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Differential rotation of the unstable nonlinear r-modes
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At second order in perturbation theory, the r-modes of uniformly rotating stars include an axisymmetric
part that can be identified with differential rotation of the background star. If one does not include radiation
reaction, the differential rotation is constant in time and has been computed by S4. It has a gauge dependence
associated with the family of time-independent perturbations that add differential rotation to the unperturbed
equilibrium star: For stars with a barotropic equation of state, one can add to the time-independent second-
order solution arbitrary differential rotation that is stratified on cylinders (that is a function of distance w to
the axis of rotation). We show here that the gravitational radiation-reaction force that drives the r-mode
instability removes this gauge freedom; the exponentially growing differential rotation of the unstable
second-order r-mode is unique. We derive a general expression for this rotation law for Newtonian models

and evaluate it explicitly for slowly rotating models with polytropic equations of state.
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I. INTRODUCTION

Unstable r-modes [1,2] may limit the angular velocity of
old neutron stars spun up by accretion and may contribute
to the spin down of nascent neutron stars (see Refs. [3-6]
for references and reviews). Spruit [7] argued that angular
momentum loss from the star would generate differential
rotation, because the loss rate depends on the mode shape
and varies over the star. Growing differential rotation winds
up and amplifies the star’s magnetic field, and Rezzolla and
collaborators [8—10] studied the possibility that the energy
lost to the magnetic field would damp out the r-mode
instability. (In Spruit’s scenario, a buoyancy instability of
the greatly enhanced magnetic field could power a y-ray
burst.) To estimate the magnetic-field wind-up, Rezzolla
et al. used a drift velocity of a fluid element; this is second
order in perturbation theory, but because the second-order
velocity field had not been computed, they estimated it by
integrating the first-order velocity field. Subsequently,
Cuofano et al. [11,12] used this estimate of drift velocity
to study the evolution of the r-mode instability damped by
magnetic field wind—up.1
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Work by Abbassi e al. [13] also looks at the damping of
r-modes due to a magnetic field; here, however, the magnetic
dissipation arises from magnetic diffussivity in a linearized
magnetohydrodynamics treatment.
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Following Spruit’s work, Levin and Ushomirsky found
the differential rotation of the unstable r-mode in a toy
model of a spherical shell of fluid [14]. S4 [15] then
carried out the first computation of the differential
rotation associated with a stable r-mode of uniformly
rotating barotropic Newtonian stellar models and, with
collaborators, looked at implications of the calculation for
the unstable mode [16,17]. The differential rotation arises
at second order in perturbation theory as a time-inde-
pendent, axisymmetric part of the solution to the per-
turbed Euler equations; for the r-mode whose linear part
is associated with the angular harmonic Y**, S4’s solution
has the form

2 20-4
5§20 = 2QC, <§> (%) +a26P0(w). (1)

Here o measures the amplitude of the first-order pertur-
bation, Cg, is dimensionless and of order unity, the z axis
is the axis of rotation, and w is the distance from the

axis. The function éﬁ)Q(w) is arbitrary. This ambiguity

in the rotation law is present for the following reason.
One can perturb a uniformly rotating barotropic star by
adding differential rotation, changing the angular velocity
from Q to Q+6Q(w). If 6Q(w) is chosen to be

quadratic in a, 6Q(w) = azég\%)Q(m), it and the correspond-

ing time-independent perturbations of density, pressure,
and gravitational potential ¢ constitute a solution to the
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time-independent second-order perturbation equations.
Cao et al. [18] use a particular choice of 52)Q to recompute
the magnetic damping.

In the present paper, we show that the second-order
radiation-reaction force removes the ambiguity in the differ-
ential rotation associated with the Newtonian r-modes. In
effect, the degeneracy in the space of zero-frequency
solutions is broken by the radiation-reaction force, which
picks out a unique differential rotation law that depends
on the neutron-star equation of state. We find an explicit
formula for that rotation law for the unstable r-modes of
slowly rotating stars.

To lowest nonvanishing post-Newtonian order, the growth
time 7 of the radiation-reaction driven Chandrasekhar-
Friedman-Schutz instability instability of an r-mode is
given by

1 G
—_ 20 O26+2
p=—=Cparm MR Q.

where Cj is a dimensionless constant that depends on the
equation of state. In using the Newtonian Euler equation
together with the radiation-reaction force at lowest non-
vanishing post-Newtonian order, we are neglecting radia-
tion-reaction terms smaller by factors of O(RQ/c) and
O(GM/Rc?); this means, in particular, that we keep only
terms linear in the dimensionless parameter f3/CQ.

Three small parameters appear in the paper: the ampli-
tude a of the perturbation; the dimensionless growth rate
£/Q; and, in the final, slow-rotation part of the paper, the
angular velocity Q. For the logic of the paper, it is helpful to
note that these three parameters can be regarded as
independent of one another. The growth rate  can be
varied by changing the equation of state of the material
while keeping a and Q fixed; for example, in polytropes
(stars based on the polytropic equation of state p = Kp"),
one can change f by changing the polytropic constant K.

The plan of the paper is as follows. Section II lists the
equations governing a Newtonian star acted on by a post-
Newtonian radiation-reaction force, with the star modeled as a
self-gravitating perfect fluid. In Sec. III, we discuss first- and
second-order perturbations of a uniformly rotating star. From
the second-order equations, we obtain a formal expression for
the unique differential rotation law of an unstable 7-mode in
terms of the first-order perturbations and second-order con-
tributions that will turn out to be of higher order in Q. Up to
this point in the paper, the analysis holds for rapidly rotating
stars. In Sec. IV, we specialize to a slowly rotating back-
ground, keeping terms of lowest nonvanishing order in €2 and
thereby obtaining an explicit formula for the radiation-
reaction induced differential rotation. Finally, a discussion
section briefly comments on the validity of the results for an
accreting neutron star, when one includes magnetic fields,
nonzero initial data for other modes, and viscosity.

Our notation for fluid perturbations is chosen to make
explicit the orders of the expansions in the amplitude o and
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angular velocity Q. The notation is defined as it is
introduced in Secs. II and III, but, for easy reference, we
also provide a table that summarizes the notation in
Appendix A. We use gravitational units, setting G = ¢ = 1.

II. NEWTONIAN STELLAR MODELS

Let Q = {p, v*, p, @} denote the collection of fields that
determine the state of the fluid in a self-gravitating
Newtonian stellar model. The quantity p represents the
mass density, v“ the fluid velocity, p the pressure, and ® the
gravitational potential. For a barotropic equation of state
p = p(p), the specific enthalpy & of the fluid is

=[P, ©)
0o P

and we define a potential U by
U=h+ 9. (3)

The evolution of the fluid is determined by Euler’s
equation, the mass-conservation law, and the Poisson
equation for the Newtonian gravitational potential. These
equations may be written as

E* =90 + vPVy0e 4+ ViU = f&., (4)
0= 0,0+ V(o). (5)
V2P = 4zp. (6)

The version of the Euler equation that we use, Eq. (4),
includes fsr, the post-Newtonian gravitational radiation-
reaction force (per unit mass). This force plays a central
role in the nonlinear evolution of the r-modes that is the
primary focus of our paper. It is given by

-

- (_1)f+1Nf V(rfyfm) d2f+llfm
for = Z Z R 427+

122 |m|<l 327 \/z
2rf?§m d2f+2 Sfm 27 % %( rf Yfm) d2f+1 Sfm
\/m dr26+2 \/Z dr?e+1 ’

(7)

where )1(Z) denotes the real part of a complex quantity Z.
The quantities 1°" and S’ are the complex mass and
current multiple moments of the fluid source [cf. Thorne
[19] Eqgs. (5.18a) and (5.18b)] defined by

N
o :\/—;/prfY*f’"aﬁx, (8)
2N - Uxfm
‘m — —f—il pr’v - Yy "dx, 9)
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with N, the constant,

N — 167 (¢+2)(+1)
CT @+ 20 -1)

. (10)

The functions Y?™ are the standard spherical harmonics,

while the ¥ {;’” are the magnetic-type vector harmonics
defined by

. = Uylm
ygm:ﬂ‘ (11)
£(¢+1)

We use the normalizations 1 = [ |Y*"|?d cos @d¢ and 1 =

[1Y5"Pdcos@dg for these spherical harmonics. In
Cartesian coordinates, 7 is given by 7 = (x, y, z). We point
out that this expression for the gravitational radiation-
reaction force, Eq. (7), agrees with the mass-multipole part
of the force given by Ipser and Lindblom [20]. It also agrees
with the current-multipole part of the force given by
Lindblom, et al. [21] (following Blanchet [22] and
Rezzolla et al. [23]) for the £ =2 and m = 2 case. The
general form of the force given in Eq. (7), however, is new.

The post-Newtonian radiation-reaction force is gauge
dependent, so the expression for it is not unique. We
derived the expression for the force given in Eq. (7) by
requiring that it implies a time-averaged (over several
oscillation periods) power {dE/dt)|;x (which is gauge

invariant) and angular momentum flux ((dj /dt)| g lost to
gravitational waves that agree with the standard post-
Newtonian expressions, cf. Thorne [19]. We present
expressions for these flux quantities in Appendix B that
are equivalent to, but are somewhat simpler than, the
standard ones.

