measure the sizes
of these mode-damping forces with the quantity ED,
defined as the integral norm of each component of each
mode-damping force:

E2
D ≡

R
mabmcdDfacDfbd

ffiffiffi
g

p
d3xR

μ2mabmcdψacψbd
ffiffiffi
g

p
d3x

þ
R
mabmcdDFacDFbd

ffiffiffi
g

p
d3xR

μ4mabmcdψacψbd
ffiffiffi
g

p
d3x

þ
R jDfϕj2 ffiffiffi

g
p

d3xR
μ2jϕj2 ffiffiffi

g
p

d3x
þ
R jDFϕj2 ffiffiffi

g
p

d3xR
μ4jϕj2 ffiffiffi

g
p

d3x
: (81)

0 200 400 600 800 1000
t /R

3

10
-12

10
-10

10
-8

10
-6

10
-4

FIG. 4 (color online). Errors in the metric ψab for evolutions
(including mode-damping forces) of initial data for the Einstein-
Klein-Gordon static solution. Numerical resolutions are the same
as those shown in Figs. 1–3.
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FIG. 5 (color online). Errors in the complex Klein-Gordon
scalar field ϕ for evolutions (including mode-damping forces)
of initial data for the Einstein-Klein-Gordon static solution.
Numerical resolutions are the same as those shown in Figs. 1–3.
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FIG. 6 (color online). Constraint norm C for evolutions
(including mode-damping forces) of initial data for the
Einstein-Klein-Gordon static solution. Numerical resolutions
are the same as those shown in Figs. 1–3.
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The factors of μ (the fundamental scalar field oscillation
frequency) in this expression are used as characteristic time
scales in the denominators to make ED dimensionless.
Figure 7 shows that the mode-damping forces converge
to zero as the numerical resolution is increased, so our
numerical solution also solves the unmodified physical
Einstein-Klein-Gordon evolution equations in this limit.
Consequently, the results shown in Figs. 4–7 demonstrate
that our implementation of the multicube method for
solving Einstein’s equation on manifolds with nontrivial
spatial topologies is stable and numerically convergent
even for very long-time-scale evolutions.

VI. PERTURBED EINSTEIN-KLEIN-GORDON
STATIC UNIVERSE

The numerical tests of the Einstein-Klein-Gordon
evolution system described in Sec. V confirm that our
implementation of the multicube method for solving
Einstein’s equation described in Secs. II and III is basically
correct and free of numerical instabilities even on rather
long time scales. Those numerical tests were limited,
however, by the fact that the Einstein-Klein-Gordon static
universe solution is time independent and its spatial
structure is extremely simple. In this section we address
these limitations by carrying out a third, more challenging,
set of numerical tests of the multicube methods by perform-
ing long-time-scale evolutions of complicated time-
dependent perturbations of the Einstein-Klein-Gordon
static universe solution. We study these perturbed solutions
analytically in Sec. VI A and numerically in Sec. VI B. The
results demonstrate that our numerical nonlinear Einstein-
Klein-Gordon code successfully evolves complicated
dynamical solutions having significant spatial structures.
We show that these numerical solutions converge to

solutions of the Einstein-Klein-Gordon evolution system
that agree with the analytical predictions.

A. Analytical perturbations

In this section we derive analytically the general sol-
utions to the coupled Einstein and Klein-Gordon equations
for perturbations about the Einstein-Klein-Gordon static
universe solution. Write the spacetime metric ψab and the
scalar field ϕ for this perturbed solution as

ψab ¼ ψ0
ab þ δψab; (82)

ϕ ¼ ϕ0eiμt þ δϕ; (83)

where ψ0
ab and ϕ0eiμt are the “background” metric and

scalar fields of the Einstein-Klein-Gordon static universe
solution. The background metric ψ0

ab is identical to the
reference metric ~ψab used to fix the differential structure in
our multicube representation of S3. We will therefore refer
to the background metric as ~ψab. The evolution equations
for the perturbations, δψab and δϕ, are obtained by
linearizing the coupled Einstein-Klein-Gordon equations
about this background. The perturbed Ricci tensor is
given by

δRab ¼ − 1

2
~∇c ~∇cδψab − ~∇ðaδHbÞ þ

2

R2
3

~gcðaδψbÞc

−
1

R2
3

ð~gcd ~gab − ~gcða ~gdbÞÞδψcd; (84)

where ~∇a is the covariant derivative associated with the
background metric ~ψab, and ~gab ¼ ~ψab þ ~∇at ~∇bt is the
background spatial metric. The perturbed Einstein equation
is given by

