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Reference metrics are used to define the differential structure on multicube representations 
of manifolds, i.e., they provide a simple and practical way to define what it means globally 
for tensor fields and their derivatives to be continuous. This paper introduces a general 
procedure for constructing reference metrics automatically on multicube representations of 
manifolds with arbitrary topologies. The method is tested here by constructing reference 
metrics for compact, orientable two-dimensional manifolds with genera between zero and 
five. These metrics are shown to satisfy the Gauss–Bonnet identity numerically to the level 
of truncation error (which converges toward zero as the numerical resolution is increased). 
These reference metrics can be made smoother and more uniform by evolving them with 
Ricci flow. This smoothing procedure is tested on the two-dimensional reference metrics 
constructed here. These smoothing evolutions (using volume-normalized Ricci flow with 
DeTurck gauge fixing) are all shown to produce reference metrics with constant scalar 
curvatures (at the level of numerical truncation error).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The problem of developing methods for solving partial differential equations numerically on manifolds with nontrivial 
topologies has been studied in recent years by a number of researchers. The most widely studied approach, the surface 
finite element method, was developed originally by Gerhard Dziuk and collaborators [1–5]. This method can be applied 
to manifolds having isometric embeddings as codimension one surfaces in Rn . Triangular (or higher dimensional simplex) 
meshes on these surfaces are used to define discrete differential operators using fairly standard finite element methods. 
The topological structures of these manifolds are encoded in the simplicial meshes, while their differential structures and 
geometries are inherited by projection from the enveloping Euclidean Rn . The surface finite element method has been used 
in a number of applications on surfaces, including various evolving surface problems [6,7] and harmonic map flows on 
surfaces with nontrivial topologies [8–10]. The method is somewhat restrictive in that it only applies to manifolds that can 
be embedded isometrically as codimension one surfaces in Rn .

The surface finite element method has been generalized in different ways to allow the possibility of studying problems 
on larger classes of manifolds, which need not be embedded surfaces in Rn . For instance, Michael Holst and collabora-
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tors [11–13] have developed methods for defining discrete representations of differential forms on simplicial representations 
of manifolds with arbitrary topologies. The differential structure of a manifold in this approach is determined by explicitly 
specifying the set of coordinate overlap maps that cover the interfaces between neighboring simplices. The geometry of the 
manifold (needed for example to define the covariant Laplace–Beltrami operator, or the dual transformations of differential 
forms) is determined in this approach by a metric on the manifold that must also be explicitly supplied. Oliver Sander and 
collaborators [14–18] have introduced a different generalization of the surface finite element method. Their approach, called 
the geodesic finite element method, uses the geometry of the manifold (which must be specified explicitly) to construct 
discrete differential operators that conform more precisely to the manifold. The usual interpolation rule along straight coor-
dinate lines in the reference element is replaced with geodesic interpolation in a curved manifold. The global topology and 
the differentiable structures must be specified explicitly for each manifold. These approaches are very general, but they are 
somewhat cumbersome to use in practice since they require a great deal of detailed information to be explicitly provided 
in order to determine the differential and geometrical structures for each manifold studied.

Multicube representations of manifolds [19] provide a framework for the development of simpler methods for solving 
PDEs numerically on manifolds with arbitrary topologies. This approach, which we review in the following paragraphs, has 
several significant advantages over the finite element methods discussed above. For one, the multicube method represents 
a manifold as a mesh of non-overlapping cubes (or hypercubes) rather than simplices. This makes it simpler to introduce 
natural bases for vector and tensor fields on these manifolds. The cubic structure is also better suited for spectral numerical 
methods, which converge significantly faster than finite element methods of any (fixed) order. Another distinct advantage of 
the multicube approach is that the differential structures on multicube manifolds can be determined by a smooth reference 
metric. Therefore one need not specify the differential structure explicitly as would be required by the earlier generaliza-
tions of the surface finite element method. In our previous work involving the multicube method we specified the needed 
reference metrics analytically for the few simple manifolds that we studied [19,20]. In more complicated cases, however, the 
problem of finding an appropriate smooth reference metric is more difficult. The main purpose of this paper is to develop 
methods for generating the needed reference metrics automatically.

The multicube representation of a manifold � consists of a collection of non-intersecting n-dimensional cubic regions 
BA ⊂ R

n for A = 1, 2, . . . , NR , together with a set of one-to-one invertible maps � Aα
Bβ that determine how the boundaries of 

these regions are to be connected together. The maps ∂αBA = � Aα
Bβ (∂βBB) define these connections by identifying points on 

the boundary face ∂βBB of region BB with points on the boundary face ∂αBA of region BA (cf. Ref. [19] and Appendix B). It 
is convenient to choose all these cubic regions in Rn to have the same coordinate size L, the same orientation, and to locate 
them so that regions intersect (if at all) in Rn only at faces that are identified by the � Aα

Bβ maps. Since the regions do not 
overlap, the global Cartesian coordinates of Rn can be used to identify points in �. Tensor fields on � can be represented 
by their components in the tensor bases associated with these global Cartesian coordinates.

The Cartesian components of smooth tensor fields on a multicube manifold are smooth functions of the global Cartesian 
coordinates within each region BA , but these components may not be smooth (or even continuous) across the interface 
boundaries ∂αBA between regions. Smooth tensor fields must instead satisfy more complicated interface continuity con-
ditions defined by certain Jacobians, J Aαi

Bβ j , that determine how vectors vi and covectors wi transform across interface 

boundaries: vi
A = J Aαi

Bβ j v j
B and w Ai = J∗Bβ j

Aαi w B j . As discussed in Ref. [19], the needed Jacobians are easy to construct given 
a smooth, positive-definite reference metric g̃i j on �.

A smooth reference metric also makes it possible to define what it means for tensor fields to be C1 , i.e., to have contin-
uous derivatives across interface boundaries. Tensors are C1 if their covariant gradients (defined with respect to the smooth 
connection determined by the reference metric) are continuous. At interface boundaries, the continuity of these gradients 
(which are themselves tensors) is defined by the Jacobians J Aαi

Bβ j in the same way it is defined for any tensor field.
A reference metric is therefore an extremely useful (if not essential) tool for defining and enforcing continuity of tensor 

fields and their derivatives on multicube representations of manifolds. Unfortunately there is (at present) no straightforward 
way to construct these reference metrics on manifolds with arbitrary topologies. The examples given to date in the literature 
have been limited to manifolds with simple topologies where explicit formulas for smooth metrics were already known [19]. 
The purpose of this paper is to present a general approach for constructing suitable reference metrics for arbitrary manifolds. 
The goal is to develop a method that can be implemented automatically by a code using as input only the multicube 
structure of the manifold, i.e., from a knowledge of the collection of regions BA and the way these regions are connected 
together by the interface maps � Aα

Bβ .

In this paper we develop, implement, and test a method for constructing positive-definite (i.e., Riemannian) C1 reference 
metrics for compact, orientable two-dimensional manifolds with arbitrary topologies. While C∞ reference metrics might 
theoretically be preferable, C1 metrics are all that are required to define the continuity of tensor fields and their derivatives. 
We show in Appendix A that any C1 reference metric provides the same definitions of continuity of tensor fields and their 
derivatives across interface boundaries as a C∞ reference metric. This level of smoothness is all that is needed to provide 
the appropriate interface boundary conditions for the solutions of the systems of second-order PDEs most commonly used 
in mathematical physics. For all practicable purposes, therefore, C1 reference metrics are all that are generally required.

Our method of constructing a reference metric g̃i j on � is built on a collection of star-shaped domains SI with I =
1, 2, . . . , N S that surround the vertex points VI , which make up the corners of the multicube regions. The star-shaped 
domain SI is composed of copies of all the regions BA that intersect at the vertex point VI . The interface boundaries of the 
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Fig. 1. Two-dimensional star-shaped domain SI whose center VI is a vertex point where five regions BA intersect.

regions that include the vertex VI are to be connected together within SI using the same interface boundary maps � Aα
Bβ

that define the multicube structure. Fig. 1 illustrates a two-dimensional example of a star-shaped domain SI whose center 
VI is a vertex point where five regions intersect. A region BA would be represented multiple times in a particular SI if 
more than one of its vertices is identified by the interface boundary maps with the vertex point VI at the center of SI . 
For example, consider a one-region representation of T 2. The single SI in this case consists of four copies of the single 
region BA , glued together so that each of the vertices of the original region coincides with the center of SI . The interior of 
each star-shaped domain SI has the topology of an open ball in Rn , and together they form a set of overlapping domains 
that cover the manifold: ∪ISI = �.

A smooth reference metric is constructed on each star-shaped domain SI by introducing local Cartesian coordinates on 
it that have smooth transition maps with the global multicube coordinates of each region BA that it contains. Let eI

i j denote 
the flat Euclidean metric within SI , i.e., the tensor whose components are the unit matrix when written in terms of the local 
Cartesian coordinates of SI . These metrics are manifestly free of singularities within each SI , and they can be transformed 
from the local star-shaped domain coordinates into the global multicube coordinates in each BA using the smooth transition 
maps that relate them.

These smooth metrics on the star-shaped domains SI can be combined to form a global metric on � by introducing a 
partition of unity uI (�x). These functions must be positive, uI (�x) > 0, for points �x in the interior of SI ; they must vanish, 
uI (�x) = 0, for points outside SI ; and they are normalized so that 1 = ∑

I uI (�x) at every point �x in �. Using these functions, 
the tensor ḡi j(�x) = ∑

I uI (�x) eI
i j(�x) is positive definite at each point �x in � and can therefore be used as a reference metric 

for �. Although each metric eI
i j is smooth within its own domain SI , it may not be smooth with respect to the Cartesian 

coordinates of the other star-shaped domains that intersect SI . For this reason the combined metric ḡi j will generally only 
be as smooth as the products uI (�x) eI

i j .
At the present time we only know how to construct functions uI (�x) that make the combined metric ḡi j continuous 

(but not C1) across all the interface boundaries. The metric ḡi j can be modified in a systematic and fairly straightforward 
way, however, to produce a new metric g̃i j whose extrinsic curvature K̃ i j vanishes along each multicube interface boundary 
∂αBA . Continuity of the extrinsic curvature is the geometrical condition needed to ensure the continuity of the derivatives 
of the metric across interface boundaries. The modified metrics g̃i j constructed in this way can therefore be used as C1

reference metrics. In the two-dimensional case, the modification that converts ḡi j into g̃i j can be accomplished using a 
simple conformal transformation. In higher dimensions, a more complicated transformation is required.

The following sections present detailed descriptions of our procedure for constructing reference metrics g̃i j on two-
dimensional multicube manifolds having arbitrary topologies. In Sec. 2.1 an explicit method is described for systematically 
constructing the overlapping star-shaped domains SI ; formulas are given for transforming between the intrinsic Cartesian 
coordinates in each SI and the global Cartesian coordinates in BA ; explicit representations are given (in both local and 
global Cartesian coordinates) for the flat metrics eI

i j(�x) in each domain SI ; and examples of useful C0 partition of unity 
functions uI (�x) are given. The resulting C0 metrics are then modified in Sec. 2.2 by constructing an explicit conformal 
transformation that produces a metric having vanishing extrinsic curvature at each of the interface boundaries ∂αBA . The 
resulting metric is C1 and can therefore be used as a reference metric for these manifolds.

We test these procedures for constructing reference metrics on a collection of compact, orientable two-dimensional man-
ifolds in Sec. 2.3. New multicube representations of orientable two-dimensional manifolds having arbitrary topologies are 
described in detail in Appendix B. These procedures have been implemented in the Spectral Einstein Code (SpEC, devel-
oped by the SXS Collaboration, originally at Caltech and Cornell [21–23]). Reference metrics are constructed numerically 
in Sec. 2.3 for two-dimensional multicube manifolds with genera Ng between zero and five; the scalar curvatures R̃ as-
sociated with these reference metrics are illustrated; and numerical results are presented which demonstrate that these 
two-dimensional reference metrics satisfy the Gauss–Bonnet identity up to truncation level errors (which converge to zero 
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as the numerical resolution is increased). We also show that the continuous (but not C1) reference metrics ḡi j fail to satisfy 
the Gauss–Bonnet identity numerically because of the curvature singularities which occur on the interface boundaries in 
this case.