We consider small perturbations of rigidly rotating,
axisymmetric, barotropic equilibrium models (models with
a barotropic equation of state). The fluid velocity in these
equilibria is denoted

-

7 = Qg (12)

where ¢p generates rotations about the z axis; in Cartesian

coordinates, ¢ = (—y,x,0). For barotropic equilibria,
Euler’s equation reduces to

o—va<h+¢_%w292>, (13)

where £ is the specific enthalpy of the fluid and @ is the
cylindrical radial coordinate, w?® = x> + y?. The surface of
the star is the boundary where the pressure and the enthalpy
vanish: p = h =0.
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III. PERTURBED STELLAR MODELS

We denote by Q(a, 1, X) a one-parameter family of stellar
models. For each value of the parameter a, Q(a,t,X)
satisfies the full nonlinear time-dependent Eqgs. (4)—(6).
We assume that the model with @ = 0 is an axisymmetric
equilibrium model, as described in Egs. (12) and (13). The
exact perturbation 0Q, defined as the difference between
Q(a) and Q(0), is defined everywhere on the intersection
of the domains where Q(a) and Q(0) are defined:

6Q(a, t,%) = Q(a, 1,X) — Q(0,1,X). (14)

It is also useful to define 5 Q, the derivatives of the one-
parameter family Q(«) evaluated at the unperturbed stellar
model, where a = 0:

sMQ(t, %) = ——=——"~4 . (15)

n
n!  Oa a0

These derivatives can be used to define a formal power
series expansion for 6Q:

8Q(a, 1,%) = asV Q(1, %) + a*6P Q(t,X) + O(a?).
(16)

Each point in the interior of the unperturbed star is, for
sufficiently small @, in the interior of the perturbed star; the
derivatives 6" Q defined in Eq. (15) and the formal power
series expansion in Eq. (16) are thus well defined at all
points of the interior of the unperturbed star, but may
diverge at the surface. We consider constant-mass sequen-
ces of stellar models, i.e., models whose exact mass
perturbations, M = M(a) — M(a = 0), vanish identically
for all values of a. The integrals of the nth-order density
perturbations therefore vanish identically for these models:

1d'M(a)

0=
n! da"

= /5(">p\/§d3x. (17)

a=0

The exact (to all orders in the perturbation parameter o)
perturbed evolution equations for these stellar models can
be written in the form

SE® = (0, + Qf,)6v" 4 2Q50v°V 9 + V45U
+ 80PV, 60% = Sf%p, (18)

0 = (0, + Q£4)p + V,(pdv® + Spsv?),  (19)
V250 = 4ndp, (20)

where £, is the Lie derivative along the vector field (;5 and p
is the density of the unperturbed star. The exact perturbed

gravitational radiation-reaction force df sz that appears in
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Eq. (18) is given by

f+1N 6 rfY)f’m J2f+15])f’m
Fon =32 Y e
= 32 N dt
2,.1???” d+258¢6m
- 7+ 1 A2t 2
200 x V(r{Yim) g2+l 550m
- \/;,z A2l
257 x V(1 YOm) 24+ 550
- Nz A2+l ’

(21)
where

Ny
s1m = =2 [ spr’ Y dPx, (22)
\/Z/

2N,

=8 | 1pst + Sp(Q + 50)] - Y " dPx.

357 =
(23)

It is convenient to decompose the perturbations 6Q into
parts SyQ that satisfy the pure Newtonian evolution
equations and parts 0pQ caused by the addition of the
gravitational radiation-reaction force. In particular, the
nonradiative stellar perturbations oy Q satisfy the perturbed
Euler equation:

SE = 0. (24)

When the effects of gravitational radiation-reaction
are included, the complete perturbation, 6Q, satisfies the
Euler equation driven by the gravitational radiation-reac-
tion force

SE = 6f cp. (25)

A. First-order perturbations

The classical first-order (in powers of @) r-modes have
angular and temporal dependence [4,24]

8y'p = o p_sinyy, (26)
SE\PU“ = w‘2¢“¢b5 8 sinyy + P“bé( >v+ cosyy,
(27)
sVU =58\ U_sinyy. (28)
8\)® = 5y d_sinyy, (29)

where yy = oyt + m¢, with m # 0. The tensor
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Péy =68 — w2 P, (30)

1s the projection operator orthogonal to ¢“, and 5 Q =

N Q(w, z) depends on the cylindrical coordinates w and
Z, but not on ¢ or ¢. The origin of time has been chosen to
give the perturbations definite parity under the diffeo-
morphism ¢ — —¢ at t = 0. We use the term ¢- parity to
mean parity under this transformation. The subscripts +
indicate that 55\})[)_, 51(\}>f]_, and 6,(\})@)_ are parts of odd ¢-

parity scalars, while 55\})

vector field.

When gravitational radiation reaction is included, the
Euler equation_is altered by the relatively weak radiation-
reaction force fsg. The first-order radiation-reaction force
can be written in the form

99 is part of an even ¢-parity

W fer :ﬁ5§\})5+ +5$)fGR+v (31)

where f is the growth rate of the r-mode instability, and

5$)}GR+ is (by definition) the even ¢-parity part of the

radiation-reaction force that is orthogonal to 55\})?)+ and

that therefore does not contribute directly to the energy
evolution of the mode. Equation (21) implies that the
odd ¢-parity part of the radiation-reaction force,

$>}GR_, vanishes when the classical r-mode is chosen

to have the ¢-parity given in Eqgs. (26)-(29). The
gravitational radiation-reaction force causes an insta-
bility by introducing an imaginary part f to the
frequency of the mode. The overall structure of the
modes is therefore changed in the following way
(schematically),

(p= (8 p -+ p_)sinpe? + 53 p. cose,  (32)

sy = 55;)@11 [@ 2%y, cosy + P9, siny]e’

+ (600t +64)08)

X [@ 2%y, siny + P4y, cosylel, (33)
sVU = (80 U_ + 83 0_) sinye?

+ 800, cosyel, (34)
sN® = (54 d_ + 5 d_) sinyel

+80)®, cosyel, (35)

where y = y/N—i—z//R = wyt + wpt + m¢. The radiative
corrections 6 Q are smaller than the nonradiative

perturbations 5 Q by terms of order O(S/wy). The
radiative correction wy to the frequency is smaller than
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wy by a term of order O(B/wy)? so we ignore that
change here, setting w = yy. 2

The radiative corrections to the r-mode, 6 Q are
determined by substituting Egs. (32)-(35) into the first-
order perturbed mass conservation and Euler equations.

After applying the equations satisfied by the nonradiative

parts of the perturbations, ES)Q, the resulting system of
equations can be divided into parts proportional to sinyy
and coswyy respectively, each of which must vanish
separately. The resulting equations can be divided further

into a set that determines 5S)ﬁ_, 5%1) U_, and 6%)

another that determines 5%1),b+, 62”(7 ., and 5%1)@‘1

The equations that determine the radiative corrections
having the same ¢-parity as the classical nonradiative r-
modes are then

na
29 and

(0 + mQ)oR p_ + mpw2p, 5 14
+ Va(pPy3 92) =0, (36)

[(wn + mQ)p, + 20V, wlo 2% = —msy U_,  (37)

2
(wy + mQ)P*), + — Qvawqﬁh f)ﬁ
= PV, (38)

These equations are homogeneous and are identical to
those satisfied by the classical r-modes. The solutions for

6%” D, 5;1) U_, and 6%1) 99 are therefore proportional to the
classical r-modes: 51(\;)/3_, 55\})0 _,and 51(\;)?&. The effect of
adding these radiative corrections to the classical r-modes
is simply to rescale its amplitude. We choose to keep the
amplitude, a, of the mode fixed, and therefore without loss
of generality, we set

0=2o0p_=s00_ =681 (39)

=

It follows that the first-order radiative corrections
have ¢-parity opposite to that of the classical r-modes:

op=060p., oW =60, and sy = 549 They
are determined by the equations

’Friedman and Schutz [25] derive the following general
expression for the frequencies of the modes of Lagrangian
systems (including Newtonian fluids with gravitational radia-
tion-reaction forces): 0 = A(w + if})? — (B + iD)(w + iff) —
where A, B, C, and D are real. The term D vanishes for
nondissipative Newtonian fluid stars. When D is small, it is
straightforward to show that the real part of the frequency, w,
differs from the frequency of the nondissipative D = 0 system,
wy, by terms of order D*: @ = wy + O(D?). It is also easy to
show that the imaginary part of the frequency /3 is proportional to
D for a mode with fy = 0.

PHYSICAL REVIEW D 93, 024023 (2016)
(o + mﬂ)é&”ﬁ + mpw‘qua 5
— V(P01 = polp (40)

(wn + mQ)g, — 2wQV,w]6}) 99 + ms\) U

= 0! Tl (41)
2 b
[(G)N + mQ)P“b - QV“wqbb] U

+ Pov, 500 = Pays\l . (42)

The general solution to the inhomogeneous system,
Egs. (40)—(42), for 5;1) D, 6}1) U, and 5%1)17“ consists of an
arbitrary solution to the homogeneous equations (obtained
by setting ﬁél(\})ﬁ = 5&1) f&r = 0) plus a particular solution.
These homogeneous equations are identical to Eqs. (36)—
(38), so their general solution is a multiple of the classical
r-modes. Because their ¢-parity is opposite to that of the
classical r-modes, the effect of the homogeneous contri-
butions 5%1),6, 55;)17, and 6;1)13“ is to change the overall
phase of the mode. We choose (by appropriately adjusting
the time that we label ¢ = 0) to keep this phase unchanged,
and we can therefore, without loss of generality, set to zero
the homogeneous parts of the solutions to Egs. (36)—(38).
The inhomogeneous terms on the right sides of Egs. (40)—

(42), ﬁﬁl(\:)f) and 59]?2;,?, are all of order p. Thus, the
particular solution to Egs. (40)—(42) must also be of order
as well. It follows that the radiation reaction corrections to
the flrst—order r-modes 5 Q are smaller than the classical

r-modes 5 o) by terms of order O(ff/w). To lowest order
in f, therefore, the corrections to the first-order r-modes in
Eqgs. (32)-(35) simply change the overall scale of the mode

by the factor e/": 61 Q = 55\:)Qeﬂ’.