δRab ¼ ðΛ − 4πT0Þδψab þ 8π

�
δTab − 1

2
~ψabδT

�
; (85)

where Λ ¼ 1=R2
3 and 4πT0 ¼ −1=R2

3 are the cosmological
constant and trace of the stress tensor from the background
spacetime, respectively, and δTab and δT ¼ ~ψabδTab −
Tab
0 δψab are the perturbed stress-energy tensor and its

trace. For the Einstein-Klein-Gordon system, the perturbed
stress-energy tensor is given by

δTab − 1

2
~ψabδT ¼ 1

2
μ2ðϕ0eiμtδϕ� þ ϕ�

0e
−iμtδϕÞ ~ψab

þ iμϕ0eiμt ~∇ðaδϕ� ~∇bÞt

− iμϕ�
0e

−iμt ~∇ðaδϕ ~∇bÞt: (86)

The perturbed Klein-Gordon equation for this system is
given by

0 200 400 600 800 1000
t /R

3

10
-14

10
-12

10
-10

10
-8

10
-6

FIG. 7 (color online). Norm of the mode-damping forces, ED,
for evolutions (including mode-damping forces) of initial data for
the Einstein-Klein-Gordon static solution. Numerical resolutions
are the same as those shown in Figs. 1–3.
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0 ¼ ~∇a ~∇aδϕ − μ2δϕþ μ2ϕ0eiμtδψ tt: (87)

The perturbed damped harmonic gauge condition for this
system is given by

0 ¼ ~∇bδψba − 1

2
~ψbc ~∇aδψbc − μG ~gabδψbt: (88)

The perturbations of the Einstein-Klein-Gordon static
solution are determined by solving the linearized system,
Eqs. (84)–(88), for δψab and δϕ.
These perturbed Einstein-Klein-Gordon equations can

be decoupled into separate equations for the scalar, vector,
and tensor degrees of freedom of the system. To accomplish
this, the perturbed metric δψab is decomposed into two
scalars (under spatial coordinate transformations) δψ tt and
δψ ¼ ~ψ ijδψ ij, one vector δψ jt, and one trace-free tensor
δψ̄ ij ¼ δψ ij − 1

3
~ψ ijδψ . These fields can then be represented

as linear combinations of the appropriate scalar, vector,
and tensor harmonics on the three-sphere (as described
in Appendix B). Since the background Einstein-Klein-
Gordon solution is static, the solutions to the perturbation
equations can be expressed as linear combinations of
modes, i.e., solutions having time dependence eiωt.
We first discuss the modes corresponding to the scalar

degrees of freedom of the system. The perturbations of
δψab and δϕ for a general scalar mode can be written in the
form

δψ tt ¼ ℜ½AttYklmeiωSt�; (89)

δψ tj ¼ ℑ½AtjYklm
ð0Þj e

iωSt�; (90)

δψ ¼ ℜ½AψYklmeiωSt�; (91)

δψ̄ jk ¼ ℑ½Aj̄kY
klm
ð3Þjke

iωSt�; (92)

δϕ ¼ ϕ0eiμt½Aþ
ϕY

klmeiωSt þ A−�
ϕ Yklm�e−iωSt�; (93)

where Att, Atj, Aψ , Aj̄k, A
þ
ϕ , and A

−
ϕ are complex constants;

Yklm, Yklm
ð0Þj , and Yklm

ð3Þjk are the scalar, vector, and tensor
harmonics on S3 defined in Appendix B; ωS is the
frequency of the mode; and ℜðZÞ and ℑðZÞ denote the
real and imaginary parts of a quantity Z, respectively.
The perturbed Einstein-Klein-Gordon equations for these
perturbations become a system of linear algebraic equations
for the amplitudes Att; …. These linear equations have
solutions whenever the frequency ωS is one of the mode
eigenfrequencies of the system. For these values of ωS the
general solution to the perturbation equations can be
written as

Att ¼ Aklm
S ; (94)

Aψ ¼ −Aklm
S − 16kðkþ 2Þμ2R2

3

Q
Aklm
S ; (95)

Aþ
ϕ ¼ −

μ2R2
3

2½ωSðωS þ 2μÞR2
3 − kðkþ 2Þ�A

klm
S ; (96)

A−
ϕ ¼ −

μ2R2
3

2½ωSðωS − 2μÞR2
3 − kðkþ 2Þ�A

klm
S ; (97)

Atj ¼ −
8μ2ωSR4

3

Q
Aklm
S ; (98)