The scalar curvatures associated with the C1 reference metrics constructed in Sec. 2 turn out to be quite nonuniform. 
Section 3 explores the possibility of using Ricci flow to smooth out the inhomogeneities in these metrics g̃i j . In particular 
we develop a slightly modified version of volume-normalized Ricci flow with DeTurck gauge fixing. This version is found 
to perform better numerically with regard to keeping the volume of the manifold fixed at a prescribed value. We describe 
our implementation of these new Ricci flow equations in SpEC in Sec. 3.1. We test this implementation by evolving a 
round-sphere metric with random perturbations on a six-region multicube representation of the two-sphere manifold, S2. 
These tests show that our numerical Ricci flow works as expected: the solutions evolve toward constant-curvature metrics, 
the volumes of the manifolds are driven toward the prescribed values, and the Gauss–Bonnet identities remain satisfied 
throughout the evolutions. In Sec. 3.2 we use Ricci flow to evolve the rather nonuniform C1 reference metrics g̃i j constructed 
in Sec. 2, using these g̃i j both as initial data and as the fixed reference metrics throughout the evolutions. We show that 
all these evolutions approach constant curvature metrics, as expected for two-dimensional Ricci flow. The volumes of these 
manifolds remain fixed throughout the evolutions, and the Gauss–Bonnet identities are satisfied for all the geometries tested 
(which include genera Ng between zero and five). These Ricci-flow-evolved metrics therefore provide smoother and more 
uniform reference metrics for these manifolds.

2. Two-dimensional reference metrics

This section develops a procedure for constructing reference metrics on multicube representations of two-dimensional 
manifolds. Continuous reference metrics are created in Sec. 2.1 and then transformed in Sec. 2.2 into metrics whose deriva-
tives are also continuous across the multicube interface boundaries. The resulting C1 reference metrics are tested in Sec. 2.3
(on two-dimensional manifolds with genera Ng between zero and five) to ensure that they satisfy the appropriate Gauss–
Bonnet identities.

2.1. Constructing continuous reference metrics

The procedure for creating a continuous (C0) reference metric ḡi j presented here has three basic steps. First, a set of 
star-shaped domains SI for the multicube manifold is constructed from a knowledge of the regions BA and their interface 
boundary identification maps ∂αBA = � Aα

Bβ (∂βBB). The interiors of these SI have the topology of open balls in Rn and 
together they form an open cover of the manifold �. The primary task in this first step of the procedure is to organize 
the multicube structure in a way that allows us to determine which star-shaped domain SI is centered around each vertex 
νAμ of each multicube region BA , and to determine how many regions BA belong to each SI . In the second step, intrin-
sic Cartesian coordinates and metrics are constructed for each SI . These intrinsic coordinates are chosen to have smooth 
transformations with the global Cartesian coordinates in each multicube region BA . Metrics eI

i j for each star-shaped domain 
are introduced in this step to be the Euclidean metric expressed in terms of the intrinsic Cartesian coordinates in each SI . 
In the third step, partitions of unity uI (�x) are constructed that are positive for points �x inside SI , that vanish for points �x
outside SI , and that sum to unity at each point in the manifold: 1 = ∑

I uI (�x). A global reference metric is then obtained 
by taking weighted linear combinations of the flat metrics from each of the domains SI : ḡi j(�x) = ∑

I uI (�x) eI
i j(�x). At present 

we only know how to choose the partition of unity functions uI (�x) in a way that makes ḡi j continuous across the boundary 
interfaces.

2.1.1. Step one
The first step is to compose and sort a list of all the vertices νAμ in a given multicube structure. The index μ =

{1, . . . ,2n}, where n is the dimension of the manifold, identifies the vertices of a particular multicube region BA . This list 
of vertices νAμ can be sorted into equivalence classes VI whose members are identified with one another by the interface 
boundary-identification maps, i.e., νAμ and νBσ belong to the same VI iff there exists a sequence of maps � Aα

A1α1
,� A1α1

A2α2
, . . . , 

�
Anαn
Bβ with νAμ =

(
� Aα

A1α1
◦ �

A1α1
A2α2

◦ · · · ◦ �
Anαn
Bβ

)
(νBσ ).

One star-shaped domain SI is centered on each equivalence class of vertices VI . The domain SI consists of copies of 
all the multicube regions BA having vertices that belong to the equivalence class VI . For two-dimensional manifolds, the 
primary computational task to be completed in this first step is to determine the number K I of vertices νAμ that belong to 
each of the VI classes. The quantity K I represents the number of multicube regions BA clustered around the vertex VI in 
the star-shaped domain SI . Our code performs this counting process in two dimensions by using the fact that each vertex 
νAμ belongs to two different boundaries of the region BA . The code arbitrarily picks one of these boundaries, say ∂αBA , 
and follows the identification map �Bβ

Aα to the neighboring region BB . The mapped vertex νBσ = �
Bβ

Aα(νAμ) again belongs 
to two boundaries of the new region BB : the mapped boundary ∂βBB and another one, say ∂γBB . The code then follows 
the map �Cδ

Bγ across this other boundary to its neighboring region BC and to the new mapped vertex νCρ = �Cδ
Bγ (νBσ ). 

Continuing in this way, the code makes a sequence of transitions between regions until it arrives back at the original vertex 
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Fig. 2. Distorted and undistorted representations of a multicube region. Left side shows one of the two-dimensional multicube regions BA that has been 
distorted to allow it to fit together with the other regions in a particular star-shaped domain SI . The vectors �ρμ and �σμ are tangent to the boundaries 
of BA . Right side is a representation of this same BA , showing the associations of the vectors �ρμ and �σμ for its various possible vertices (labeled by the 
index μ).

νAμ of the starting region BA . The code counts these transitions and returns the number K I when the loop is closed. Fig. 1
illustrates a two-dimensional star-shaped domain with K I = 5.

2.1.2. Step two
The second step in this procedure is to construct local Cartesian coordinates that cover each of the star-shaped do-

mains SI . We do this by noting that each SI consists of a cluster of cubes BA whose vertices coincide with the central 
point VI . If these cubes are appropriately distorted into parallelograms (by adjusting the angles between their coordinate 
axes), they can be fitted together (without overlapping and without leaving gaps between them) to form a domain in Rn

whose interior has the topology of an open ball. Each SI can therefore be covered by a single coordinate chart, which in 
two-dimensions can be written in the form x̄i

I = (x̄I , ȳ I ). Fig. 2 illustrates both the distorted (on the left) and the undistorted 
(on the right) representations of a two-dimensional BA .

In two dimensions the distortions needed to allow the BA to be fitted around a vertex point VI are quite simple: adjust 
the opening angles θI Aμ of the coordinate axes of each cube so they sum to 2π around each vertex, 

∑
Aμ θI Aμ = 2π . The 

optimal way to satisfy this local flatness condition is to distort all of the two-dimensional cubes that make up SI in the same 
way, i.e., by setting θI Aμ = 2π/K I . In higher dimensions the problem of fitting the BA together to form a smooth star-shaped 
domain (without conical singularities and without gaps) is more complicated. The complication in higher dimensions comes 
from the lack of uniqueness and a clear optimal choice, rather than being a fundamental problem of existence. We plan to 
study the problem of finding a practical way to perform this construction in higher dimensions in a future paper.

The simplest metric ē I
i j to assign to the star-shaped domain SI is the flat Euclidean metric expressed in terms of the 

local coordinates of SI :

ds2 = ē I
i jdx̄i

Idx̄ j
I = dx̄2

I + dȳ2
I . (1)

Each BA that intersects SI will inherit this flat geometry via the coordinate transformation that connects them. This fact 
can be used to deduce the coordinate transformations between the local Cartesian coordinates x̄i

I = (x̄I , ȳ I ) of SI and the 
global coordinates xi

A = (xA, y A) of BA . The left side of Fig. 2 shows a region BA in SI that has been distorted into a 
parallelogram having an opening angle θI Aμ . The vectors �ρμ and �σμ in this figure represent unit vectors (according to the 
local flat metric of SI ) that are tangent to the boundary faces of BA at this vertex. The index μ identifies which of the 
vertices of BA these unit vectors belong to. Since the opening angle at this particular vertex is θI Aμ , the inner product of 
these vectors is just �ρμ · �σμ = cos θI Aμ . The vectors �ρμ and �σμ are proportional to the coordinate vectors ∂x and ∂y of the 
global Cartesian coordinates used to describe points in the multicube region BA —exactly which coordinate vectors depends 
on which vertex of BA coincides with this point. The right side of Fig. 2 shows these vectors at each of the vertices of BA , 
any of which could be the one that coincides with the center of SI . Table 1 gives the relationships between �ρμ and �σμ and 
the coordinate basis vectors in BA for each vertex νμ. Also listed in Table 1 are the vectors �vμ that give the location of 
each vertex relative to the center of its region BA .

The inner products �ρμ · �ρμ , �σμ · �σμ , and �ρμ · �σμ are scalars that are independent of the coordinate representation 
of the vectors. Since �ρμ and �σμ are unit vectors that are (up to signs) just the coordinate basis vectors in the global 
Cartesian coordinates, it follows that the components of the metric eI

i j in the global coordinates of BA must have the values 
�ρμ · �ρμ = �σμ · �σμ = eI

xx = eI
yy = 1 and �ρμ · �σμ = cos θI Aμ = εμ eI

xy , where εμ = ±1 is the vertex-dependent constant defined 
in Table 1. The flat metric eI

i j of the region SI ∩BA therefore has the form

ds2 = eI Adxi dx j = dx2 + 2εμ cos θI Aμ dxA dy A + dy2 (2)
i j A A A A
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Table 1
The vectors �ρμ and �σμ are proportional to the basis vectors �∂x and �∂y at each vertex μ of 
the region BA . This table gives the global Cartesian coordinate representations of �ρμ and �σμ

at each vertex, the vertex-dependent constants εμ , and the locations �νμ of the vertices with 
respect to the center of BA .

μ �ρμ �σμ εμ �vμ

1 (0,1) (1,0) +1 1
2 L(−1,−1)

2 (1,0) (0,−1) −1 1
2 L(−1,+1)

3 (0,−1) (−1,0) +1 1
2 L(+1,+1)

4 (−1,0) (0,1) −1 1
2 L(+1,−1)

when expressed in terms of the global Cartesian coordinates xi
A = (xA, y A) of BA . This metric can also be written as

ds2 = eI A
i j dxi

Adx j
A = (dxA + εμ cos θI Aμ dy A)2 + sin2 θI Aμ dy2

A . (3)

This is identical to the standard representation of ē I
i j in the local coordinates of SI , Eq. (1), if new coordinates x̃I A and ỹ I A

are defined as

x̃I A = xA − cx
A − vx

μ + εμ cos θI Aμ (y A − c y
A − v y

μ), (4)

ỹ I A = sin θAI (y − c y
A − v y

μ). (5)

The constants ci
A represent the global Cartesian coordinates of the center of region BA , and the constants vi

μ represent the 
location of the μ vertex of the region relative to its center. These are included in the transformations in Eqs. (4) and (5)
to ensure that the point x̃I A = ỹ I A = 0 corresponds to the point �x = �c A + �vμ , which is the νAμ vertex of BA that coincides 
with the center of SI . These new coordinates x̃I A and ỹ I A are therefore equal to the local Cartesian coordinates of SI , x̄I
and ȳ I , up to a rigid rotation:

x̄I = cosψI A x̃I A + sinψI A ỹ I A, (6)

ȳ I = − sin ψI A x̃I A + cosψI A ỹ I A, (7)

for some angle ψI A . The composition of Eqs. (6) and (7) with Eqs. (4) and (5) therefore gives the transformation between the 
local Cartesian coordinates of SI , x̄I and ȳ I , and the global Cartesian coordinates, xA and y A , of the multicube representation 
of the manifold.

The metric eI A
i j given in Eq. (2) must be constructed for each vertex νAμ of each region BA in terms of its global Cartesian 

coordinates xi
A . These expressions depend only on the opening angles θI Aμ , which in turn depend only on the parameter K I . 

The full coordinate transformations between the global Cartesian coordinates xA and y A and the local coordinates x̄I and 
ȳ I given in Eqs. (4)–(7) are not actually needed to evaluate the reference metrics.