B. Second-order perturbations

The second-order perturbation equations are a sum of
terms linear in 6% Q and terms quadratic in &8Q.

For example, the second-order perturbation of the
éd‘{; E"| _o» includes the term

bV, 5 e, which serves as an effective source term
for the second-order perturbations 62/ and 62 U. In the

absence of gravitational radiation reactron it follows that

Euler equation, 5@ E«

the second-order Newtonian r-mode 5 Q is a sum of
terms of three kinds: a term with angular and temporal
dependence cos(2yy), where wy = m¢ + wyt, a term
with dependence sin(2yy), and a term that is time
independent and axisymmetric. This time-independent
axisymmetric part of the velocity perturbation can be
regarded as differential rotation. As we have emphasized
in the Introduction, the second-order Newtonian r-modes
are not determined uniquely; given a particular solution
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51@Q to the second-order Newtonian perturbation equa-

tions with perturbed velocity field 553} v“, there is a family

of solutions & Q with perturbed velocity field
(2)
0

@ pa =50 ve + 5 Q(w)¢?, where 6)Q(w) is arbi-
trary. This degeneracy is broken by the gravitational
radiation reaction. The presence of the radiation-reaction
force picks out a unique 6 v that displays the gravita-
tional radiation driven growth of the second-order
r-modes: §2)p® « .

To find this differential rotation law, one must solve
the second-order axisymmetric perturbation equations with
the radiation-reaction force for the axisymmetric parts
of the second-order r-modes. Denote the axisymmetric
part of a perturbation 5Q by (5Q), and denote by 52)Q the
exponentially growing differential rotation of the unstable
r-mode:
sPQ = (5T v) et = [(507) + 60 Q(w)]er.  (43)

Without solving the full system, however, one can obtain
a formal expression for 2)Q in terms of the known first-
order perturbation together with other parts of the second-
order axisymmetric perturbation. As we will see in the next
section, this expression is all that is needed to find 5§2)Q to
lowest nonvanishing order in : The other parts of the
second-order perturbation give only higher-order contribu-
tions. Finding this formal expression for 5>)Q and showing
that it is unique are the goals of the present section.

We now turn our attention to solving the perturbation
equations for the axisymmetric parts of the second-order r-
modes. The axisymmetric parts of the second-order per-
turbations can be written in terms of their radiative and
nonradiative pieces:

(6@p) = (87 'p) + (5 p))e,  (44a)
(0@ 0%) = (87 v9) + (85 v))e¥,  (44b)
(BAU) = ((8yU) + (3 U))e,  (44c)
(5DD) = ((67'0) + (5 B))e¥,  (44d)

(0@ fie) = (07 Fiog) e (44e)

These quantities are determined by the second-order
axisymmetric parts of the perturbed stellar evolution
equations:

2B(6@ vy 4 2Q(s
= <5 faGR> - <

28(89p) 4V, [p(8@ve)

V")V, + V(s U)
DbV, 60 ), (45)

+ (6Wps o] =0,  (46)

PHYSICAL REVIEW D 93, 024023 (2016)
V2(6Q)®) = 4x(6@)p). (47)

The uniqueness of the second-order differential rotation
5Q can be seen as follows. Let (52)Q) and (5@ Q) be
two solutions to the second-order perturbation equations,
Eqgs. (45)—(47), associated with the same time dependence

e?’" and with the same first-order solution (Y. The
difference (6Q) — (6@ Q) of the two solutions then
satisfies the linearized Poisson equation and the linearized
Euler and mass conservation equations obtained by setting
to zero the terms involving 5 v¢ and 62 f¢ Gr in Egs. (45)
and (46). That is, ((6Q) — (6?Q))e*" is an axisym-
metric solution to the first-order Newtonian perturbation
equations. But the Newtonian star has no such solution,
no mode with growth rate 2B. Thus, ((6Q) -
(8@ Q))e¥' = 0, implying that 5§2Q is unique. [Note,
however, that the decomposition (43) is not unique; the
arbitrariness in the differential rotation of the Newtonian
r-mode means that one is free to add to (555,); v?) an arbitrary
function f(w) if one simultaneously changes 553)82(13)
t0 6y Q(w) — f(w).]

We now obtain equations for 5 Q and 5 Q Keeping
terms to first order in f, the terms quadratlc in first-order
perturbed quantities that appear in Egs. (45) and (46) have
the forms

(6WeV,6000) = (8 1" V40y v)+B (55 V),
(48)
(6psve) = ({8 pay v7) + Blog We))e,
(49)

where

BV = (55 00V, 8 v7) + (87 0PV, 85 v%), (50

2)v17a ) (1) 4 1 (1) 4
Pl W) = (0 oy ) + (0 8 v°). (51)
The nonradiative parts <5](3)Q> of the perturbations are
determined, up to a perturbation that adds differential
rotation 61(3)9(w), by the axisymmetric parts of the
Newtonian Euler and mass-conservation equations:

2055 00) V7 + Va8 U) = — (81 1PV,84 1v9), (52)
V. lp(8y ve) + 8y psy v4)] = 0. (53)

Given a particular solution 5,(32,Q to these equations, we

want to find the remaining contribution 553)9(13) to the
differential rotation of Eq. (43) that is picked out by the
radiation reaction.
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We define the radiative part of the perturbation, <5§3) 0),
by requiring that it be created entirely by the radiation-

reaction forces; (5%2)Q> is therefore proportional to the

radiation-reaction rate 3. When <6§3)Q> satisfies the
Newtonian equations (52) and (53), the axisymmetric parts
of the full perturbed Euler and mass-conservation equations
with radiation reaction have at O(f) the form

2685 v°) +2Q(855 1") V¢ + V(5 U)
= (6% f&r) — PSR V), (54)

V. (p(85)v7)) = —28(8% p)

To find an expression for 553)9(@), we first write

(8P v9) as (85hv9) + 60 Q(w)p* and move the term

involving <6§v},v ) to the right side of Eq. (55),

— AV (5T W). (55

2656 Qw)p + 2055 0"\, + V(S U)
= B(5g FO), (56)

where

PSR F) = (68 o) = 2B(60p0%) = BUOR'VE). (57)

We next write the components of the axisymmetric part
of the second-order perturbed Euler equation, Eq. (56), in
cylindrical coordinates:

25w Q(w) + 298 v7) = pw (8P FP),  (58a)
—2Qw (55 v?) = ~0,(8% U) + B(6g F7).  (58b)
0= -0,(55 U) + p(5g F?). (58¢)

Using Eq. (58a) to determine <§g)v""), the axisymmetric

part of the second-order mass conservation Eq. (55) can be
written as

500 dalpm (6 FF) 257 Q(w))]
+azbo<aR J03)] = —28(84 ) p) — BV (S5 W), (59)

The star’s surface is defined as the p =0 surface.
Because 6%)p is a derivative evaluated at a = 0, it has
support on the unperturbed star. While the density pertur-
bation 5)p is not finite for some equations of state at the
surface of the star, it is integrable in the sense that 52 f pdz
is finite, as one would expect from the integrability of the
mass-conservation condition in Eq. (17). In particular, for
polytropes with fractional polytropic index 0 <n < 2,
6@p diverges at z=zg, but, as we show in
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Appendix C, 5 f pdz is finite. Here, we denote by
zs(w) the value of z (the Cartesian coordinate axis parallel
to the rotation axis) at the surface of the unperturbed star.

We now multiply the second-order mass conservation
equation, Eq. (59), by 2wQ/f and integrate with respect to
z over the support of the star. It will be convenient to extend
the domain of integration to extend slightly beyond the
surface of the unperturbed star. Because each integrand has
support on the unperturbed star, we simply take the
integrals to extend from —oo to oo instead of —zg to zg.
We then have

0= 41UQ/00 dz<51(\%)p>
" / " 420, [pw (57 FY

1 2wQ / " 42V, (52 W), (60)

) —263Q(w))]

The second integral on the right side of Eq. (60) can be
rewritten as

/ ® 420, o (52 FP) - 25 Q(w))]

=0, / " dzpet (57 F

The expression in Eq. (60) can then be integrated from
w =0 to w, using Eq. (61), to obtain an expression for

82 0(w):

2025 Q(w) / Y dep = o / " dzp(82 F9)

+4Q /w dw’w’/oo dz(él(\%)m
0 -

120 / ” do'w’ / " 42V, (8D wey. (62)
0 —00

) =26y Q(w)). (61)

Because of the axisymmetry of its integrand, the third term
on the right side of Eq. (62) is, up to a factor of 2z, the
volume integral of a divergence. The boundary of the three-
dimensional region of integration has two parts: One is
outside the surface of the star, where 5;3) W4 vanishes; the
second is the cylinder at constant w from —zg to zg, with
outward normal V,w and element of area wd¢gdz. The
term is then given by

/dww/ dzV ,(
0

With this simplification, Eq. (62) can be written in the
form

W“ w/ dz{6 W”>

(63)
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2025 Q(w) /oo dzp = w* /m dzp (87 F?)