Aj̄k ¼ −
16μGμ

2ωSR6
3

Q½ω2
SR

2
3 þ 4 − kðkþ 2Þ�A

klm
S ; (99)

where Aklm
S is the complex constant that sets the amplitude

of the scalar mode, and Q is defined by

Q ¼ ½ωSðωS − iμGÞR2
3 þ 4 − kðkþ 2Þ�

× f½ω2
SR

2
3 − kðkþ 2Þ�2 − 4μ2ω2

SR
4
3g: (100)

The allowed eigenfrequencies of these modes break up into
three distinct families, defined by

ðω0
SR3Þ2 ¼ kðkþ 2Þ; (101)

ðω�
S R3Þ2 ¼ kðkþ 2Þ þ 2ðμ2R2

3 − 1Þ

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2R2

3 − 1Þ2 þ ½kðkþ 2Þ þ 1�μ2R2
3

q
:

(102)

It is straightforward to show that ðω�
S R3Þ2 > 0 when k ≥ 2

and 8 ≥ μ2R2
3, so the generic scalar modes are stable in

these cases.
The scalar modes for the cases k ¼ 0 and k ¼ 1 are

somewhat exceptional and must be calculated separately.
For the k ¼ 0 case, the vector and tensor harmonics, Yklm

ð0Þj
and Yklm

ð3Þij, both vanish, so the mode amplitudes Atj and Aīj

are effectively zero. The mode amplitudes of the remaining
scalar degrees of freedom, Att, Aψ , A

þ
ϕ , and A

−
ϕ , are given by

the expressions in Eqs. (94)–(97) with k ¼ 0, but there are
only two independent mode frequencies in this case:

ðω�
S R3Þ2 ¼ 2μ2R2

3 − 2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4R4

3 − μ2R2
3 þ 1

q
: (103)

One of these has an imaginary frequency, ðω−
S R3Þ2 < 0,

and therefore represents an unstable mode of the Einstein-
Klein-Gordon system. The instability seen in the numerical
evolution discussed in Sec. IV has a growth rate that
matches with great accuracy the analytical rate predicted by

LINDBLOM, SZILÁGYI, AND TAYLOR PHYSICAL REVIEW D 89, 044044 (2014)

044044-14



this unstable k ¼ 0 mode frequency, ω−
S . There is also a

degenerate exceptional k ¼ 0mode having ωSR3 ¼ 0. This
mode has Att ¼ Aψ ¼ 0 and Aþ

ϕ ¼ −A−
ϕ . This exceptional

mode does not excite the gravitational field at all and
appears to be a kind of gauge mode associated with the
phase of the complex scalar field ϕ.
The other exceptional scalar modes are those with k ¼ 1.

In this case the tensor harmonics Yklm
ð3Þij vanish identically,

so in effect Aj̄k ¼ 0. Repeating the mode calculation gives
the expressions in Eqs. (94)–(98) with k ¼ 1. There are,
however, a smaller number of mode frequencies in this
case:

ðω�
S R3Þ2 ¼ 3þ 2μ2R2

3 � 2μ2R2
3;

both of which satisfy ðω�
S R3Þ2 > 0 and are therefore stable.

In addition, there are two other k ¼ 1 modes that have
somewhat different mode structures. For these modes,

Att ¼ Aþ
ϕ ¼ A−

ϕ ¼ 0; (104)

Aψ ¼ 6ðωS − iμGÞR3Aklm
S ; (105)

Atj ¼ Aklm
S : (106)

The frequencies of these exceptional k ¼ 1 modes are
given by

ω�
S R3 ¼

i
2
ðμGR3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μ2GR

2
3

q
Þ: (107)

One of these modes is a nonoscillatory damped mode,
while the other mode is unstable. The instability seen in the
preliminary numerical evolution discussed in Sec. V has a
growth rate that matches the analytical rate predicted by
this (k ¼ 1)-mode frequency ω−

S . This exceptional k ¼ 1
mode does not excite the Klein-Gordon scalar field at all
and appears to be associated with the coordinate gauge
freedom of the gravitational field.
The Einstein-Klein-Gordon perturbation equations also

admit mode solutions that represent the vector degrees of
freedom of the gravitational field. The modes representing
these vector degrees of freedom can be written quite
generally as

δψ tj ¼ ℜfiωV ½Aklm
Vð1ÞY

klm
ð1Þj þ Aklm

Vð2ÞY
klm
ð2Þj �eiωVtg; (108)

δψ̄ jk ¼ ℜf2½Aklm
Vð1ÞY

klm
ð1Þjk þ Aklm

Vð2ÞY
klm
ð2Þjk�eiωV tg: (109)