2.1.3. Step three
The third step in this procedure for constructing a reference metric is to build a partition of unity uI(�x) that is adapted 

to the star-shaped domains. We do this by introducing a collection of weight functions w I (�x) that are positive within a 
particular SI and that fall to zero at its boundary. We experimented with a number of different weight functions and found 
that writing them as simple separable functions of the global Cartesian coordinates of each region BA worked far better 
than anything else we tried. Thus we let

w I (�x) = h

(
xA − cx

A − vx
μ

L

)
h

(
y A − c y

A − v y
μ

L

)
, (8)

where L is the coordinate size of each region BA . The functions h(w) are chosen to have the value h(0) = 1, which corre-
sponds to the vertex point at the center of the domain SI , and the value h(1) = 0 at the points which correspond to the 
outer boundary of SI . We find that the simple class of functions

h(w) = (1 − w2k)�, (9)

with integers k > 0 and � > 0, works quite well. Some of these functions are illustrated in Fig. 3, with integer values in 
the range that worked best in our numerical tests. Fig. 4 illustrates these weight functions expressed in terms of the local 
Cartesian coordinates of one of the star-shaped domains SI . This figure shows clearly that this choice of uI (�x) is continuous 
but not C1 across the interface boundaries. We could also make these functions C1 with respect to the local coordinates 
in one of the SI , however it is not possible to make them C1 with respect to all of the overlapping local star-shaped 
coordinates at the same time.

A partition of unity uI (�x) is constructed from the weight functions w I (�x) by normalizing them:

uI (�x) = w I (�x)
, (10)
H(�x)
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Fig. 3. Weight functions h(w) defined in Eq. (9) are positive for 0 ≤ w < 1 and vanish for w = 1.

Fig. 4. Weight function w I (�x) illustrated on a star-shaped domain SI where five regions BA meet. Left illustration shows contours of w I (�x), which uses 
the h(w) functions defined in Eq. (9) with k = 1 and � = 4. Right illustration shows the same function in a three-dimensional rendering. This example 
illustrates the fact that these w I (�x) are continuous but not C1 across the region interface boundaries.

where H(�x) is defined by

H(�x) =
∑

I

w I (�x). (11)

This definition ensures that the uI (�x) satisfy the normalization condition 
∑

I uI (�x) = 1 for every point �x in the manifold.
A global reference metric is constructed by combining the metrics eI

i j associated with each of the star-shaped domains 
SI and defined in Eq. (2), using the partition of unity defined in Eq. (10):

ḡi j(�x) =
∑

I

uI (�x) eI
i j(�x). (12)

This metric is positive definite, and it is continuous across all of the multicube interface boundaries. It can therefore be used 
as a continuous reference metric.

In an effort to reduce the spatial variation of the metric defined in Eq. (12) and thus reduce the required numerical 
resolution, we add additional terms of the form u A(�x) e A

i j , where e A
i j are flat metrics with support in a single multicube 

region BA . Thus we let

ds2 = e A
i jdxi

Adx j
A = dx2

A + dy2
A (13)

be the flat Euclidean metric expressed in terms of the global Cartesian coordinates xA and y A . We define new weight 
functions w A(�x) associated with the individual multicube regions to be

w A(�x) = h

(
2(xA − cx

A)

L

)
h

(
2(y A − c y

A)

L

)
, (14)
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which have the value w A(�c A) = 1 at the center of the region BA and the value w A(�x) = 0 for points �x on its boundary. These 
weight functions can be combined with those associated with the star-shaped domains, Eq. (8), to form a new partition of 
unity. We modify the normalization function H(�x) to be

H(�x) =
∑

I

w I (�x) +
∑

A

w A(�x). (15)

Then we redefine the functions uI (�x) using Eq. (10) with this new H(�x), and we define functions u A(�x) using Eqs. (14)
and (15):

u A(�x) = w A(�x)
H(�x) . (16)

A new metric is then formed by combining these region-centered metrics with the star-shaped domain metrics constructed 
above:

ḡi j(�x) =
∑

I

uI (�x) eI
i j(�x) +

∑
A

u A(�x) e A
i j(�x). (17)

The addition of the region-centered metrics does not appear to have a significant impact on the required numerical resolu-
tion. Nevertheless, this is the two-dimensional reference metric that we use (after conformally transforming as described in 
the following section) in the numerical work described in the later sections of this paper.

2.2. Constructing C1 reference metrics

The continuous metric ḡi j has been constructed in a way that ensures the geometry has no conical singularities at the 
vertices of the multicube regions. However, ḡi j is not in general C1 across the interface boundaries; e.g., the partition of 
unity that we use is not C1 there. The geometry defined by ḡi j will therefore have curvature singularities along those 
interface boundaries. In order to remove these singularities, our next goal is to modify ḡi j by making it C1, while at the 
same time keeping it continuous, positive definite, and free of conical singularities. It should be possible, for example, to 
find a tensor ψi j that vanishes at the interface boundaries, and whose normal derivatives are the negatives of those of ḡi j . 
In this case the new tensor g̃i j = ḡi j + ψi j and its first derivatives should be continuous at the boundaries. There is in fact 
a great deal of freedom available in choosing ψi j . In particular, it can be changed arbitrarily in the interior of a region so 
long as its boundary values and derivatives remain unchanged. The idea is to use this freedom to keep ψi j small enough 
everywhere that g̃i j remains positive definite. We plan to find a practical way to do this for manifolds of arbitrary dimension 
in a future work. In this paper we focus on the two-dimensional case, where a simple conformal transformation is all that is 
needed to make the continuous metric ḡi j C1. We introduce the conformal factor ψA for the metric in multicube region BA :

g̃ A
i j = ψ4

A ḡ A
i j . (18)

The conformal factor ψA is chosen to make the resulting metric g̃ A
ab and its derivatives continuous across interface bound-

aries.
The extrinsic curvature K̄ Aα

i j of the ∂αBA boundary of cubic region BA is defined by

K̄ Aα
i j = (δk

i − n̄k
Aαn̄Aαi)∇̄kn̄Aα j, (19)

where n̄i
Aα is the unit normal to the boundary and ∇̄k is the covariant derivative associated with the metric ḡ A

i j . In two 
dimensions this can be rewritten as

K̄ Aα
i j = (ḡ A

i j − n̄Aαin̄Aα j)K̄ Aα, (20)

where K̄ Aα = ∇̄kn̄k
Aα is the trace. Since the normal vector n̄i

Aα depends only on the metric ḡi j , its divergence can be written 
explicitly in terms of derivatives of the metric:

K̄ Aα = ∇̄kn̄k
Aα = 1

2

[
n̄i

Aα(ḡ jk + n̄ j
Aαn̄k

Aα) − 2ḡi jn̄k
Aα

]
∂i ḡ jk. (21)

Under the conformal transformation given in Eq. (18), the trace of the extrinsic curvature K Aα transforms as follows:

K̃ Aα = ψ−2
A (K̄ Aα + 2n̄a

Aα∇̄a logψA). (22)

The idea is to choose the conformal factor ψA so that it has the value ψA = 1 on each interface boundary ∂αBA , with a 
normal derivative on each boundary given by

n̄a ∇̄a logψA = − 1 K̄ Aα. (23)
Aα 2
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These boundary conditions ensure that the metric g̃i j continues to be continuous everywhere and free of cone singularities 
at the vertices of each cubic-block region, while also ensuring that the extrinsic curvature at each interface boundary is 
zero.

There is no unique conformal factor satisfying the boundary conditions ψA = 1 and the normal-derivative condition given 
in Eq. (23). However, the following expression for ψA does satisfy these conditions:

logψA = − f

(
xA − cx

A

L
+ 1

2

)
L K̄ A−x(y A)

2 n̄x
A−x(y A)

+ f

(
1

2
− xA − cx

A

L

)
L K̄ A+x(y A)

2 n̄x
A+x(y A)

− f

(
y A − c y

A

L
+ 1

2

)
L K̄ A−y(xA)

2 n̄y
A−y(xA)

+ f

(
1

2
− y A − c y

A

L

)
L K̄ A+y(xA)

2 n̄y
A+y(xA)

. (24)

The required properties of the function f (w) are that it has the values f (0) = f (1) = 0 and the derivatives f ′(0) = 1 and 
f ′(1) = 0. The simple choice f (w) = w h(w) satisfies these conditions, with h(w) given in Eq. (9). The expression for the 
conformal factor in Eq. (24) has the property that log ψA = 0 everywhere on the boundary of the cubic-block region, while 
its derivatives on the boundary satisfy Eq. (23). The values of the extrinsic curvatures K̄ Aα and the normal vectors n̄i

Aα used 
in Eq. (24) are those associated with the continuous metric ḡi j given in Eq. (17).

Continuity of the extrinsic curvature across interface boundaries is the necessary and sufficient condition for the metric 
to be C1 and singularity-free at those interfaces (cf. the Israel junction conditions [24]). The metrics g̃i j defined in Eq. (18), 
with conformal factor ψA given by Eq. (24), will be C1 even across the multicube interface boundaries, since their extrinsic 
curvatures vanish and are continuous there. The reference metrics g̃i j can thus be used to define a C1 differential structure, 
which defines the continuity of tensor fields and their derivatives. Appendix A shows that this differential structure is 
unique in the sense that it is the same as would be produced by any other C1 reference metric expressed in the same 
global multicube coordinates.

2.3. Testing the reference metrics

We have implemented the method outlined in Secs. 2.1 and 2.2 for constructing a C1 reference metric g̃i j in SpEC. This 
section describes some tests we have performed to verify that our code correctly constructs reference metrics according to 
these procedures. We begin by constructing multicube representations of compact, orientable two-dimensional manifolds 
having genera Ng between zero and five. Appendix B gives detailed descriptions of these multicube representations and also 
shows explicitly how they can be generalized to compact, orientable two-dimensional manifolds of any genus N g . These 
multicube representations consist of lists of the regions BA and their specific locations in Rn , together with a complete list 
of the specific interface boundary identification maps � Aα

Bβ that define how the regions are to be connected together.

Any C1 metric gij , including the reference metric g̃i j from Eq. (18), must satisfy the Gauss–Bonnet identity, which relates 
the scalar curvature R to the topology of any compact, orientable two-dimensional Riemannian manifold:

V ‖R‖ = 8π(1 − Ng), (25)

where ‖R‖ is the spatially averaged scalar curvature,

‖R‖ =
∫

R
√

g d 2x

V
, (26)

V is the volume,

V =
∫ √

g d 2x, (27)

and where Ng is the genus of the manifold. The Gauss–Bonnet identity therefore provides a powerful test: The multicube 
manifold must have the correct genus or the identity will fail. And the metric must be C1 across all the interface boundaries, 
or curvature singularities along those boundaries will cause the numerical integrals used in the identity to fail.

We use the quantity EGB , defined by

EGB =
∣∣V ‖R‖ − 8π(1 − Ng)

∣∣
8π(1 + Ng)

, (28)

to monitor how well the Gauss–Bonnet identity is satisfied numerically in our tests. Fig. 5 shows the values of EGB computed 
for each of the multicube manifolds described in Appendix B using the C1 reference metric g̃i j defined in Eq. (18). Each 
curve in Fig. 5 represents EGB for a particular multicube manifold as a function of the numerical resolution N (the number 
of grid points along each dimension of each multicube region BA ). The manifolds are identified in Fig. 5 by their genera Ng

and the numbers of regions NR used in their particular representations. These graphs show that the Gauss–Bonnet identity 
is satisfied by the reference metrics g̃i j with numerical errors that decrease exponentially as the numerical resolution N is 
increased. The numerical errors arise both in the numerical derivatives used in the computation of the scalar curvature R



40 L. Lindblom et al. / Journal of Computational Physics 313 (2016) 31–56
Fig. 5. The error in the Gauss–Bonnet identity EGB , defined in Eq. (28), as a function of resolution for two-dimensional multicube manifolds having different 
genera Ng and different numbers of multicube regions NR .

and in the numerical integrations used to evaluate ||R||. A minimum error of O(10−9) is reached at a resolution of about 
N = 46, which corresponds to the level of accumulated roundoff error in the calculation of EGB at that resolution.