+4Q /w dw’w’/oo dz(é&?p)
0 —o0
+ 200 /  dz (82w, (64)

This provides a formal expression for 5&?9(13) in terms

of the first-order perturbations that comprise (5§3)F ?) and
<6§e2> W) and the second-order perturbation <5](3)p>.3

Together with (51(32,1)’/’), it determines the differential
rotation of the unstable r-mode.

We conclude this section with a discussion of two
simplifications in evaluating 553)9(13), one from the fact
that we work to first order in the growth rate  and the
second from the slow-rotation approximation of the next
section. The first is a simplification of the expression for the
radiation-reaction force. The integrand of the first term in
Eq. (64), p(5§€2)F¢), is given by the ¢-component of
Eq. (57):

BT ) = (82 L) — 2860 0%) = BD V). (65)

To evaluate (5%2) f2.), we must find the axisymmetric,
second-order, part of the expression for 5}GR on the right
side of Eq. (21). Recall that the axisymmetric parts of any
second-order quantity have time dependence e*’. The first
three terms in the bracketed expression in Eq. (21) involve
high-order time derivatives of 17 or 62§70 and are
therefore proportional to high powers of f and can be
neglected. We are left with only the fourth term,

(=1)N,
87:\/?

- g2+ s\ gt
x m<5§;>v x V(rfyff)7N5>. (66)

<51(ze2)}GR> =

dt2f+1

The second simplification involves the quantities
(522)V“> and <5§?)W“> that appear in Eq. (64). They are
defined in Egs. (50) and (51). Using the general expressions
for the first-order perturbations given in Eqgs. (32)—(35), we

’As mentioned above, Appendix C shows that assuming
smoothness of the displacement of the surface as a function of
a and X implies integrability of 6§3>p. A simpler way to see that
the right side of Eq. (63) is finite is to note that smoothness of the
displacement of the surface implies one-sided differentiability of
6?7 at the surface. The perturbed mass conservation equation,
Eq. (55), then implies that the combination 2(51@ p)+
vV, (6;2)W“) is finite at the surface and hence integrable. This
is enough to imply that the expression in Eq. (64) for 55@ Q(w) is
finite.
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can express these quantities in terms of the first-order
perturbations:

(Bog W) = 2 P, (8 poy 8" + 6 oy 2).  (67)

1 . .
(B3 Vo) = S w2 lo 94V (8y 1)

63 04V (83 ). (68)

As we will see in the following section, these terms and the
term involving 55\%)/) in Eq. (64) are higher order in Q than

the first two terms of Eq. (65) and can therefore be

neglected when evaluating 5,(3)9(13) for slowly rotating

stars using Eq. (64). This fact is essential, because 65\?),0

itself depends on 553)9.

This discussion has been somewhat abstract but quite
general. Apart from assuming the integrability of the
perturbed density so that mass conservation, Eq. (17),
can be enforced, no assumption has been made up to this
point about the particular equation of state of the matter in
these stellar models, nor has any assumption been made
about the magnitude of the angular velocity of the star. In
order to proceed further, however, we will need to assume
that the stellar model is slowly rotating in a suitable sense.
To find an explicit solution for 555)9(15), we will also need
to make some choice for the equation of state for the stellar
matter. The slow rotation assumption and its implications
are discussed in Sec. IV, while the complete solution for
8?)Q, the second-order r-mode angular velocity that is
driven by gravitational radiation reaction, is determined in
Sec. V for the case of stars composed of matter with a range
of polytropic equations of state.

IV. SLOW ROTATION EXPANSION

We consider the one-parameter families of stars Q =
0(Q) composed of matter with a fixed equation of state and
having masses that are independent of the angular velocity:
M(Q) = M,. The structures of slowly rotating stellar
models in these families are conveniently written as
expansions in the dimensionless angular velocity,

~ Q
Q="

where Q) = \/M,/R>, and M, is the mass and R the radius
of the nonrotating star in the sequence. The slow rotation
expansion of these stellar models is denoted

0=> 0,Q"=0y+ 012+ 0,2 +0(Q"). (70)

n=0

For equilibrium rotating stars, these expansions of the basic
fluid variables have the forms
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p = po+pQ+0(QY), (71)

v = Qg (72)
P =po+ PR +0(QY), (73)
D = Dy + B,Q* + O(QY). (74)

We will represent the perturbations of these stellar models
0Q as dual expansions in the mode amplitude a and the

angular velocity parameter Q:

50 =Y a"QlsQ,. (75)
nk

Our main goal here is to determine to lowest order in
angular velocity the axisymmetric part of the second-order
perturbations of the r-mode angular velocity field (5( )v‘f’)
that is driven by the gravitational-radiation instability.
Doing this requires the explicit slow-rotation forms of
the first- and the second-order perturbations. These slow-
rotation expansions are described in the remainder of this
section.

A. First-order perturbations

The effect of the first-order gravitational radiation-
reaction force (! f cr on the structure of the classical r-
mode (beyond its overall effect on its amplitude) was first
studied (for £ = 2) by Dias and Sa [17]. We agree with the
results they obtain but will need to clarify their meaning.
We also extend the calculation to general values of 7.

To first order in mode amplitude « and lowest nontrivial

order in angular velocity Q, the classical r-modes with the
¢-parity described in Sec. Il A can be written the form

8y py = oy'py =8y ®, =0, (76)

- RQ > L
S0y = 3[ L;’(R) 7 x V(sin“gefPtion | (77)

where J(Z) is the imaginary part of a quantity Z. An
equivalent expression for the classical r-mode velocity in
terms of vector spherical harmonics is

54Dy = (A Yy e, (78)

: 4
__ lAfr [?’?ﬁeiwt

— (=1)7Y5 e, (79)
where A, is given by

Ant (€ + 1)

Ac=(= ¢+ 1)!

D722 - 1)! R=1Q,.  (80)

PHYSICAL REVIEW D 93, 024023 (2016)

The frequencies of these classical r-modes have the form

(=1 +2) ;
oy = 711 Q+ O(Q%). (81)
At this order in Q, the r-modes do not affect the fluid
variables 8p and §p, which are O(Q?). Because of this, the
r-mode velocity field at order 2 does not depend on the
equation of state.

Four features of the gravitational radiation-reaction force
are important in determining the way it alters each r-mode:
a) The ¢-parity of 8! fGR, as shown in the last section, is
opposite to that of the classical mode; b) its magnitude, as
shown below, is dominated by the current current multipole
§%%; ¢) it can be decomposed in the manner

Do = oy 5 + 6\ Fon, (82)

where the two terms in the decomposition are orthogonal
with respect to a density-weighted inner product,

[ /Gd3xpod\))
59}61? is a gradient, 6$>}GR = Vé(j)]:

It is straightforward to evaluate the multipole moments
of the r-modes using Egs. (22) and (23) and the expressions
for the classical r-modes from Eqgs. (76) and (77). The
expressions for the nonvanishing multipole moments of the
r-modes can be written in the form

-6&”]76,{ = 0; and d) as we show below,

(_l)fél(\;)s*f—f
Afoeia)t R

:_lﬁ A r2”ﬂ+2p0dr. (83)

Inserting these expressions into the formula for the gravi-
tational radiation-reaction force, Eq. (21), we find

- —1)N 1 -
o\ For =& )ﬂ 'f’s)t{[ vy

5](\})Sff —

8 VE+1
Q - 5 d2f+15sff

This expression can be rewritten as a linear combination of
B ’ and V( “Y??) using the identity

-

b x V(YY) = iEl + )Yy — VYY), (85)

The resulting expression for 5,(\})}GR can therefore be
written in the following way,

W for =ﬂ5§vl)5+5$)fcm (86)

where f is given by
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N§w2f+2

h= dn(£? -

DZ+2) AR P podr (87)

and where 5 fGR is defined by

2 . 20+1
_NKC"TQ/R P2y
4 0

(1)
ON
X{f+1+

This expression for 611) for can be rewritten as a gradient,

Ofer =

R[zA NV (F Y )ei]
200+ 1) } (88)

£(€+1) 6[rf+1 oS eyffeiwt]}

= Vs F. (89)

Equations (86) and (89) give the decomposition of Eq. (82),
and the orthogonality of the two parts,

//)055\})7’ ’ 55_1)}GR\/§d3x =0, (90)
is implied by the relation
/e“bcva(cosGY”)VbrVCY”\/ﬁdZX

= - / € cos YN,V V. Y\ Jgd’x =0,  (91)

where \/gde is the volume element on the sphere: \/gdzx =
—r?d cos Od¢. At this order in Q, the density p, plays no role
in the orthogonality, but it is with respect to the density-
weighted inner product that the operators appearing in the
perturbed Euler equatlon are formally self-adjoint.