Here, Aklm
Vð1Þ and Aklm

Vð2Þ are (complex) constants; and Yklm
ð1Þj ,

Yklm
ð2Þj , Y

klm
ð1Þjk, and Y

klm
ð2Þjk are the type-1 and type-2 vector and

tensor harmonics defined in Eqs. (B3), (B4), (B12), and
(B13) in Appendix B. These harmonics are defined only for

k ≥ 1. The perturbed Einstein-Klein-Gordon equations
admit solutions of this type for arbitrary values of the
mode amplitudes, Aklm

Vð1Þ and Aklm
Vð2Þ, whenever the frequency

ωV satisfies the vector-mode eigenfrequency condition

ðωV − iμG=2Þ2R2
3 ¼ kðkþ 2Þ − 3 − μ2GR

2
3=4: (110)

The quantity μG > 0 that appears in these expressions is the
harmonic gauge damping factor defined in Eq. (47). The
frequencies of these modes are complex with non-negative
imaginary parts, so these vector modes are all stable. These
vector modes appear to be associated with the spatial
coordinate gauge degrees of freedom of the system.
Finally, there is a set of modes that represent the tensor

degrees of freedom of the system. The two tensor degrees
of freedom are the trace-free, δψ̄ jk ¼ δψ jk − 1

2
ψ0jkψ

rs
0 δψ rs,

and transverse, ∇kδψ̄ jk ¼ 0, parts of the metric perturba-
tion. The general form for these tensor modes is given by

δψ̄ jk ¼ ℜf½Aklm
Tð4ÞY

klm
ð4Þjk þ Aklm

Tð5ÞY
klm
ð5Þjk�eiωTtg; (111)

where Aklm
Tð5Þ and Aklm

Tð5Þ are constants, and Yklm
ð4Þjk and Yklm

ð5Þjk
are the type-4 and type-5 tensor harmonics defined in
Eqs. (B15) and (B16) in Appendix B. These tensor
harmonics exist only for k ≥ 2 and l ≥ 2. The perturbed
Einstein-Klein-Gordon equations for these modes are
satisfied for arbitrary (small) values of the complex con-
stants Aklm

Tð5Þ and A
klm
Tð5Þ, as long as the frequency ωT satisfies

the tensor-mode eigenfrequency condition

ω2
TR

2
3 ¼ kðkþ 2Þ: (112)

These frequencies are real, ω2
TR

2
3 > 0, so the transverse-

traceless tensor modes are all stable. These tensor modes
correspond to the gravitational radiation degrees of freedom
of the system.
We note that the modes of the Einstein-Klein-Gordon

static universe found in these analytical solutions are all
stable, except for two unstable modes. These unstable
k ¼ 0 and k ¼ 1 modes correspond exactly to the unstable
modes found in the numerical tests described in Secs. IV
and V. This fact provides additional (indirect) evidence that
our numerical implementation of the multicube method has
been done correctly.

B. Numerical tests

The third numerical test of our implementation of the
multicube method evolves initial data constructed from the
analytical perturbation solutions of the coupled Einstein-
Klein-Gordon evolution equations described in Sec. VI A.
We define the analytical metric, ψA

ab, and scalar field, ϕA,
solutions to be
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ψA
ab ¼ ~ψab þ δψab; (113)

ϕA ¼ ϕ0eiμt þ δϕ: (114)

We construct the δψab and δϕ that appear in these
definitions by taking linear combinations of the scalar
mode solutions described in Eqs. (94)–(99). We include
fifteen distinct scalar modes with spherical harmonic
indices ranging from k ¼ 2 to k ¼ 6 and with a variety
of values of the spherical harmonic indices l and m. The
amplitudes Aklm

S of the individual modes used to construct
this solution are given in Table I. Also included in Table I
is the choice of eigenfrequency class for each mode, as
defined in Eqs. (101) and (102). The amplitudes of these
modes were chosen to be about 10−6 (or smaller) to ensure
that the second-order (in amplitude) terms would be
comparable to the double-precision round-off errors in
our numerical evolutions. We chose this particular mix of
harmonics to produce a solution having a complicated
and interesting-looking dynamical evolution. Figure 8
illustrates the metric perturbation δψ tt for this solution
evaluated on the equatorial two-sphere, χ ¼ π=2, of the
three-sphere geometry. The individual frames in Fig. 8
illustrate this field at times t ¼ 0, t ¼ 6R3, and t ¼ 12R3.
These times (approximately one light-crossing time apart)