We have also tested the Gauss–Bonnet identity on this same collection of multicube manifolds using the scalar curvatures 
computed from the continuous reference metrics ḡi j of Eq. (17) instead of the C1 metrics g̃i j of Eq. (18). Using these C0

reference metrics, we find that EGB is of order unity (with values between about 0.5 and 2) for all of the tests illustrated 
in Fig. 5. The Gauss–Bonnet identity fails in this case because the curvatures associated with the C0 reference metrics 
have singularities along the multicube interface boundaries. This failure, which was expected in this case, reinforces the 
conclusion that we have successfully implemented the procedure outlined in Secs. 2.1 and 2.2 for constructing C1 reference 
metrics on two-dimensional manifolds with arbitrary topologies.

3. Smoothing the reference metrics using Ricci flow

The C1 reference metrics g̃i j introduced in Secs. 2.1 and 2.2 satisfy the minimal requirements needed to establish low-
order differential structures on two-dimensional manifolds. These structures allow us to define the continuity of tensors and 
their derivatives, which is all that is required for solving the systems of second-order equations of most interest in math-
ematical physics. Unfortunately these metrics exhibit a great deal of spatial structure and consequently require fairly high 
numerical resolution to be represented accurately. Fig. 6 illustrates the scalar curvature R̃ associated with these reference 
metrics g̃i j for the case of a six-region, NR = 6, representation of the genus Ng = 0 multicube manifold (the two-sphere), 
and also for the case of a forty-region, NR = 40, representation of the genus Ng = 5 multicube manifold (the five-handled 
sphere). While these scalar curvatures appear to be continuous (even across the region interface boundaries) they have very 
large spatial variations. The goal of this section is to develop a method of transforming these metrics into more uniform 
(and smoother) reference metrics.

The uniformization theorem implies that every orientable two-dimensional manifold � admits a metric having constant 
scalar curvature [25]. One approach to making the reference metrics g̃i j more uniform, therefore, would be to find a way to 
transform them into metrics having constant scalar curvatures. Fortunately there is a well-studied technique for doing ex-
actly that. Volume-normalized Ricci flow is a parabolic evolution equation for the metric whose solutions in two dimensions 
all evolve toward metrics having spatially constant scalar curvatures [25–28].

The evolution equation we use for the volume-normalized Ricci flow of a two-dimensional metric gij is given by

∂t gi j = −2Rij + ‖R(t)‖ gij − μ
V (t) − V 0

V (t)
gij + ∇i H j + ∇ j Hi . (29)

The quantities ‖R‖ and V (t) in Eq. (29) are the volume-averaged scalar curvature and the volume of the manifold defined 
in Eqs. (26) and (27), respectively. The terms containing these quantities are added to control the volume of the manifold. 
The term proportional to μ in Eq. (29) is new to the best of our knowledge. We have found that it makes our numerical 
solutions of Eq. (29) track the target volume V 0 more accurately. The DeTurck gauge-fixing covector Hi is defined by

Hi = gij gk�(�
j

k�
− �̃

j
k�

), (30)

where � j
k�

is the connection associated with the metric gij , and �̃ j
k�

is any other fixed connection on the manifold [29]. 
The DeTurck terms (those containing Hi ) are added to make Eq. (29) strongly parabolic, and thus to have a manifestly 
well-posed initial value problem [30].

Contracting Eq. (29) with the inverse metric gij gives

∂t log
√

g = −R + ‖R‖ − μ
V (t) − V 0 + ∇i Hi . (31)
V (t)
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Fig. 6. Illustration of the scalar curvature R̃ of two multicube manifolds with C1 reference metrics g̃i j constructed via the procedure described in Sec. 2. 
Both cases use a numerical resolution of N = 40 grid points along each dimension of each multicube region. Top: The genus Ng = 0, six-region case. The 
left side shows the manifold mapped (non-isometrically) onto a 2-sphere, with radial warping proportional to the scalar curvature R̃ . The right side shows 
the same manifold in the multicube Cartesian coordinates, with warping in the z-direction proportional to R̃. Bottom: The genus Ng = 5, forty-region 
multicube manifold in the multicube Cartesian coordinates, with warping in the z-direction proportional to the scalar curvature R̃.

Integrating this equation over any compact manifold provides the evolution equation for the volume V (t) of the manifold:

∂t [V (t) − V 0] = −μ [V (t) − V 0] . (32)

Without the term proportional to μ, the volume of the manifold would be fixed, ∂t V (t) = 0, at the analytical level. In 
numerical simulations, however, discretization and roundoff error give rise to slow, approximately linear drifts in the vol-
ume. With the damping term we have added, the volume of the manifold is driven toward the target value V 0 at a rate 
determined by the constant μ. In our numerical tests, we find that a value of μ = 10 works well.

3.1. Numerical Ricci flow

We have implemented the volume-normalized Ricci flow equation with DeTurck gauge fixing, Eq. (29), in SpEC. This code 
evolves PDEs using pseudo-spectral methods to evaluate spatial derivatives, and it performs explicit time integration at each 
collocation point using standard ordinary differential equation solvers (e.g., Runge–Kutta). Boundary conditions are imposed 
at multicube interface boundaries to enforce continuity of the metric gij and its normal derivative ñk∇̃k gi j . The vector ñk is 
the unit normal to the boundary and ∇̃k is the covariant derivative associated with the reference metric g̃i j .

Boundary conditions are imposed in SpEC using penalty methods. The desired boundary conditions are added to the 
evolution equations at the boundary collocation points. The evolution equations on the ∂αBA boundary, which is identified 
with the ∂βBB boundary, for example, have the form

∂t gi j = Fij + α
(

g A
ij − 〈g B

i j〉A

)
+ β ñk

A

(
∇̃k g A

i j − 〈∇̃k g B
i j〉A

)
, (33)

where Fij represents the right side of Eq. (29), and α and β are positive constant penalty factors. The quantities 〈g B
i j〉A and 

〈∇̃k g B
i j〉A represent the transformations of g B

i j and ∇̃k g B
i j into the tensor basis of region BA using the interface boundary 

Jacobians:
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〈g B
i j〉A = J∗Bβa

Aαi J∗Bβb
Aα j g B

ab, (34)

〈∇̃k g B
i j〉A = J∗Bβa

Aαi J∗Bβb
Aα j J∗Bβc

Aαk ∇̃c g B
ab. (35)

If the penalty factors α and β are chosen properly, these additional terms drive the evolution at the boundary in a way that 
reduces any small boundary condition error [31]. There is a range of constants α and β that work well—too small can lead 
to instability, while too large may make the system overly stiff. Empirically, we have found that the following values work 
well in most cases1:

α = 1
2 N3(N + 1), β = 1

2 N(N + 1). (36)

In some cases the penalty factors (particularly α) can be decreased below the values given in Eq. (36) without sacrificing 
stability. Using smaller values allows a less restrictive condition on the size of the maximum time step and therefore allows 
more efficient numerical evolutions. In rare cases, we have found it necessary to increase β above the value given in 
Eq. (36). For example, in the low-resolution N = 16, ten-region, NR = 10, genus Ng = 0 case, a value of β at least twice that 
given in Eq. (36) was needed for stability. Hesthaven and Gottlieb [31] have derived rigorous lower bounds on the penalty 
factors needed for stable evolution of a simple, second-order parabolic equation in one dimension. They show that when 
Robin-type boundary conditions are used (like those we use here), penalty factors that scale like α ∼O(N2) and β ∼O(N2)

are required. Our results agree with theirs for β , but we have found it necessary to use much larger values of α that scale 
as α ∼O(N4) in most cases.

We test the stability and robustness of our implementation of these Ricci flow evolution equations on a six-region, 
NR = 6, multicube representation of the two-sphere manifold, S2, which is described in detail in Appendix B.1. As initial 
data for these tests we use the standard round-sphere metric with pseudo-random white noise of amplitude 0.1 added to 
each component of the metric gij at each collocation point. The reference metric g̃i j used in these tests is the usual smooth, 
unperturbed round-sphere metric, which is given explicitly in global Cartesian multicube coordinates in Ref. [19].

We use several measures to determine whether our implementation of numerical Ricci flow is working properly and 
whether it actually drives the metric toward a constant-curvature state, as it is expected to do in two dimensions. First, 
we measure how well the numerical Ricci flow evolves toward geometries having uniform scalar curvatures. One possible 
dimensionless measure of this scalar-curvature uniformity is the quantity ẼR , defined by

Ẽ2
R =

∫
(R − ‖R‖)2√g d 2x

V ‖R‖2
. (37)

For the two-dimensional manifolds studied here, the volume-averaged scalar curvature ‖R‖ is given by the Gauss–Bonnet 
identity: ‖R‖ = 8π(1 − Ng)/V . The scalar-curvature uniformity measure can therefore be rewritten in the form

Ẽ2
R = V

∫
(R − ‖R‖)2√g d 2x

[8π(1 − Ng)]2
. (38)

This measure is singular for Ng = 1, so we define an alternative measure ER as follows:

E2
R = V

∫
(R − ‖R‖)2√g d 2x

[8π(1 + Ng)]2
. (39)

This alternative measure is well defined for all compact, orientable two-dimensional manifolds. It differs from ẼR by the 
factor |1 − Ng |/(1 + Ng), which is of order unity, except for the singular case Ng = 1. We use the measure ER to monitor 
the uniformity of the scalar curvature in all of our Ricci flow evolutions. Second, we monitor the volume of the manifold 
to determine whether the volume-normalized flow is working properly. We do this using the dimensionless quantity EV , 
defined by

EV = |V (t) − V 0|
V 0

, (40)

to measure the fractional change in the volume relative to the target volume V 0. Third, we use the quantity EH to measure 
the evolution of the DeTurck gauge-source covector:

E2
H =

∫
gij Hi H j

√
g d 2x∫ ∑

i j

(|gij|2 + ∑
k |∂k gi j|2

)√
g d 2x

. (41)

And finally, we assess how well the geometries produced by this Ricci flow satisfy the Gauss–Bonnet identity, using the 
quantity EGB defined in Eq. (28).

1 We use the factor N + 1 in Eq. (36), instead of the simpler N , because it is natural to write α and β as multiples of the inverse of the Legendre 
quadrature weight at the endpoints, ω = 2/N(N + 1), since ω enters the proofs of stability for these penalty methods. In terms of ω, we use α = N2/ω
and β = 1/ω.
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Fig. 7. Ricci flow evolutions of a six-region, NR = 6, multicube representation of the 2-sphere, with random noise added to the round-sphere metric as the 
initial data. Graphs show the evolutions of the scalar-curvature uniformity measure ER , the volume-normalization error EV , the DeTurck gauge-covector 
norm EH , and the Gauss–Bonnet identity error EGB . These quantities are defined in Eqs. (39), (40), (41), and (28), respectively. The reference metric used 
in these tests is the usual unperturbed round-sphere metric. The numerical resolution in each spatial dimension of each square region is denoted by N .

Fig. 7 shows the results of our Ricci flow evolutions using initial data constructed from the round-sphere metric with 
random noise perturbations. This figure plots the time evolutions of the four error measures ER , EV , EH , and EGB , defined 
in Eqs. (39), (40), (41), and (28), respectively, for evolutions performed with several different numerical resolutions N . As 
evidenced in these figures, the Ricci flow evolutions are stable and convergent as the numerical resolution N is increased. 
Nonuniformities in the random initial scalar curvature, as measured by ER and shown in the upper left part of Fig. 7, decay 
exponentially in time as the geometry evolves toward the constant-curvature round-sphere metric until the differences are 
dominated by truncation level errors at each resolution. The upper right part of Fig. 7 shows that the volume-controlling 
terms in Eq. (29) are effective at driving the volume of the manifold to the value V 0, as measured by EV . The target volume 
V 0 in these tests was taken to be the volume measured by the smooth round-sphere reference metric, rather than the 
volume of the initial random metric. The lower left part of Fig. 7 shows that the gauge source one-form Hi , measured by 
EH , is effectively driven to zero by the DeTurck term, and the lower right part of Fig. 7 shows that the Gauss–Bonnet error 
EGB decays very quickly to truncation level at each resolution. Random noise was added to the initial data in these tests at 
each grid point, so the precise structure of the initial data is different at each resolution. Therefore, numerical convergence 
with increasing resolution N at the initial and very early times was not expected (or observed).