It follows that 5 fGR is the part of the gravitational
radiation-reaction force that does not contribute directly to
the exponential growth of the classical r-mode instability
and that the coefficient f is the growth rate of the
gravitational radiation driven instability in the r-modes.
Substituting into Eq. (87) the expressions for N, from
Eq. (10) and the r-mode frequency @ from Eq. (81) gives

2042 _1\2¢ 2042
327Q¥ (£ — 1) (£ + 2\ 2+ /R 2042 .
[(2¢ + 1)1)? £+1 0

(92)

p=

which agrees with the expression for the gravitational
radiation growth rate of the r-mode instability given by
Lindblom et al. [3].

These expressions for the slow rotation limits of the
radiation-reaction force confirm the general expressions,
e.g. Eq. (31), used in our discussion of the general
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properties of the first-order r-modes in Sec. III A. It follows
from that discussion that the general form of the first-order
r-mode velocity, to lowest order in the angular velocity of
the star, is given by

s = Q87 . (93)

To evaluate 5 o) using Eq. (64), we need to determine

6; )p and 52)1;, or at least to show that they are negligibly
small compared to other terms in the equation. We show in

the heuristic argument below that 6g)p =0O(pQ) and

819 = O(BQ?), which will allow us to neglect them in
our slow rotation expansion. A more precise version of the

argument is given in Appendix D. The fact that 55;)

v is
higher order in £ than 5}1) p is the reverse of their relation in
the classical r-modes. This reversal depends on the appear-

ance of the gradient V5 VF in the decomposition of the
gravitational radiation-reaction force 5 f GR-

The equations that determine 6 Q Eqs (40)—(42), can
be written more compactly as

-

(wn + Q)54 D +V - (p83)) = poy'p.  (94)

_. -

W5 42060 - Vg = V(s 0 - sV 7).

(95)

The value of 6%1)1:) is fixed by the curl of the perturbed Euler
equation (95),

N

V x [(wy + Q)80 + 20805 - Vg =0,  (96)

3z

which involves only 65 ?. Its two independent components

give two relations for the three components of 55;)17, in

which all coefficients are O(Q2). All components of 553”17)

are therefore of the same order in Q. Similarly, the two
relations among 5S)U, 55;)@, and 51(,;),0 given by the
equation of state and the Poisson equation imply that
5;1)U and 5g>p are of the same order in Q. The continuity
equation (94) then implies that 51(,;)7; =0 (Qég) p). Finally,
the ¢-component of the Euler equation gives, to lowest
order in Q,

U =6\ F + 0@\ p). (97)

From its definition in Eq. (89), it follows that
U F = O(Qp), which then implies that 8y p = O(SQ)
and 6% = O(pQ2).
Dias and Sa [17] find, for an £ = 2 perturbation, a
solution 65;)71, 6g>U that is a sum of a) our solution with
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5§;>U given by Eq. (97) and b) a solution to the homo-

geneous equations with ¢-parity opposite to that of the

Newtonian r-mode 5 Q As noted above, adding part b of
their solution is equlvalent to changing the initial phase of
the perturbation.

B. Second-order axisymmetric perturbations

In computing the quadratic terms that enter the second-
order perturbation equations, it will be useful to have
explicit expressions for the classical r-mode Py )”1 in
cylindrical coordinates (w, z, ¢),

=
55\})1;’17’ = —-Qz (%) cos(¢¢p +wt),  (98a)

1

(n @\’
80 = QR (E) cos(£¢p + wt), (98b)

£-2

sV = 0,2 <9> sin(Z¢ + wt).  (98¢)
R\ R

From these, one finds explicit expressions for the cylin-

drical components of the quadratic term (ég})v’l’vhﬁ,(\})v‘f),

which appears as a source in the second-order Euler

equation, Eq. (45):

- Q2 20-3
1) )
o5 o) = 520 - 02 - 2l (7)

(99a)

- 262
6V, - Vo v3) = Q22 <1Z> , (99b)
V3, - vellu?) = 0. (99¢)

The axisymmetric parts of the nonradiative second-order
perturbations (55\3) v*) and (555) U) are determined by
solving the perturbed Euler equation, Eq. (52), and the
perturbed mass conservation equation, Eq. (53). The
contributions to each component of Euler's equation at
lowest order in angular velocity are given by,

0= (30 E) = 2008y vf) + 0 (8 U2)
QZ 2¢-3
2(¢—-1)z7 — — 1
-2 -a 3 (7)) (100a)
20-2

0=(6VE) =0.(67U,) — £z <%> , (100b)
0= (Y E;) = 20Qy (55 v7). (100c)
The integrability conditions for these equations,

<51(\% E,) =0, are given by V| <5N Ep) = 0. In cylindrical

coordinates, these 1ntegrab111ty conditions, at lowest order
in angular velocity, are

PHYSICAL REVIEW D 93, 024023 (2016)
0 = V(8 En)) = w00, (33 v])

) Q7 20-3

101
RGEDE S (1012)
0= V(85 Ey) = Q. (55 v7), (101b)
0= Vi (88 E ) = QO (w (5 07)). (101c)

These conditions, together with the requirement that the

solution is nonsingular on the rotation axis, determine
(5,(3) v7) and <5§3) v?), up to the time-independent differ-
ential rotation 55\%)9(@) As before, we denote a particular

choice by 80 hv?:

(83 v7) =0, (102)
Q.72 20-4
ot =@ -5 (7). oy

The remaining component, <5,(3) v}), is determined from the
lowest order in the angular velocity piece of the perturbed
mass conservation equation [cf. Eq. (53)],

Va(p(6§) v4)) = 0.

This equation, together with Eq. (102), shows that the only

nonsingular solution for (55\%) vy) is

(104)

(105)

The scalar parts of the second-order nonradiative
r-mode, (5) @) }and(

the solution to the perturbed Euler equation <5,(5>Ea) =0
and then solving the perturbed gravitational potential

<I>>, are determined by completing

equation. The potential (555) U) is determined by integrating
the perturbed Euler Egs. (100a) and (100b). Using Egs. (43)
and (103), we obtain the following expression for the
axisymmetric part of the solution, to lowest order in angular

velocity,
2 p2 2 2,2 20-2
2) QR Q52 w
(05 Ua) = 4£<R> TR
120, / " 80w dw + 80 Cy. (106)
0
where 553) C, is a constant.

The pressure as well as the density perturbations, 62 p
and 6@p, are related to 52U as follows,
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sOU =59 + 15<2> p
P

-2) dy
:5(2)¢+Q5<2)p+£ [7(7 +] 5Wp)2,
p? 207 p dp (&%)

1
——_sMpsh)
5,20 Pop

(107)

where y = dlog p/dlog p is the adiabatic index. For the r-
modes, the first-order perturbations 6(!)p and 8(V)p are
O(Q?). So at lowest order in angular velocity, the relation
between 82U and 6?)p simplifies to

14

50U, = 520, + 2 5@), (108)
P’

The gravitational potential 6@ is determined by
solving the perturbed gravitational potential equation,
V25208 = 4762 (109)

For the r-modes, to lowest order in the angular velocity, this
equation my be rewritten as

V2520, + 4p? o 2,
YPo YPo

_4 oy, (110)

Using the expression derived in Eq. (106) for the axisym-

metric part of 55\?

(8 ®,):

U,, we find the general equation for

4
V(5 ><I>2>+—”p (52)3,)
YPo

Aap? (R (@ 2f+mgz2 @\ 22
~ypo | 4¢ \R 2 \R
+29, / 7820w dw + 52C, }

Finally, we use Eq. (64) to obtain an exp11c1t formula for
the second-order differential rotation, & )Q( ), in terms of
the second-order radiation-reaction force and the second-
order velocity perturbation 6](\?) v“. Of the three terms on the
right side of that equation, we will see that the second and
third are higher order in Q than the first, and we will
evaluate the first term to leading order in Q.

We first use Eq. (66) to find an exphclt form for the

(111)

second-order radiation-reaction force <5 f Gr). From
Egs. (98) and (83) for 61(\}>1)9 and 55\})5’”, we find
N 4 + 20-2
R G ﬂQ( ) $. (112)

The second term 8\ v in Eq. (65) is given by Eq. (103). In

(2)

the final term, o Ve, by its definition (50), is proportional
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to a product of components of 55\}) v and 5%”17. By our initial
normalization 6(”* O(Q), and we found in Sec. IVA

that 5 )% is (’)(95 fGR) O(BQ?).
From Egs. (65), (112), and (103), we have

e =-a(g) 15

we-n(Z)]

Equation (113) implies <5£§>F ?) = O(Q). The second term
in Eq. (64) has an integrand proportional to (51(3),0).
Because 8\2p = O(Q2), the integrand is O(Q2), and the
term itself is O(Q?), two orders higher than (653)F¢).
Finally, the last term in (64) is proportional to Q(ﬁg wy.
Equation (51) implies (%) W4) = O(Q2), whence the last
term is again O(Q?).

With the dominant term in Eq. (64) determined by
(5P F%), we have

(113)

f15 dzp( 5( )F‘/>

2
s0(w) = 2[5 dzp

(114)

This integrand can be rewritten in a more explicit form
using Egs. (113) and (103),

s20(w) = -0 (%) 2 [(f; 1)? (%>2

(-1
+ 5 T(w)] ,

(115)

where Y(w) is the equation of state-dependent, mass-
weighted average of (z/R)?,

s dzpz?