do not correspond to any natural period of the system, and
are intended to illustrate the complex, chaotic-looking
dynamics produced by the chosen initial data.
We use the analytical fields ψA

ab and ϕA defined in
Eqs. (113) and (114) to construct initial data for the
Einstein-Klein-Gordon evolution system. We evolve these
data numerically using the Einstein-Klein-Gordon equa-
tions that include the unphysical mode-damping forces
defined in Eqs. (73)–(76). Figures 9 and 10 illustrate the
differences between the numerically determined fields, ψN

ab
and ϕN , and the analytical fields defined in Eqs. (113) and
(114). These results show that the numerical solutions
converge toward the analytical solutions until the size of
their differences approaches 10−12. The analytical fields
were constructed from solutions to the first-order pertur-
bation equations, and so they are expected to contain errors
at this level of accuracy. Figures 11 and 12 show that the
constraints of the Einstein-Klein-Gordon system as well
as the unphysical mode-damping forces are numerically
convergent (toward zero) in these evolutions. These tests
provide strong additional evidence that our implementation
of the multicube method for solving Einstein’s equation
described in Secs. II and III is correct and free from
numerical instabilities.

VII. SUMMARY

In this paper we extend the multicube method for solving
partial differential equations on manifolds with arbitrary
spatial topologies, developed in Ref. [1], to allow us to solve
Einstein’s equation on such manifolds. We accomplish this
by developing in Sec. III a new spatially covariant first-order
symmetric hyperbolic representation of Einstein’s equation.
This new representation is equivalent to the standard non-
covariant first-order generalized harmonic representations
(e.g., Ref. [2]) on manifolds with spatial slices that can be
embedded in R3. We test our implementation of these
multicube methods in the SpEC code (developed by the
SXS Collaboration, originally at Caltech and Cornell) in
Sec. IVbyevolving initial data for anewrepresentationof the
Einstein static universemetric onR × S3. Our representation
uses a complex Klein-Gordon scalar field to provide the

FIG. 8 (color online). Images of the δψ tt component of the metric perturbation, evaluated on the equatorial two-sphere, χ ¼ π=2, of the
perturbed Einstein-Klein-Gordon static solution. These images represent the times t ¼ 0, t ¼ 6R3, and t ¼ 12R3. The color coding and
distortion of the sphere represent the (scaled) magnitude of δψ tt.

TABLE I. Amplitudes and frequency classes of the individual
modes of the perturbed Einstein-Klein-Gordon system used to
form the analytic perturbation solution for the long-term stability
tests shown in Figs. 9–12.

k l m Aklm
S ωS k l m Aklm

S ωS

2 2 2 1.0 × 10−6 ω0
S 5 5 5 4.0 × 10−7 ω0

S
2 2 −1 1.0 × 10−6 ωþ

S 5 5 4 4.0 × 10−7 ωþ
S

2 1 1 1.0 × 10−6 ω−
S 5 4 −3 4.0 × 10−7 ω−

S
3 3 −2 6.7 × 10−7 ω0

S 6 6 6 3.3 × 10−7 ω0
S

3 3 1 6.7 × 10−7 ωþ
S 6 6 −5 3.3 × 10−7 ωþ

S

3 2 0 6.7 × 10−7 ω−
S 6 5 3 3.3 × 10−7 ω−

S

4 4 −4 5.0 × 10−7 ω0
S

4 4 3 5.0 × 10−7 ωþ
S

4 3 −2 5.0 × 10−7 ω−
S
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energy density for this spacetime. These numerical tests
reproducewithgreatprecision thewell-knownEddington [3]
instability of the Einstein static universe.
We have tested the accuracy and the long-time-scale

numerical stability of our implementation of these multi-
cube methods by adding unphysical damping forces to
Einstein’s equation in Sec. V. These damping forces are
designed to suppress the modes responsible for the
Eddington instability and to leave all the other dynamical
degrees of freedom of the system unchanged. These
long-time-scale tests confirm stability and numerical con-
vergence for about 160 light-crossing times of the S3

geometry. Finally, we have derived analytical expressions
for all of the modes of the Einstein-Klein-Gordon static

universe in Sec. VI. We use these analytical expressions
to construct initial data for a complicated, time-dependent
spacetime having considerable spatial structure. Our
numerical evolutions of these initial data converge toward
the (small-amplitude) analytical perturbation solution,
while the constraints and mode-damping forces converge
toward zero, as the spatial resolution is increased.
The numerical tests presented in this paper are all