3.2. Smoother reference metrics

We have used volume-normalized Ricci flow to construct smoother and more uniform reference metrics for several 
multicube manifolds in two dimensions. In particular we have performed Ricci-flow smoothing of the reference metrics for 
multicube representations of compact, orientable two-dimensional manifolds with genera between N g = 0 (the two-sphere) 
and Ng = 5 (the five-handled two-sphere). In each case, initial data for the evolution are prepared by constructing the 
metric g̃i j according to the procedure described in Sec. 2. These g̃i j use the polynomial generating functions h(w) of Eq. (9), 
with k = 1 and � = 4, both for the partition of unity and for the functions f (w) = w h(w) that appear in the conformal 
factor in Eq. (24). Although this choice of powers appears to give the best results, we have found that other choices often 
work nearly as well. We use the metric g̃i j not only as initial data for these Ricci flow evolutions, but also as the fixed 
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Fig. 8. Ricci flow evolutions of a genus Ng = 5, forty-region, NR = 40, multicube manifold. Graphs show the evolutions of the scalar-curvature uniformity 
measure ER , the volume-normalization error EV , the DeTurck gauge-covector norm EH , and the Gauss–Bonnet identity error EGB . These quantities are 
defined in Eqs. (39), (40), (41), and (28), respectively. The reference metric, which is identical to the initial metric in this case, is constructed according to 
the procedure described in Sec. 2. The numerical resolution in each spatial dimension of each multicube region is denoted by N .

reference metric, which defines the continuity of all tensor fields and their derivatives throughout the evolutions, including 
the Ricci-flow-evolved gij(t).

We have performed Ricci flow evolutions on all the multicube manifolds described in Appendix B, and the results look 
very similar to one another. For this reason we describe only one of these cases in detail, and then we summarize and 
compare the results of our highest-resolution evolutions from all of the cases. We show detailed results for our most 
complex case: a forty-region, NR = 40, representation of a genus Ng = 5 multicube manifold (the five-handled two-sphere). 
The scalar curvature for the reference metric g̃i j in this case is illustrated in the bottom part of Fig. 6. The details of the 
multicube structure for this case (and all our other cases) are given in Appendix B.

Fig. 8 shows the results of these genus Ng = 5 evolutions for several different numerical resolutions N . The graphs 
in Fig. 8 indicate that the evolutions are stable and convergent, demonstrating our ability to evolve PDEs on arbitrary, 
complicated two-dimensional manifolds using the C1 reference metrics developed in Sec. 2. These evolutions differ from 
the random-metric evolutions shown in Fig. 7 in several ways. First, these initial data are much smoother than the random 
metrics (which are unresolved by construction). Consequently, the Gauss–Bonnet error EGB is much smaller at early times. 
Second, the initial metric in these tests is identical to the reference metric, and accordingly the error measures EV and EH

are much smaller (about truncation level) at early times. These error measures remain close to these initial truncation-error 
levels throughout the evolutions. We also note that the more complicated spatial structures of the reference metrics in 
these simulations require somewhat higher numerical resolutions in order to obtain the same level of truncation errors as 
the random-metric S2 tests described in Sec. 3.1.

Fig. 9 compares the highest-resolution Ricci flow evolutions from each of the multicube manifolds described in Ap-
pendix B (up to and including the forty-region representation of a genus 5 manifold). All of these cases are found to be 
stable and convergent, with qualitatively similar results to the genus N g = 5 evolutions shown in Fig. 8. The only sig-
nificant difference between the cases is the rate at which nonuniformities in the scalar curvatures decay. The reference 
metrics that we construct on these different multicube manifolds have nonuniformities on different length scales, and these 
nonuniformities correspondingly decay at different rates under the Ricci flow. There are also differences in the levels of the 
truncation errors for these cases at the same numerical resolution. The ten-region, NR = 10, representation of the genus 
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Fig. 9. High-resolution (N = 40) results of Ricci flow evolutions on a variety of different multicube manifolds. The genus Ng and the number of multicube 
regions NR of each case are indicated in the legends. Graphs show the evolutions of the scalar-curvature uniformity measure ER , the volume-normalization 
error EV , the DeTurck gauge-covector norm EH , and the Gauss–Bonnet identity error EGB . These quantities are defined in Eqs. (39), (40), (41), and (28), 
respectively. In each case, the reference metric is identical to the initial metric and is constructed according to the procedure described in Sec. 2.

Ng = 1 multicube manifold (the two-torus), for example, has the highest level of truncation error among the examples we 
have studied.

4. Discussion

This paper presents a method for constructing reference metrics on multicube representations of manifolds having ar-
bitrary topologies. The method was implemented and successfully tested, as described in Sec. 2, for a variety of compact, 
orientable two-dimensional Riemannian manifolds with genera between 0 and 5. The reference metrics constructed in this 
way are not smooth, but they have continuous derivatives, which is sufficient to define the C1 differential structures needed 
for solving the systems of second-order PDEs of most interest in mathematical physics. We have demonstrated in Sec. 3, 
for example, that these C1 reference metrics can be used successfully to solve systems of second-order parabolic evolution 
equations.

The reference metrics constructed using the methods in Sec. 2 have large spatial variations, which are not easy to 
resolve numerically. We demonstrate in Sec. 3 that these metrics can be made more uniform by evolving them with Ricci 
flow. The two-dimensional reference metrics studied in our tests all evolve under Ricci flow to metrics having constant 
scalar curvatures.

Ricci flow also has smoothing properties similar to the heat equation: solutions to the Ricci flow equation on compact 
manifolds become smooth, in fact real-analytic, for t > 0 provided the initial curvature is bounded (which is the case for 
our C1 reference metrics) [32,33]. Our numerical evolutions show smoothing of the metrics that is consistent with this 
fact. The presence of the DeTurck gauge-fixing terms, however, somewhat obfuscates this question of smoothness. Our 
evolutions show that the DeTurck gauge-fixing covector Hi is zero, up to truncation level errors, throughout the evolutions. 
The connection �k

i j of the metric gij at the end of our Ricci flow evolutions could (in principle) therefore retain some of the 

non-smooth features of the reference connection �̃k
i j , since Hi = 0 = gij gk�(�

j
k�

− �̃
j

k�
). However, the vanishing of Hi shows 

that the evolved metric satisfies the original Ricci flow equation without the DeTurck terms, and thus must be smooth 
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by the aforementioned theorems [32,33]. Hence any non-smoothness of the connection must just reflect the (non-smooth) 
coordinate transitions at the interface boundaries.

We made some effort to avoid even the potential effects of the non-smoothness of the connection associated with 
the DeTurck terms by modifying the basic Ricci flow Eq. (29) in various ways. For example, we attempted to carry out 
numerical Ricci flow evolutions without including the DeTurck terms at all, i.e., simply by setting Hi = 0 in Eq. (29). All 
of these evolutions were unstable. The DeTurck terms were added to the Ricci flow equation to make it strongly parabolic 
and thereby manifestly well-posed [25]. Without the DeTurck terms, the basic Ricci flow equations may simply be ill-suited 
for numerical solution. We also tried modifying the DeTurck terms in a way that would attempt to drive the solution to 
harmonic gauge, i.e., to a gauge in which 0 = gij�k

i j . We did this by changing the definition of Hi to give the reference 

connection an explicit time dependence, as in Hi = gij gk�(�
j

k�
− e−μt �̃

j
k�

), for example. Unfortunately all of these runs 
failed as well. While these runs appeared to be stable, the Ricci flows in these cases did not evolve toward metrics having 
constant scalar curvatures, and the DeTurck gauge-source covector Hi did not remain small during the evolutions.

We plan to continue to search for effective and efficient ways to construct reference metrics on manifolds with arbitrary 
spatial topologies. In two dimensions the remaining questions are related to finding better gauge conditions for the reference 
metrics. In three and higher dimensions the challenge will be to find efficient ways to implement the general techniques 
developed here.
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Appendix A. Uniqueness of the C 1 multicube differential structure

The traditional definition of a Ck differential structure on a manifold consists of an atlas of coordinate charts having 
the property that the transition maps between overlapping charts are Ck+1 functions.2 Tensor fields are defined to be Ck

with respect to this differential structure if their components when represented in terms of this atlas are Ck functions. In 
a multicube representation of a manifold, we define the continuity of tensor fields and their derivatives instead using the 
Jacobians and the connection determined by a reference metric. This enables us to define these concepts without needing an 
overlapping Ck+1 atlas. The two definitions of differential structure are equivalent on any manifold having both a multicube 
structure and a Ck+1 atlas. In this appendix we consider the technical question of the uniqueness of the multicube method 
of specifying the differential structure.

The purpose of this appendix is to show that the C1 differential structure of a multicube manifold defined by a particular 
C1 reference metric is independent of the choice of reference metric. In particular, we show that the definitions of continuity 
of tensor fields and their covariant derivatives based on a C1 reference metric g̃ab are the same as those based on any other 
C1 metric ǧab , i.e., any metric ǧab that is continuous and whose covariant gradient ∇̃a ǧbc is continuous with respect to the 
differential structure defined by g̃ab . Since any Ck metric with k ≥ 1 is also C1, this argument implies that the C1 differential 
structure defined by the C1 metric g̃ab is also equivalent to the C1 differential structure defined by any Ck metric ǧab .

We have shown [19] how the differential structure for a multicube representation of a manifold may be specified by giv-
ing a C1 metric g̃ab represented in the global Cartesian multicube coordinate basis.3 This method of defining the differential 
structure constructs Jacobians J̃ Aαa

Bβb and their duals J̃∗Bβb
Aαa that transform tensors from the ∂βBB face of cubic region BB to 

the ∂αBA face of cubic region BA . These Jacobians are determined by the metric g̃ab and the rotation matrices C Aαa
Bβb that 

define the identification maps (cf. Appendix B) between neighboring regions. The expressions for these Jacobians are given 
by Lindblom and Szilágyi [19]:

J̃ Aαa
Bβb = C Aαa

Bβc

(
δc

b − ñc
Bβ ñBβb

)
− ña

AαñBβb, (A.1)

J̃∗Bβb
Aαa = (

δc
a − ñAαañc

Aα

)
C Bβb

Aαc − ñAαañb
Bβ . (A.2)

2 We use the slightly non-standard terminology that a Ck differential structure is needed to define Ck tensor fields. This choice implies that the transition 
maps between overlapping domains in the atlas must be Ck+1.

3 While the global Cartesian multicube coordinates are severely constrained (e.g., the faces of the cubic-block regions are required to be constant coordi-
nate surfaces on which the values of the surface coordinates have particular fixed values), they are not fixed uniquely. The remaining coordinate freedom 
is discussed at the end of this appendix, but for the first part of this discussion we assume that all tensor fields are represented in one particular choice of 
these global Cartesian multicube coordinates.
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The vectors ña
Aα and ña

Bβ that appear in these expressions represent the outward directed unit normal vectors to the ∂αBA

face of region BA and the ∂βBB face of cubic region BB , respectively. These normals are unit vectors with respect to 
the g̃ab metric, i.e., 1 = g̃ Aabña

Aαñb
Aα = g̃Babña

Bβ ñb
Bβ . These Jacobians, defined in Eqs. (A.1) and (A.2), determine the way 

continuous tensor fields transform across interface boundaries. The reference metric also determines a covariant derivative 
∇̃a that, together with the Jacobians, defines how C1 tensor fields transform across interface boundaries. These definitions 
of continuity for tensor fields and their derivatives determine the C1 differential structure of the manifold. The question of 
the uniqueness of the C1 differential structure reduces therefore to the questions of the uniqueness of the Jacobians J̃ Aαa

Bβb , 
and of the uniqueness of the continuity of the derivatives determined by the covariant derivative ∇̃a .

The normal covectors ñAαa that appear in Eqs. (A.1) and (A.2) are proportional to the gradients of the x|α|
A = constant

coordinate surfaces that define the particular boundary face of the region (i.e., in this case the α face of region A):

ñAαa = Ñ Aα∂ax|α|
A . (A.3)

The index α can have either sign, e.g., to represent the +x or the −x coordinate boundary face. The notation x|α|
A indicates 

the coordinate associated with either case—i.e., both the +x and the −x faces are surfaces of constant xx
A . The proportionality 

constant Ñ Aα in Eq. (A.3) is determined by the requirement that ñAαa is a unit covector with respect to the reference metric 
g̃ Aab:

Ñ−2
Aα = g̃ab

A ∂ax|α|
A ∂bx|α|

A . (A.4)

The sign of Ñ Aα is chosen to ensure that ñAαa is the outward directed normal. The normal vector is defined as the dual to 
this normal covector: ña

Aα = g̃ab
A ñAαb .