Y (w) = 55—,
R? s dzp

(116)
The limits of integration, +z¢(w), in this expression are the
w-dependent values of z at the surface of the equilibrium
star. To lowest order in Q, these limits are the same as those
in a spherical nonrotating star:

R? — .

zs(w) = (117)

The part of the second-order differential rotation that is not
explicitly caused by the radiation-reaction force, <6§v1)3v'1/)>

is given in Eq. (103):

o =@-03 (5 (5)
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Together, Egs. (115) and (118) determine (to lowest order
in Q) the time-dependent differential-rotation induced by
the gravitational-radiation reaction:

8DQ = [(811?) + sPQ(w)]e.  (119)

The key result of this section is the derivation of an
explicit expression (114) for 555)9(13) in terms of the first-
order r-mode. An expression of this kind exists because the
rest of the second-order perturbation, the perturbed density,
pressure, and potential, are higher order in Q. Like the
velocity field of the first-order r-mode, the second-order
differential rotation of the unstable r-mode can be found
without simultaneously solving for the perturbed density
and pressure.

This separation of orders also leads to an iterative
method for solving the second-order Newtonian perturba-
tion equations at successive orders in Q that mirrors the
method we have just used to determine the axisymmetric
parts of 8 v at O(Q) and 8\ p, 57 p, and 810 ® at O(Q2).
At each order, the ambiguity in the Newtonian differential
rotation is resolved by using Eq. (64). We assume that the
first-order Newtonian perturbation equations have been
solved to the desired order in Q. We suppose one has found

the perturbed Newtonian velocity 85’ v to O(Q*-!) and
the scalar quantities in 6%’ Q to O(Q), and we list the
steps to obtain the next-order correction, to find 61(3) V5
and the scalar quantities to O(Q?+2):

(1) Because 513 v4,_; is known, and the integrability
conditions V[a@(\%)Eb] = 0 have an additional power
of Q in each term, they are satisfied at O(Q?*). One
can then integrate the @ or z component of the
perturbed Newtonian Euler equation (52) to find
653) U,i.» up to a constant 653)C ki2-

(2) Equation (107) determines 6,3 Paksn Up to the

ambiguity associated with 51(3>C2k +». The Poisson

equation, Eq. (47), with the conditions that 55\%)@2,(”
vanish at infinity and have no monopole part (no

change in mass), determines both 51(3)<I>2k+2 and the

constant 5(2)C
N Cokp2-
(3) Equation (107) (or, alternatively, the Poisson equa-

tion) gives 55\?),02,(”, and the equation of state

determines 61(3) Dokia-

(4) Finally, one uses the known first-order perturbation

55\})11“ to solve two independent components of the

curl of the Euler equation, 6§3>Ea = 0 for 553) vg’k 41

and 55\%)0% O (éﬁ)vfk +1) has an f(w) ambiguity

that is resolved by Eq. (64). The final component
553) v5;,, 1is found from the second-order mass-

conservation equation.
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C. Secular drift of a fluid element

The differential rotation we have found for the unstable
r-mode extends the work of Sa and collaborators [15—-17] to
obtain the differential rotation of the unstable second-order
r-mode. The studies of magnetic-field wind-up by Rezzolla
et al. [8-10], which predated this work, explicitly omitted
the form of the second-order perturbation to the velocity
field that we have computed here. These authors obtained a
secular drift ¢(7) in the position of a fluid element by
integrating the # = 2 form of the equations for the position
¢(t) and 0(r) of a particle whose perturbed velocity field is

found solely from the first-order perturbation 65\;)1)“ of
Eq. (77), from the equations

@ — a0, (1), (120a)
9 o) 1000), 90 (120b)

The equations are nonlinear in 6(¢), ¢(¢), and the solution is
written to O(a?). The axisymmetric part of the solution is
again the part that is not oscillatory in time; in our notation,
it has the form

(0(1)) =0, <¢(¢)>:azg[g)z-z(%ﬂm (121)

A secular drift obtained in this way has been used in
subsequent papers by Cuofano et al. [11,12] and by Cao
et al. [18].

When one includes the second-order differential rotation
52)Q of the unstable # =2 r-mode from Eqs. (119),
additional terms are added to the secular drift ¢(z) of a
fluid element’s position. The resulting expression is given
for t < 1/ by

<¢(f)>:0‘2{%[<%>Z—Z<%>TQ+5<2)Q|t=0}t. (122)

Using the expression for §2)Q in Eq. (119), with Egs. (115)
and (118), we obtain the following explicit form for the
second-order drift of an unstable £ = 2 r-mode:

o) =-3waly (F) + 1@ a2

This expression for the drift (¢(7)) is independent of z and
therefore describes a drift that is constant on @ = constant
cylinders. The analogous expression for the drift found
previously by S4 [15] has this same feature, and Chugunov
[26] observes that the drift in these modes can therefore be
completely eliminated in the pure Newtonian case by
appropriately choosing the arbitrary second-order angular
velocity perturbation.
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For long times (that is, for ft arbitrary but f <« Q),
the time dependence ¢ in Eq. (123) is replaced by
(e’ —1)/2p. This expression is not of order 1/4 but
satisfies the bound

eZﬁt -1 eZﬂt + 1
<t s

2p 2

(124)

for t > 0.

V. POLYTROPIC STELLAR MODELS

In this section, we evaluate Eq. (119), to determine the
changes in the rotation laws of uniformly rotating poly-
tropes that are induced by the gravitational-radiation driven
instability in the r-modes. Polytropic stellar models (poly-
tropes) are stars composed of matter whose equation of
state has the form

p= Kpl-'rl/n’ (125)
where K and n, the polytropic index, are constants. We start
with the simplest case, n = 0, the uniform-density models.
The only dependence of the differential rotation 5*)Q on
the equation of state is in Y (), the mass-weighted average
of (z/R)? at fixed w defined in Eq. (116). This average can
be evaluated analytically in the uniform-density case:

R? — _ 7% ()
3R? 3R*

Y(w) = (126)
Combining this result with Eqgs. (115), (118), and (119)
gives

a3 )

52_1 2
4 : )<3%—1>}e2ﬂt.

In particular, for the # = 2 r-mode, the radiation-reaction
induced differential rotation has the form

3/z\2 5/w\? 1
20 — (2 ) () | g2
TR =0 {2 <R> 8 (R) 2:| “

which is positive in a neighborhood of the poles and
negative near the equatorial plane. Figure 1 illustrates the
gravitational-radiation driven differential rotation 52 Q/Q
from the £ =2 r-mode instability of a slowly rotating
uniform-density star. This figure shows contours of con-
stant 62Q/Q, on a cross section of the star that passes
through the rotation axis. For example, this figure illustrates
that 52Q/Q ~ —9/8 near the surface of the star at the
equator. This indicates that the angular velocity of the star is
reduced by an amount ~ — (9/8)Qa’e?" in this region,
where ae’’ is the amplitude of the r-mode and Q is the

(127)

(128)
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4

=

FIG. 1. Differential rotation §2Q/Q from the # =2 r-mode
instability evaluated on a cross section through the rotation axis
of a slowly rotating uniform-density star. The solution scales with
time as e

‘0

angular velocity of the unperturbed star. Similarly, this
figure illustrates that 62Q/Q~ 1 near the poles. The
angular velocity of the star is enhanced by the r-mode
instability in these regions.

The equilibrium structures of n = 1 polytropes can also
be expressed in terms of simple analytical functions, but the
integrals that determine Y (w) in Eq. (116) cannot. We
therefore evaluate these quantities for all the n # 0 poly-
tropes numerically.

The structures of the nonrotating Newtonian polytropes
are determined by the Lane-Emden equations, which are
generally written in the form

d 2d0 _ om
z:(%)‘ SO

where 0 is related to the density by p = p.0", with @ = 1 at
the center of the star and € = 0 at its surface. The variable &
is the scaled radial coordinate, r = a&, with

(129)

o DR

1
4nG (130)

We solve Eq. (129) numerically to determine the Lane-
Emden functions 6(£); use them to evaluate the density
profiles of these stars, p(r) = p.6"; and finally perform the
integrals numerically in Eq. (116) that determine the mass-
weighted average Y (w) of (z/R)? for spherical polytropes.
Figure 2 illustrates the results for a range of polytropic
indices. Because they are more centrally condensed, stars
with softer equations of state, i.e. polytropes with larger
values of n, have smaller Y'(w). This is most pronounced
near the rotation axis of the star where @ = 0 and values of
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FIG. 2. Dimensionless ratio of the integrals Y(w) defined in
Eq. (116) that determines the gravitational-radiation induced
differential rotation in polytropic stellar models having a range of
polytropic indices n.

z? in the dense core dominate the average. Figure 3

illustrates 5](5)9/ Q from Eq. (115), the differential rotation
induced by the gravitational-radiation driven instability in
the £ =2 r-modes for polytropes having a range of
polytropic indices n. This graph shows that the equatorial

surface value (w = R) of 553)9/ Q is the same for all the
polytropes. This is not a surprise, because Y (w) = 0 there
for all equations of state. Stars composed of fluid having
stiffer equations of state, i.e. smaller values of n, have larger

1.2 T T T T T I T I
0.8
g
g
G
(SN A
7 e S S IO )
04 . ——=n=15
----- n=2.0
______ n=25
== n=30
n=35|]
_____ —— n=40
‘‘‘‘‘ n=45
0 1 L 1 L
0 0.2 0.4 0.6 0.8 1
o/R
FIG. 3. Differential rotation induced by the gravitational-

radiation instability in the # =2 r-modes for a range of
polytropic indices n.
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FIG. 4. Differential rotation induced by the gravitational-
radiation instability in various r-modes of n =1 polytropes
for a range of spherical harmonic mode index # values.

values of |5§3) Q/Q| near the rotation axis where w = 0.
Figure 4 illustrates the differential rotation induced by the
gravitational-radiation induced instability in the r-modes of
n =1 polytropes having a range of different spherical
harmonic mode index # values. The figure portrays a

differential rotation 55?(2 /€ induced by gravitational radi-
ation that, like the magnitude of the linear mode, is more
narrowly confined to the equatorial region near the surface of
the star as the r-mode harmonic index £ is increased.