performed on the manifold R × S3. Nevertheless, we
believe that these tests confirm that the multicube methods
described in Secs. II and III for solving Einstein’s equation
on manifolds with arbitrary spatial topologies have been
implemented correctly. In the multicube method, the
equations are solved locally within each cubic region BA
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FIG. 9 (color online). Errors in the metric ψab for evolutions
(including mode-damping forces) of initial data for the perturbed
Einstein-Klein-Gordon solution. Numerical resolutions are the
same as those shown in Figs. 1–3.
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FIG. 10 (color online). Errors in the complex Klein-Gordon
field ϕ for evolutions (including mode-damping forces) of initial
data for the perturbed Einstein-Klein-Gordon solution. Numerical
resolutions are the same as those shown in Figs. 1–3.
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FIG. 11 (color online). Constraint norm C for evolutions
(including mode-damping forces) of initial data for the perturbed
Einstein-Klein-Gordon solution. Numerical resolutions are the
same as those shown in Figs. 1–3.
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FIG. 12 (color online). Norm of the mode-damping forces, ED,
for evolutions (including mode-damping forces) of initial data for
the perturbed Einstein-Klein-Gordon solution. Numerical reso-
lutions are the same as those shown in Figs. 1–3.
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with boundary conditions, cf. Sec. II D, that guarantee that
the solution within each region corresponds to the desired
global solution. These boundary conditions depend on the
topology of the manifold only through their dependence on
the reference metric ~ψab and the interface boundary maps
ΨAα

Bβ. So while the simulations presented here do not test
reference metrics or interface boundary maps for a wide
range of manifolds with “arbitrary” topologies, they do
verify that the basic structure of the boundary conditions
that would apply for arbitrary topologies has been done
correctly.
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APPENDIX A: COVARIANT EINSTEIN
CONSTRAINTS

This appendix presents explicit expressions for the
covariant constraints of the Einstein evolution system
derived in Sec. III in terms of the covariant first-order
dynamical fields ψab, Πab, and Φiab and their spatial
derivatives. The primary constraint Ca of this system,
defined in Eq. (19), has the following expression in terms
of the first-order fields:

Ca ¼ Ha þ gijΦija þ tbΠba − 1

2
giaψbcΦibc

− 1

2
taψbcΠbc: (A1)

The three-index constraint Ciab, defined in Eq. (27), has the
following expression:

Ciab ¼ ~∇iψab − Φiab: (A2)

The spatially covariant analog of the Hamiltonian and
momentum constraints of more standard 3+1 representa-
tions of Einstein’s equation,F a, defined in Eq. (38), has the
following explicit representation in terms of the first-order
fields:

F a ≡ 1

2
giaψbc ~∇iΠbc − gij ~∇iΠja − gijtb ~∇iΦjba þ

1

2
taψbcgij ~∇iΦjbc þ tagij ~∇iHj − giatb ~∇iHb

þ giaΦijbgjkΦkcdψ
bdtc − 1

2
giaΦijbgjkΦkcdψ

cdtb þ gijΦicdΦjbaψ
bctd − 1

2
tagijgmnΦimcΦnjdψ

cd

−
1

4
tagijΦicdΦjbeψ

cbψde þ 1

4
taΠcdΠbeψ

cbψde þ 1

2
taΠcdΠbeψ

cetdtb þ giaΦicdΠbetctbψde

− tbgijΠbiΠja − 1

4
giaΦicdtctdΠbeψ

be þ 2Λta − gijΦibatbΠjete − 1

2
gijΦicdtctdΠja − 16πTabtb

þ γ2

�
gidCida − 1

2
giaψcdCicd

�
− Δb

actcCb þ 2gijtcψkðj ~R
k
aÞic − 2ψ ijtb ~Rk

ijðaψbÞk

− gaiψbdtcψ jðb ~R
j
dÞic þ taψbdψ ij ~Rk

ijðbψdÞk: (A3)

Similarly, the two-index constraint, Cia, defined in Eq. (39), is given by the expression

Cia ≡ gjk ~∇iΦjka − 1

2
gjaψcd ~∇iΦjcd þ tb ~∇iΠba −

1

2
taψcd ~∇iΠcd þ ~∇iHa þ

1

2
gjaΦjcdΦiefψ

ceψdf

þ 1

2
gjkΦjcdΦikeψ

cdteta − gjkgmnΦjmaΦikn þ
1

2
ΦicdΠbeta

�
ψcbψde þ 1

2
ψbetctd

�

− ΦicdΠbatc
�
ψbd þ 1

2
tbtd

�
þ 1

2
γ2ðtaψcd − 2δcatdÞCicd − Δb

iaCb: (A4)