The Jacobians defined in Eqs. (A.1) and (A.2) transform these normals across interface boundaries in the appropriate way:

ña
Aα = − J̃ Aαa

Bβb ñb
Bβ, (A.5)

ñAαa = − J̃∗Bβb
Aαa ñBβb. (A.6)

They also transform vectors ta
Bβ that are tangent to the interface, ñAαata

Aα = 0, by the rotations C Aαa
Bβb used to define the 

interface boundary maps (cf. Appendix B):

ta
Aα = J̃ Aαa

Bβb tb
Bβ = C Aαa

Bβb tb
Bβ . (A.7)

These Jacobians and dual Jacobians are inverses of each other as well (cf. Ref. [19]):

δa
b = J̃ Aαa

Bβc J̃∗Bβc
Aαb . (A.8)

Now consider a second positive-definite metric ǧab that is C1 with respect to the differential structure defined by the 
metric g̃ab . This second metric can be used to define alternate normal covectors ňAαa = Ň Aα∂ax|α|

A and vectors ňa
Aα =

ǧab
A ňAαb , with Ň−2

Aα = ǧab
A ∂ax|α|

A ∂bx|α|
A . It follows from Eq. (A.6) and the continuity of ǧab that the norm of ñAαa with respect 

to ǧab is continuous across interface boundaries:

ǧab
A ñAαañAαb = ǧab

B ñBβañBβb. (A.9)

This norm can be rewritten as

ǧab
A ñAαañAαb = Ñ2

Aα ǧab
A ∂ax|α|

A ∂bx|α|
A =

(
Ñ Aα

Ň Aα

)2

. (A.10)

Equation (A.9) therefore implies the continuity of the ratio Ñ Aα/Ň Aα across interface boundaries. The alternate normal ňAαa , 
which can be written as ňAαa = (Ň Aα/Ñ Aα)ñAαa , is therefore continuous (up to a sign flip) across interface boundaries. This 
also implies that the alternate normal vector ňa

Aα = ǧab
A ňAαb is continuous. These alternate normals must therefore satisfy 

the same continuity conditions (up to the sign flips) across interface boundaries as any continuous tensor field:

ňa
Aα = − J̃ Aαa

Bβb ňb
Bβ, (A.11)

ňAαa = − J̃∗Bβb
Aαa ňBβb. (A.12)

The normal vector ña
Aα together with a collection of linearly independent tangent vectors, i.e., vectors ta

Aα(k)
satisfying 

0 = ta
Aα(k)

ñAαa , can be used as a basis of vector fields on the boundary. Therefore any vector field, including ňa
Aα , can be 

expressed as a linear combination of the form

ňa
Aα = Q ña

Aα +
∑

ck ta
Aα(k). (A.13)
k
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Contracting this expression with ñAαa and using Eq. (A.10), it follows that Q = Ñ Aα/Ň Aα . Note that the tangent vectors 
ta

Aα(k)
, which are orthogonal to ñAαa by definition, are also orthogonal to ňAαa . Therefore, the alternate normal ňa

Aα together 
with a linearly independent collection of tangent vectors can also be used as a basis of vectors on the boundary.

Next define alternate Jacobians J̌ Aαa
Bβb and J̌∗Bβb

Aαa using the alternate metric ǧab:

J̌ Aαa
Bβb = C Aαa

Bβc

(
δc

b − ňc
Bβ ňBβb

)
− ňa

AαňBβb, (A.14)

J̌∗Bβb
Aαa = (

δc
a − ňAαaňc

Aα

)
C Bβb

Aαc − ňAαaňb
Bβ . (A.15)

These alternate Jacobians transform the alternate normal ňa
Aα and any tangent vector ta

Aα(k)
in the following way:

ňa
Aα = − J̌ Aαa

Bβb ňb
Bβ, (A.16)

ta
Aα(k) = J̌ Aαa

Bβb tb
Bβ(k) = C Aαa

Bβb tb
Bβ(k). (A.17)

The alternative Jacobian and its dual are also inverse of each other:

δa
b = J̌ Aαa

Bβc J̌∗Bβc
Aαb . (A.18)

The action of the alternate Jacobians J̌ Aαa
Bβb on the basis of vectors consisting of ňa

Aa and a collection of tangent vectors ta
Aα(k)

, 
Eqs. (A.16) and (A.17), is identical to the action of the original Jacobians J̃ Aαa

Bβb on this basis, Eqs. (A.7) and (A.11). It follows 
that the alternate Jacobians must be identical to the originals:

J̌ Aαa
Bβb = J̃ Aαa

Bβb . (A.19)

Since the alternate dual Jacobians J̌∗Bβb
Aαa are the inverses of the alternate Jacobians, they must also be identical to the 

original dual Jacobians (which are the inverses of the original Jacobians). We have shown therefore that the Jacobians used 
to define the continuity of tensor fields across boundary interfaces do not depend on which metric is used to construct 
them. This argument depends only on the continuity of those metrics (not their derivatives).

Now consider the uniqueness of the multicube definition of the continuity of the derivatives of tensor fields. Let ∇̃a and 
∇̌a denote the covariant derivatives defined by the C1 reference metric g̃ab and the C1 reference metric ǧab , respectively. 
Let va and wa denote vector and covector fields that are continuous across the interface boundaries, as defined by the 
Jacobians constructed from either of the reference metrics. Assume that ∇̃a vb and ∇̃a wb are also continuous across interface 
boundaries. The differences between these tensors and those computed using the alternate covariant derivative ∇̌a are 
tensors:

∇̃a vb − ∇̌a vb = �b
ac vc, (A.20)

∇̃a wb − ∇̌a wb = −�c
ab wc . (A.21)

The quantity �b
ac = �̃b

ac − �̌b
ac , being the difference between connections, is also a tensor. It is continuous across interface 

boundaries as long as the two metrics g̃ab and ǧab used to construct it are both C1. Continuity of the derivatives ∇̃a vb and 
∇̃a wb across interface boundaries therefore implies the continuity of the alternative derivatives ∇̌a vb and ∇̌a wb .

The equality of the Jacobians J̃ Aαa
Bβb and J̌ Aαa

Bβb , together with the continuity of the covariant derivatives ∇̃a and ∇̌a , implies 
that the C1 differential structure constructed from the C1 metric g̃ab is equivalent to the one constructed from any alternate 
C1 metric ǧab . In dimensions two and three there is only one differential structure on a particular manifold [34]. In those 
cases, this argument shows that the C1 differential structures determined by any two C1 metrics are equivalent. In higher 
dimensional manifolds, however, there can be multiple inequivalent differential structures [34]. The argument given here 
only establishes the independence of the multicube differential structure constructed from reference metrics belonging to 
the same differential structure in those cases.

The uniqueness of the Jacobians J Aα a
Bβ b discussed above assumed a particular fixed choice of global Cartesian multicube 

coordinates. Although these Cartesian multicube coordinates are severely restricted, they are not unique. The two assump-
tions made about them are the following. First, the faces of each cubic-block region are assumed to be constant-coordinate 
surfaces. And second, the interface boundary maps identify points in the manifold across boundaries in a particular way 
(cf. Appendix B). The global Cartesian multicube coordinates on these manifolds can therefore be modified in any way that 
leaves their interface boundary values and the identification of points on the interface boundaries unchanged. The coordi-
nates can be modified smoothly in the interior of each cubic-block region, for example, while keeping their values fixed on 
their faces. More generally, the coordinates can be adjusted smoothly even on the boundary faces as long as complementary 
adjustments are made to the corresponding coordinates in the neighboring region.

Let xa
A denote one particular choice of coordinates on region A, and let x̄a

A denote another set of smoothly related co-
ordinates that satisfy the restrictions described above. Also assume that the Jacobians ∂ x̄a

A/∂xb
A are everywhere nonsingular 

and nondegenerate. Let va
A and w Aa denote a smooth vector and covector fields in region A. The representations of these 

fields within this region using the x̄a coordinates are given by the standard expressions
A
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v̄a
A = ∂ x̄a

A

∂xb
A

vb
A, (A.22)

w̄ Aa = ∂xb
A

∂ x̄a
A

w Ab. (A.23)

Analogous changes of coordinates can be made in each of the cubic-block regions. The resulting Jacobians J̄ Aα a
Bβ b needed to 

transform tensor fields represented in the x̄a
A coordinates are related to those of the original fixed coordinates J Aα a

Bβ b by the 
following transformations:

J̄ Aα a
Bβ b = J Aα c

Bβ d

∂ x̄a
A

∂xc
A

∂xd
B

∂ x̄b
B

. (A.24)

This multicube coordinate freedom does not require ∂ x̄a
A/∂xb

A to be the identity δa
b on the faces of the multicube regions, 

and consequently the Jacobians J̄ Aα a
Bβ b need not be identical to J Aα a

Bβ b . Nevertheless, the formulas for the Jacobians, Eqs. (A.1)
and (A.2), have the same form in any particular multicube coordinate system. When the individual elements (e.g., na

Aα ) that 
enter these equations for J Aα a

Bβ b are transformed to a different coordinate basis using Eqs. (A.22) and (A.23), the resulting 
J̄ Aα a

Bβ b is related to the original Jacobian by Eq. (A.24). This equation represents the coordinate freedom that exists in the 
expressions for the interface Jacobians on multicube manifolds within a particular differential structure. Every two- and 
three-dimensional manifold has a unique global differential structure, and therefore Eq. (A.24) represents all the freedom 
that exists in the boundary interface Jacobians on those manifolds.

Appendix B. Two-dimensional multicube manifolds

The purpose of this appendix is to present explicit multicube representations of compact, orientable two-dimensional 
manifolds with genera between zero and three. A straightforward procedure allows us to extend these examples to arbitrary 
genus by gluing together copies of the Ng = 2 multicube structures. The topologies of all these two-dimensional manifolds 
are uniquely determined by their genus Ng , which can have non-negative integer values. The case Ng = 0 is the two-sphere, 
S2, and Ng = 1 is the two-torus, T 2. Larger values of Ng can be thought of as two-spheres with Ng handles attached.

A multicube representation of a manifold consists of a collection of multicube regions BA together with maps � Aα
Bβ that 

determine how the boundaries ∂αBA of these regions are connected together. We choose multicube regions BA that have 
uniform coordinate size L and that are all aligned in Rn with the global Cartesian coordinate axes. We position these BA in 
R

n in such a way that regions intersect (if at all) only along boundaries that are identified with one another by one of the 
� Aα

Bβ maps. For each multicube manifold, we provide a table of vectors �c A that represent the global Cartesian coordinates 
of the centers of each of the multicube regions BA . These tables serve as lists of the regions BA that are to be included 
in each particular multicube representation. We also provide tables of all of the interface boundary identifications for each 
multicube representation. A typical entry in one of these tables is an expression of the form ∂+xB2 ↔ ∂−yB3, which would 
indicate that the +x boundary of multicube B2 is to be identified with the −y boundary of multicube B3.

The boundary identification maps used in our multicube manifolds are simple linear transformations of the form

xi
A = ci

A + f i
α + C Aα i

Bβ j(x j
B − c j

B − f j
β). (B.1)

This transformation takes points labeled by the global Cartesian coordinates x j
B on the boundary ∂βBB to points labeled 

by the global Cartesian coordinates xi
A on the boundary ∂αBA . The constants ci

A represent the location of the center of 
multicube region BA , while the constants f i

α represent the position of the center of the α face relative to the center of the 
region. Since we have chosen the regions to have uniform sizes and orientations, the constants f i

α have the same form in 
each multicube region:

f i±x = 1
2 L(±1,0), (B.2)

f i±y = 1
2 L(0,±1). (B.3)

The matrix CAα
Bβ which appears in Eq. (B.1) is the combined rotation and reflection matrix needed to reorient the ∂βBB

boundary with ∂αBA . Our specification of a particular multicube representation includes the matrices CAα
Bβ for each interface 

boundary identification map. The list of possible matrices is quite small in two-dimensions, consisting of the identity I, 
various combinations of 90-degree rotations R± , and reflections M. Explicit representations of these matrices in terms of 
the global Cartesian coordinate basis are given by

I =
(

1 0
0 1

)
, R± =

(
0 ∓1

±1 0

)
, M =

( −1 0
0 1

)
. (B.4)
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Fig. B.1. Six-region, NR = 6, multicube representation of the genus Ng = 0 manifold, the two-sphere, S2. Left figure shows a multicube representation using 
distorted squares to indicate as many interfacial connections as possible. Greek letters indicate identifications between external edges. Right figure shows 
the same multicube representation using uniformly sized, undistorted squares, including their relative locations in the background Euclidean space.