VI. DISCUSSION

The radiation-reaction force uniquely determines the
exponentially growing differential rotation of the unstable,
nonlinear r-mode. We have found expressions for the
rotation law and for the corresponding secular drift of a
fluid element and have obtained their explicit forms for
slowly rotating polytropes. The formalism presented here
describes an r-mode, driven by a gravitational radiation
reaction, at second order in its amplitude «, and restricted to a
perfect-fluid Newtonian model. We now comment briefly on
the meaning of the work within a broader physical context.

First, a realistic evolution involves coupling to other
modes, because realistic initial data have small, nonzero
initial amplitudes for all modes and, at higher orders in «,
other modes are excited by the r-mode itself. As a result of
the couplings, the r-mode amplitude will saturate, and
studies of its nonlinear evolution (see Refs. [5,6] and
references therein) suggest a saturation amplitude of order
10~* or smaller. By the time the mode reaches saturation,
the amplitude of daughter modes may be large enough that
their own second-order axisymmetric parts contribute
significantly to the differential rotation law.
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Second, when there is a background magnetic field,
the growing axisymmetric magnetic field generated by the
r-mode’s secular drift can change the profile of the
growing differential rotation [26]. The second-order Euler
equation (45)is altered by the second-order Lorentz force per
unitmass, given in an ideal magnetohydrodynamics approxi-

mation by o (8?) finugnenc) = @2 (6P L (V x B) x B)).
This will be of order the radiation-reaction force after an
amplitude-independent time*

P p (108G R \2
10 g¢/ecm3107% s~! \' By 10° cm
(131)

t~pr3 ~10%s

where 7, is the Alfvén time associated with the background
field, t4, = R\/4zp/B,. After this time and until the mode
reaches its nonlinear saturation amplitude, we expect that the
radiation-reaction force will continue to drive growing
differential rotation. The functional form of this differential
rotation, however, will be determined by both 6@ fsx
and <6<2)fmagnetic>'

After nonlinear saturation, we expect the growth of
differential rotation and of the magnetic field to stop within
a time on the order of the Alfvén time. This is because
(1) the radiation-reaction force is now time independent
and (2), with a background magnetic field, there should no
longer be a zero-frequency subspace of modes associated
with adding differential rotation. Reason 2 means that the
differential rotation and the magnetic field at the time of
mode saturation become initial data for a set of modes
whose frequencies are of order the Alvén frequency. The
second-order axisymmetric part of the r-mode after satu-
ration becomes effectively a system of stable oscillators
driven by a constant force. Such systems have no growing
modes and therefore no secularly growing magnetic field.

*For a magnetic field that grows linearly in time, we have

1
o’ <5(2)fmagnetic> ~ ot —— B(ZJQ[.

47pR
The second-order radiation-reaction force is given by
@26 fop ~ 2BQR, implying that the Lorentz force

@?(8® fmagnetic) has comparable magnitude after a time given in
Eq. (131). Here, we follow Chugunov [26]. Chugunov uses this
argument to conclude that the magnetic field will not be signifi-
cantly enhanced after it reaches B ~ 10%(2/107#)? G, but his
analysis is restricted to the case where the gravitational radiation-
reaction force on the r-mode is negligible. We have checked the
conclusion of continued growth for Shapiro’s model of a uniform-
density cylinder with an initial magnetic field [27], by adding a
forcing term of the form of the second-order axisymmetric
radiation-reaction force [28]. We expect the amplification factor
of the magnetic field to be limited by the value of the mode
amplitude, ae’', at nonlinear saturation, not by the value of the
field, unless the initial magnetic field is of order 10'> G or larger.

PHYSICAL REVIEW D 93, 024023 (2016)

The explicit form of the secular drift we obtain is new,
but its magnitude is consistent with that used in earlier
work [8—12,18] that examines the damping of the unstable
r-mode by this energy transfer mechanism. This damping
mechanism becomes important whenever the rate of
energy transfer to the magnetic field (by winding up
magnetic-field lines or, for a superconducting region in a
neutron-star interior, by stretching magnetic-flux tubes or
other mechanisms) is comparable to the growth rate of the
unstable r-mode. Assuming the energy transferred to the
magnetic field is not returned to the r-mode and that a
large fraction of the core is a type-II superconductor,
Rezzolla et al. [8] estimate that the instability will be
magnetically damped for a magnetic field of order 10'? G.
As noted above, we expect this magnetic damping
mechanism to play a role only if the magnetic field
reaches this 10'> G range prior to the nonlinear saturation
of the r-mode. We think it likely that a limit on magnetic-
field growth imposed by saturation means that this field
strength can be reached only if the initial field is not far
below 10'2 G. In addition, for an initial field of order
B > 10" G or larger, if all axisymmetric perturbations
that wind up the magnetic field have frequency higher
than or of order the Alfvén frequency, we conjecture
(based on the toy model mentioned in Footnote 4) that the
enhancement of the magnetic field will be too small to
damp the r-mode.

Finally, if the magnetic field is large enough to signifi-
cantly modify the structure of the first-order r-modes, all of
the calculations here would need to be modified. Previous
studies, however [13,29-34], find that field strength B =
10" — 10" G is needed to significantly alter the linear r-
mode of a star with spin greater than 300 Hz. When the
viscous damping time is comparable to the gravitational-
wave growth time, one would also need to include viscosity
in the second-order equations that determine the differential
rotation.
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APPENDIX A: NOTATION

The symbols in Table I are listed by order of appearance
in the paper, starting with Sec. II. We omit a few symbols
that are used only where they are defined.

TABLE I. Notation.

9]
E
o
o
=

Meaning

The set of variables {p, v, p, ®}

Mass density

Fluid velocity

Fluid pressure

Newtonian gravitational potential

Fluid specific enthalpy

Effective potential

E* =0 is the Newtonian Euler equation
Radiation-reaction force

;Nlhqu‘reﬁv eL‘b(Q
=

J7m §¢m Mass and current multipoles

N, A constant defined in Eq. (10)

Q Fluid angular velocity

3) Rotational symmetry vector x — y&

a Dimensionless amplitude of r-mode

sMQ First-order perturbation of Q: 9,0|,_

5<2)Q Second-order perturbation of Q: 3930/,

First- and second-order Newtonian perturbations (no
radiation reaction)

w, 7 dependence of perturbation: Eqgs. (32)—(35)

A correction in first-order perturbation due to radiation
reaction

Subscript = denotes even (+) or odd (—) ¢-parity
under the diffeomorphism ¢ — 27 — ¢

oy Frequency of Newtonian r-mode

YN Wy = oyt + me

P4y Projection operator orthogonal to ¢ Eq. (30)

p Imaginary part of frequency of unstable r-mode

(60) Axisymmetric part of §Q

Second-order Newtonian perturbation with a

Particular choice of 65\?)9(13)

553)9(13) Arbitrary function of @ in second-order

Newtonian differential rotation

Second-order differential rotation, (5()v?)

553)Q o2 Radiative part of second-order perturbation

522)‘7’ Defined in Egs. (50) and (51)

s
( 5%2)1?> Effective driving force for <5§?2)17>: Eq. (57)
My, R Mass and radius of spherical stellar model

Q VMy/R?

Q Dimensionless angular Velocity, Q/Qq
0, Part of Q that is nth order in Q: Eq. (70)
55})}@ Part of 61) fp orthogonal to 5( %

55_” o Function for which &' . fGR = Véﬂ
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APPENDIX B: GRAVITATIONAL WAVE
ENERGY AND ANGULAR MOMENTUM FLUXES

The expression for the radiation-reaction force }G r given
in Eq. (7) was derived by constructing a force that
reproduces the standard expressions for the time averaged
gravitational wave energy and angular momentum fluxes:

()] = ([ -ens)
- _; l;fszn <<‘ dz;ﬁm
o
oo (fFeuts)

dtf+1
1 4 rem df+1_1'§'”
32 << dr’  di’t!

2

&

22 |\m|<t
d;f’S*fm dzf’Jrl Svgm
+ dtzf’ dtf+1 >> :
The expression given here for the angular momentum flux,
Eq. (B2), is somewhat more compact than the standard

post-Newtonian expression [cf. Thorne [19], Eq. (4.23)].
We express this flux in terms of the magnetic-type mass

(B2)

. 2¢ 27 .
and current-multipole moments, 13" and S3", which we
define as

" =N+ l/prff/gmde (B3)
Em 2N - = onolm
S =—C_ [ prf(D-Fx V)Y "dx.  (B4)

VE+1

These magnetic-type mass and current mutipole moments
can be expressed in terms of the standard I and S°,

15" = =3/ =m)(f + m+ DI (3 4 i9)

- % ST M@ =mF DI (& = i) — imI?,

(B5)
wem 1 (=m)(Am+1)
Sp = 2\/ 2T D) SemtH(R 4 i9)

i [C+m)(f—m+1) 0 4 .