Finally, the four-index constraint, Cijab, defined in Eq. (40), is given by

Cijab ¼ 2 ~∇½jΦi�ab þ ~Rc
ajiψcb þ ~Rc

bjiψac: (A5)

LINDBLOM, SZILÁGYI, AND TAYLOR PHYSICAL REVIEW D 89, 044044 (2014)

044044-18



These expressions for the constraints make it possible to
evaluate them easily in terms of the first-order dynamical
fields of the system and their spatial derivatives at any
instant of time. These expressions are analogous to those
for the standard noncovariant generalized harmonic evo-
lution system [2], but the covariant expressions used here
depend in critical ways on the geometry of the reference
metric ~ψab used to define the covariant derivative ~∇i.

APPENDIX B: TENSOR HARMONICS ON S3

This appendix summarizes the basic properties of the
three-sphere scalar, vector, and tensor harmonics. These
harmonics are defined here as eigenfunctions of the
covariant Laplace operator on the three-sphere, based on
the approach developed by Sandberg [21]. The notation
introduced here is intended to be simpler and more
systematic than that used by Sandberg. Our expressions
for the vector and tensor harmonics are also covariant.
Covariance allows us to evaluate these tensors using any
convenient choice of coordinate basis on S3, like the
multicube Cartesian coordinates. The angular functions
χ, θ and φ that appear in our expressions are considered to
be functions of whatever choice of spatial coordinates is
used. Explicit expressions for these angular functions in
terms of the multicube Cartesian coordinates are given, for
example, in Appendix A.3 of Ref. [1].
The scalar harmonics on the three-sphere are denoted

here as Yklm, where k ≥ l ≥ 0 and l ≥ m ≥ −l are
integers. These harmonics are defined to be eigenfunctions
of the covariant Laplace operator for the standard round
metric on S3:

∇i∇iYklm ¼ − kðkþ 2Þ
R2
3

Yklm; (B1)

where ∇i is the covariant derivative, and R3 is the radius of
the round-sphere metric on S3.
The vector harmonics on S3 can be derived directly

from the scalar harmonics. In particular, the three vector
harmonics Yklm

ð0Þi , Y
klm
ð1Þi , and Yklm

ð2Þi are given by

Yklm
ð0Þi ¼ ∇iYklm; (B2)

Yklm
ð1Þi ¼ ϵi

jk∇jYklm∇k cos χ; (B3)

Yklm
ð2Þi ¼ ϵi

jk∇jYklm
ð1Þk ; (B4)

where ϵijk is the totally antisymmetric tensor volume
element, which satisfies ∇nϵijk ¼ 0. These vector harmon-
ics satisfy the following divergence conditions:

∇iYklm
ð0Þi ¼ − kðkþ 2Þ

R2
3

Yklm; (B5)

∇iYklm
ð1Þi ¼ 0; (B6)

∇iYklm
ð2Þi ¼ 0; (B7)

and the following eigenvalue equations:

∇j∇jYklm
ð0Þi ¼ 2 − kðkþ 2Þ

R2
3

Yklm
ð0Þi ; (B8)

∇j∇jYklm
ð1Þi ¼ 1 − kðkþ 2Þ

R2
3

Yklm
ð1Þi ; (B9)

∇j∇jYklm
ð2Þi ¼ 1 − kðkþ 2Þ

R2
3

Yklm
ð2Þi : (B10)

There are six (symmetric) tensor harmonics on S3, Yklm
ð0Þij,

Yklm
ð1Þij, Y

klm
ð2Þij, Y

klm
ð3Þij, Y

klm
ð4Þij, and Yklm

ð5Þij, which can be defined

in terms of the scalar and vector harmonics:

Yklm
ð0Þij ¼ Yklmgij; (B11)

Yklm
ð1Þij ¼

1

2
ð∇iYklm

ð1Þj þ∇jYklm
ð1Þi Þ; (B12)

Yklm
ð2Þij ¼

1

2
ð∇iYklm

ð2Þj þ∇jYklm
ð2Þi Þ; (B13)

Yklm
ð3Þij ¼ ∇iYklm

ð0Þj þ
kðkþ 2Þ
3R2

3

Yklm
ð0Þij; (B14)

Yklm
ð4Þij ¼ EklYklm

ð1Þij −
1

4sin2χ
ðYklm

ð1Þi∇j cos χ þ Yklm
ð1Þj∇i cos χÞ

× f½lðlþ 1Þ − 2�ðEklÞ2 þ 6 cos χEkl − 4g;
(B15)