Table B.1
Region center locations for the six-region, NR = 6, genus Ng = 0 multicube manifold.

�c A = (x, y)

�c1 = (0,0) �c2 = (L, L) �c3 = (L,0)

�c4 = (L,−L) �c5 = (2L,0) �c6 = (3L,0)

Table B.2
Region interface identifications ∂αBA ↔ ∂βBB for the six-region, NR = 6, representation 
of the genus Ng = 0 manifold, the two-sphere, S2.

∂αBA ↔ ∂βBB

∂+xB1 ↔ ∂−xB3 ∂−xB1 ↔ ∂+xB6 ∂+yB1 ↔ ∂−xB2 ∂−yB1 ↔ ∂−xB4

∂+xB2 ↔ ∂+yB5 ∂+yB2 ↔ ∂+yB6 ∂−yB2 ↔ ∂+yB3 ∂+xB3 ↔ ∂−xB5

∂−yB3 ↔ ∂+yB4 ∂+xB4 ↔ ∂−yB5 ∂−yB4 ↔ ∂−yB6 ∂+xB5 ↔ ∂−xB6

Table B.3
Transformation matrices CAα

Bβ for the interface identifications ∂αBA ↔ ∂βBB in the six-

region, NR = 6, representation of the genus Ng = 0 manifold, the two-sphere, S2. All 
transformation matrices CAα

Bβ are assumed to be the identity I, except those specified in 
this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+yB1 ↔ ∂−xB2 R+ R− ∂−yB1 ↔ ∂−xB4 R− R+
∂+xB2 ↔ ∂+yB5 R+ R− ∂+yB2 ↔ ∂+yB6 R2+ R2−
∂−yB4 ↔ ∂−yB6 R2+ R2− ∂+xB4 ↔ ∂−yB5 R− R+

In the following sections we give the specific matrices CAα
Bβ and their inverses CBβ

Aα needed for each interface boundary 
identification ∂αBA ↔ ∂βBB of each multicube manifold. The methods and the notation used here are the same as those 
developed in Ref. [19].

B.1. Six-region, NR = 6, representation of the genus Ng = 0 multicube manifold

The locations of the six square regions used to construct this representation of S2 are illustrated in Fig. B.1. The values 
of the square-center location vectors �c A for this configuration are summarized in Table B.1. The inner edges of the touching 
squares in the right side of Fig. B.1 are connected by identity maps. The identifications of all the edges of the regions are 
described in Table B.2, and the corresponding transformation matrices are given in Table B.3. This six-region representation 
of S2 is equivalent to the standard two-dimensional cubed-sphere representation of S2 [35–37].

B.2. Ten-region, NR = 10, representation of the genus Ng = 0 multicube manifold

The locations of the ten square regions used to construct this representation of S2 are illustrated in Fig. B.2. The values 
of the square-center location vectors �c A for this configuration are summarized in Table B.4. The inner edges of the touching 
squares in the right side of Fig. B.2 are assumed to be connected by identity maps. The identifications of all the edges of 
the regions are described in Table B.5, and the corresponding transformation matrices are given in Table B.6. This ten-region 
representation of S2 is a simple generalization of the standard two-dimensional cubed-sphere representation of S2. It is 
constructed by splitting the four “equatorial” squares in the standard six-region representation into eight squares with the 
new interface boundaries running along the equator.



L. Lindblom et al. / Journal of Computational Physics 313 (2016) 31–56 51
Fig. B.2. Ten-region, NR = 10, multicube representation of the genus Ng = 0 manifold, the two-sphere, S2. Left figure shows a multicube representation 
using distorted squares to indicate as many interfacial connections as possible. Greek letters indicate identifications between external edges. Right figure 
shows the same multicube representation using uniformly sized, undistorted squares, including their relative locations in the background Euclidean space.

Table B.4
Region center locations for the ten-region, NR = 10, genus Ng = 0 multicube manifold.

�c A = (x, y)

�c1 = (0,0) �c2 = (L, L) �c3 = (L,0) �c4 = (L,−L) �c5 = (2L,0)

�c6 = (3L,0) �c7 = (4L, L) �c8 = (4L,0) �c9 = (4L,−L) �c10 = (5L,0)

Table B.5
Region interface identifications ∂αBA ↔ ∂βBB for the ten-region, NR = 10, representa-
tion of the genus Ng = 0 manifold, the two-sphere, S2.

∂αBA ↔ ∂βBB

∂+xB1 ↔ ∂−xB3 ∂−xB1 ↔ ∂+xB10 ∂+yB1 ↔ ∂−xB2 ∂−yB1 ↔ ∂−xB4

∂+xB2 ↔ ∂+yB5 ∂+yB2 ↔ ∂+yB7 ∂−yB2 ↔ ∂+yB3 ∂+xB3 ↔ ∂−xB5

∂−yB3 ↔ ∂+yB4 ∂+xB4 ↔ ∂−yB5 ∂−yB4 ↔ ∂−yB9 ∂+xB5 ↔ ∂−xB6

∂+xB6 ↔ ∂−xB8 ∂+yB6 ↔ ∂−xB7 ∂−yB6 ↔ ∂−xB9 ∂+xB7 ↔ ∂+yB10

∂−yB7 ↔ ∂+yB8 ∂+xB8 ↔ ∂−xB10 ∂−yB8 ↔ ∂+yB9 ∂+xB9 ↔ ∂−yB10

Table B.6
Transformation matrices CAα

Bβ for the interface identifications ∂αBA ↔ ∂βBB in the ten-

region, NR = 10, representation of the genus Ng = 0 manifold, the two-sphere, S2. All 
transformation matrices CAα

Bβ are assumed to be the identity I, except those specified in 
this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+yB1 ↔ ∂−xB2 R+ R− ∂−yB1 ↔ ∂−xB4 R− R+
∂+xB2 ↔ ∂+yB5 R+ R− ∂+yB2 ↔ ∂+yB7 R2+ R2−
∂−yB4 ↔ ∂−yB9 R2+ R2− ∂+xB4 ↔ ∂−yB5 R− R+
∂+yB6 ↔ ∂−xB7 R+ R− ∂−yB6 ↔ ∂−xB9 R− R+
∂+xB7 ↔ ∂+yB10 R+ R− ∂+xB9 ↔ ∂−yB10 R− R+

Table B.7
Region center locations for the ten-region, NR = 10, genus Ng = 1 multicube manifold.

�c A = (x, y)

�c1 = (0,0) �c2 = (L, L) �c3 = (L,0) �c4 = (L,−L) �c5 = (2L,0)

�c6 = (3L,0) �c7 = (4L, L) �c8 = (4L,0) �c9 = (4L,−L) �c10 = (5L,0)

B.3. Ten-region, NR = 10, representation of the genus Ng = 1 multicube manifold

The locations of the ten square regions used to construct this representation of T 2 are illustrated in Fig. B.3. The values 
of the square-center location vectors �c A for this configuration are summarized in Table B.7. The inner edges of the touching 
squares in the right side of Fig. B.3 are connected by identity maps. The identifications of all the edges of the regions are 
described in Table B.8, and the corresponding transformation matrices are given in Table B.9. This ten-region representation 
of T 2 is a simple generalization of the standard one-region representation. The outer edges of the squares in the left 
illustration in Fig. B.3 are identified with the opposing outer edges using identity maps, just as in the standard one-region 
representation of T 2. This ten-region representation merely subdivides the single-region representation into ten regions, as 
shown in Fig. B.3.
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Fig. B.3. Ten-region, NR = 10, multicube representation of the genus Ng = 1 manifold, the two-torus, T 2. Left figure shows a multicube representation using 
distorted squares to indicate as many interfacial connections as possible. Greek letters indicate identifications between external edges. Right figure shows 
the same multicube representation using uniformly sized, undistorted squares, including their relative locations in the background Euclidean space.

Table B.8
Region interface identifications ∂αBA ↔ ∂βBB for the ten-region, NR = 10, representa-
tion of the genus Ng = 1 manifold, the two-torus, T 2.

∂αBA ↔ ∂βBB

∂+xB1 ↔ ∂−xB3 ∂−xB1 ↔ ∂+xB10 ∂+yB1 ↔ ∂−xB2 ∂−yB1 ↔ ∂−xB4

∂+xB2 ↔ ∂+yB5 ∂+yB2 ↔ ∂−yB4 ∂−yB2 ↔ ∂+yB3 ∂+xB3 ↔ ∂−xB5

∂−yB3 ↔ ∂+yB4 ∂+xB4 ↔ ∂−yB5 ∂+xB5 ↔ ∂−xB6 ∂+xB6 ↔ ∂−xB8

∂+yB6 ↔ ∂−xB7 ∂−yB6 ↔ ∂−xB9 ∂+xB7 ↔ ∂+yB10 ∂+yB7 ↔ ∂−yB9

∂−yB7 ↔ ∂+yB8 ∂+xB8 ↔ ∂−xB10 ∂−yB8 ↔ ∂+yB9 ∂+xB9 ↔ ∂−yB10

Table B.9
Transformation matrices CAα

Bβ for the region interface identifications ∂αBA ↔ ∂βBB in the 
ten-region, NR = 10, representation of the genus Ng = 1 manifold, the two-torus, T 2. All 
transformation matrices CAα

Bβ are assumed to be the identity I, except those specified in 
this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+yB1 ↔ ∂−xB2 R+ R− ∂−yB1 ↔ ∂−xB4 R− R+
∂+xB2 ↔ ∂+yB5 R+ R− ∂+xB4 ↔ ∂−yB5 R− R+
∂+yB6 ↔ ∂−xB7 R+ R− ∂−yB6 ↔ ∂−xB9 R− R+
∂+xB7 ↔ ∂+yB10 R+ R− ∂+xB9 ↔ ∂−yB10 R− R+

Table B.10
Region center locations for the eight-region, NR = 8, genus Ng = 1 multicube manifold.

�c A = (x, y)

�c1 = (L,2L) �c2 = (L, L) �c3 = (L,0) �c4 = (L,−L)

�c5 = (0,−L) �c6 = (0,0) �c7 = (0, L) �c8 = (0,2L)

B.4. Eight-region, NR = 8, representation of the genus Ng = 1 multicube manifold

The locations of the eight square regions used to construct this representation of T 2 are illustrated in Fig. B.4. The 
values of the square-center location vectors �c A for this configuration are summarized in Table B.10. The inner edges of the 
touching squares in Fig. B.4 are connected by identity maps. The identifications of all the edges of the regions are described 
in Table B.11. All of the interface identification maps have transformation matrices CAα

Bβ that are the identity matrix I, so they 
are not included in a table for this case. This eight-region, NR = 8, representation of T 2 is constructed by gluing a handle 
onto the ten-region representation of S2 described in Appendix B.2. The two inner regions (3 and 8 in Fig. B.2) are removed, 
and the holes created in this way are connected together to form a handle. The outer edges in this eight-region, NR = 8, 
representation of T 2 are therefore connected together, as shown in the left side of Fig. B.4, using the same identification 
maps as in the ten-region representation of S2 shown in the left side of Fig. B.2. The inner edges that make up the handle 
in this new representation are identified as indicated by the Greek letters in Fig. B.4.

B.5. Eight-region, NR = 8, representation of the genus Ng = 2 multicube manifold

The locations of the eight square regions used to construct this representation of the genus N g = 2 manifold, the two-
handled sphere, are illustrated in Fig. B.5. The values of the square-center location vectors �c A for this configuration are 
summarized in Table B.12. The inner edges of the touching squares in Fig. B.5 are connected by identity maps. The identifi-
cations of all the edges of the regions are described in Table B.13, and the corresponding transformation matrices are given 
in Table B.14. This representation of the two-handled sphere is constructed by starting with the ten-region representation 
of the two-torus shown in Fig. B.3, removing the two internal regions (3 and 8 in Fig. B.3), and then connecting together 
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Fig. B.4. Alternative eight-region, NR = 8, multicube representation of the genus Ng = 1 manifold, the two-torus, T 2. Left illustration shows a multicube 
representation using distorted squares to indicate as many interfacial connections as possible. Greek letters indicate identifications between external edges. 
Right illustration shows the same multicube representation using uniformly sized, undistorted squares, including their relative locations in the background 
Euclidean space. The locations of the regions in the right illustration were chosen to show explicitly as many nearest neighbor identifications as possible.