_2\/ (6 +1 S )

L — T (B6)

26+ 1)
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where %, ¥, and Z are unit vectors. Both of these expressions
are based on the following identity for vector spherical
harmonics:

R ' — 1
ng_;\/(f m)(£ +m+ )YWH(;C_[.}A})

2 £(641)

Ym=l(x 4 i9)

+£\/(f+m)(f—m+l)

2 £+ 1)
im

e Y’"3.
20 +1)

(B7)

Using this transformation, Eq. (B2) reproduces the standard
post-Newtonian expression [cf. Thorne [19], Eq. (4.23)].
The calculation needed to verify that the expression for the

radiation-reaction force }GR given in Eq. (7) satisfies the
time averaged gravitational wave energy and angular
momentum flux expressions given in Eqs. (B1) and (B2)
is straightforward but lengthy.

APPENDIX C: INTEGRATING dp

For rotating equilibrium stellar models having polytropic
equations of state with polytropic index n, the density p «
(distance to the surface)” near the star’s surface. We
assume here that the surface of the perturbed star is smooth
as a function of a and X. Although the surface itself is
smooth, the behavior of p near p = 0 implies that V p
diverges for n <1 and V,V,p diverges for n < 2. It
follows that 61"p and 6 p diverge because they involve
first and second derivatives, respectively, of the unper-
turbed density. We show, however, that continuity and
differentiability of the star’s surface as a function of x and a
imply finiteness of the integrals [ 8Vpdz and
= 8@ pdz, when 8%)p is regarded as a distribution.

We first verify the claimed behavior of p for the
unperturbed polytrope and then use the form of the
Lagrangian perturbation of the enthalpy to deduce
the behavior of 6(p and 6®p near the surface. Denote
by zi (a, t, @, ¢) the values of z at the top and bottom parts
of the surface of the perturbed star. We again introduce the
polytropic function 6, related to the specific enthalpy by
0 = po/[(n +1)p,]h. Then, p=p,0"O (z5 —2)O(z~z5),
where ©(zi —z) =1 for z& >z and O(z5 —2) =0
for z& < z. For the unperturbed rotating polytrope, € is
finite with finite derivatives at the surface of the star.’
The lack of smoothness in p at the surface thus arises

>For the unperturbed star, Eq. (13) implies 0 = p,/[(n +
1)p,)(€ — @ + 1 @>Q?), where € is the constant injection energy
per unit mass. Caffarelli and Friedman prove that p is Holder
continuous, p € C%*(R?) [35], and the Poisson equation then
implies ® € C?>%(R?). Thus, € has one-sided first and second
derivatives at the surface.
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from the fact that n is not an integer. We now show for
the perturbed polytrope that p is again proportional to
(distance to the surface)” to second order in a.

The vanishing of € at the surface of the perturbed star is
equivalent to the vanishing of the Lagrangian perturbation
of 6 at the unperturbed surface,

AO =0, (C1)

where

AQ:=0(a. 1.5 + &) — 0(0,1.), (€2)

with E(a, t,x) the exact Lagrangian displacement—a vector
from the position X of each fluid element in the unperturbed

star to its position X + ¢ in the perturbed fluid. Our
assumption that the surface changes smoothly as a function

of a and X is then the requirement that £ and its derivatives
are smooth at the surface of the star. Writing

E = aém + aZ:f(z) +0(a?) (C3)

and taking derivatives of (C2) with respect to a, we have

609 = AVg — gMev g, (C4a)
520 = ADg — gDay g — May s1)g
1
- 54§<1>a4§<1>bvavb9. (C4b)

Then, 610 and 626 are finite at the unperturbed surface,
and, to second order in a, we can write for @ the Taylor
expansion

O(a,z,w) = 0,0

2(z=7) +0(z-25)%  (C5)
for z < z{. The corresponding expansion for p = pyf" is
thus

pla.z.m) = po(=0.01, )" (zf = 2)" + O(zf = 2",
(o)

We can now show directly that the integrals [ sWpdz
and [ 83 pdz are finite for polytropic equations of state
with any polytropic index n > 0 for which the equilibrium
star has a finite surface. More precisely, they are finite
everywhere except the equator, where the range of inte-
gration vanishes.

For a given value of @, we choose Z* with 0 < Z*+ < zd
and 0 > Z~ > z for all a < ¢, for some finite ¢ > 0. We
write the integral as a sum of three parts,

o0 zZr o0 z~
/ Spdz = / Spdz + / Spdz + / dpdz. (C7)
-0 z" z* —00
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In the first integral on the right side, 5( )p and 6 )p are
finite, so we need only to consider [ 6 pdz, [ 8% pdz,
and the corresponding integrals near the bottom part of the
surface. Because the finiteness argument is identical for the

integrals near z5 and z, we consider the integrals near z.
We have

Oap = Ouflpo(—00]+)" (25 — 2)"
+0(z5 =)0 (z5 — 2)}
= po(=0:0].:)"0ul(z5 — 2)" © (2§ — 2)] + Olzg —2)"
—p00az5 (=0.01;)"0:[(z5 — 2)" © (25 — 2)]

+ 0@t —2)", (C8)
implying
51p = =poleV3(~0.6)"],,0.[(zs ~ 2" © (z5 — 2)

4 O(ZS _ Z)n’ (C9)

where we have used the relation 9,z |,— = gz |, From
Eq. (C8), we have

agp = _poaaz:st(_aze|z§)naaaz[<z._§"— - Z>n C) (Z;‘_ - Z)]

+ O(z¢ — )™ !
= pO(aaZ;’r)z(_azﬂz;)nag[(zj{ - Z)n C) (Z; - Z)]
+0(zf = 2" 1, (C10)
implying
5 = 3 pol( (0,07, 2l (es — 2 © (cf ~ )]

+O(zg —2)" . (C11)
Finiteness of [ 8(Wpdz is immediate from the integra-
bility of (zg —z)"! for n > 0. For 6)p, we had to retain
the factor © (zg — z), and we kept it for 6()p as well to
display pairs of analogous equations. From Eqs. (C9) and
(C11), the leading term in each of §(')p and 6?)p is a
z-derivative, and we immediately obtain the integrals

[+
VAs

&) Z)
52 oz — P
/Z+ paz ZZS_Z+

8Wpdz = p(Z)EWF| + Oz5 —Z*)™1,  (C12)

(EW=[5)> + O(zs = Z*)™.
(C13)

The integrals [
finite as claimed.

(Dpdz and [*, 63 pdz are therefore
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APPENDIX D: ORDERING IN Q OF 540

To make the heuristic argument of Sec. IVA more
precise, we use the two-potential formalism of Ipser
and Lindblom [36] to write an explicit form for 5( )% in

terms of 553 >U and 653 JF. Because that formalism uses the
complex version of a perturbation, we write 5%1)Q =

%(SQ)Q). The perturbed Euler equation, Eq. (95), with
radiation-reaction force then has the form

[y + £Q)gap + 2iQV by |50 0"
=iV, (50U =50 F).

0o 0"
(D1)

Using the slow-rotation form (81) of wy and Eq. (13) of
(1)

Ref. [36], we write the solution to this equation for 6, " v* as

5y vt = iV, (Gl u -8 F),  (D2)

where the inverse of Q7 is the tensor 0 = Q~1Q“", with
gt —__C+1
20(6 +2)

X [g% = (€ + 1)2V4;Vlz —i(¢ +1)Veg?]. (D3)

With Sg)v“ replaced by the expression on the right side
of Eq. (D2), the mass conservation equation, Eq. (94)

becomes an elliptic equation for Sg)U - 59.7: , namely

V. [p0v, (30U - sV F))
2 2, dp =), 2Day _ ops)
T dp(aR U-35®) =ips\tp. (D4)

The potentials SEQUU and 35;) ® are determined by this
equation, together with the Poisson equation,

V250 = 4ﬂpj—z GWU-50®), (D5)
and the two boundary conditions,
}HE‘OSQ)‘I’ =0 (D6)
and
AR = (305300 + BV, n) = 0: (D7)

here, S is the surface of the unperturbed star, and the

Lagrangian displacement £ is defined by

1 -
6(1)1)“.

z(Da _

024023-19



JOHN L. FRIEDMAN, LEE LINDBLOM, and KEITH H. LOCKITCH

Using the value of wy from Eq. (81), and Eq. (D2), we can
write the second boundary condition as

- - - 2 . -
0V v, (60 U -5 F) + f—ng(éﬁg) U-50) =0.

(D9)
To find the orders in Q of 6%1)17, 6531)U, and 6%”(1), we

begin with the relations 55\})p = O(Q?) and, from Eq. (89),
ST)F = O(Qp). From the Poisson equation (D5), 5g)U
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and 51(,;)@ are the same order in Q. From Eq. (D4), we then
have 8/ U — 8\ F = 0(Q25) F) + O(Q3p) = O(Qp).
Then,

s =06V U) =06V F)=0Qp).  (DI0)
Finally, Eq. (D2) implies
s vt = O(Q1Q3p) = O(Q2P). (D11)
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