Yklm
ð5Þij ¼

1

2
ðϵisn∇sYklm

ð4Þnj þ ϵj
sn∇sYklm

ð4ÞniÞ: (B16)

In Eq. (B15), the quantity HklðχÞ is the function that
transforms S2 harmonics into S3 harmonics:
Yklmðχ; θ;φÞ ¼ HklðχÞYlmðθ;φÞ, while EklðχÞ is defined
by

Ekl ¼ 2

½2 − lðlþ 1Þ� sin χHkl

d
dχ

ðsin2χHklÞ: (B17)

These tensor harmonics are trace free,
0 ¼ gijYklm

ð1Þij ¼ gijYklm
ð2Þij ¼ gijYklm

ð3Þij ¼ gijYklm
ð4Þij ¼ gijYklm

ð5Þij,
except for gijYklm

ð0Þij ¼ 3Yklm. These tensor harmonics sat-

isfy the following divergence conditions:
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∇iYklm
ð0Þij ¼ Yklm

ð0Þj ; (B18)

∇iYklm
ð1Þij ¼

3 − kðkþ 2Þ
2R2

3

Yklm
ð1Þj ; (B19)

∇iYklm
ð2Þij ¼

3 − kðkþ 2Þ
2R2

3

Yklm
ð2Þj ; (B20)

∇iYklm
ð3Þij ¼

2½3 − kðkþ 2Þ�
3R2

3

Yklm
ð0Þj ; (B21)

∇iYklm
ð4Þij ¼ 0; (B22)

∇iYklm
ð5Þij ¼ 0; (B23)

and the following eigenvalue equations:

∇n∇nYklm
ð0Þij ¼ − kðkþ 2Þ

R2
3

Yklm
ð0Þij; (B24)

∇n∇nYklm
ð1Þij ¼

5 − kðkþ 2Þ
R2
3

Yklm
ð1Þij; (B25)

∇n∇nYklm
ð2Þij ¼

5 − kðkþ 2Þ
R2
3

Yklm
ð2Þij; (B26)

∇n∇nYklm
ð3Þij ¼

6 − kðkþ 2Þ
R2
3

Yklm
ð3Þij; (B27)

∇n∇nYklm
ð4Þij ¼

2 − kðkþ 2Þ
R2
3

Yklm
ð4Þij; (B28)

∇n∇nYklm
ð5Þij ¼

2 − kðkþ 2Þ
R2
3

Yklm
ð5Þij: (B29)

These expressions for the tensor harmonics are equivalent
to those given by Sandberg [21].
The scalar and tensor harmonics on S3 can be computed

numerically in a straightforward way. The scalar harmonics

Yklm are related to the standard S2 harmonics Ylm by
the expression Yklm ¼ HklðχÞYlmðθ;φÞ. The functions
HklðχÞ can be determined numerically for k ¼ l and
k ¼ lþ 1 by the expressions

HllðχÞ ¼ ð−1Þlþ12ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ 1Þ
πð2lþ 1Þ!

s
sinlχ; (B30)

Hlþ1lðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ 2Þ

p
cos χHllðχÞ; (B31)

and for k > lþ 1 using the recursion relation

Hkþ2l ¼ 2 cos χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 3Þðkþ 2Þ

ðkþ 3þ lÞðkþ 2 − lÞ

s
Hkþ1l

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 3Þðkþ 2þ lÞðkþ 1 − lÞ
ðkþ 1Þðkþ 3þ lÞðkþ 2 − lÞ

s
Hkl: (B32)

This recursion relation for HklðχÞ is obtained from
the standard recursion relation used to determine the
associated Legendre functions [22] and the fact that
HklðχÞ is proportional to Qlþ1=2

kþ1=2ðχÞ=
ffiffiffiffiffiffiffiffiffi
sin χ

p
, where

Qlþ1=2
kþ1=2ðχÞ is the associated Legendre function of the

second kind [1].
The quantities EklðχÞ, defined in Eq. (B17), can be

obtained from HklðχÞ using the standard expressions for
the derivatives of the associated Legendre functions. For
k ¼ l, we have

Ell ¼ − 2 cos χ
l − 1

; (B33)

while for k > l, these are given by the recursion
relation

Ekl ¼ 2ðkþ 2Þ cos χ
2 − lðlþ 1Þ

−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 1Þðk − lÞðkþ lþ 1Þp
½2 − lðlþ 1Þ� ffiffiffi

k
p Hk−1l

Hkl : (B34)
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