Table B.11
Region interface identifications ∂αBA ↔ ∂βBB for the eight-region, NR = 8, representa-
tion of the genus Ng = 1 manifold, the two-torus, T 2.

∂αBA ↔ ∂βBB

∂+xB1 ↔ ∂−xB8 ∂−xB1 ↔ ∂+xB8 ∂+yB1 ↔ ∂−yB4 ∂−yB1 ↔ ∂+yB2

∂+xB2 ↔ ∂−xB7 ∂−xB2 ↔ ∂+xB7 ∂−yB2 ↔ ∂+yB3 ∂+xB3 ↔ ∂−xB6

∂−xB3 ↔ ∂+xB6 ∂−yB3 ↔ ∂+yB4 ∂+xB4 ↔ ∂−xB5 ∂−xB4 ↔ ∂+xB5

∂+yB5 ↔ ∂−yB6 ∂−yB5 ↔ ∂+yB8 ∂+yB6 ↔ ∂−yB7 ∂+yB7 ↔ ∂−yB8

Fig. B.5. Eight-region, NR = 8, multicube representation of the genus Ng = 2 manifold, the two-handled sphere. Left illustration shows a multicube rep-
resentation using distorted squares that are arranged to indicate the association of this case with the NR = 10 representation of the Ng = 1 manifold. 
Greek letters indicate identifications between external faces. Right illustration shows the same multicube representation using uniformly sized, undistorted 
squares, including their relative locations in the background Euclidean space. The locations of the regions in the right illustration were chosen to show 
explicitly as many nearest neighbor identifications as possible.

Table B.12
Region center locations for the eight-region, NR = 8, genus Ng = 2 multicube manifold.

�c A = (x, y)

�c1 = (L,2L) �c2 = (L, L) �c3 = (L,0) �c4 = (L,−L)

�c5 = (0,−L) �c6 = (0,0) �c7 = (0, L) �c8 = (0,2L)

the holes created in this way to form the second handle. The outer edges in this eight-region representation of the genus 
Ng = 2 manifold are therefore connected together, as shown in the left side of Fig. B.5, using the same identification maps 
as in the ten-region representation of T 2 shown in the left side of Fig. B.3. The inner edges that make up the handle in this 
new representation are identified as indicated by the Greek letters in Fig. B.5.

B.6. Ten-region, NR = 10, representation of the genus Ng = 2 multicube manifold

The locations of the ten square regions used to construct this representation of the genus N g = 2 manifold, the two-
handled sphere, are illustrated in Fig. B.6. The values of the square-center location vectors �c A for this configuration are 
summarized in Table B.15. The inner edges of the touching squares in Fig. B.6 are connected by identity maps. The identifi-
cations of all the edges of the regions are described in Table B.16, and the corresponding transformation matrices are given 
in Table B.17. This representation of the two-handled sphere is constructed by starting with the eight-region representation 
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Table B.13
Region interface identifications ∂αBA ↔ ∂βBB for the eight-region, NR = 8, representa-
tion of the genus Ng = 2 manifold, the two-handled sphere.

∂αBA ↔ ∂βBB

∂+xB1 ↔ ∂−xB8 ∂−xB1 ↔ ∂+xB8 ∂+yB1 ↔ ∂−yB4 ∂−yB1 ↔ ∂+yB2

∂−xB2 ↔ ∂+xB7 ∂+xB2 ↔ ∂+xB4 ∂−yB2 ↔ ∂+yB3 ∂+xB3 ↔ ∂−xB6

∂−xB3 ↔ ∂+xB6 ∂−yB3 ↔ ∂+yB4 ∂−xB4 ↔ ∂+xB5 ∂−xB5 ↔ ∂−xB7

∂+yB5 ↔ ∂−yB6 ∂−yB5 ↔ ∂+yB8 ∂+yB6 ↔ ∂−yB7 ∂+yB7 ↔ ∂−yB8

Table B.14
Transformation matrices CAα

Bβ for the region interface identifications ∂αBA ↔ ∂βBB in 
the eight-region, NR = 8, representation of the genus Ng = 2 manifold, the two-handled 
sphere. All transformation matrices CAα

Bβ are assumed to be the identity I, except those 
specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+xB2 ↔ ∂+xB4 R2− R2+
∂−xB5 ↔ ∂−xB7 R2+ R2−

Fig. B.6. Ten-region, NR = 10, multicube representation of the genus Ng = 2 manifold, the two-handled sphere. Left illustration shows a multicube rep-
resentation using distorted squares that are arranged to indicate the association of this case with the NR = 10 representation of the Ng = 1 manifold. 
Greek letters indicate identifications between external faces. Right illustration shows the same multicube representation using uniformly sized, undistorted 
squares, including their relative locations in the background Euclidean space. The locations of the regions in the right illustration were chosen to show 
explicitly as many nearest neighbor identifications as possible.

Table B.15
Region center locations for the ten-region, NR = 10, genus Ng = 2 multicube manifold.

�c A = (x, y)

�c1 = (L,2L) �c2 = (L, L) �c3 = (L,0) �c4 = (L,−L) �c5 = (0,−L)

�c6 = (0,0) �c7 = (0, L) �c8 = (0,2L) �c9 = (−L,0) �c10 = (−L,2L)

Table B.16
Region interface identifications ∂αBA ↔ ∂βBB for the ten-region, NR = 10, representa-
tion of the genus Ng = 2 manifold, the two-handled sphere.

∂αBA ↔ ∂βBB

∂+xB1 ↔ ∂−xB10 ∂−xB1 ↔ ∂+xB8 ∂+yB1 ↔ ∂−yB4 ∂−yB1 ↔ ∂+yB2

∂−xB2 ↔ ∂+xB7 ∂+xB2 ↔ ∂+xB4 ∂−yB2 ↔ ∂+yB3 ∂+xB3 ↔ ∂−xB9

∂−xB3 ↔ ∂+xB6 ∂−yB3 ↔ ∂+yB4 ∂−xB4 ↔ ∂+xB5 ∂−xB5 ↔ ∂−xB7

∂+yB5 ↔ ∂−yB6 ∂−yB5 ↔ ∂+yB8 ∂−xB6 ↔ ∂+xB9 ∂+yB6 ↔ ∂−yB7

∂+yB7 ↔ ∂−yB8 ∂−xB8 ↔ ∂+xB10 ∂+yB9 ↔ ∂−yB9 ∂+yB10 ↔ ∂−yB10

shown in Fig. B.5 and adding additional squares to separate more distinctly the ends of the second handle on the torus. The 
outer edges in this ten-region representation of the genus Ng = 2 manifold are therefore connected together as shown in 
Fig. B.6. This representation has the advantage that it reduces the maximum number of squares meeting at a single vertex 
from eight to six. The reference metric in this case therefore requires less distortion of the flat metric pieces that go into its 
construction.

B.7. Representations of genus Ng ≥ 3 multicube manifolds using 10(Ng − 1) regions

Multicube representations of two-dimensional manifolds with genera N g ≥ 3 can be constructed by gluing together 
copies of the genus Ng = 2 multicube manifold depicted in Fig. B.6. This is done by breaking the interface identifications 
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Table B.17
Transformation matrices CAα

Bβ for the region interface identifications ∂αBA ↔
∂βBB in the ten-region, NR = 10, representation of the genus Ng = 2 manifold, 
the two-handled sphere. All transformation matrices CAα

Bβ are assumed to be the 
identity I, except those specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+xB2 ↔ ∂+xB4 R2− R2+
∂−xB5 ↔ ∂−xB7 R2+ R2−

Fig. B.7. Twenty-region, NR = 20, multicube representation of the genus Ng = 3 manifold, the three-handled sphere. The touching edges of adjacent squares 
in this figure are identified, while Greek letters indicate identifications between external edges. This representation of the genus Ng = 3 manifold was 
constructed by connecting together two copies of the Ng = 2 manifold illustrated in Fig. B.6.

Table B.18
Region center locations for the twenty-region, NR = 20, genus Ng = 3 multicube mani-
fold, the three-handled sphere.

�c A = (x, y)

�c1 = (L,2L) �c2 = (L, L) �c3 = (L,0) �c4 = (L,−L) �c5 = (0,−L)

�c6 = (0,0) �c7 = (0, L) �c8 = (0,2L) �c9 = (−L,0) �c10 = (−L,2L)

�c1′ = (4L,2L) �c2′ = (4L, L) �c3′ = (4L,0) �c4′ = (4L,−L) �c5′ = (3L,−L)

�c6′ = (3L,0) �c7′ = (3L, L) �c8′ = (3L,2L) �c9′ = (2L,0) �c10′ = (2L,2L)

Table B.19
Region interface identifications, ∂αBA ↔ ∂βBB , for the twenty-region, NR = 20, repre-
sentation of the genus Ng = 3 manifold, the three-handled sphere.

∂αBA ↔ ∂βBB

∂+xB1 ↔ ∂−xB10′ ∂−xB1 ↔ ∂+xB8 ∂+yB1 ↔ ∂−yB4 ∂−yB1 ↔ ∂+yB2

∂−xB2 ↔ ∂+xB7 ∂+xB2 ↔ ∂+xB4 ∂−yB2 ↔ ∂+yB3 ∂+xB3 ↔ ∂−xB9′
∂−xB3 ↔ ∂+xB6 ∂−yB3 ↔ ∂+yB4 ∂−xB4 ↔ ∂+xB5 ∂−xB5 ↔ ∂−xB7

∂+yB5 ↔ ∂−yB6 ∂−yB5 ↔ ∂+yB8 ∂−xB6 ↔ ∂+xB9 ∂+yB6 ↔ ∂−yB7

∂+yB7 ↔ ∂−yB8 ∂−xB8 ↔ ∂+xB10 ∂+yB9 ↔ ∂−yB9 ∂+yB10 ↔ ∂−yB10

∂+xB1′ ↔ ∂−xB10 ∂−xB1′ ↔ ∂+xB8′ ∂+yB1′ ↔ ∂−yB4′ ∂−yB1′ ↔ ∂+yB2′
∂−xB2′ ↔ ∂+xB7′ ∂+xB2′ ↔ ∂+xB4′ ∂−yB2′ ↔ ∂+yB3′ ∂+xB3′ ↔ ∂−xB9

∂−xB3′ ↔ ∂+xB6′ ∂−yB3′ ↔ ∂+yB4′ ∂−xB4′ ↔ ∂+xB5′ ∂−xB5′ ↔ ∂−xB7′
∂+yB5′ ↔ ∂−yB6′ ∂−yB5′ ↔ ∂+yB8′ ∂−xB6′ ↔ ∂+xB9′ ∂+yB6′ ↔ ∂−yB7′
∂+yB7′ ↔ ∂−yB8′ ∂−xB8′ ↔ ∂+xB10′ ∂+yB9′ ↔ ∂−yB9′ ∂+yB10′ ↔ ∂−yB10′

denoted γ and κ in Fig. B.6 and then attaching in their place additional copies of the same multicube structure, as shown 
in Fig. B.7 for the genus Ng = 3 case. Each copy of the genus Ng = 2 multicube structure added in this way increases the 
genus of the resulting manifold by one. The addition of one copy, as shown in Fig. B.7, produces a multicube manifold of 
genus Ng = 3. The values of the square-center location vectors �c A for this genus Ng = 3 case are summarized in Table B.18. 
The inner edges of the touching squares in Fig. B.7 are connected by identity maps. The identifications of all the edges of the 
twenty square regions are described in Table B.19, and the corresponding transformation matrices are given in Table B.20.
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Table B.20
Transformation matrices CAα

Bβ for the region interface identifications ∂αBA ↔ ∂βBB in the 
twenty-region, NR = 20, representation of the genus Ng = 3 manifold, the three-handled 
sphere. All transformation matrices CAα

Bβ are assumed to be the identity I, except those 
specified in this table.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+xB2 ↔ ∂+xB4 R2− R2+ ∂−xB5 ↔ ∂−xB7 R2+ R2−
∂+xB2′ ↔ ∂+xB4′ R2− R2+ ∂−xB5′ ↔ ∂−xB7′ R2+ R2−
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